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ABSTRACT 
 
Ocean acidification (OA) and related stressors, like warming, are occurring rapidly in coastal 
systems. There is concern about the impacts these stressors may have on the early development 
of species that use the nearshore as nursery habitat. The inshore longfin squid, Doryteuthis 
pealeii, plays an important role in the northwest Atlantic food web, and annually lays its eggs in 
the nearshore benthos during summer. This thesis sought to characterize morphological, 
physiological, and behavioral responses of D. pealeii embryos and paralarvae to OA. 
Experiments began in 2013, where I exposed squid eggs to a range of acidification levels (400 - 
2200 ppm CO2) to uncover when the dosage impacts first appear (around 1300 ppm). To do this, 
I developed multiple methods to better characterize the morphological changes and surface 
degradation of statoliths due to acidification. This initial work demonstrated small-scale 
variability in response intensity, across hatching days and the breeding season. I ran swimming 
behavior experiments with subsampled paralarvae from 2013 - 2015 and developed a novel 3D 
recording and analysis tracking system in the process. The 2D data from 2013 showed significant 
decreases in time spent near surface, while 3D data in subsequent years showed slight impacts to 
activity and swimming velocity with increasing acidification. Overall, I ran experiments from 
2013-2016, and compiled and compared these data using response ratios. I show that seasonal 
temperatures impact the baseline state of the paralarvae through parental condition, while 
acidification sensitivity appears driven by parental year class. Finally, I examined the interaction 
of acidification stress with warming, demonstrating an antagonistic relationship between these 
stressors for this life stage of this squid. These data indicate that acidification builds as a stressor, 
impacting late stages of embryonic development, while warming impacts embryos early in 
development, and likely reduces acidification impacts by decreasing development time. This 
dissertation demonstrates that while the embryonic and paralarval stages can be sensitive to 
acidification, being so highly fecund and varying in resistance at multiple temporal scales allows 
for a substantial potential for resilience to a changing ocean in this population of squid.  
 
Thesis Supervisor: Dr. T. Aran Mooney 
Title: Associate Scientist with Tenure, Woods Hole Oceanographic Institution 
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1.1 Ocean acidification as part of global climate change 

 Ocean acidification (OA), the decrease in pH and concurrent carbonate equilibrium shift 

that results from the ocean absorbing anthropogenic atmospheric CO2, has been shown to have a 

wide variety of effects on a wide variety of marine taxa (Fabry et al. 2008; Vézina and Hoegh-

Guldberg 2008; Kroeker et al. 2010, 2013; Dorey et al. 2013; Parker et al. 2013). On its own, OA 

is known to impact calcification, acid/base regulation, neurotransmission, and developmental 

processes, all potentially affecting the energy budget of an organism (Gazeau et al. 2007; 

Gutowska et al. 2008; Hu et al. 2011a; Nilsson et al. 2012; Dorey et al. 2013; Chung et al. 2014). 

Some of these effects can be compensated for in the absence of other stressors or in an energy-

replete environment. When these two conditions are not satisfied, OA is notorious for amplifying 

the overall physiological impact of other stressors (Findlay et al. 2010; Rodolfo-Metalpa et al. 

2011; Rosa et al. 2013, 2014a). Despite some evidence of antagonistic relationships with some 

stressors, OA has primarily developed a reputation as the stressor that will compound the rest 

(Kroeker et al. 2010, 2013; Breitburg et al. 2015). In order to understand how organisms and 

communities will respond in this rapidly changing environment, we must determine the 

physiological and behavioral effects that OA induces, and the scales on which they vary, in order 

to gain insights into the possible mechanisms underlying stress effects. 

Certain organisms will be better adapted than others to OA; only through experimentation 

can we identify the potential “winners” and “losers.” Calcifiers are known to fight an uphill 

energetic battle against a dropping aragonite saturation state (Cohen and Holcomb 2009; Lunden 

et al. 2014). As pH drops, it becomes harder for calcifiers to maintain concentration gradients 

within calcifying spaces (Gazeau et al. 2007; Dissard et al. 2009; Ries et al. 2009; Rodolfo-

Metalpa et al. 2011). Non-calcifiers face similar threats during acidosis and require energy to 

maintain a proper, functional pH that enables maintenance and activity of proteins in intra- and 

extracellular fluids (Pörtner et al. 1998; Langenbuch and Pörtner 2002; Michaelidis et al. 2005; 

Gutowska et al. 2010a). The limits of processes such as calcification and homeostasis are set 

from an organism’s evolutionary and life history, which dictate the optimal conditions under 

which the organism can use these processes and still maximize its energy budget for survival and 

reproduction (Parmesan 2006; Hu et al. 2011a; Sunday et al. 2014). Research into these 

physiological limits provides insight into which species are best built to survive these rapidly 

oncoming stressors. 
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Strong performance under stress as an adult does not indicate complete adaptation; all 

stages of development must be considered. Adult marine organisms, particularly pelagic species, 

are considered more resilient to stressors due to their mature organ systems and an ability to 

avoid stress through behavioral modification (Wannamaker and Rice 2000). In contrast, marine 

eggs and larvae can be left to the devices of the surface currents of the pelagic or tied to the 

benthos (Vecchione 1981; Robin et al. 2014). These stages are often thought to be more 

susceptible to stress because they are still actively developing the organ systems needed to 

mitigate impacts (Findlay et al. 2010; Nakamura et al. 2011; Ross et al. 2011; Nguyen et al. 

2012; Kaplan et al. 2013). A “winner” built to deal with a range of pH in the adult phase may not 

be as well constructed to handle chronic or periodic acidosis in its early life history (Kaplan et al. 

2013; Munday et al. 2011; Munday et al. 2009). Although there is reason to believe that 

embryos, given a high activity of developmental machinery, are conditioned to natural 

environmental variation, it is uncertain whether that flexibility extends to the extremes of 

anthropogenic changes (Hamdoun and Epel 2007). Impacts to early development in the eggs and 

larvae can have far-reaching effects on the population dynamics of any organism (Cowen and 

Sponaugle 2009; Munday et al. 2009a). 

Morphology, physiology, and behavior are often the more directly observable responses 

of an organism under stress, which can act as the starting point to not only understanding the 

species’ stress response, but also to formultating hypotheses on what mechanisms drive those 

impacts (Cohen and Holcomb 2009; Hendriks et al. 2015). Environmental stressors, like 

acidification, operate across spatial and temporal scales of organization, altering molecular 

interactions while simultaneously disrupting global geochemical cycles (Vézina and Hoegh-

Guldberg 2008; Doney et al. 2009). Morphology, physiology, and behavior are the core from 

which one can bridge the molecular to the ecological. Data at this scale can provide fundamental 

information for the construction of predictive models (Cheung et al. 2008, 2009). However, 

anthropogenic stress studies are often run as single sets of experiments, with results being 

interpreted as representative of general principles for ecophysiology in the taxa when the reality 

we are attempting to predict is much more complex (Kroeker et al. 2017). While understandably 

rare due to logistical issues, it is important that longer term, repeated studies of organismal stress 

response are performed in order to develop a better understanding of how variable these 

responses can be. 
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1.2 Cephalopods in an acidifying ocean 

 Cephalopods are a unique group of marine organisms. They are unparalleled among 

marine invertebrates in the diversity and complexity of their behaviors and physiology: they are 

as dynamic as they are inconsistent (Robin et al. 2014). Recent work has begun to address 

potential OA impacts on some cephalopod taxa. Cuttlefish have often been studied for OA 

response, because their remnant shell, the aragonitic cuttlebone, is a prominent feature and has 

been shown to hypercalcify under low pH (Gutowska et al. 2010b; Dorey et al. 2013). Adults 

and juveniles of the jumbo squid, Dosidicus gigas, are the only relatively well studied oegopsid 

squid under hypercapnia, with early data suggesting metabolic suppression, but more recent 

work showing a consistent ability to oxygenate blood and tissue under acidification (Rosa and 

Seibel 2008; Birk et al. 2018). Little to no work has been done with octopuses, nautilus, 

spirulids, sepiolids, or many of the rare deep-water members of the taxa due to the logistical 

difficulty of acquiring and managing representatives of these groups.  

Several species of coastal myopsid squid have shown to be impacted, especially at the 

embryonic and paralarval phase (Kaplan et al. 2013; Navarro et al. 2014, 2016; Rosa et al. 

2014b). These squids are a core component of coastal food webs and are also a human-harvested 

protein source, serving as the foundation of valuable fisheries (Rosa et al. 2014b; NOAA 2019). 

They are a relatively accessible and manageable group within the cephalopods, which makes 

robust, replicated experimentation in stress response studies feasible, providing the foundation to 

assess taxon level patterns. 

Myopsid squid begin their lives as eggs tethered to the benthos after which they hatch as 

paralarvae (Vecchione 1981). Navarro et al. demonstrated that the potential laying environment 

for egg capsules can be highly dynamic in terms of pH and O2 on the Pacific Coast due to 

episodic upwelling (2014, 2018). Taxonomically conserved adaptation to widely varying pH and 

oxygen laying environments, such as the Pacific Coast upwelling system or estuarine outlets, 

may allow for a wider range of tolerances to fluctuating and/or extreme conditions (Jacobson 

2005; Rosa et al. 2014b). Excluding the environmental variability of the laying system, 

microprobe pH profiles of developing egg masses indicate that even under ambient CO2 

conditions, pre-hatching paralarvae are brought to the brink of oxygen deprivation and severely 

reduced pH (Long et al. 2016). While this indicates that existing machinery must already be in 

place to cope or endure under some amount of acidosis and hypoxia, there is also a strong 
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potential that any further decreases in pH or O2 in this already highly strained system may tip it 

over the edge of resilience. 

Squid are highly active and competitive pelagic predators that are programmed to survive 

by operating by a “live fast, die young” lifestyle (O’Dor and Webber 1986; Bartol et al. 2009a). 

