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Abstract

A Demonstration and Comparative Analysis of Haptic

Performance using a Gough-Stewart Platform as a wearable

Haptic Feedback Device

Lucas Eddie Gallegos III, M.S.E.

The University of Texas at Austin, 2019

Supervisor: Sheldon Landsberger
Co-Supervisor: Mitchell Pryor

In many hazardous work environments, contact tasks ranging from manufac-

turing to disassembly to emergency response are performed by industrial manipula-

tors. Due to the hazardous and complex nature of these environments, teleoperation

is often employed. When such is the case, the operator is left to interpret a large

amount of data during task completion due to the complexity of modern robotic

systems and the possible complexity of the tasks. This information is usually pro-

cessed visually but can lead to sensory overload. To mitigate this, the information

processing can also be distributed through other modes of sensory such as auditory

or haptic. The University of Texas at Austin’s TeMoto hands-free interface reduces

the burden on the operator of commanding remote systems by enabling the use of

gestural and verbal commands to complete a range of tasks, but the removal of a

vi



mechanical interactive device from the operator interface complicates the inclusion of

haptic feedback.

In this work, a standalone Gough-Stewart platform previously configured as a

wearable haptic feedback device for the Nuclear and Applied Robotics Group at the

University of Texas at Austin provides real-time haptic feedback to the unconstrained

hand(s) of the operator. In doing so, this haptic interface can be employed with the

intent of enhancing situational awareness and minimizing operator stress by impart-

ing forces and torques to the user based on those imparted on the end-effector of

the industrial manipulator. While multiple technical issues and human factor issues

must be addressed, this effort focuses on integrating the system and evaluating its

performance for various industrial manipulator designs and sensor modalities. After

testing various digital signal processing techniques, functionality was demonstrated

among one series-elastic and two rigid industrial manipulators, each with different

force/torque data acquisition characteristics and a comparative analysis in haptic

performance was performed. Furthermore, it was demonstrated with the TeMoto

hands-free teleoperation system. Overall, the demonstrations and experiments per-

formed in this work prove the system to be a viable, hardware agnostic means of

haptic feedback and a strong basis for future efforts.
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Chapter 1

Introduction

Haptic feedback in a robotic system is the ability to emulate and convey sen-

sations of touch, force, and torque perceived by a robot to an operator. The operator

may be controlling or providing oversight to the robot that is performing a real-

world or simulated contact task. This can be for a system that is either autonomous

or semi-autonomous and in the context of this thesis, refers to open-link industrial

manipulators.

Determination of the forces and torques perceived by the robot end-effector is

achieved through either a force-torque sensor on the end-effector or a combination of

torque sensors at each joint. Thus, the haptic feedback is then provided by processing

that data in a computer or micro-controller and using it to employ a mechanism in

an effort to impart similar forces, torques, vibrations, or any type of physical exertion

that can be sensed by a human operator. Meaningful application of haptic feedback

allows for the enhancement in performance of the robotic system in that, the operator

has a greater sense of situational awareness. This includes knowledge of the state of

the process and the environment that the robot is operating in.

There exists two subsets of haptic feedback: tactile and kinaesthetic. Ki-

naesthetic haptic feedback is felt in the muscles, joints, and tendons. Tactile haptic

1



feedback is felt in the skin and encompasses sensations of touch such as vibrations.

When used simultaneously, both types can provide valuable and distinct information

to the operator.

1.1 Motivation

For optimal performance when employing a robotic system in an unstructured

and potentially hazardous environment, the system should provide the operator with

as much meaningful feedback relating to the operation performed as possible. Convey-

ing this information should be done in such a way as to not overwhelm the operator

with too much information at once. One example of a potentially hazardous and

unstructured environment would be a glovebox in which highly toxic and radioactive

materials are handled, such as those shown in Figure 1.1.

Some of the primary modes of feedback that are usually incorporated into

robotic systems include visual and auditory. Visual feedback can encompass any-

thing from a single Light-Emitting Diode (LED) to a monitor that is streaming data

through means of a Graphical User Interface (GUI). The visual data could also in-

clude anything from numbers and plots, to a video stream of the robot performing

in the work environment. Auditory feedback relies on the operator’s sense of hearing

to relay notifications such as beeps or sirens. For example, such auditory notifica-

tions can serve as an alert to inform the operator of a malfunction or can be used

as constraints to possibly allow the operator to keep the robot from performing an

unintended action.
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(a) Glovebox Workers at Los Alamos Na-
tional Laboratory [22]

(b) A mock glove box from the Nuclear
and Applied Robotics Group at the Uni-
versity of Texas at Austin.

Figure 1.1: Gloveboxes provide for the safe manipulation of Nuclear Materials.

1.1.1 Situational Awareness

When employing a robotic system without haptic feedback, visual and auditory

qualitative information about forces and torques imparted on the end-effector of a

robotic manipulator may fall short. This is especially true if such forces and torques

are not externally identifiable and are not constant. One example could be in a

situation where the robot must open a door knob or turn a power switch. In such

a situation, haptic feedback would allow the operator to know in an intuitive way,

whether or not the door knob or power switch is locked. The operator would then be

able to make an informed decision as to what should be the next step taken in the

process. The ability to make such an informed decision would thereby mitigate the

risk of damaging the robot or the environment.
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1.1.2 Sensory Overload

Sensory overload occurs when mental workload is high enough such that de-

mand of mental resources exceeds mental capabilities. [43] This occurs when there is

too much information provided across too few sensory modes, such as through solely

visual or solely auditory means. Any human operator has a finite supply of mental

resources when performing a task. These resources are distributed among different

modes of data processing (visual, auditory, haptic, etc.) and do not overlap. [49]

When an operator is given a large amount data in real-time, it has been found to be

most beneficial and efficient to provide that data to the operator in a way that allows

the different modes of processing to work simultaneously. [49]

A great example of a situation where sensory overload can occur is given by

Wickens [49], where a person driving in a new place hears the directions while operat-

ing the vehicle, rather than having to read a map while navigating. In the former case,

the information is distributed across multiple sensory modes and is more effective.

Whereas in the latter case, the driver is receiving too much visual stimulation for

the brain to effectively process, and that mode of sensory becomes saturated. That

saturation reduces effectiveness of operating the vehicle. The application of haptic

feedback serves to provide new modes of sensory through which information can be

passed from the robot.

1.1.3 Teleoperation and Hardware Compatibility

In a teleoperation process, the operator is controlling the robot from a lo-

cation that is different from that of the robot itself. Teleoperation is employed in
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many fields of research. Some of which include space exploration, medical surgery,

and the commercial nuclear industry. [21] [53] [20] There has been a vast amount of

research into teleoperation systems since their inception in the 1940s. [17] Much of

the research involves studies of closed loop control algorithms that compensate for

latency in signals between the operator (master haptic mechanism) and the robot

(slave mechanism). [17] To avoid such an issue, Valner, Kruusamäe, and Pryor [46]

have developed a teleoperation system called TeMoto. This system utilizes voice pro-

cessing and hand gesture tracking among other capabilities to virtually plan a task

before actually performing the task. Although this teleoperation system is not Real-

Time, there is no longer any concern for instabilities that could be brought upon by

a Real-Time system.

TeMoto also employs the Robot Operating System (ROS) framework in an

effort to accommodate a large range of hardware. [46] [26] With this ability that ROS

provides, the integration of a novel haptic feedback device to the teleoperation system

is possible. Furthermore, the comparison of haptic behavior between three specific

types of manipulators can be performed including a 6 Degree of Freedom (DOF) rigid

manipulator, a 6-DOF series elastic manipulator, and a 7-DOF rigid manipulator with

a Force/Torque (F/T) sensor.

1.2 Component Review

Different types of manipulators have distinct features for specific applications.

Nonetheless, the ability to effectively utilize the same haptic device with the same

software structure among the different manipulators is optimal and one of the funda-
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mental intentions of this research. The Nuclear and Applied Robotics Group (NRG)

at the University of Texas at Austin employs numerous different types of industrial

manipulators for researching robotics in hazardous environments. Among them, the

haptic behavior of three types are considered and a brief introduction to the design

characteristics and applications of each follows.

1.2.1 Rigid Manipulators

Rigid industrial manipulators have been widely used in research and industry

for many years. Their primary uses are material handling in situations where they are

performing a repetitive task or are working in a potentially hazardous environment.