High activity levels entail high oxygen requirements. For active squid, this means exploiting the 

carrying capacity of their blood pigment, hemocyanin, to quickly load and offload gases (Seibel 

2013). Therefore, the pH sensitivity of the hemocyanin is an important component of a squid’s 

ability maintain normal activity (Pörtner 1990; Zielinski et al. 2001). Most adult cephalopods are 

capable of compensating for pH stress by upregulating the amount and/or activity of ion-

exchanging protein pumps within the inner gill membrane (Hu et al. 2011a). Representatives of 

several types of squid, D. gigas, D. pealeii, Sepioteuthis lessoniana, and Idiosepius pygmaeus, 

have shown no effect of acidification on oxygen transport and aerobic performance (Birk et al. 

2018; Spady et al. 2019). Cuttlefish are known to express different isoforms of hemocyanin in 

different proportions across different life stages, but this process was shown to be strongly driven 

by ontogeny rather than the presence of stressors (Strobel et al. 2012). Compensatory expression 

and regulation of proton secretion pathways under acidification has been demonstrated in the 

developing embryos of bigfin reef squid, S. lessoniana (Hu et al. 2013). It is possible that the 

naturally acidifying environment of the intracapsular fluid has conditioned developing embryos 

to transcribe and express pH-compensating proteins, but this mechanism has not been robustly 

explored across the cephalopods. 

Cephalopods retain aragonitic structures beyond just the cuttlebone of cuttlefish: 

statoliths, the calcium carbonate core of the statocyst sensory system, are a vital part of these 

organisms’ ability to orient and swim (Arkhipkin and Bizikov 2000). Statoliths are formed 

within a calcifying membrane within the fluid-filled sac of the statocyst (Lipinski 1993). 

Environmental conditions, particularly surrounding chemistry, can have a strong impact on the 

development of both the statolith as well as the statocyst, which can translate into aberrant 

paralarval swimming behaviors (Colmers et al. 1984). Stress checks, dark band deposited during 

stress, are a common feature in several of the incrementally deposited structures (e.g. beaks) 

found in cephalopods, suggesting these processes are particularly susceptible under metabolic 

strain (Perales-Raya et al. 2014; Franco-Santos et al. 2016; Jin et al. 2019). Neither the 
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mechanisms behind these impacts nor the effects on paralarval survival in a natural setting are 

clear; this organ’s sensitivity, however, suggests it is a strong candidate to signal active stressors. 

Squid occupy a wide, pelagic ecological niche, competing with teleost fishes through 

strategies that maximize physiological demand (O’Dor and Webber 1986; Coll et al. 2013; 

Navarro et al. 2013). Between their early link to the benthos and this energetically strained 

neritic existence, OA has the potential to inflict stress at various levels of myopsid squid 

physiological organization. There is therefore a strong need for additional and extensive squid 

OA experiments in order to inform predictions of impacts, our potential management of this 

taxon, and subsequently, the trophic networks that depend on it. 

 
1.3 Cephalopods under hypercapnia 

 Early work on squid exposed to elevated CO2 focused on adult respiratory physiology 

under extreme hypercapnia (Redfield and Goodkind 1929; O’Dor and Webber 1986; Shadwick 

et al. 1990; Pörtner et al. 1991). Redfield  & Goodkind (1929) exposed adult D. pealeii to 

pressures of CO2 as high as 20 mmHg (greater than 25,000 ppm) to explore changes in oxygen 

consumption, lethal dosages, and hemocyanin carrying capacity. They concluded that stress and 

death of adult squid under hypercapnia was a result of the corresponding decrease in oxygen 

partial pressure and not an impact of the parallel decrease in seawater acidity (Redfield and 

Goodkind 1929). Work on squid activity and respiration has demonstrated that these animals 

operate at the very edge of their energetic capacity at all times, although more recent work has 

shown a capacity for oegopsid squids to reduce their metabolic activity in low O2, high CO2 

environments (O’Dor and Webber 1986; Webber and O’Dor 1986; Shadwick et al. 1990; Pörtner 

et al. 1991; Rosa and Seibel 2010; Webber et al. 2010; Seibel 2013; Trueblood and Seibel 2013; 

Seibel et al. 2014). 

 Oxygen physiology remained the focus of cephalopod CO2
 research until climate change 

became prominent, after which it followed the paradigm shift in marine science into ocean 

acidification and its potential for impacts on the early life stages of many organisms (Gazeau et 

al. 2010; Byrne 2011; Stumpp et al. 2011; Lischka et al. 2011; Nakamura et al. 2011; Appelhans 

et al. 2012; Maas et al. 2012; Pansch et al. 2012; Seibel et al. 2012; Parker et al. 2013; Rivest and 

Hofmann 2014). Seibel et al. (2013) bridged these paradigms by focusing on metabolic 

depression of juvenile Humboldt squid, D. gigas, under oxygen minimum zone (OMZ) linked 
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hypoxia and hypercapnia and related these conditions to ocean acidification with concerns that 

the pH sensitive hemocyanin may become less effective. Juvenile and adult D. gigas have been 

shown to decrease ATP demand and oxygen consumption, increase octopine, a product of 

anaerobic respiration, and globally inhibit transcription and translation in order to conserve 

energy while in OMZ levels of hypoxia (Seibel et al. 2014). While this physiology is 

advantageous for D. gigas as a competitive predator, in light of expanding OMZ’s, there was 

concern these reductions in blood pigment carrying capacity, routine metabolic rate, and ATP 

production may quickly become disadvantageous in light of concurrent warming and 

acidification (Rosa and Seibel 2008, 2010).  

Further work has shown, contrastingly, that adults and juveniles of both D. gigas and D. 

pealeii do not reduce metabolism or critical oxygen partial pressure under increased 

acidification; models indicate these animals are unlikely to be pushed to their oxygen limits even 

under future predictions for OA (Birk et al. 2018). A similar situation has been seen in S. 

lessoniana, with adults exposed to hypercapnia demonstrating a 40% metabolic depression, but 

an increase in mRNA and protein levels concurrent with compensation through active 

bicarbonate and ammonium transport (Hu et al. 2014). Further experiments with this species 

have shown no impacts on this species’ oxygen uptake rates and aerobic scope (Spady et al., 

2019). Sepia officinalis consistently demonstrates an increase in calcification activity across life 

history stages under decreased pH resulting in larger cuttlebones (Gutowska et al. 2008; 

Gutowska et al. 2010; Dorey et al. 2013; Sigwart et al. 2014). Despite the extreme low pH/low 

O2 concentrations in the perivitelline fluid that drive this hypercalcification response during 

embryonic development, observations of acidification impacts on growth in developing S. 

officinalis have been uncertain and variable (Gutowska and Melzner 2009; Gutowska et al. 

2010b; Sigwart et al. 2016). Contrasting results such as these may to some extent suggest that 

there exists variability either between experiments or within a species that are not being 

accounted for. 

While less work has been done to examine metabolic and aerobic activity of developing 

cephalopod embryos under acidification, studies with the European squid, Loligo vulgaris, have 

shown reductions in oxygen consumption rate under acidification (Rosa et al. 2014a). A 

comparison of late stage embryos and adults of S. officinalis exposed to increased CO2 saw a 

clear reduction in somatic growth and a downregulation of ion transporters and metabolic genes 
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only during early life, demonstrating a potential for prominent sensitivity for cephalopods in this 

phase (Hu et al. 2011). Eggs of both S. officinalis and Loligo vulgaris demonstrated an increased 

permeability to trace metals when raised under acidified waters (Lacoue-Labarthe et al. 2011, 

2012). Rosa et al. exposed eggs of S. officinalis to both acidification and warming and observed 

a decrease in hatching time and survival along with an increase in premature hatching (2013). 

This study also noted a temperature independent depression of the cuttlefish embryos’ energy 

expenditure as a result of increased acidification, contributing to their impeded growth (Rosa et 

al. 2013). A similar study, examining the impact of only warming on the early life history of 

squid, L. vulgaris, demonstrated metabolic suppression, increased premature hatching, and a 

strong response by the animals’ oxidative stress pathways (Rosa et al. 2012). It has been 

suggested that the early life stages of squid are more sensitive than those of cuttlefish or 

octopuses, particularly to acidification stress, due to their high energy lifestyle (Hu et al. 2010).  

 Research into impacts of ocean acidification on the early life history of squid was first 

done by Kaplan et al. with D. pealeii, the precursor to this thesis (2013). This study demonstrated 

delayed growth, reduced mantle length, and degraded statoliths under elevated CO2 (2200 

ppm)(Kaplan et al. 2013). Rosa et al. have examined the combined impacts of increased CO2 and 

warming on embryos of L. vulgaris laid at different times of year and saw decreased oxygen 

consumption, increased premature hatching and malformations, and a decrease in thermal 

tolerance limits in embryos due to hypercapnia, particularly in the summer progeny (2014b). 

Squid embryos laid in summer were also seen to have a 47% survival rate under combined 

hypercapnia and warming, whereas the winter progeny’s survival was unaffected; however it 

should be noted that experiments in this study involved the removal of embryos from the egg 

capsule prior to being raised in stressful conditions, which may have impacted their survival 

(Rosa et al. 2014a). Paralarvae of another myopsid squid, Doryteuthis opalescens, have been 

examined under OA and decreased oxygen with a focus on finding biomarkers for hypoxic and 

hypercapnic exposure histories, demonstrating, so far, a potential low-oxygen signal via the 

uranium to calcium ratio of their statoliths (Navarro et al. 2014; Levin et al. 2015).  

 

1.4 Calcifying structures under OA: the squid statolith 

 Calcification of aragonite under ocean acidification is a prominent research field, 

focusing primarily on corals and shellfish, but has begun expanding into other marine organisms 



 25 

(Gazeau et al. 2007; Fabry et al. 2008; Gutowska et al. 2008; Dissard et al. 2009; Ries et al. 

2009; Rodolfo-Metalpa et al. 2011; Fernández-Reiriz et al. 2012; Comeau et al. 2015). The 

precipitation of aragonite can be affected by OA through reduction in available carbonate ions, 

an increase in the rate of dissolution of calcium carbonate structures due to decreased pH, or 

suppression of organismal metabolism resulting in reducing rates of calcification (Fabry et al. 

2008; Cohen and Holcomb 2009). Furthermore, pH driven decreases in aragonite saturation state 

in the calcifying space can alter crystal size and structure, while simultaneously altering the 

activities and morphology of calcifying matrix proteins (Holcomb et al. 2009, 2014; Tambutté et 

al. 2015). Elemental ratios are often used as proxies for determining the physical and chemical 

nature of the calcifying fluid; U/Ca demonstrates a shift in carbonate ion concentration, for 

example (Gaetani and Cohen 2006; Navarro et al. 2014; DeCarlo et al. 2015b). However, factors 

affecting calcification under reduced pH can be variable across species (Ries et al. 2009). 

Elemental ratios can be affected by the nutritional state, growth rate, and calcification rate of the 

organism, so care must be taken in interpretation of geochemical proxies to determine OA effects 

(Carré et al. 2006; Freitas et al. 2006; Gaetani and Cohen 2006; Takesue et al. 2008; Holcomb et 

al. 2010; Drenkard et al. 2013; DeCarlo et al. 2015a). 

 Squid statoliths are one of several calcium carbonate structures produced by cephalopods, 

but thus far only Kaplan et al. have shown potential degradation of this aragonitic sensory 

apparatus due to OA (2013). The cuttlebones of S. officinalis have been shown to maintain or 

hypercalcify under decreased pH; a response also seen commonly in fish otoliths (Gutowska et 

al. 2008; Checkley et al. 2009; Munday et al. 2011; Dorey et al. 2013). Argonaut (a type of 

pelagic octopus, sometimes called a paper nautilus) egg cases showed marked degradation in 

decreasing pH treatments, a result of their direct exposure to the surrounding waters, but notably 

no change in their mineralogy was seen (Smith et al. 2012). Jellyfish statoliths, a calcium sulfate 

analog to squid statoliths, have been seen to decrease in size in low pH, similar to the results seen 

by Kaplan et al., but these reductions were tied entirely to metabolic suppression and no 

structural or elemental analyses were performed (2013; Winans & Purcell 2010). Statoliths are 

laid down in sequential layers, so the bulk of statolith analyses are used for aging and/or 

determination of physical and chemical exposure history of the organism (Lipinski 1993; 

Arkhipkin and Bizikov 1997, 2000; Arkhipkin 2003; Villanueva et al. 2003; Navarro et al. 2014; 

Levin et al. 2015). Current methods for the analysis of statolith degradation are fairly qualitative 
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and do not address the mechanisms or points in development where stress impacts occur; 

development or utilization of more robust techniques could provide greater insight into the 

process of calcification stress in cephalopods. 

 
1.5 Swimming and navigating in acidified seas 

Research into OA effects beyond calcification and physiology have been slow to emerge 

and have focused primarily on neuroethology, especially olfactory control of swimming 

orientation and homing, rather than the mechanics of locomotion (Ferrari et al. 2011; Dixson et 

al. 2010; Munday et al. 2013; Nilsson et al. 2012; Munday et al. 2009; Dixson et al. 2015). A 

large body of work is emerging examining effects of OA on sea urchin larvae showing that 

morphological shifts driven by low pH can inhibit larval activity and change swimming 

dynamics (Dupont et al. 2010; Martin et al. 2011; Chan et al. 2013, 2015). Although several 

studies demonstrating cuttlebone and otolith hypercalcification have been produced, there have 

been few notable observations of impacts or in-depth examinations of the corresponding 

organism’s swimming dynamics (Checkley et al. 2009; Munday et al. 2011; Dorey et al. 2013; 

Maneja et al. 2013; Pimentel et al. 2014b; Réveillac et al. 2015). Pimentel et al. (2014) exposed 

larval dolphinfish, Coryphaena hippurus, to OA and saw decreased swimming duration and 

orientation frequency in elevated conditions (1600 ppm), but did not examine the larval otoliths, 

tying the observed locomotor shifts to metabolic and activity depression. 

 Studies of squid paralarval swimming dynamics have primarily focused on the high 

energy demand and low efficiency of the pulsed jet swimming mode on which they rely (Bartol 

et al. 2008, 2009a; Thompson et al. 2010). Paralarval swimming in a broad sense is incorporated 

into studies using models to examine dispersal and biogeography of squids in this life stage, 

noting their propensity to swim to the surface at hatching and perform diel migrations for 

feeding, driven in part by their dynamic photopositivity (Barón 2003; González et al. 2005; 

Moreno et al. 2008; Shea and Vecchione 2010). Few studies have directly explored squid 

statolith quality in concert with swimming behavior, despite the statolith’s key role in 

cephalopod orientation, though the work tying “spinner” cephalopods to strontium availability 

stands out (Colmers et al. 1984; Hanlon et al. 1989; Arkhipkin and Bizikov 2000). Although 

changes to squid statolith quality and elemental composition have been observed under 
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acidification (Kaplan et al. 2013; Navarro et al. 2014), no experiments have examined paralarval 

swimming under OA.   
 Sensory responses to ocean acidification have recently become a major field of study in 

fish, larvae in particular, with the change in ocean chemistry caused by acidification affecting 

neurological pathways of olfaction and vision (Dixson et al. 2010, 2015; Munday et al. 2013, 

2014; Chung et al. 2014). Decreased pH and increased bicarbonate in the seawater chemical 

environment have a notable effect on the neurotransmission of sensory signals in several reef 

fishes (Nilsson et al. 2012; Chung et al. 2014). This pathway has very recently been shown to 

even impact the visual system of damselfish through reduced retinal flicker frequency (Chung et 

al. 2014).  

Broadly, squid are well known for their intense photopositivity and it is a popular subject 

in squid fisheries research (Campus 1999; Semmens et al. 2007). Most squid rely on light for 

communication, through both microbial-associated photophores and/or iridescence and 

chromatophores (Ruby and McFall-Ngai 1992; Kingston et al. 2015). Although positive 

phototaxis is a prominent sensory-related behavior in many organisms, few studies have used it 

as a variable for stress responses (Aiken and Man 1978; Markow 1979; Flickinger et al. 1982). 

Munday and colleagues lead the charge in OA effects on sensory responses, behaviors, and 

neurology, and have begun to examine OA-influenced behavioral shifts in adult pygmy squid (a 

sepiolid, not a teuthid), I. pygmaeus, noting increased activity and defensive behaviors (Spady et 

al. 2014). Better integration of sensory and behavioral methodologies in the research of stress 

responses may be a rich vein from which to mine for both underlying mechanisms and ecological 

interactions. 

 

1.6 Parentage, variability, and resilience in a high CO2 ocean 

 The impacts of parental exposure and condition on their offspring are a growing focus in 

stress ecology as ideas from genetics, epigenetics, and developmental physiology converge. 

Parental effects in concert with OA have been demonstrated in an anemonefish, Amphiprion 

melanopus, with offspring from OA-exposed parents proving more resilient (Miller et al. 2012). 

Larvae of another species of anemonefish, Amphiprion percula, also demonstrated variation in 

response to OA dependent on parentage, but with no parents having been exposed to OA in this 

experiment, indicating a genetic effect (Munday et al. 2009). More broadly, non-genetic effects 



 28 

of parental condition have been seen in another coral reef fish species, Acanthochromis 

polyacanthus, with better conditioned parents producing larger offspring with greater energy 

reserves (Donelson et al. 2008). Murray et al. have demonstrated that parental effects in fishes 

can affect OA sensitivity of offspring in seasonal patterns by changing the exposure conditions 

of the parents (2014). It is clear from this body of research that, at least in marine fishes, parental 

exposure and condition can act as an important driver of early offspring success, particularly in 

stressful environments (Donelson et al. 2009). 

 The impacts of parentage have also been demonstrated in invertebrates, with 

transgenerational acclimatization to OA and climate change becoming a prominent focus in 

corals (Putnam and Gates 2015), but little has been done on the topic with cephalopods. van der 

Sman et al. (2009) demonstrated an impact of maternal input on the early success of snail, 

Cominella virgata, offspring, with improved growth seen in the first month for larvae of better 

fed mothers regardless of nutritional condition. The presence of these effects in other mollusks 

and in fishes, to which squids are often similar due to competition pressures, indicate a 

promising potential for similar effects in squid.  

Squid populations are known to vary on seasonal and interannual scales as their 

environment impacts their growth directly, through temperature and water chemistry, and 

indirectly, through trophic cascades (Yatsu et al. 2000; Pecl et al. 2004a; Pecl and Jackson 2008; 

Keyl et al. 2011). Many squids live about 1-2 years, producing either year classes or seasonal 

cohorts depending on the breeding window for the species (Arnold et al. 1974; Mesnil 1977; 

Hanlon and Messenger 1998; Jacobson 2005; Rosa et al. 2014a). However it is thought that these 

large single cohorts might be comprised of a succession of smaller cohorts, the dynamics of 

which have only been described in S. lessoniana (Arnold et al. 1974; Mesnil 1977; 

Moltschaniwskyj and Pecl 2007) As squid do not store energy, maternal investment depends on 

two major factors: how much energy the female has invested into reproductive rather than 

somatic growth over her lifetime, and how much immediately available energy she is able to 

harvest to invest into egg production (Steer et al. 2004; Pecl and Moltschaniwskyj 2006). Squid 

parentage is further complicated by the predominance of maternal sperm storage and multiple 

paternity (Buresch et al. 2001, 2009; Emery et al. 2001). While not explored in cephalopods in 

depth, variability between egg capsules has been demonstrated in the elemental makeup of 

statoliths in D. opalescens embryos (Navarro et al. 2014). These effects produce a situation 
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where parental preconditioning and environmental variability could strongly effect the initial 

state of the squid embryo.  