Fully autonomous rigid manipulators are usually not directly interacting with humans

or dynamic environments due to the large and possibly damaging force that would

result from a collision. Although they are rigid, they can be provided with a level

of compliance through force control and are good for rendering high impedance with

robust and accurate position control. [6]

1.2.1.1 Universal Robotics UR3 Robot

The UR3 from Universal Robotics (UR) shown in Figure 1.2, is a small, rigid,

and collaborative tabletop industrial manipulator with a 3kg payload that has built-in

force sensing technology. [31] This built-in technology enhances safety and allows for

features such as force control to be employed by outputting data about forces on the

end-effector. Although this robot has F/T sensing abilities innate to its controller,

such forces and torques are found using electrical current data at each actuator. This
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produces certain challenges with regard to the haptic interface that are discussed in

later sections. Finally, in spite of the fact that part of this research is conducted on

the UR3, it is certainly applicable to other UR robots such as the UR5 or UR10. [31]

Figure 1.2: UR3 Rigid manipulator. [31]

1.2.1.2 Yaskawa SIA5D

The SIA5D robot made by Yaskawa is a 7-DOF rigidly actuated industrial

manipulator shown in Figure 1.3a. It’s payload is 5kg and its 7-DOF allows for extra

dexterity and better maneuverability in tight spaces. [52] For this research, the robot

includes a Gamma F/T sensor made by Industrial Automation between the wrist and

end-effector as shown in Figure 1.3b. The main benefit of using this F/T sensor is

the high signal to noise ratio and the signal is amplified, which leads to minimal noise

distortion. [3]
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(a) SIA5D rigid manipulator [52] (b) 6-axis Gamma F/T Sensor [3]

Figure 1.3: The F/T sensor is mounted between the wrist and the end-effector.

1.2.2 The HEBI Series Elastic Manipulators

Series elastic actuators contain an elastic element such as a spring within the

actuator itself. When compared to rigid manipulators, research in elastic actuators is

a relatively new field of study. [6] According to Williamson [50], although rigid robots

provide good performance in position control, they are more likely to become unstable

when employed in force control applications compared to series elastic actuators.

This is due to the high stiffness and large forces produced from small displacements.

The compliant component within the actuator acts to filter shock forces, make force

control easier, and add an extra layer of safety to the robot and environment with

some decrease in position control capabilities. [50]

The series-elastic robot considered in this research is a 6-DOF series-elastic

actuated open-chain manipulator that is comprised of X-Series actuators shown in
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Figure 1.4b. These actuators are made by HEBI Robotics. [16] This manipulator

(shown in Figure 1.4a) can easily be taken apart and re-built to form another ma-

nipulator with varying degrees of freedom. The main advantages of a manipulator

composed of these types of actuators are that they allow for simultaneous control of

position, velocity, and torque. These are extra advantages on top of those already

inherent to series elastic actuators.

In terms of haptic applications, these actuators continually publish data rep-

resenting the current state of torques imparted on them and can be used to find the

forces and torques imparted on the end-effector. Calculating the forces and torques on

the end-effector is discussed in greater detail in a later section. The ability to continu-

ally have the end-effector F/T data makes it a prime candidate for haptic performance

evaluation and comparison to such performance on other types of manipulators.
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(a) 6-DOF Series Elastic Actuator

(b) HEBI Series Elastic Actuator [16]

Figure 1.4: The series elastic actuator employed by NRG at the University of Texas
at Austin.

1.2.3 Gough-Stewart Platforms

A Gough-Stewart Platform is a kinematically complex, parallel closed-chain

manipulator. With this complexity, though, comes a full range of motion in six

degrees of freedom. The concept of a parallel closed chain manipulator has essentially

opened up an entire field of research and provides for a vast number of possible

applications. [12] Some of the many applications include flight simulation, precision

material handling, and medical rehabilitation. [12] [27] [9] Two such examples are

shown in Figure 1.5. There are various configurations and modes of actuation for

these types of manipulators. Some are actuated via prismatic actuators and others
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via rotary.

(a) Full Flight Simulator [1] (b) Precision Positioning Platform [27]

Figure 1.5: Two examples of industry applications for Gough-Stewart Platforms.

1.2.3.1 A Novel Haptic Feedback Device

A wearable form of this manipulator (shown in Figure 1.6) was designed and

fabricated by a senior design group at the University of Texas at Austin and one

of the applications now includes haptic feedback (kinaesthetic and tactile). [10] The

kinaesthetic haptic feedback is achieved when the haptic device moves in response

to forces and torques on the end-effector. Tactile haptic feedback is achieved by

employing vibration motors in the glove that are activated when a certain threshold

force or torque is surpassed on the end-effector of the industrial manipulator.

Initially, this was a stand-alone system and could only provide haptic feedback
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for pre-recorded operations or user commanded movements. Real-time implementa-

tion would require taking the existing standalone software package associated with

this manipulator and modifying it such that it can communicate with other software

packages, sensors, and actuators. This was achieved through the integration of the

software to the ROS framework. The framework provides for the interfacing of data

between another manipulator and the Gough-Stewart Platform controller. It also

provides the capability of implementing the haptic feedback system alongside exist-

ing ROS packages such as TeMoto and the various manipulators considered in this

research. The controller used for the haptic device was a single-board Linux computer

called a Raspberry Pi. In completing the integration of this haptic feedback device

to ROS, the quantification of its effectiveness with regard to these types of systems

could then be determined.

Figure 1.6: Gough-Stewart Platform as a wearable haptic feedback device
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1.3 Research Objectives

The main objectives of this thesis are to utilize a novel haptic feedback de-

vice to mitigate issues related to situational awareness (or lack thereof) and sensory

overload while enhancing operator experience when controlling or supervising an in-

dustrial robotic process as follows:

• Take existing standalone hardware and software associated with a Gough -

Stewart Platform configured as a novel haptic feedback device and enable the

capability of interfacing among other software packages, robotic systems, and

sensors.

• Develop and compare metrics in haptic performance among three different vari-

ations of open chained industrial manipulators.

• Integrate the haptic device to a hands-free teleoperation system called TeMoto.

• Streamline design requirements of the haptic device for future research endeav-

ors.

1.4 Thesis Organization

The completion of the objectives stated in the previous section and the process

through which they will be achieved is outlined in this thesis as follows:

• Chapter 2 will review previous efforts with regard to haptic applications in

robotic teleoperation in the Nuclear Industry. Next, this chapter will discuss
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current advancements in this field of research with special emphasis on wearable

haptic devices. Subsequently, this chapter will review literature on various F/T

applications among different industrial manipulators to provide context to how

those variations relate to haptic feedback applications.

• Chapter 3 will convey all necessary analytical and technical considerations

with regard to inverse kinematics of the Gough-Stewart Platform, Force/Torque

data acquisition, and digital signal processing techniques.

• Chapter 4 will discuss implementation of hardware and software performed to

meet the specified objectives. This includes detailed information on hardware

design and software structure used to integrate the system to ROS.

• Chapter 5 communicates experiments performed to validate implementation.

Experimentation will include performing tests with the haptic device as it inter-

faces with each specified robotic system. This chapter will conclude by stating

all results obtained.

• Chapter 6 summarizes conclusions drawn in performing this work. It will fi-

nally conclude with suggestions for a path forward and a description of potential

future work to be performed.
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Chapter 2

Literature Review

Many of the concepts used in the implementation and testing of the examined

haptic feedback mechanism are based largely on relevant literature. This chapter

begins by reviewing some efforts in teleoperation and haptic feedback in the Nuclear

Industry. It then assesses recent developments in wearable haptic devices in more gen-

eral robotic applications while providing special emphasis on designs and the metrics

used to quantify those designs. Their effectiveness and validity with respect to differ-

ent robotic systems is also explored. We then review challenges faced in haptics and

analyze efforts in mitigating those challenges. Finally, a review of Force/Torque (F/T)

concepts and implementations among rigid and series-elastic industrial manipulators

is investigated to provide context to how they may affect haptic performance.

2.1 Review of Efforts in the Nuclear Industry

The field of haptic feedback research for robotic manipulation has been around

for many years. Some early applications were brought about in the advent of teleop-

eration in nuclear environments. Robots and other mechanisms were teleoperated to

perform tasks that were hazardous from safe locations. This proved the need for an

interface through which the operator could control and receive information about the
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robot and its interaction with its environment. Examples of teleoperation systems

and haptic devices in the nuclear industry are presented in this section.

2.1.1 Teleoperation

One of the earliest teleoperation devices employed in a hazardous environment

was performed at Argonne National Laboratory by Goertz [15]. The system was

unilateral and consisted of a master-slave mechanism. The mechanism was used to

manipulate nuclear material with a pair of tongs behind a shielded lead glass barrier

(Figure 2.1). It was fully mechanical and comprised of linkages connecting the slave

device to the master device. Any movement the operator made with the master

mechanism was emulated in sync by the slave mechanism. When tested, it was

concluded that the average person could only learn to operate the system in a short

amount of time if they had good eye sight. This was because the slave mechanism

was approximately one meter away. It was also found that if the operator used only

one eye, the process was even more difficult due to lack of depth perception.