Once the initial state is set for the embryo, it is entirely the interaction of that genetic 

predisposition with the state of its surroundings that determines its trajectory in development. 

Temperature is known to be a major influence on embryonic squid, increasing development rate 

and producing smaller hatchlings (McMahon and Summers 1971; Pecl 2004; Leporati et al. 

2007). Rearing temperaures impact not only initial size at hatching, but also growth rates of 

cephalopod paralarvae, which can translate to very different life histories, sizes at maturity, and 

cohort survival (Steer et al. 2003; Pecl et al. 2004b). A short lifespan, high fecundity, and high 

plasticity under environmental influence are advantages that allow squid and some other 

cephalopod populations to have relatively good flexibility and to respond quickly to 

environmental change, suggesting they may do very well under anthropogenic change 

(Doubleday et al. 2016). However, the full scope of these variabilities remain uncharacterized 

and so it remains uncertain what the limits of this adaptability may be and if cephalopod 

populations will be able to keep pace with anthropogenic stress (Pecl and Jackson 2008). 

 

1.7 Doryteuthis pealeii & OA: Where are we now? 

 Doryteuthis pealeii, the Atlantic longfin squid, is the primary myopsid market squid 

along the coast of the northwest Atlantic (Hatfield and Cadrin 2002; Buresch et al. 2006). It is a 

vital food source for many local and migratory fishes, birds, and mammals that make up the 

broad ecology of Vineyard Sound, MA, USA and offshore waters, and a notable fishery for 

humans (Jacobson 2005; Hunsicker and Essington 2006, 2008; NOAA 2019). The giant axon of 

D. pealeii has been extensively studied within the field of neuroscience. As a result, the biology, 

behavior, and ecology of this species have also been deeply studied (Summers 1971; Vecchione 

1981; Macy III 1982; Hanlon and Messenger 1998; Herke and Foltz 2002; Jacobson 2005; 

Hunsicker and Essington 2008). However, less is known about this organism’s early life history 

due to difficulty in culturing it past the paralarval stage and the relative scarcity of wild 

paralarval and juvenile studies (Vidal et al. 2002b; Jacobson 2005).  

A wide ranged species, spanning from Nova Scotia through the Gulf of Mexico, D. 

pealeii is limited by latitude and depth primarily by temperature regime (8-16 ºC bottom 

temperature), restricting it to coastal shelves and an approximate maximum depth of 400 meters 
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(Vecchione 1981; Hatfield and Cadrin 2002; Herke and Foltz 2002). As a squid that does not 

utilize oxygen minimum zones during its adult life and is not known to dive to extreme depths, it 

is not thought to seek out extreme shifts in water chemistry (Hatfield and Cadrin 2002). 

However, it is found within estuarine systems suggesting a reasonable tolerance to salinity and 

oxygen variability (Jacobson 2005). Given its short maturation time (< 1 year) and high 

fecundity (50-300 offspring per egg capsule), it is a squid with a high potential for population 

plasticity and adaptability (Vecchione 1981; Macy III and Brodziak 2001). 

Egg habitat for D. pealeii has not been as robustly characterized and mapped as it has for 

its northeast Pacific counterpart, D. opalescens (Navarro et al. 2018). Observations of deposited 

strings of egg capsules (often referred to as ‘mops’) along the northwest Atlantic shelf have 

broadly characterized D. pealeii egg habitat as constrained to 10-23 ºC and 30-32 ppt (McMahon 

and Summers 1971; Jacobson 2005). Doryteuthis opalescens egg habitat is constrained to levels 

of oxygenation greater than 160 µmol and of pHt greater than 7.8 (Navarro et al. 2018). Such 

metrics have not been measured in situ for D. pealeii egg capsules, but the northwest Atlantic is 

notably less oxygen variable than the northeast Pacific. Cruise-measured carbonate system 

profiles for the northwest Atlantic shelf suggest a potential exposure range of 8.2-7.88 pHt (250-

600 ppm pCO2) at known egg laying depths during D. pealeii breeding season (values calculated 

using CO2SYS with data from Wang et al., 2013). The embryos are encapsulated in a mucous 

package, which naturally acidifies and deoxygenates over development, becoming anoxic and 

reaching pH values as low as 7.34 prior to hatching (Long et al. 2016). This suggests that despite 

environmental influence, the embryos may be equipped to deal with some level of acidification 

during development, although the limits of this capability are unclear. 

 Preliminary work performed in 2012 demonstrated a notable potential for acidification 

impacts on the development and early life history of D. pealeii (Kaplan et al. 2013). Paralarvae 

raised in an elevated CO2 treatment (2200 ppm) showed increases in development time and 

reductions in mantle length, indicating a potential metabolic suppression or taxation on the 

energy budget of developing paralarvae (Kaplan et al. 2013). Statoliths dissected from high CO2-

exposed paralarvae demonstrated a reduction in size and overall quality, with a concurrent 

increase in porosity and misshapenness (Kaplan et al. 2013). The statolith effects suggested a 

potential for both a shift in the control mechanisms of internal pH within the statocyst and 

sensory impacts to swimming and orientation in response to acidosis. This preliminary work, as 
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well as the literature provided by Rosa et al. (2014b) and Navarro et al. (2014, 2016), provide a 

groundwork from which to investigate acidification and its impacts on D. pealeii embryos more 

deeply, to try to determine the scope and limits of those impacts, and to develop hypotheses for 

the mechanisms underlying them.  

 

1.8 Dissertation overview 

 This dissertation sought to robustly examine the morphological, physiological, and 

behavioral impacts of ocean acidification on the embryonic development and resultant hatchling 

parlarvae of the squid, Doryteuthis pealeii. I have sought to integrate data across multiple scales 

including behavior, morphology, development, energetics, physiology, and ecology. The 

research and advances described in this dissertation include: 

• New methods developed to more quantitatively and robustly describe 

observed impacts to squid paralarvae morphology, physiology, and behavior 

• Implementation of these novel and existing methods to determine the 

threshold and scope for variability in the sensitivity of Doryteuthis pealeii 

embryos to ocean acidification 

• Evaluation of variability in stress response across temporal and biological 

scales: across hatching days, within a single experiment/clutch, across the 

breeding season, and across years 

• Use of strong observations of stress responses under extreme conditions to 

develop new hypotheses for the mechanisms through which impacts occur 

 

The chapters described here in include:  

 

 Chapter 2 - Dose-dependence and small-scale variability in responses to ocean 

acidification during squid, Doryteuthis pealeii, development 

 This chapter describes dose response experiments run in 2013, with squid eggs reared 

under a range of pCO2 concentrations (from 400 - 2200 ppm) and examined for impacts to 

embryonic development, survival, and morphology/physiology of the paralarvae. These data 

correspond to those reported previously as part of my Master’s thesis (Zakroff 2013). However, 

further analyses have been performed with a more substantive statistical methodology that better 
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supports the consistent observation of acidification impacts starting at around 1300 ppm pCO2. 

Several new methods for the quantitative analysis of statolith morphometrics and surface 

degradation were developed and are described as well, providing a new toolset for description of 

impacts to this structure. This chapter also delves into the small scale variability of responses. At 

the scale of days, I show that acidification stress can result in different dynamics of hatching as it 

progresses. Scaling up temporally, I also describe shifts in overall response intensity between 

clutches across the breeding season.  

 

 Chapter 3 - Ocean acidification responses in paralarval squid swimming behavior using 

a novel 3D tracking system 

 Here, I developed new methodologies to record, track, and process videos of squid 

paralarvae swimming and apply them to analyzing the potential impacts of OA. This chapter 

uses data from paralarvae subsampled from the 2013 experiments described in Chapter 2 as well 

as from experiments throughout 2014 and at the start of 2015. In 2013, I used a 2D system, from 

which I describe acidification-driven decreases in the ability of squid paralarvae to maintain 

station near the surface of the chamber. Experiments in 2014 and 2015 used this novel 3D 

system, the model system and code for which I provide along with the experimental data. It was 

difficult to pull consistent patterns from the 3D data, as the paralarvae demonstrated intense 

individual variability in swimming patterns. However, I find that activity and velocities decrease 

with increasing acidification. In sum, these experiments suggest an impact of acidification on the 

energetics of swimming, and thereby of the paralarvae themselves. These data not only further 

enforce the small-scale variability discussed in Chapter 2, but also introduce larger scale 

variability, with effects shifting in intensity from 2013-2014/15, that is discussed in Chapter 4.  

 

 Chapter 4 - Interannual and seasonal variability in the response of squid embryos 

and paralarvae reared under ocean acidification 

 In this chapter, I examined patterns in response and sensitivity to acidification over the 

course of all four years of experiments, 2013-2016. First, I examined trends in the raw data 

across years. Then, I examined the seasonal trends in the baseline/control state of the embryos 

and paralarvae. In the bulk of this chapter, I used response ratios between the 2200 ppm 

treatment (the only consistent concentration across all experiments) and lowest pCO2/control 
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treatments for each metric to compare responses across years. I found that there are consistent 

seasonal shifts in the baseline state of the paralarvae that appear to be driven by parental 

conditioning from ambient environmental temperatures. I also found that OA sensitivities seem 

to vary independently of this baseline state and are driven more by the year-class/cohort of the 

parents, although this also may be linked to their environmental history. This chapter highlights 

the importance of robust replication in global ocean change stress studies in order to get a fuller 

picture of both the scope of sensitivity of a species/population and the drivers of variability that 

influence that sensitivity. 