Based on conclusions drawn by Goertz [15], it is apparent the operator lacked

information. Forces were not directly sensed and difficult to infer. If they were,

sensations were distorted due to friction and reaction forces among the linkages. Also,

vision was the only sensory mode used to attain information. Based on the distance,

performing fine contact tasks would be difficult. Furthermore, there was no apparent

benefit regarding force amplification in the system. This meant the range of objects

manipulated was limited by the force imposed on the master device.
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Figure 2.1: Master-Slave Mechanism for handling nuclear materials [15]

As technology progressed, electronic systems became available to control mech-

anisms in teleoperation. Goertz built the first electric bilateral master-slave mecha-

nism in 1954. [36] Fully mechanical teleoperation systems were no longer necessary.

A notable electronic system employed for maintenance of a nuclear fusion reactor is

outlined in [33]. When the fusion process occurred, the reactor itself became activated

due to high energy scattered neutrons. The electronic servo-manipulator performed

maintenance tasks upon temporary shutdown of the reactor. Although the system

did not provide haptic feedback to the operator, it augmented the operator’s force

applied to the master device. This allowed the operator to lift heavy items within the

reactor by imparting a fraction of the required lifting force to the master mechanism.

This proved one of the major advantages of electronic systems. As capabilities fur-

ther expanded, robotic teleoperation systems with autonomous and semi-autonomous
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features emerged and were proposed for new tasks within the nuclear industry.

Standard nuclear power reactors must run at full power for as long as possi-

ble to maximize earnings. To ensure safe maintenance and monitoring while running,

emphasis is placed on implementing robotic teleoperation systems. According to Kim

et al. [20], some of the possible applications set forth by the Korea Atomic Energy

Research Institute (KAERI) include: maintenance work in the coolant systems of a

Pressurized Water Reactor (PWR) and inspection of pressure tubes in the primary

heat transport system of a Pressurized Heavy Water Reactor (PHWR). If using tele-

operation, such tasks are performed without powering down the reactor. This process

also lends its control to the expertise of the operator and specific areas of interest

can be monitored or maintained. Providing the user with enhanced telepresence1via

haptic feedback was becoming more important. Such feedback was achieved with elec-

tronic sensors that obtained and transmitted data communicated via haptic interface.

2.1.2 Haptic Interfaces

While early teleoperation systems may have been successfully implemented

without haptic feedback, more contemporary systems in the nuclear industry have

included it as a means to relay information obtained from the robot being controlled.

Some examples are outlined in [11, 19, 24], in which variations of F/T information is

conveyed via haptic interface. Though F/T data obtained and transmitted from the

1Telepresence is the sensation of being in the same environment as the robotic system being
teleoperated.
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robot is most commonly used, the haptic rendering does not always need to be based

on this type of data. For example, in [37], an Omega 7 made by Force Dimension

is used as a master haptic device in a nuclear facility to control a 7-DOF industrial

manipulator. The manipulator is used to perform tube cutting and welding at large

heights. To keep the manipulator from entering a singularity, a virtual guidance

is provided via force feedback. This is achieved by calculating the manipulability

ellipsoid of the robot from its Jacobian Matrix and varying force applied by the haptic

mechanism based on the size and direction of the ellipsoid. [37] Haptic rendering has

even been employed for detection of radioactive sources using an Unmanned Aerial

Vehicle (UAV). In [2], the user controls a UAV in the vicinity where there is thought

to be a radioactive source. A CdZnTe spectroscopic gamma-ray detector is mounted

on the system and the user feels force feedback that increases as the user gets closer

to the source.

Another haptic mechanism tested in the nuclear industry was analyzed by

Sabater et al. [32]. This bilateral system is shown in Figure 2.2 and utilized a Gough-

Stewart Platform as a means of haptic feedback. The ground link of the master

mechanism is stationary and the linear actuators are replaced with cable-driven pan-

tographs. The master mechanism is shown in Figure 2.2a and was used to control

and receive force reflection data from an identical parallel platform shown in Figure

2.2b. The slave platform could be used for inspection, maintenance, and dismantling

tasks by climbing up pipes. The master haptic mechanism provided an easy and

intuitive interface because of its 6-DOF design. It is apparent that great strides have

been made in haptic feedback in the nuclear industry. This is due to the innately
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hazardous tasks involved and the need for the operator to receive information about

a robotic process through more sensory modes.

(a) 6-DOF Gough-Stewart master haptic
mechanism

(b) 6-DOF climbing robot

Figure 2.2: Bilateral Master-Slave teleoperation system for climbing with kinemati-
cally similar mechanisms [32]

2.2 Developments in Wearable Haptic Devices

This section reviews wearable haptic feedback devices whose uses encompass a

broader field of robotic applications. This is done to gain a comprehensive perspective

on the variety of these types of devices. Special emphasis is placed on design con-

siderations and implementations. Furthermore, a review of test metrics to examine

how such design considerations and implementations are validated is presented. This

review is done to outline similar metrics for the haptic feedback device examined in

this thesis. Those of which, will also be presented, but in a later chapter. Exten-

sive efforts in the field of wearable haptic feedback devices have been made, such as

in [4, 7, 34,38], but a more detailed review of three specific devices, follows.

The first wearable haptic feedback mechanism is outlined in [56]. This system
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is shown in Figure 2.3 and is proposed for use with a rescue robot. It is implemented

in a hands-free teleoperation system that utilizes the ROS framework and a Leap

Motion hand-tracking sensor. It exploits Jamming Phenomenon2 to emulate grasping

sensations experienced by the robot. When the robot grasps an object, the jamming

pads/tubes stiffen, limiting the operator’s ability to close their hand as if they were

actually grabbing something. Two of the tests performed on this system determined

the dynamic response of the device to: a prompt removal of a pre-loaded force on

the manipulator end-effector and an applied step input force to the manipulator

end-effector, both with varying initial pad/tube pressures on the haptic device. It

was found that this type system was a viable means of feedback if the user gripped

their hand slow enough. This was due to the slow mechanical response (Jamming

Phenomenon) of the device. Although there was latency in mechanical response,

such was compensated for by incorporating vibration motors as tactile feedback that

activated as soon as contact with the end-effector was made. The main limitation of

this devices is its inability to convey a greater range of F/T sensations in multiple

directions.

2Occurs when a liquid-like material within a membrane transitions into a solid-like material with
stiffness that increases with increasing vacuum [56]
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(a) Proposed wearable haptic device with
Jamming Tubes

(b) Proposed wearable haptic device with
Jamming Pads

Figure 2.3: Prototype devices tested for rescue robotic application [56]

Another design was proposed by Prattichizzo et al. [29]. This device is a wear-

able 3-DOF parallel haptic feedback device that is worn on the user’s finger and is

shown in Figure 2.4. Although this device only provides cutaneous3 feedback, it is

implemented in such a way that force vectors can be conveyed via pulleys and cables.

In this study, design guidelines were set forth to maximize wearability and hardware

performance. The statics, kinematics, and controls were sequentially specified. Fur-

ther, a relationship between position of the moving platform and force exerted by

the device was developed. To test wearability, a small user study was performed.

Regarding hardware performance, an experiment in which small force sensors were

placed at the interface between the user’s finger and a location near each pulley was

performed. This experiment was used to validate the magnitude of force exerted near

3Cutaneous haptic feedback is synonymous with tactile haptic feedback.
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each DOF by inputting reference step and sinusoidal force signals to the device con-

troller. It was found by Prattichizzo et al. [29] that the dynamic response (rise time,

bandwidth, etc.) was stable and accurate and errors were within acceptable limits.

The wearability also proved acceptable among test subjects when asked in a survey

after using the design. The primary shortcoming of this device is it’s lack of ability

to convey full kinesthetic haptic feedback.

Figure 2.4: Proposed design for a wearable haptic device. The authors specify the
items in the diagram as: static platform (B), three motors (A), mobile platform (C),
three cables (F), three pulleys (E), and force sensors (D) [29]

Another wearable haptic feedback device was proposed and tested in [39].

This soft device is shown in Figure 2.5. It is wrist mounted and pneumatically

actuated to provide kinaesthetic feedback. It employs pneumatic artificial muscles

to convey sensations of torque. Set forth in this work were methods in selecting

design implementations as well as placement for sensors. The sensors tracked position,

angles, and velocities of the user’s wrist to aid in control efforts. It was ensured that

the torques imparted were safe by experimenting with a 3D printed hand, varying
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tube pressures, and comparing results with [25]. An experiment in which users were

tasked with following a linear and sinusoidal path on a computer screen with and

without haptic feedback was conducted using the tracking data from the sensors.

The haptic feedback was engaged as a virtual guidance when the users deviated

from the specified path. The results obtained were mixed, but ultimately, it was

concluded that this device effectively helped users trace a nonlinear path but lacked

effective feedback for smaller deviations off course. The final intended use of this

device is for teleoperation with a robot in which similar virtual guidance fixtures are

employed. The primary shortcoming of a system of this physical complexity is its

lack of analytical formulation through which experimental results can be compared.

Thus, much of the comparisons required the use of sensor data that could succumb

to inaccuracies or improper configuration.

Figure 2.5: Proposed design for soft wearable haptic feedback device.
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2.3 Force-Torque (F/T) Applications

This section outlines and reviews literature on two primary F/T applications

among industrial manipulators that are either rigid or series-elastic actuated. This

is presented to highlight contrasts in F/T performance. It is also presented to give

context to how such contrasts could pose varying implications to haptic performance.

2.3.1 Force Control

One of the primary considerations when comparing a manipulator that is

rigidly actuated to one that is series-elastic actuated, is control. A suitable appli-

cation through which to make this comparison is impedance control4. The qualities

that define such a comparison are outlined in [42], where it is stated that two defining

features include the hardware of a robot and a proposed controller (software). In this

outline, Song, Yu, and Zhang [42] place emphasis on designing a controller, in which

the dynamics of the robot are modified with a specified control law to achieve ap-

parent dynamics that are better suited for a required application. Although control

architectures among robots with differing actuation schemes are not explicitly ex-

plored, a comparison in trade-off performance and capabilities provides some insight

to parallels that may exist when considering differences in haptic performance.

2.3.1.1 Rigid Manipulators

Rigid robots are good for repetitive tasks where the environment is uncon-

strained and unchanging such as in many manufacturing assembly lines. Such robots

4The control of a robot and its interaction with its environment
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are well suited for rendering high impedance, robust and accurate position control,

and having compact mechatronics. [6] Nonetheless, modern controllers allow for the

simultaneous control of position and force in instances where: the environment is

changing, or the environment may succumb to damage. One example is stated in [44],

in which a manipulator is used for a window washing task. If solely position control

were employed, any deviation away from the specified trajectory could cause the

robot to either break the window or not make contact with the window. Therefore,

it is necessary to implement force control in the direction normal to the window and

position control in the two directions parallel to the plane of the window. Efforts

have been made to implement control algorithms that allow the controller to adapt

to a lack of knowledge about the inherent dynamics of the manipulator such as in [8],

or an unknown or changing environment such as in [18]. Some of the primary disad-

vantages associated with rigid manipulators include: instabilities in force control and

large, possibly destructive forces induced during a collision. [6]

2.3.1.2 Series-Elastic Manipulators

When considering a series-elastic actuated manipulator, some shortcomings

associated with rigid manipulators are reduced with some trade-offs. Series-elastic

manipulators are innately compliant due to their hardware configuration, namely,

the elastic component within the actuators. Some of the benefits include the ability

to render low impedance, robust force control, and safety, all at the cost of a loss in

fidelity of position control. [6] Although implementation of force control can improve

performance of a rigidly actuated robot, employing a series-elastic actuator could
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circumvent or at least limit the need for control algorithms that would give the rigid

manipulator compliant features. This is because for a rigid robot, force control sta-

bility depends on the environment stiffness whereas, for a series-elastic robot, force

control stability depends on the stiffness of its own actuators and is increased by the

built-in compliance with the trade-off that sensitivity is decreased. [5] Series-elastic

actuators are well suited for environmental interactions that may be changing or not

well understood. Some examples include legged robots, and exoskeletons. [28]

2.3.2 Haptic Feedback Considerations

Another F/T application is haptic feedback. Among industrial manipulators,

forces and torques imparted on the end-effector are found by either mounting a F/T

sensor between the wrist of the manipulator and the end-effector, or by using joint

torques and the respective dynamic model of the manipulator and environment. The

latter method is described analytically in a later chapter, but high level compar-

isons of both methods used, highlight differences that could pose variations in haptic

performance.

2.3.2.1 Force-Torque Sensor

Wrist mounted F/T sensors are usually composed of an array of strain gauges

that delineate or decouple forces and torques along three axes. [44] When using a F/T

sensor purchased commercially, the task of performing digital signal processing such

as adding filters, increasing sensitivity, and amplification of signals has likely been

performed by the manufacturer. Though these improvements come with the system,
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these types of sensors are costly. High cost is one of the shortcomings. Another

shortcoming is a lack of hardware agnosticism in that, F/T sensors add unwanted

inertia to the robot and can be bulky. Efforts that have been made to mitigate such

shortcomings are outlined in [40] in which a neural-network approach is taken to

estimate force for haptic feedback using limited joint data or in [23] where a novel

force sensing device is designed for haptic feedback in a surgical environment.

2.3.2.2 Joint Torque Method

Another method of attaining F/T data for haptic feedback is using joint

torques. This method circumvents the need for a F/T sensor but also has important

trade-offs. Furthermore, such data is attained in different ways among manipulators

with varying actuator types. Rigid manipulators with electric motors calculate the

torque at each joint by quantifying the increase in current draw. This increase is

induced by a load on the end-effector caused by interaction with the environment.

The increase in current draw is proportional to torque at that joint. A primary con-

sideration in this situation is noise generated in the signal. Recent efforts aimed at

mitigating this issue using an Extended Kalman Filter have been proposed in [47]

and [55]. Series elastic manipulators calculate the torque at respective joints by em-

ploying a position sensor along the elastic element within the actuators and using a

variation of Hooke’s Law. [28] The F/T signal generated is less noisy than that of a

rigid manipulator. Nonetheless, the main drawback of using joint torque method on

either type of robot is signal noise generation. If not properly processed, F/T signals

could affect haptic performance.
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2.4 Summary

The implementation and testing of the haptic feedback mechanism examined,

builds upon previous work and concepts specified in the respective literature outlined

in this chapter. Section 1 reviews efforts in nuclear applications. Namely, it discusses

the progression of teleoperation in nuclear environments and the eventual need for

a haptic interface. Further, it outlines examples of designs and implementations

of haptic interfaces within the nuclear industry. Section 2 discusses developments

in wearable haptic devices in a broader range of robotic applications and provides

special emphasis on design, implementation, and the metrics through which they were

validated. Finally, section 3 reviews efforts and concepts related to F/T applications

among rigid and series-elastic actuated manipulators to display characteristics that

could pose variations in haptic performance.
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Chapter 3

Analytical Models

This chapter presents analytical models that define the functionality and en-

hance performance of the haptic feedback device. First, a summary of the inverse

kinematics of the device is provided. Next, the model used for end-effector F/T data

acquisition using joint torques is presented. Finally, a description of the digital signal

processing techniques that were tested and implemented is provided. The follow-

ing sections assume an understanding of coordinate transformations and manipulator

dynamics.

3.1 Gough-Stewart Platform Inverse Kinematics

A Gough-Stewart platform is a parallel manipulator that has a base platform

and a moving platform. They are connected by links with varying lengths. There are

many actuation configurations for these types of manipulators. The most common is

linear-prismatic with spherical joints at the platforms such as that shown in Figure

3.1. This type is called a General Stewart Platform (GSP). [45] Because the forward

kinematic problem is highly non-linear and necessitates iterative methods and possible

use of sensors, focus is placed on finding an inverse kinematic solution. [45] This entails

simultaneously determining the length of each link, given a desired orientation and
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position of the moving platform with respect to the base platform.

Figure 3.1: General Gough-Stewart Platform. [13]

The analytical model and notation used is based on [13] and [45], and a more

in depth formulation can be found in these works. A summary of how the model is

used in the haptic feedback device, is presented.
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(a) General Link Configuration (b) Vector Diagram

Figure 3.2: GSP Configuration

Consider Figure 3.2. The orientation and position of the top platform can be

described with respect to the base platform with

pRb = Rz (γ)Ry (β)Rx (α) (3.1)

and

pTb =
[
tx ty tz

]T
, (3.2)

respectively. In Eq. 3.1 and 3.2, pRb is a rotation matrix that defines orientation with

Rx, Ry, Rz as rotations about the X, Y , Z axes, respectively, and pTb is the linear

translation vector with coordinates tx, ty,and tz. Also

pRb =
(
bRp

)T
=
(
bRp

)−1
(3.3)

and

pTb = −bTp (3.4)
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are the inverse relationships. The vector links, Li, and thus, link lengths, |Li|, can be

found by

Li = pTb + pRb
pPi −Bi = Pi −Bi (3.5)

and

|Li| = ‖Li‖2 (3.6)

where ‖Li‖2 is the euclidean norm, Pi and Bi are vectors from the base coordinate

frame to the ith connections on the moving platform and base platform, respectively.

For a GSP i ∈ {1, 2, 3, 4, 5, 6}.

When considering a prismatically actuated GSP, Eq. 3.1-3.6 would provide

sufficient information about link lengths, given a desired position and orientation for

the top platform. Because the haptic feedback device is actuated via rotary actuators

that are attached to the base platform, further steps must be taken and are detailed

in [51] and [45], but a summary follows.