 

 Chapter 5 - Antagonistic interactions and clutch-dependent sensitivity induce variable 

responses to ocean acidification and warming in squid (Doryteuthis pealeii) embryos 

 Here, I exposed squid eggs not only to increased acidification, but warming as well, 

rearing the eggs at +2 ºC above peak temperatures for Vineyard Sound, MA, USA. This chapter 

describes these multifactor experiments I ran in 2016, but is also unique because these 

experiments used only eggs from a single mother for each trial. Thus, I was able to examine both 

the interactions between warming and acidification and the variability of those impacts within a 

clutch and across the clutches of a breeding season. I find that responses within a clutch are 

relatively consistent, but means shift and variance increases with both warming and acidification. 

Across the season, I saw a number of different sensitivity patterns, with sensitivity to both 

warming and acidification increasing as the season went on. Warming appeared to be the more 

dominant stressor, however, and potentially swamped out acidification impacts by driving 

paralarvae to their minimal viable state. I find that warming was broadly antagonistic to 

acidification in all measured metrics. The data suggest that warming acts immediately and early 

in development, while acidification builds over time causing greater impacts to late development. 

I hypothesize that the antagonism I observe between these stressors is due, in large part, to 

warming decreasing development time, and thus exposure time to acidification. 

 

 The experiments and results described in this dissertation demonstrate the complexity of 

running stress experiments with a non-model organism, particularly one as plastic as a squid. 

Taking data from any individual experiment or even set of experiments within a year would not 

have provided a substantial or correct picture of how this life stage of this organism responds to 
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acidification. I reran and adaptively shifted these experiments as needed to try to best capture the 

processes and variability of sensitivity being expressed by the squid. While I do find scenarios in 

which squid embryos and paralarvae are impacted by acidification, the dosage required is high 

and it appears to depend greatly on the state of the parents. Temperature seems to have a role in 

this parental conditioning, but also mitigates acidification impacts on the embryonic scale, 

further complicating our ability to predict impacts under future ocean change. This dissertation 

serves to highlight the importance of taking into account the life history of an organism as part of 

the experimental design of anthropogenic stress studies and the need for more robust, long-term, 

repeated, and generational studies of organismal response to stress. 
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Chapter 2 
 
Dose-dependence and small-scale variability in responses to 
ocean acidification during squid, Doryteuthis pealeii, 
development  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter was originally published as: Zakroff C, Mooney TA, Berumen ML (2019) Dose-dependence and small-
scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Marine Biology 
166:62. doi: 10.1007/s00227-019-3510-8. The Supplementary Materials for this chapter can be found in Appendix 
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Abstract 

Coastal squids lay their eggs on the benthos, leaving them to develop in a dynamic 

system that is undergoing rapid acidification due to human influence. Prior studies have broadly 

investigated the impacts of ocean acidification on embryonic squid, but have not addressed the 

thresholds at which these responses occur or their potential variability. We raised squid, 

Doryteuthis pealeii (captured in Vineyard Sound, Massachusetts, USA: 41° 23.370N 70° 

46.418´W), eggs in three trials across the breeding season (May - September, 2013) in a total of 

six chronic pCO2 exposures (400, 550, 850, 1300, 1900, and 2200 ppm). Hatchlings were 

counted and subsampled for mantle length, yolk volume, hatching time, hatching success, and 

statolith morphology. New methods for analysis of statolith shape, rugosity, and surface 

degradation were developed and are presented (with code). Responses to acidification (e.g., 

reduced mantle lengths, delayed hatching, and smaller, more degraded statoliths) were evident at 

~ 1300 ppm CO2. However, patterns of physiological response and energy management, based 

on comparisons of yolk consumption and growth, varied among trials. Interactions between 

pCO2 and hatching day indicated a potential influence of exposure time on responses, while 

interactions with culture vessel highlighted the substantive natural variability within a clutch of 

eggs. While this study is consistent with, and expands upon, previous findings of sensitivity of 

the early life stages to acidification, it also highlights the plasticity and potential for resilience in 

this population of squid. 
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Introduction 

 Addressing the potential effects of ocean acidification (OA) has become a major concern 

for the management of coastal ecosystems. This includes the northwest Atlantic coastal region 

where urban development and freshwater influx can exacerbate decreasing pH caused by 

anthropogenic carbon dioxide (CO2) (Gledhill et al. 2015). This ecosystem is home to a suite of 

fisheries species that use nearshore habitats as breeding grounds. Early life stages are expected to 

be more sensitive to environmental stress than juveniles or adults, so rapidly intensifying impacts 

such as acidification are of particular concern (Byrne 2011; Haigh et al. 2015).  

Loliginid squids, such as the Atlantic longfin squid, Doryteuthis pealeii, are common 

fixtures in many continental shelf ecosystems. These animals are important commercially, with 

D. pealeii supporting a major New England fishery with 18,000 mt landings in 2016 (NOAA 

Fisheries 2019).They are also a central support structure for the coastal food web, acting as both 

prey and predator throughout their life history (Jacobson 2005). During reproduction, adults affix 

their encapsulated offspring to the nearshore benthos and the young must develop under 

whatever conditions occur there, potentially resulting in chronic exposure to stressors such as 

acidification (Jacobson 2005; Fabry et al. 2008; Byrne 2011). 

 The Atlantic longfin squid comes inshore along the northwest Atlantic coastline from 

May - October to breed, producing clusters or “mops” of encapsulated embryos that are bound to 

benthic structure or substrate (Jacobson 2005). Egg laying habitat along the North American 

Atlantic shelf has been observed to occur at depths shallower than 50 m in salinities of 30-32 ppt 

and temperatures ranging from 10-23 ºC (McMahon and Summers 1971; Jacobson 2005). 

Reported shelf carbonate system profiles across D. pealeii egg laying habitat suggest a potential 

exposure range of 8.2 - 7.88 pHt during breeding season (250 - 600 ppm CO2; values calculated 

across depth/temperature extremes using CO2SYS with data from Wang et al. 2013). Whether 

pH or others oceanographic parameters, such as oxygenation, determine D. pealeii egg laying 

habitat has not been reported to our knowledge, but observations of the California market squid, 

Doryteuthis opalescens, demonstrate a preference for oxygen levels greater than 160 µmol and 

pHt greater than 7.8 (Navarro et al. 2018).  

The embryos are packaged inside an egg capsule comprised of mucosal proteins with 

several hundred siblings, all developing and respiring together (Arnold et al. 1974; Jacobson 

2005). Under natural conditions, the inside of these capsules become increasingly anoxic and 
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acidic as development proceeds, reaching pH values as low as 7.34 (Gutowska and Melzner 

2009; Long et al. 2016). The only energy source available to these embryos for use in growth, 

development, and homeostasis is the yolk provided by the mother (Arnold et al. 1974; Steer et al. 

2004). While cephalopods are adept at maintaining internal pH balance through the activation of 

proton secreting transporters within ion-transport epithelia, this process is energetically costly 

(Hu et al. 2010, 2013). Sensitivity to pH, and the associated homeostatic costs, may vary 

depending on the cephalopod species and the developmental stage as well (Hu et al. 2010, 

2011a).  

Previous studies have looked broadly at the potential impacts of acidification on 

developing loliginid squid embryos. Embryos of Loligo vulgaris, removed from the egg capsule 

and exposed to acidification (pCO2 ~1650 ppm) and warming (+2ºC), demonstrated delays in 

development as well as a dramatic decrease (47%) in embryonic survival (Rosa et al. 2014a). 

Doryteuthis opalescens egg capsules cultured under decreased pH (pH 7.57, pCO2 ~1440 ppm) 

and hypoxia (80 µM O2) also showed delays in embryogenesis (Navarro et al. 2016). Further, 

this study suggested that the combination of these stressors, potentially driven by the hypoxia, 

resulted in smaller embryonic statoliths, the aragonitic structures responsible for the squid’s 

sensing of balance, orientation, and sound (Navarro et al. 2016). Kaplan et al. (2013) measured 

D. pealeii paralarvae hatching from eggs reared in high acidification (2200 ppm) and observed 

both a reduction of statolith size and apparent structural degradation, although the latter was only 

qualitatively defined. This study also noted a delay in development time and a reduction in 

paralarval dorsal mantle length as a result of the high acidification dose (Kaplan et al. 2013). 

While it is becoming apparent that loliginid squid can be influenced by OA, the 

additional variables and limited pCO2
 concentrations tested in some of the prior studies make it 

challenging to assess the scope of pCO2
 impacts. To aid management of this key fisheries 

species, it is crucial to address whether developmental changes occur gradually with increasing 

OA or if there is some “tipping point” beyond which effects are significant. Studies addressing 

early life history are critical because these animals form the foundation for future populations 

and this phase of development may be particularly vulnerable (Byrne 2011). While documenting 

fundamental OA effects on these squid is necessary, it is also vital to move beyond basal 

observations of impacts to address how these animals might cope with this stressor, such as 
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through management of the energy budget, and explore the potential for resiliency within a 

hatchling cohort.  

The experiments performed here were designed to expand upon the work of Kaplan et al. 

(2013) in order to more thoroughly describe the sensitivity of D. pealeii to ocean acidification 

and understand the mechanisms by which it impacts the early development of this species. We 

reared D. pealeii eggs in a range of pCO2 treatments in order to examine dose-dependent 

responses under the hypothesis that between the ambient and 2200 ppm treatments used in the 

original study lie some physiological threshold for OA. Based on the results from Kaplan et al. 

(2013), we hypothesized that D. pealeii compensated for pH stress by slowing development rate 

and reducing energy spent on growth, however we did not have a sufficiently robust picture of 

energy physiology to support this idea. We therefore expanded upon the previous analyses of 

dorsal mantle length, hatching time, and statolith size and quality (quantifiable metrics were 

developed), and added measurements of yolk volume (to quantify potential energy consumption 

effects) and hatching success (to address embryonic survival). We also analyzed data at a high 

resolution, across multiple hatching days in repeated trials over the breeding season, and describe 

the natural variability, the potential for resiliency, observed in the squid eggs in response to 

chronic acidification stress. 