(a) Vector Diagram (b) Angles for Even and Odd Servos

Figure 3.3: General configuration for the ith servo motor on a rotary actuated GSP
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Consider Figure 3.3. The center of the platforms is where the coordinate

frames are placed. Each servo motor on the haptic feedback device is placed radially

at a constant distance Rb from the base frame. They are also placed at a constant

angle γi with respect to the base frame x-axis. By design of the haptic feedback

device, the servos have even and odd configurations which are shown in Figure 3.3b.

For a rotary actuated GSP, Li is now an effective leg length. The point of connection

between the servo horn and the push rod is labeled, mi. The servo horn and push

rod have constant lengths Rm and D, respectively. The push rod connects the servo

horn to the top platform. Also, Mi is a vector from the base frame to connection

point mi. Based on Figures 3.2 and 3.3, it follows that

bi =
[
xi yi zi

]T
=
[
Rb cos (γi) Rb sin (γi) 0

]T
(3.7)

and

pi =
[
pxi

pyi
pzi
]T

=
[
Rp cos (pγi) Rb sin (pγi) 0

]T (3.8)

in which, bi and pi are coordinates to the connection points on the base and moving

platform, respectively, from their own coordinate frame. Also

Rm = Rmi
= |Rm| = |Mi −Bi| (3.9)

and

D = Di = |D| = |Pi −Mi| . (3.10)

A transformation must be performed to find the vector Mi in which

Mi =
[
xmi

ymi
zmi

]T
= miTb + miRb

[
Rm 0 0

]T
(3.11)
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where xmi
, ymi

, and zmi
are vectors from the coordinate frame attached to the servo

to the connection point mi. It follows that Mi is a function of servo angle ∆i. This

angle must be be found that satisfies

R2
m = (Mi (∆i)−Bi)

T (Mi (∆i)−Bi) (3.12)

D2 = (Pi −Mi (∆i))
T (Pi −Mi (∆i)) (3.13)

|Li|2 = (Pi −Bi)
T (Pi −Bi) . (3.14)

After combining terms, performing substitutions, and utilizing trigonometric identi-

ties, it can be found that

∆i = sin−1

(
±ci√

(a2i + b2i )

)
− tan−1

(
bi
ai

)
(3.15)

in which

ai = 2Rm (pzi − zi) (3.16)

bi = 2Rm [sin (γi) (pxi − xi)− cos (γi) (pyi − yi)] (3.17)

ci = |Li|2 −D2 +R2
m (3.18)

for both even and odd servos. The calculation of this angle for each servo at a given

instant, simultaneously satisfies the equality for each of the ith effective leg lengths,

|Li|, given a desired orientation and position of the top platform.

3.2 Joint Torque Model

To provide real-time kinaesthetic haptic feedback, the state of environmental

forces and torques imparted on the end-effector of the industrial manipulator must
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be determined. This information is scaled and passed to the haptic feedback device

controller to modify the desired position and orientation of the top platform. The

data is contained within a vector, F , in which

F =
[
Fx Fy Fz Tx Ty Tz

]T
(3.19)

and is also known as a Wrench. The wrench contains components of force (F ) and

torque (T ) in the X,Y , and Z directions, respectively. It can be calculated using mea-

sured joint torques and the underlying dynamic model of the robot. A full derivation

can be found in [44], but a high level summary is presented.

The Jacobian matrix, J(q), of a specified industrial manipulator relates joint

velocity to end-effector velocity. The vector, q ∈ Rn, represents the generalized

coordinates of the n-DOF manipulator. The Jacobian matrix can also be used to

relate virtual joint displacement to virtual end effector displacement to show that

τ = J (q)T F (3.20)

in which, τ ∈ Rn is a vector of manipulator joint torques. When an industrial

manipulator comes in contact with the environment, its corresponding differential

equation of motion is of the form

M (q) q̈ + C (q, q̇) q̇ + g (q) + J (q)T Fe = u (3.21)

in which M (q) ∈ Rn×n is the inertial matrix, C (q, q̇) ∈ Rn×n is the Coriolis matrix,

g (q) ∈ Rn is the vector of gravitational torques, J (q)T Fe is the measured torques

corresponding to interaction with the environment, and u is the sum of all torques.
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Also, for a series-elastic manipulator, there are extra dynamic considerations to be

made. These are due to the elastic component in each actuator. Namely,

Bθ̈ + u = um (3.22)

u = K (θ − q) (3.23)

where B ∈ Rn×n and K ∈ Rn×n are the damping and stiffness matrices of the elastic

elements, respectively, θ ∈ Rn is the deflection of the elastic element in each actuator,

and um is the motor torque. Nonetheless,

Fe =
(
J (q)T

)−1

(u− (M (q) q̈ + C (q, q̇) q̇ + g (q))) (3.24)

is the resulting wrench signal passed to the haptic feedback device controller.

3.3 Digital Signal Processing

When joint torques are measured on an industrial manipulator, the signal

usually contains a large amount of noise. The noise occurs partly because of dis-

continuities in the signal when sensors convert an analog input quantity to a digital

output quantity. [54] This results in a wrench signal that also contains a large amount

of noise and causes unintended vibrations in the haptic feedback device. Steps were

taken to minimize noise by testing and implementing different digital signal processing

techniques. Those of which, are summarized in this section.

3.3.1 Low Pass

A low-pass filter attenuates signals whose frequency is above a specified cut-

off frequency and allows signals below the cut-off frequency to pass. The cut-off
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frequency is one of the design parameters to be selected. Low-Pass filters are used

for smoothing noisy signals. In depth explanations of these types of filters are found

in many texts such as [14].

3.3.1.1 Moving Average Filter

The Moving Average filter was tested first. This is due to its simplicity and

ease of application. An in depth analysis and description can be found in [41]. For

testing it was implemented as

y [i] =
1

M

M−1∑
j=0

x [i+ j] (3.25)

in which, x is the input signal, M is window size or number of samples, and y

is the output signal. This filter is good for white noise reduction in preliminary

testing and has a good step response, but has a slow roll-off and bad attenuation

characteristics. [41] The moving average filter is loosely considered a low-pass filter

because although it is useful for smoothing a signal, a cut-off frequency cannot be

specified. This is one of the limiting factors in this type of low-pass filter.

3.3.1.2 Butterworth Filter

The next filter tested was a low-pass Butterworth filter. An open source

implementation from a Python package called SciPy was used. [35] A Butterworth

filter has magnitude response of

|H (ω)|2 =
1

1 +

(
ω

ωc

)2N
(3.26)
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and a transfer function

|H (s)|2 =
ωN
c∏N

K=1 (s− pk)
(3.27)

in which, N is the filter order, ω is the sampling frequency, pk are the pole(s), and

ωc is the cutoff frequency. After choosing parameters, the filter transfer function can

be found. Using the polynomials of the filter, a linear filter can be applied along

one dimension. The linear filter from SciPy is based on a version of the standard

difference equation and an initial state must be given. The initial state was found

using the first input signal. This standard difference equation uses present and past

inputs as well as past outputs to compute the current output. The Butterworth filter

has the flattest frequency response for the signals not attenuated.

3.3.2 Single State Kalman Filter

The final filter tested was the Single State Kalman filter. It is a recursive

algorithm that estimates the state of a process for a given signal. The signal may

contain uncertainties such as noise. The filter used, was based on [48]. In summary,

the goal is to find the kth state estimate, x̂k, of the process. The steps to implement

this filter are shown in Figure 3.4, and encompass an initial estimate, prediction step,

measurement, and update step. For the initial estimate, the x̂k−1 state estimate and

state probability, Pk−1, must be provided. The state estimate and state probability

immediately following the prediction step is based on the prior estimate as

x̂−k = Ax̂k−1 +Buk−1 (3.28)

P−
k = APk−1A

T +Q (3.29)
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in which A relates the state estimate to the previous state estimate, B relates the state

estimate to an optional control input, uk, and Q is the process covariance provided

in the initial estimate. A measurement, zk, is taken. The update step uses the prior

step and measurement to compute a Kalman gain, Kk, update the state estimate,

and update the state probability. This is done with

Kk = P−
k H

T
(
HP−

k H
T +R

)−1
(3.30)

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
(3.31)

Pk = (I −KkH)P−
k (3.32)

where H relates the state estimate to the measurement, R is the measurement co-

variance provided in the initial estimate, and I is the identity matrix (1 is used for

single state). The output state estimate and state probability from the update step is

fed back into the prediction step and the process is repeated. After some iterations,

the output state estimate converges with values near the actual state with minimal

noise.

Figure 3.4: Kalman Filter
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3.4 Summary

This chapter presented analytical models that define the functionality and

enhance performance of the haptic feedback device. A summary of the inverse kine-

matic model was presented. The model for F/T data acquisition from industrial

manipulator joint torques was outlined. Finally, the digital signal processing tech-

niques tested and implemented, were summarized. These techniques assumed the

components within the wrench signal were decoupled and linear. Although valid for

contact tasks within a small region away from singularities, this assumption can pose

implications to performance otherwise. This is because because wrench components

are coupled and non-linear when attained via the Joint Torque Model. The mitigation

of such implications are discussed in a later chapter.
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Chapter 4

Implementation

This chapter outlines how the standalone haptic feedback device was provided

capabilities for real-time interfacing with external hardware and software. The chap-

ter begins with a high level summary of the implementation set forth by the senior

design group in [10]. Next, the software configuration is presented, starting with an

introduction to the Robot Operating System (ROS) framework, followed by a descrip-

tion of modifications performed to utilize the framework, and an overall structural

outline. Finally, the hardware arrangement that allows for a manipulator agnostic

haptic interface is presented.

4.1 Initial Setup

The senior design project outlined in [10], specified requirements for a haptic

interface implemented in robotic systems that performed contact tasks. The focus

was on prototyping a safe device that communicated intuitive kinaesthetic and tactile

feedback. The device was to be implemented with an existing hands-free teleoperation

system used in the Nuclear and Applied Robotics group at the University of Texas

at Austin. The device is fully modular, portable, and can be worn by the user as

shown in Figure 4.1. The servo motors provide the kinaesthetic haptic feedback via
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translation and rotation of the top platform. A spring-like interface connects the

platform to the glove worn by the user. Vibration motors within the glove provide

tactile feedback when a threshold force is reached. The controller for this system is

a Raspberry Pi 3, which is a single board computer with a Linux based operating

system called Ubuntu Mate.

Figure 4.1: Haptic Feedback Device

Regarding software, the system was composed of Python modules giving the

device its functionality. A Graphical User Interface (GUI) was setup for ease of

calibration and testing upon launching the system. The GUI is shown in Figure 4.2.

Using the GUI, the user could modify the desired position and orientation of the top

platform. This was accomplished with Python modules that calculated servo angles

based on the desired pose of the top platform and sending the Pulse Width Modulated

43



(PWM) signals to the motors. The main features the GUI provided were: using sliders

to modify pose of the haptic device in “Live Mode”, planning and executing a desired

pose in “Plan Mode”, and the option to receive input wrench data from pre-recorded

contact operations by clicking the “Run” button. Upon clicking “Run”, a Python

module would parse pre-recorded data from a .csv (comma separated values) file and

use it to modify the pose of the top platform to simulate the haptic feedback.

Figure 4.2: Graphical User Interface

Although the senior design team was successful regarding the goals they set

forth, due to time constraints, they chose to leave real-time implementation for future

research. This implementation would include integration to ROS for use with different

manipulators as well as the hands-free teleoperation system.
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4.2 Software Configuration

For the haptic feedback device to work in real-time, a framework for data

interfacing among its controller and external hardware was necessary. The framework

chosen to complete this task was ROS. After integration to the framework, ROS

packages could be used within a ROS work-space to expedite data interfacing and

promote software re-usability. A brief summary of ROS is outlined. Also, the steps

taken to achieve integration to the framework, as well as the final software structure

are presented.

4.2.1 Robot Operating System

ROS is an open source framework consisting of libraries and tools used to

expedite software development for robotic applications. [26] It allows for hardware

abstraction and the passing of messages between different nodes, with each node

providing their own independent functionalities. ROS promotes software re-usability

in that general ROS packages can be created for a certain robotic system by one

entity and used for a similar system by another entity with minimal modifications.

An example is presented in [30], in which researchers want to develop a mobile robotic

system that has a manipulator attached to it. It’s necessary for the system to have

modules for obstacle avoidance and mapping, drivers to communicate with wheels

and encoders, trajectory planners for the manipulator, etc.. Many of these tasks

would also depend on each other. Rather than developing software for each of these

functionalities from the ground up, this has likely already been implemented in ROS

and can be used and interfaced by the researchers as a starting point for further
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research.

4.2.1.1 ROS Graph

A node computes data. Nodes can be written in any programming language

ROS supports, such as Python or C++. Nodes need no knowledge about the inner

workings of separate nodes. A built-in master node called roscore provides interfacing

instruction to all nodes. If certain nodes are to communicate, the data between them

usually streams through topics. A node can either subscribe to a topic or publish

to a topic and each topic can only stream one message type. Another means of

communication is accomplished by using a Service. A service encompasses a single

pair of messages. When a client node sends a request to a server node, the server

node sends back a response. This interfacing scheme makes up the ROS Graph and

is shown in Figure 4.3. It can be as simple as two nodes passing data or can be scaled

up to include hundreds of nodes for complex robotic systems.

4.2.1.2 ROS Packages

A ROS Package contains nodes, executables, configuration files, and other

information relating to a certain robotic system. In the open source robotics commu-

nity, packages are written with re-use in mind. Many packages can reside in a single

ROS workspace. A ROS workspace is a repository in which packages can be created

or installed. Furthermore, a package can contain other packages and encapsulate in-

formation. This provides good namespacing features because it can mitigate name

clashing.
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Figure 4.3: ROS Graph

4.2.2 Haptic Feedback Device - ROS Integration

To integrate the haptic feedback device to ROS, a full ROS kinetic installa-

tion was performed on the Raspberry Pi 3 and a workspace was generated. A ROS

Package called stewart haptic was created in the workspace. The existing software

for the haptic device was placed in the ROS Package. The module that initially

received the pre-recorded wrench data inputs was modified into a ROS node called

/haptic device. The flow of data throughout the software package was mapped. This

was to ensure the module that launches the system could also initialize the node. The

node subscribes to a topic streaming a wrench message. This message is published in

real-time by a node within the packages controlling the industrial manipulators. The

/haptic device node filters the noisy wrench signal and passes it to other modules to

calculate the necessary angles for each pose of the haptic device and communicates

the data to the servos. It can also simultaneously publish angles of the servos for

testing purposes. The stewart haptic package could be launched peripherally with
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the packages controlling the industrial manipulators. An example of the overall ROS

Graph for this setup is shown in Figure 4.4 in which, the interaction is zoomed in for

clarity. The /haptic device node is in green and is subscribing to a wrench topic in

red.

Figure 4.4: ROS Graph for the Haptic Device and an Industrial Manipulator

4.2.3 Structure

Within the stewart haptic ROS package, the software functions as shown in

Figure 4.5. With a roscore running, the module start.py can be launched. This

module initializes the ROS package. The servo motors move to home position and

the GUI is initialized and opened. If the “Run” button is clicked, the subscriber node

called Bagclass.py is initialized and ready to receive a wrench signal. If a package
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running one of the industrial manipulators is launched as well, the interfacing will

begin. If the run button is not clicked, the sliders on the GUI can be moved by

the user to manually modify the position of the top platform on the haptic feedback

device. If no action is performed, the device waits in home position.

Figure 4.5: Flow Chart for stewart haptic ROS Package
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4.3 Hardware Interface

Once software modifications were complete, focus was placed on hardware for

real-time interfacing. A physical means of data transfer between respective controllers

was required. Furthermore, it was necessary that ROS correctly and simultaneously

be launched on all hardware components. Below is a summary of how this was

completed.

4.3.1 SSH Protocol

Since the haptic feedback device is controlled by a Raspberry Pi 3 consisting

of an Ethernet port, SSH protocol was chosen to connect to other hardware. SSH

protocol allows for remote login from one computer to another and the interfacing

of data. The Raspberry Pi 3 requires communication with the computers launching

the ROS packages for the industrial manipulators. Once it was ensured the com-

puters could successfully ping each other, changes to environment variables on both

computers were made.

4.3.2 ROS IP and ROS MASTER URI

When using ROS simultaneously among multiple computers, environment vari-

ables must be set such that one computer runs the master node, roscore. Nodes

must know where to locate the master node. This is accomplished by setting the

ROS MASTER URI in the .bashrc script on both computers. The value is set to the

IP address of the computer running the master node. The .bashrc is sourced when a

terminal is opened and can be used for aliasing and to define environment variables.
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Furthermore, each node must declare a ROS network address. This is done by setting

the environment variable ROS IP, on each computer to its own IP address.

4.4 Summary

This chapter defined the initial configuration of the haptic feedback device set

forth by the senior design team. An explanation of ROS was provided to highlight the

means of interfacing between the haptic feedback device and the industrial manipu-

lators. The steps taken to integrate the haptic device to the ROS framework as well

as the final software structure were presented. Finally, the hardware configuration

to achieve the integration was outlined. The ROS package that governs the haptic

feedback device is hardware agnostic in that, it does not matter which manipulator

is being tested, as long as the appropriate wrench message is being published.
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Chapter 5

Demonstration and Experimentation

This chapter documents the demonstration and evaluation of the haptic feed-

back device using different industrial manipulators, quantifies the haptic performance,

and draws comparisons. This was accomplished by using the analytical formulations

and implementation described in Chapters 3 and 4, respectively. Experimentation

served to quantify haptic performance. The experiments and results are outlined.

Finally, a discussion on results and comparisons drawn is presented.

5.1 Demonstration

The setup and configuration was different for each industrial manipulator.