 

Materials and Methods 

Squid collection and husbandry 

 Experiments were performed at the Woods Hole Oceanographic Institution 

Environmental Systems Laboratory (ESL), Woods Hole, Massachusetts, USA from June through 

August of 2013. Peak breeding season for D. pealeii,in this region, when the squid move into the 

nearshore of New England, typically falls between May and September (Arnold et al. 1974; 

Jacobson 2005). Squid were captured in Vineyard Sound by trawls performed by the Marine 

Biological Laboratory (MBL) in 10-30 meters water depth at the Menemsha Bight of Martha’s 

Vineyard, a locally known breeding ground. Adult squid were hand-selected directly from the 

trawl ship at the dock. Eighteen medium-sized individuals (20-25 cm dorsal mantle length) that 

did not appear stressed (those calmly hovering or resting at bottom of the holding tank) or 

damaged (those without fin tears or skin lesions) were carefully transferred to seawater-filled 

coolers and driven to the ESL. On top of condition, reproductively active females were selected 
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for based on their bright orange accessory nidamental gland, while males with dense sperm 

packets visible in the posterior mantle were chosen. Transport occurred as immediately (< 6 

hours post-capture), expediently, and gently as possible to minimize stress.  

 At the ESL, squid were transferred from the coolers into two flow-through cylindrical 

holding tanks (120 cm diameter, 70 cm depth) fed with water pumped directly from Vineyard 

Sound to the ESL and continuously bubbled with air. Squid were selected and housed in a 2:1 

female to male ratio in order to increase the probability of breeding and egg deposition. Ambient 

Vineyard Sound seawater was sand-filtered and cooled to 15 ºC (Salinity = 33 psu, pHnbs = 7.96). 

This temperature falls within the range experienced naturally during the breeding season, but 

below peak summer temperatures for Vineyard Sound (10.2 - 25.8 ºC from May - October 2013 

from NOAA Station BZBM3). Compared to maintaining squid at ambient temperatures, 

maintaining squid at 15 ºC served to reduce metabolic stress and the occurrence of infighting and 

cannibalism among the squid, which substantially increased the likelihood of successful egg 

production. Squid were fed killifish, Fundulus heteroclitus, caught in local saltwater ponds once 

to twice per day, depending on demand. All squid were fed and managed in the ESL until they 

died after breeding. New adult squid were acquired for each trial. 

Female squid laid eggs two to three days after being brought to the ESL. The egg 

capsules of this species of squid are long, orange-tinged fingers housing 90 - 300 eggs, which are 

tied together with mucosal proteins into mops that are bound to benthic substrate or structures 

(Arnold et al. 1974; Maxwell and Hanlon 2000). In the morning, tanks were examined and if egg 

capsules were discovered they were immediately hand-transferred into a bucket of seawater from 

the adult tank and carried into the room with the acidification and culture system. Egg capsules 

of good quality (thin, oblong, tinted orange, and undamaged) were randomly hand-sorted into the 

experimental culture cups, two egg capsules per culture cup, to initiate a trial (described below). 

 

Ocean acidification system 

 Seawater was acidified in a flow-through culture system constructed in a separated room 

within the ESL. Vineyard Sound seawater pumped into the ESL went through the facility’s sand-

filters and was then subsequently heated to 20 ºC. This temperature represents the average sea 

surface temperature for Vineyard Sound over the breeding season (19.5 ºC from May - October 

2013 from NOAA Station BZBM3) and resulted in a consistent fourteen day development period 
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for the squid embryos under control conditions. The heated seawater then went through an 

additional 10 µm filter (Hayward FLV Series, 10 µm felt bag, Hayward Industries, Inc., 

Rockville, Maryland, USA) to limit small zooplankton, particulate matter, and algae. The water 

was further treated with a UV sterilizer (Emperor Aquatics Smart HO UV Sterilizer, Model 

025150, Pentair Aquatic Eco-Systems, Inc., Cary, North Carolina, USA), in order to reduce 

harmful protozoa, although flow rate was too high for the seawater to be completely sterilized of 

microorganisms.  

The resultant cleaned and heated water was then output into the header tank of the 

acidification system, which was vigorously bubbled with compressed air. Between the filtration 

and heating systems of the ESL and this system header tank, it is expected that most input 

seawater is mixed over the course of several hours and is not subject to small-scale 

environmental variability, however fluctuations, particularly of alkalinity, were possible. Fine 

temporal scale water quality measurements were not performed. Water flowed out of the header 

into four H-shaped PVC gas equilibration chambers (Figure S1).. Two air stones in each leg of 

the ‘H’ of an equilibration chamber bubbled the flowing seawater with the treatment mixture of 

compressed air and CO2. During the first two trials in July (Jul 3 & Jul 11; Table 1) it was 

discovered that the ambient seawater in the ESL had an elevated concentration of equilibrated 

CO2: 550 ppm in the facility compared to 400 ppm for seawater samples taken at depth at the 

pump intake in Vineyard Sound (carbonate system measurements analyzed with VINDTA). 

Subsequently, the ambient treatment line of the equilibration chamber section of the acidification 

system was rebuilt to include two additional chambers, resulting in a line wherein the water was 

first degassed by N2 before being re-equilibrated with ambient compressed air in the following 

two chambers. 

Gas mixtures were produced by combining compressed air, introduced at 30 psi from an 

air compressor within the ESL, with cylinder CO2. The compressed air was split using a six-way 

manifold in order to provide aeration through the air stones in the header tank and the 

equilibration chambers, feed the manifold providing gas to the control culture cups, as well as 

feed three mass flow controllers (GFC17, Aalborg, Orangeburg, New York, USA), which 

brought the flow rate down to 4.5 l min-1. Carbon dioxide was also delivered at 30 psi to a 

parallel set of three mass flow controllers (GFC37, Aalborg, Orangeburg, New York, USA), 

which were adjusted in order to produce the desired concentrations of CO2. The air and CO2 
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lines were joined downstream of the mass flow controllers and these mixtures were then fed into 

manifolds which split the gas between the air stones in the equilibration chambers and the 

bubblers in the culture cups of each treatment. A CO2 analyzer (model s151, Qubit Systems, 

Kingston, Ontario, CA), 3-point calibrated with three reference gases (cylinders with 0, 362, and 

1036 ppm CO2, Corp Brothers, Inc., Providence, Rhode Island, USA), was used to check CO2 

concentration in the gas mixtures prior to each trial.  

Treatment water flowed from the equilibration chambers into four PVC manifolds from 

which individual drip lines were connected to the individual culture cups. Egg capsule culture 

cups were constructed from 1-liter PET food service containers (Solo Foodservice, Lake Forest, 

IL), which had been pre-soaked in seawater for at least 24 hours and cleaned with deionized 

water to remove any residues or toxins. These cups had a small rectangular outflow window (2 x 

4 cm) cut high on the side and screened with 5 µm mesh, which retained the hatched paralarvae. 

Each cup was sealed with a lid pierced with two holes, one for the treatment drip line and one for 

a gas line to bubble in the treatment gas mixture (Figure S1). Drip lines were fed to the bottom of 

the culture cup to ensure mixture and overturn and prevent waste accumulation. Treatment water 

inflow was maintained at a rate of approximately 20 L day-1 in each cup, which allowed for 

sufficient time for the water to equilibrate within the H-shaped chambers. The bubbling line was 

placed approximately midway under the screened outflow window in order to circulate the water 

without disturbing the egg capsules while also pushing resulting hatchlings away from the 

screen. Water from the culture cups outflowed into a communal water bath maintained at 20 ºC 

using both aquarium chillers (Oceanic Aquarium Chiller 1/10hp, Oceanic Systems, Walnut 

Creek, California, USA) and a set of controllable aquarium heaters (JÄGER 3603, EHEIM 

GmbH and Co., Deizisau, DE).  

The system consisted of two water baths, allowing for two staggered trials to be run 

simultaneously (Figure S1).. Each water bath housed three acidification treatments with four 

culture cups each for a total of twelve cups. Three cups per treatment were used to culture egg 

capsules, while the fourth was used as an abiotic control to monitor water chemistry. An Onset 

HOBO data logger (HOBO pendant model UA-004-64, Onset Data Loggers, Bourne, 

Massachusetts, USA) was placed in each water bath to monitor temperature and ambient light; 

recordings were taken every 15 minutes. Water bath 1 had a mean temperature of 20.49 ± 0.69 

°C (mean ± standard deviation) and water bath 2 had a mean temperature of 20.26 ± 0.49 °C 
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across experiments (Table 1). The egg capsules did not undergo temperature acclimation during 

the transfer from the 15 ºC holding tank to the 20 ºC culture cup, as this level of temperature 

shift at this early stage of development was not seen to impact embryonic development or 

survival, or the morphology and physiology of the paralarvae, within the metrics measured here. 

Ceiling mounted fluorescent lighting in the ESL room containing the culture system was set to a 

14:10 light:dark photoperiod to reflect the average natural light cycle for the region. The system 

was allowed to run for several days prior to acquiring squid in order to ensure equilibration of 

CO2 and temperature and balancing of gas bubbling and water flow. 