A summary of each demonstration is presented. Also, a qualitative description of

performance is presented to outline parameters of interest before experimentation.

5.1.1 UR3 and TeMoto

As previously stated, the UR3 is a rigid 6-DOF industrial manipulator that

utilizes multiple ROS packages simultaneously. Some of which include: drivers for

the robot, trajectory planning packages, and the user interface. A Linux computer

connects to the UR3 controller and launches all ROS packages. After the UR3 driver
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package is launched, the trajectory planner called MoveIt is also launched. A service

called leapd is started. This service initializes the Leap Motion keyboard that provides

inputs to the system. Finally, the package called TeMoto is launched. At this point,

a 3D visualization tool called Rviz opens and the robot appears as in Figure 5.1. The

robot awaits a Cartesian tool-frame command from the user.

Figure 5.1: Rviz is the 3D Visualization tool used to command the UR3 Robot

While the UR3 packages are initialized, the stewart haptic package must be

launched as a peripheral within the ROS graph. The haptic feedback device is con-

nected to the same Linux computer as the UR3 controller via Ethernet. Assuming all

environment variables are set, the module start.py can be launched. The GUI opens

and the haptic feedback device goes to its home position. Upon clicking the “Run”

button in the haptic device GUI, the /haptic device node subscribes to the wrench

53



signal published by the UR3 and live haptic feedback begins.

Initially, there was a lot of noise in the wrench signal. This was noted because

the haptic feedback device was noticeably vibrating with no forces or torques applied

to the UR3’s end-effector. Also, when large, rapid trajectories were executed by the

UR3, dynamic forces were obvious from the displacement of the moving platform of

the haptic feedback device while trajectories were traversed. This was expected based

on the analytical model of wrench signal acquisition from joint torques specified in

Chapter 3. These observations warranted the investigation of digital signal processing

techniques used to achieve a high fidelity signal that would minimize adverse effects

such as noise.

5.1.1.1 Hands-Free Teleoperation

The TeMoto package that launches with the UR3 has hands-free teleopera-

tion capabilities as documented in [46], but are summarized here. When the robot

is waiting for a command, the command can be provided in Rviz by clicking and

dragging an end-effector marker to a new position followed by clicking “Plan and

Execute”. If the pose selected is non-singular and reachable, the robot will plan a

trajectory and traverse to that position. The second method uses the hand tracking

capabilities included with the leap motion keyboard and a microphone attached to

the Linux computer. To use this, a marker which tracks hand movement must be

enabled in Rviz. Once done, the user can move the marker with hand gestures to a

selected location and command the robot to “plan and execute” the trajectory using

the microphone. At this point, the same sequence as in the first method occurs.
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With the stewart haptic and TeMoto packages simultaneously running, the

user can wear the haptic device while utilizing the leap motion sensor and microphone

for inputs to the system as shown in Figure 5.2b. This provides for a hands-free

teleoperation interface with haptic feedback. Thus, contact tasks can be performed

via hands-free teleoperation and a greater sense of situational awareness is achieved.

(a) General Usage [46] (b) Intended Usage with Haptic Feedback

Figure 5.2: TeMoto Hands-Free Teleoperation System

5.1.2 Yaskawa SIA5D

The Yaskawa SIA5D robot is a rigid 7-DOF industrial manipulator. It has

a F/T sensor mounted between the wrist and end-effector. Since the wrench signal

published by the F/T sensor contains elements that are decoupled, it was used as a

baseline for comparison in haptic performance. This setup is shown in Figure 5.3.
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To run the haptic feedback device with this system in real-time, the ROS packages

associated with this robot must be launched with the haptic device package launched

as a peripheral as occurs with the UR3. Initially, the wrench signal data from contact

tasks using the SIA5D was recorded in what are known as .bag files. These files can be

played back with ROS and act as a node publishing the recorded message. They are

used to simulate live streaming data. This data could be re-played later for testing

with the haptic feedback device and was used to demonstrate functionality.

Figure 5.3: Yaskawa SIA5D with F/T Sensor

5.1.3 HEBI

The haptic feedback device was also demonstrated with the HEBI robot. As

previously described, this robot is 6-DOF and Series-Elastic actuated. The HEBI
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robot is controlled by a Linux desktop computer. Though hands-free teleoperation

was not utilized for this system, a version of TeMoto was launched when the HEBI

was launched. As with the UR3 and SIA5D, the ROS package for the haptic device

must be launched as a peripheral via Ethernet.

There was minimal noise in the wrench signal published by this system because

signal processing occurs prior to publishing the signal. This is done to maximize the

performance of force control. A low-pass Butterworth filter is used for this system.

The distinctive feature in haptic performance was the dynamic response when an

approximate impulse force was applied to the end-effector of the HEBI robot. There

was a large settling time for the haptic feedback device. Namely, the top platform of

the device displaced in a back-and-forth motion prior to settling to a final pose. The

reason for this type of performance can be attributed to compliance from the elastic

component within each actuator. This observation warranted investigation into the

dynamic response of the haptic feedback device to a specified force input on each of

the three manipulators.

5.2 Experimentation

The testing of digital signal processing techniques was performed on the UR3

wrench signal to enhance haptic performance and allow for its comparison with the

HEBI and SIA5D robots. After selecting the best performing filter for the UR3

wrench signal, haptic performance was quantified by testing the dynamic response

of the haptic feedback device to a specified force input on the end-effector of each

industrial manipulator. This section outlines the methods used.
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5.2.1 Digital Signal Processing

Initially, the digital signal processing modules were tested with pre-recorded,

static data to verify effectiveness. The parameters that defined effectiveness were:

noise minimization, the minimization of signal delay, and accurate state estimation.

After this was done, the modules were run with ROS using .bag files to ensure func-

tionality during demonstration with live data streaming from the UR3. The testing

steps included the application of different filters individually while modifying respec-

tive parameters. The analytical descriptions of the filters tested are presented in

Chapter 3.

5.2.2 Dynamic Response

To test dynamic performance of the haptic feedback device among the three

industrial manipulators, a drop test was performed. This test approximately repli-

cates a step input force on the end-effector of each manipulator. After which, the

dynamic response of the haptic feedback device can be observed. Because the haptic

feedback device operates via inverse kinematics, the observation is based on the servo

angles whose analytical definition is specified in Chapter 3 by eq. 3.15.

The test was performed similarly among all three manipulators. The setup is

shown in Figure 5.4. To ensure repeatability, each industrial manipulator was placed

in a pose such that the step input force would approximately and entirely be along a

single axis in the tool frame. The z-axis of the tool frame was chosen for each. The

weight chosen was 1 lb. or 4.45 N. It was dropped from a height of 11.5 in. or 29.21

cm.
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(a) UR3 (b) HEBI (c) SIA5D

Figure 5.4: Drop Test Configuration

5.3 Results

5.3.1 Digital Signal Processing

After acquiring noisy wrench data from the UR3 robot, it was post-processed

to compare the results of different filters. The results of post-processing the static data

with optimal respective filter parameters and without any forces or torques on the end

effector are shown on Figure 5.5. Similarly processed, the data with random forces

and torques on the end-effector of the UR3 are shown in Figure 5.6. For the Moving

Average filter, the varied parameter was the window size used in averaging. The

cut-off frequency was the parameter varied for the third order low-pass Butterworth

filter. Finally, when testing the single state Kalman filter, the process covariance and

measurement covariance were the parameters varied.
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Figure 5.5: Digital Signal Processing of the UR3 wrench signal with no forces or
torques applied to the end-effector
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Figure 5.6: Digital Signal Processing of the UR3 wrench signal with random forces
and torques applied to the end-effector
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5.3.2 Dynamic Response

Upon performing the drop test among the three industrial manipulators, a

comparative analysis in haptic performance could be made. Figure 5.7 shows the

results. Since the hardware is different for each robot and the drops were made at

different times, the data for servo angles was translated to have the same initial values

and to ensure that drop times were the same so that a direct comparison could be

made.

There were some discrepancies between experimental setups. Namely, each

robot had a different end-effector. This caused the initial wrench signal to be slightly

different for each robot due to the varying weights and geometries. One major differ-

ence in the setup for the SIA5D was a larger distance between the location in which

the weight was fixed to the end effector and the location of the F/T sensor on the

wrist. This was assumed to be negligible when compared to the distance between

the wrist and location of weight fixture on the HEBI and UR3 robots. The final

assumptions were: the wire through which the weight was fixed for each setup was

inextensible and there was negligible deflection in the end-effector to which it was

fixed during the drop.
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Figure 5.7: Dynamic response of haptic feedback device servo angles to a step input
force on the end-effector of each industrial manipulator
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5.4 Discussion

5.4.1 Digital Signal Processing

In performing digital signal processing on the wrench signals shown in Figure

5.5 and 5.6 for the UR3 robot, the filter that performed the best was the Single State

Kalman filter. This is because it sufficiently met all three performance parameters

outlined before experimentation. It minimized noise with minimal signal delay and

had the most accurate state estimates. Although the Moving Average filter had good

state estimates, it introduced a significant signal delay that was exacerbated when

the window size was increased. When the window size was decreased, the signal delay

decreased but signal noise increased. This lack of performance can be attributed to

the large sampling frequency of the signal. Both the Single State Kalman filter and the

Moving Average filter quickly converged to their respective state estimates. The Low-

Pass Butterworth filter did not have sufficient performance in state estimation. There

existed a trade-off between having enhanced noise minimization with insufficient state

estimation at a low cut-off frequency and having enhanced state state estimation with

large signal noise at a high cut-off frequency. Ultimately, all filters performed poorly

when the robot was at or near a singularity. This is because all components within

the wrench signal are coupled when acquired via the Joint Torque Method specified

in Chapter 3.

5.4.2 Dynamic Response

The dynamic response of the haptic feedback device varied among the indus-

trial manipulators as shown in Figure 5.7. There was a large settling time in servo
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angles for the HEBI robot which was observed during demonstration. This is due to

the elastic component within each actuator. For the UR3, the results were similar to

the HEBI in terms of magnitude but the servo angles had a larger initial response and

settled to their final values in a much shorter amount of time. The response also had

the most noise for the UR3. In regard to the SIA5D, the dynamic response behaved

similarly to that of the UR3 in terms of settling time as both are rigid manipulators.

Ultimately, the dynamic response for the SIA5D had the least amount of noise. This

is likely due to the innately decoupled components within the wrench signal. Fur-

thermore, the F/T sensor was likely comprised of strain gauges and signal amplifiers

that enhanced performance.

Although using the same digital signal filtering technique among all industrial

manipulators may have allowed for direct comparisons, it was not feasible due to

the differing signal characteristics resulting from the different hardware designs and

dynamic properties. The demonstrations and experiments outlined in this chapter

allowed for a comparative analysis in haptic performance among the varying industrial

manipulator types, and, in doing so, demonstrated that the haptic feedback device

could - with some tuning - be used to transmit usable haptic information to the

operator.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Research

When operations in hazardous environments are required, industrial manipu-

lators have played a vital role in contact tasks ranging from manufacturing to disas-

sembly to mobile manipulation. Due to the nature of such hazardous environments,

many of these tasks often require teleoperation. With the complexity of modern in-

dustrial manipulators and the possible complexity of the required tasks, there exists a

large amount of data to be interpreted by the operator. This research demonstrated

a novel approach to add the extra sensory channel of haptics to aid in processing

such data and thus, minimize visual sensory saturation while increasing situational

awareness using a device compatible with the TeMoto hands free interface developed

at the University of Texas at Austin. Furthermore, through integration to the Robot

Operating System, it presented a device that is hardware agnostic and provides for

a hands-free teleoperation interface with haptic feedback. Finally, the efforts in dig-

ital signal processing and the comparative analysis performed, provide insight and a

strong basis for future work.
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6.2 Recommendations for Future Work

This effort demonstrated the device’s real-time functionality and that it is

compatible with the broad range of manipulators that may be used in hazardous

environments. In proving the new capabilities, though, certain challenges became

apparent. These challenges can be met and mitigated in future efforts. Such suggested

future efforts are outlined in this section.

6.2.1 Dynamic Response

The completed tests were sufficient to meet the research objectives, but not

exhaustive. Evaluations should be over a broader range of input forces imparted on

the end-effector of the industrial manipulators being in a wider range of poses. Two

possible input forces could include one that emulates an impulse and one that emulates

a sinusoid. Due to time limitations, the input for the dynamic tests in this research

was limited to a step input force along one axis of the respective end-effector tool

frame. Further, in performing the dynamic response tests, a relationship should be

developed between the servo angles, position of the top platform, and forces/torques

imparted on the wrist of the user.

Response with respect to force data collected during actual tasks must also

be studied given the force inputs may pose unique challenges yet to be identified in

terms of effectively communicating the data to the user both in terms of magnitude

and direction. For example, certain applications may impose impulse forces on the

manipulator and such responses may pose complications for the controller.
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6.2.2 Extended Kalman Filter

In finding the Single State Kalman filter to be the best performing filter, cer-

tain limitations were also found. As mentioned previously, the Single State Kalman

filter was employed with the assumption that elements within the wrench signal are

decoupled and linear. Because the elements are coupled and non-linear, this assump-

tion presented instabilities in the signal near singularities of the industrial manipu-

lator. It also did not account for the manipulator dynamics, specified in Chapter 3.

Therefore, it is recommended that in future efforts, emphasis be placed on employing

an Extended Kalman Filter such as those specified in [48, 55] to mitigate the short-

comings associated with the Single State Kalman Filter. Namely, the entire wrench

can be considered the state vector and the upon linearization, a better state estimate

that accounts for element dependencies can be achieved and overall performance can

be increased.

6.2.3 Bilateral Control

As outlined in Chapter 2, many of the haptic feedback devices described are

bilateral. The device tested and implemented in this research is a unilateral system.

Data streams in one direction from the industrial manipulator to the haptic feed-

back device. A bilateral system would be closed loop. More specifically, the device

would receive data as is done with the existing system but could also transmit data

back when the user displaces the moving platform. Therefore, to provide bilateral

capabilities, the system would need to be redesigned and rebuilt using backdriveable

servo motors. The encoder data from the servos would provide information that could
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be used to command the industrial manipulator in some way such as to provide a

tool-frame command or to command a specific joint. This would be similar to a

master-slave system with haptic feedback.

6.2.4 Simulation and Design Modifications

Although not within the scope of this research, when demonstrating this haptic

feedback device, the main performance shortcoming with regard to hardware was

ergonomic. While it did fit well on users with small to medium sized hands and wrists,

such was not the general case for all hand and wrist sizes. Any modifications to the

existing configuration would modify the inverse kinematics of the device. Therefore,

if the device were to be redesigned and rebuilt to mitigate this shortcoming, the

process could be streamlined if a simulation were performed prior doing so. Namely,

the analytical formulation that was specified in Chapter 3 could be used to model

the device in a tool such as MATLAB to vary and test design parameters. This

circumvents the need for an iterative prototyping approach. Furthermore, MATLAB

can be used with ROS and the simulation can be tested in real-time with an actual

industrial manipulator. Upon accounting for ergonomic design constraints, optimal

hardware design parameters can be selected and a more certain prototype can be

made.

The ergonomic issues may be mitigated by the input device. For example,

the device may prove cumbersome if coupled with a joystick or 3D mouse that is

used continuously by the operator. But in the case of gestural, verbal, or other semi-

autonomous user command modalities, the device may prove less cumbersome as the
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operator’s hands could often be at their sides or resting on a table.

6.2.5 User Testing

To gain a broader perspective as to the effectiveness of the haptic feedback

device considered in this research, it is recommended that user testing be done in fu-

ture efforts. Specifically, demonstrations requiring teleoperation should be performed

while employing the haptic feedback device. After which, quantitative observations

regarding performance with and without haptic feedback can be made. Furthermore,

test subjects can be surveyed to gain qualitative insight that could be beneficial to

design and implementation.

In addition to general testing, the haptic device should be evaluated in tandem

with TeMoto to complete a relevant task with one or more of the hardware configura-

tions considered. Other issues may arise that relate more to human factors than the

hardware agnostic feasibility documented in this thesis. Such issues include compati-

bility with various TeMoto input devices like the Leap Motion sensor or comfort when

using other devices such as a 3D mouse or gestural control. Feedback from verbal

commands must also be studied as in all cases the pose of the human operator’s hand

will likely differ from the robot and the possible burden these differences may have is

an unanswered question.

6.3 Concluding Remarks

This work completed the main objective outlined, which consisted of taking

an existing, standalone Gough-Stewart platform configured as a novel, wearable hap-
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tic feedback device and providing for its real-time implementation over a range of

manipulator designs including compliant and stiff hardware designs. Digital signal

processing techniques were tested to enhance performance and its functionality was

demonstrated among three different industrial manipulators. Those of which, had

different means of force/torque data acquisition and a comparative analysis in hap-

tic performance was carried out. The device also proved viability in implementation

with a hands-free teleoperation system with the intent of reducing operator stress

by adding an extra mode of sensory and increasing situational awareness. Although

there are still more efforts to be pursued in the fields of teleoperation and haptic

feedback, this work provides further insight and a platform for such future efforts to

begin.
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Appendix: Resources

Code

The code for this work can be found on the Nuclear and Applied Robotics Group

GitHub account: https://robotics.me.utexas.edu/code

Setup and Demonstration

The instructions for setup and demonstration of the Haptic Feedback Device can

be found on the Nuclear and Applied Robotics Group Wiki page: https://wikis.

utexas.edu/pages/viewpage.action?pageId=185759759
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