The pHnbs of all of the culture cups, both with and without egg capsules, was monitored 

by taking samples every three days and measuring using a pH probe (Orion Star™ A329, 

Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA). These measurements were not 

considered an accurate proxy for seawater pCO2, but were used to regularly check pH stability 

within the system. Respiration of the egg capsules did not notably change pH of the experimental 

cups compared to the procedural controls. On the day a trial began, and every seven days after 

(twice more overall), water samples from the fourth cups, the abiotic controls, were taken for 

high precision carbonate chemistry measurements. pHt, salinity, and alkalinity data were 

recorded following the methods adapted from White et al. (2013). In brief, pHt was recorded 

using 2 mM m-cresol purple indicator dye in a spectrophotometer (USB4000 Spectrometer, 

Ocean Optics, Dunedin, Florida, USA) using methodology adapted from Clayton and Byrne 

(1993) and Dickson et al. (2007). Parallel to the pHt readings, 120 mL glass bottle samples were 

taken for salinity measurement, which were later analyzed using a Guildline model 8400B 

“Autosal” laboratory salinometer (Guildline Instruments, Smith Falls, Ontario, Canada). For total 

alkalinity, 20 mL acid-washed, glass scintillation vials were filled with treatment seawater and 

poisoned with 10 µL saturated mercuric chloride before being sealed for later analysis. One mL 

subsamples were processed in duplicate on an automated small volume titrator (Titrando 808, 

Metrohm AG, Herisau, CH) programmed to run Gran titrations with 0.01 N HCl. ESL seawater 

samples of known alkalinity, measured using a VINDTA (marianda, Kiel, DE), were used as 

calibrating standards. If duplicate sets had a difference between samples of 4 µmol kg-1 seawater 

or greater, a second duplicate set was run and the average of the four values was used. The high 

precision carbonate chemistry measurements (pHt, salinity, and total alkalinity), as well as the 

water bath temperature readings, were input into CO2SYS (Pierrot et al. 2006). Dissociation 
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constants from Mehrbach et al. (1973) and sulfate constants from Dickson (1990) were used in 

order to calculate pCO2 and aragonite saturation state (Ωarag) for the equilibrated seawater of each 

acidification treatment (Table 1). 

 

Experimental trials and paralarval sampling 

Trials were initiated by the morning discovery of a mop of egg capsules in the adult 

holding tanks and are referred to by this laying date throughout this analysis (Table 1). Egg 

capsules were immediately transferred by seawater bucket(s) to the culture/acidification system 

room. There they were randomly hand-sorted into the culture cups of an available water bath, 

two egg capsules per experimental cup (eighteen total egg capsules per trial). Because D. pealeii 

females store sperm and often mate with multiple males, and given that multiple females will lay 

egg capsules together in the same mop of eggs, the egg capsules used here are of distinctly 

complex and unknown parentage (Hanlon and Messenger 1998; Buresch et al. 2009). Thus, 

measurements of adult squid size and weight were not taken. At most, these egg capsules can be 

considered to represent a haphazard (since size and condition were considered during selection 

from the trawl catch) sampling of the Vineyard Sound population at a particular point in time 

during the breeding season. The August trial (Aug 7), however, was initiated by the discovery of 

egg mops in both of the adult squid holding tanks on the same morning. As a result, egg capsules 

were randomly distributed, but into a specific set of cups, such that the first cup of each 

treatment contained two egg capsules from holding tank A, the second cup contained two egg 

capsules from holding tank B, and the third cup contained one capsule from each tank. Discrete 

separation of egg capsule parentage therefore occurred for this trial (Cup 1: AA, Cup 2: BB, Cup 

3: AB); as much as is possible excepting the probability that a female from one tank had stored 

the sperm of the male of another tank while in the wild or during capture. 

A total of three trials were performed using six carbon dioxide concentrations between 

400 ppm and 2200 ppm (Table 1; 400, 550/ESL Ambient, 850, 1300, 1900, and 2200 ppm). The 

Jul 3 trial was designed to repeat the levels used in Kaplan et al. (2013), atmospheric ambient 

and 2200 ppm, and add a 1300 ppm midpoint. As stated above, the discovery of the elevated 

pCO2 in the ESL seawater affected the ambient treatment of this first trial, and so is reported as 

ESL Ambient (550) rather than an atmospheric concentration control. Vertical profiles and water 

column bottle samples taken in the Menemsha Bight in Vineyard Sound in 2014 and 2015 
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indicate a consistently well-mixed system with near atmospheric CO2 concentrations from which 

this ESL Ambient deviates, but not greatly (July - September 2014, mean bottom [20 m] pCO2 of 

471.8 ppm and average surface to bottom difference of 2.2 ppm; May - September 2015, mean 

bottom pCO2 of 484.9 ppm and average surface to bottom difference of 12.7 ppm; Zakroff & 

Mooney, unpublished data). The Jul 11 trial was intended to be run with ambient control, 850 

ppm, the midpoint between 400 and 1300, and 2200 ppm. It was instead run without an ambient 

control as that treatment line was under reconstruction, and the still active 1300 ppm line was 

included in its place. Two trials were planned to follow the reconstruction of the 400 ppm line, 

one using 1600 ppm and one using 1900 ppm, in order to evenly fill the space between 1300 and 

2200 ppm. The trial incorporating the 1600 ppm CO2 treatment was lost, however, due to a 

failure of the compressed air system resulting in extended exposure of the egg capsules to 

degassed, and thus deoxygenated, water and is not reported here. The Aug 7 trial was run 

successfully with the appropriate 400 ppm CO2 control, representing present atmospheric 

concentrations, in place, the 2200 ppm treatment acting as the consistent concentration measured 

across all trials, and the 1900 ppm treatment as planned. 

The squid egg capsules were monitored, but otherwise left to develop undisturbed in their 

culture cups within the acidification system. At eleven to twelve days into development, morning 

checks for premature hatching began. Hatching typically initiated in the ambient treatment 

thirteen to fourteen days into development, as expected. Once hatching began, paralarvae were 

subsampled for a range of experiments. The results of the developmental and morphometric 

analyses, described below, are reported here, while concurrent behavioral work that subsampled 

paralarvae from these same experiments has been reported separately (Zakroff et al. 2018). 

 

Dorsal mantle length 

Ten paralarvae (fewer if fewer were available) were subsampled from each cup of each 

treatment each day for the first four to six days of hatching (dependent on hatching dynamics) to 

be photographed for dorsal mantle length (DML) measurement. When counting out the animals, 

individuals were pipetted from their culture cup into their own wells within a 24-well plate 

(Falcon® Brand 2.0 cm2 well area, 3.5 mL well volume, Corning Inc., Corning, New York, 

USA). Wells were filled with the appropriate treatment seawater with a few drops of 7.5 % w/v 

MgCl2 mixed with equal part seawater added as an anesthetic. Individuals were then carefully 
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pipetted into a drop of treatment seawater on a watch glass and placed under a dissecting scope 

(SteREO Discovery.V8, Carl Zeiss AG, Oberkochen, DE). Once a paralarva was confirmed to be 

oriented with the dorsal surface up, most easily recognized on D. pealeii by the hexagonal 

pattern of chromatophores on the dorsal surface of the head, an attached camera (G12, Canon 

USA, Melville, New York, USA) was used to take a photograph (Figure 1A). Prior to taking 

sample photographs, the dissecting scope was focused using the first paralarva and then a 

calibrating photograph of a millimeter ruler was taken for that day of data collection. If for any 

reason the focus needed to be changed or photography was interrupted and the camera had to be 

reset, a new calibration photo was taken. No premature paralarvae, those with remnant external 

yolk present, nor any that had damage to the mantle, were included in the DML photography 

dataset. The images of the subsampled paralarvae were later measured for DML using ImageJ 

(National Institutes of Health, Rockville, Maryland, USA). 

 

Yolk sac volume 

An additional 10 paralarvae (fewer if fewer were available) from each cup of each 

treatment were subsampled each day for lipid staining and preservation using methods adapted 

from Gallager et al. (1986). In brief, subsampled paralarvae were pooled by treatment cup in a 

24-well plate and then euthanized with an increasing dose of 7.5 % w/v MgCl2 mixed with equal 

part seawater. The paralarvae were then quickly fixed with 10% formalin in order to prevent 

contraction of the mantle during staining and preservation. The seawater containing the MgCl2 

and formalin was then pipetted off and the fixed paralarvae were submersed in oil red O 

suspended in ethylene glycol, covered, and left to stain overnight. The subsequent morning, the 

stain was pipetted off and the paralarvae underwent two 30-min soaks in ethylene glycol to 

remove excess stain before being stored in ethylene glycol in labeled microcentrifuge tubes (0.65 

mL Costar microcentrifuge tubes, Corning, Inc., Corning, New York, USA). No notable 

shrinkage as a result of euthanasia, brief formalin fixation, lipid stain, or ethylene glycol storage 

was observed, however this was not robustly measured, so analyses are reported under the 

assumption of either no shrinkage or consistent shrinkage across samples. 

Oil red O effectively stained the interior yolk sacs, making them much more visible 

through the translucent mantle. Lipid-stained paralarvae were photographed in daily sets as 

described for the DML subset above, except that paralarvae were oriented either dorsal or ventral 
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dependent on which produced the clearer image of the yolk sacs (preferentially ventral, but 

occasionally dorsal as in Figure 1B). The photos were processed in ImageJ following the 

methods of Vidal et al. (2002). In brief, lines were drawn measuring the length and width of both 

the anterior and posterior yolk sacs (Figure 1B). These values were input into formulas 

representing a three-dimensional shape approximating the volume of the yolk sac: a cone or 

cylinder for the anterior, and a rotational ellipsoid for the posterior. These results were then 

summed to get the total yolk volume (YV) for each individual paralarva. 

 

Hatching time and success 

Following all morphometric and behavioral work, the remaining paralarvae were counted 

as they were pipetted from a treatment cup into a petri dish containing water of the same 

treatment. Paralarvae were then anesthetized with 7.5 % w/v MgCl2 mixed with equal part 

seawater and preserved in 97% ethanol in microcentrifuge tubes (0.65 mL and 1.7 mL Costar 

microcentrifuge tubes, Corning, Inc., Corning, New York, USA) by treatment cup (the 

anesthetized DML subsamples were added back to their appropriate tube in preservation). Thus, 

no hatched animals remained, nor were any returned to their treatment cups at the end of each 

experiment day, and all paralarvae analyzed were from their day of hatching (less than 24 hours 

old). The total number of hatched paralarvae was summed at the end of hatching and used to 

calculate percent hatching in each treatment cup per day. 

 Hatching was considered finished in a treatment cup following two mornings with no 

newly hatched paralarvae. The two egg capsules within the treatment cup would then be 

removed, photographed, and dissected underneath a dissecting scope. Unhatched embryos were 

sorted and counted according to their stage of development, adapted from Arnold et al. (1974): 

early (stages 1 - 16), middle (stages 17 - 26), and late (stages 27 - 30). The total number of 

unhatched embryos was summed with the total number of hatched paralarvae to get the original 

count of embryos in each cup. The ratio of hatched paralarvae was compared with the total 

number of embryos to examine hatching success within each treatment cup. 

 

Statolith morphometrics 

 Ethanol preserved paralarvae were dissected for their statoliths. An individual paralarva 

was placed on a glass cover slip underneath a dissecting scope and kept moist with 97% ethanol.  
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Once separated, an individual statolith was rinsed with 97% ethanol and all visible adhering 

tissue was removed. The statolith was then transferred onto a sticky carbon pad (C249/N 12 mm 

diameter self-adhesive carbon disc, TAAB Laboratories Equipment Ltd., Berks, England, UK) 

on a scanning electron microscopy (SEM) stub (12.7mm diameter aluminum mount, Electron 

Microscopy Sciences, Hatfield, Pennsylvania, USA). Only one, randomly chosen statolith from 

each individual paralarva was mounted for SEM imaging and approximately five statoliths (more 

if possible) per treatment cup (approximately fifteen statoliths per acidification treatment) were 

assessed. The SEM stubs were taken to the MBL Central Microscopy Facility where they were 

sputter-coated with 10 nm platinum and imaged using a Zeiss NTS Supra 40VP (Carl Zeiss AG, 

Oberkochen, DE). 

SEM images (1024 x 768 px, TIFF files) were resized such that all statoliths were set to 

the same 6 px µm-1 scale (approximately 672X magnification) using Adobe Photoshop (Adobe 

Photoshop CC 2017, Adobe Systems Inc., San Jose, California, USA). The Photoshop quick 

selection tool was then used to select the statolith, carefully maintaining edge integrity. The 

selection was then cut to a new layer and that layer was saved separately as a PNG for the 

MATLAB surface analysis described below. The process was then backed up to the selection 

step and the selection was flood-filled black and again cut to a new layer. Statoliths were then 

reoriented such that the longest axis of the statolith was parallel to the horizontal axis of the 

image, the dome, the wider, lobe-like part of the structure, was placed to the right of the image 

and the rostrum, the thinner, wing-like projection, was to the left (note in Figure 2B, D that 

processing in Momocs, described below, flipped these so that the outline had the dome oriented 

left). For degraded or misshapen statoliths, a best approximation was used, with the longest axis 

being set horizontal and the subsequently wider side set to the right. The background layer was 

then flood-filled white to create a black silhouette of a statolith on a white background. These 

silhouetted statolith images were saved as JPEG files and compiled with the rest of the samples 

for import into the R (version 3.3.3, R Foundation for Statistical Computing, Vienna, AT) 

morphometrics package Momocs (Bonhomme et al. 2013) in RStudio (version 1.0.136, RStudio, 

Inc., Boston, Massachusetts, USA). Momocs took the silhouetted images and translated them 

into objects describing the outlines of the 2D shapes. Morphometric analysis of the outlines 

provided statolith length, width, surface area, rectangularity, and circularity. 
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 Two metrics were developed in order to quantitatively describe and compare qualitative 

observations of statolith degradation. The first was intended to describe the ‘rugosity’ of the 

statolith edge, e.g. whether the statolith had a smooth perimeter (Figure 2A) or a rough one 

(Figure 2C). Momocs describes a 2D shape via a series of points that demarcate its outline. 

Through extensive testing with a test set of shapes (described in the Supplementary Materials), it 

was found that calculating the variation of the internal angles between points on an outline at a 

resolution of 150 points resulted in the best description of shape outline complexity or ‘rugosity.’ 

Internal angle variance was calculated for all statolith outlines at this resolution using the 

Momocs objects in R (code available in the Supplementary Materials and at 

https://github.com/czakroff/Statoliths). 

The second metric was intended to quantify the consistency of the visible statolith surface 

in the SEM image, e.g. whether a statolith had a smooth surface with organized calcium 

carbonate crystals (Figure 2A) or had a rough surface due to increased porosity or disorganized 

crystals (Figure 2C). This was achieved by analyzing the average variance of the pixel intensities 

in five boxes haphazardly placed on the statolith image. The scaled cutout statolith PNG images 

described above were loaded into a custom MATLAB (version R2016b, Mathworks, Inc., 

Natick, Massachusetts, USA) script (available in the Supplementary Materials and at 

https://github.com/czakroff/Statoliths). The script requires the user to click to mark the centroids 

of five 100 x 100 px squares (equivalent to 277.78 µm2 of the statolith surface at this scale) that 

are placed on the statolith image (Figure 2A, C). The user can then iterate through this process to 

adjust the squares to ensure they are placed appropriately. Squares were placed in order to 

achieve as even a distribution over the statolith surface as possible while trying to avoid surface 

occlusions (salt crystals or remnant tissue), dramatic lighting gradients, and large cracks or 

breaks. The pixel variance of each box was calculated and then the average surface pixel 

variance over the five boxes was compiled for all sample statoliths.  

 

Statistics 

All statistical analyses were performed in Python (version 3.5.2, Python Software 

Foundation) using Jupyter Notebooks (Project Jupyter). All data, at all levels (trial, treatment, 

date, and cup), was tested for normality using Shapiro-Wilk tests (α = 0.05) and through visual 

assessment of quantile plots and histograms. Differences in data that were normally distributed 
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were tested with multi-factor Type II ANOVAs. Type II ANOVAs were selected in order to test 

factors independently, without ordering, and to not test a main effect in light of its interactions; 

the hypotheses tested are therefore if a factor in all of its forms has an impact on the dependent 

variable (Langsrud 2003). Under this framework, the presence of an interaction is of greater 

interest than a main effect. Treatment (pCO2) and date were considered independent factors 

nested under trial, while cup was considered nested under pCO2. Significant (P < 0.05) results 

were further analyzed using a Tukey’s HSD posthoc test. Statistics of normally distributed data 

are reported as means ± standard deviation. Yolk sac volume data was log transformed to 

stabilize variance and then tested as with other parametric data; yolk volume data is reported as 

the mean and values ± one standard deviation back transformed.  

Nonparametric data were assessed for differences using a Kruskal-Wallis test (KW); 

significant (P < 0.05) results were further analyzed using a Dunn’s posthoc test. Nonparametric 

statistics are reported as medians and interquartile range. Distributions of hatching and embryo 

counts were compared using G-tests. Scatterplots of data by trial are presented with trend lines, 

primarily as a visual aid. These lines were assessed by linear,regression (LR), significance (α = 

0.05), but as they were run on three data points we are not suggesting they are statistically 

powerful. Data compiled across trials was corrected for trial variability (likely due to variability 

from season/cohort/parentage) by taking the differences between samples and the trial mean, 

allowing for a comparison of effect size/response slopes (see note on assumptions below). 

Compiled data were assessed by piecewise linear regression (minimum of three data points per 

regression) and the model with the best fit (highest R2
) is presented. Piecewise regressions were 

tested for significant difference against the null hypothesis model of two lines, with different 

means, each with a slope of zero using a parametric bootstrap.  

 

Results 

Water quality 

 No significant differences in pHt or calculated pCO2 were found between cups of the 

same treatment or across time in the fourth culture cup (KW, P > 0.05 for pHt and pCO2 for all 

treatments of all trials). Input gas mixtures of carbon dioxide and air were consistent throughout 

the experiment, resulting in consistent pHt values (Table 1). Salinity and temperature also 

remained constant across a trial, but was slightly more variable depending on the cycling routine 
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and sensitivity of the control chiller (Table 1). Temperature also shifted slightly across trials, 

likely as an effect of changing local environmental temperatures. Calculated aqueous pCO2 

concentrations varied slightly from input gas concentrations, typically being slightly higher, 

which could be a result of variability in ESL water alkalinity, inconsistency in the flow rate and 

equilibration rate of treatment water, or a combination of these factors. Equilibrated pCO2 

variability increased with higher input concentrations, with the strongest acidification treatments 

being the hardest to maintain a consistent equilibration in. This increased variability is likely a 

result of choosing a flow-through egg capsule culture system rather than using a closed or 

recirculating system. Results are analyzed and reported grouped by input gas concentration 

rather than calculated aqueous pCO2 concentrations for concision and clarity. 

 

A note on assumptions 

There was significant trial-to-trial variability in the response of these developing squid to 

ocean acidification stress. Data analysis and figures presented examine data both by individual 

trial and compiled across trials. We therefore sought to clarify assumptions being made in the 

analysis and compilation of these data. Due to challenges imposed by the facility, the Jul 11 trial 

did not have an ambient pCO2 control. Based on the results across metrics, the similarities 

between the Jul 3 ESL Ambient and the Jul 11 850 ppm data (effect sizes in mantle length and 

hatching time between these levels and 2200 ppm, in particular), we chose to include these data 

in compiled graphics and analyses.  

Dorsal mantle length compared across lowest pCO2 treatments of each trial showed no 

difference between Jul 3 ESL Ambient and Jul 11 850 ppm, but both had significantly larger 

paralarvae than the Aug 7 400 ppm clutch (ANOVA, F (2,492) = 9.874, P < 0.001; Tukey, P < 

0.05; values reported below). Yolk volume, however, showed no difference between the Jul 11 

850 ppm and the Aug 7 400 ppm while both were significantly reduced compared to the Jul 3 

ESL Ambient (ANOVA, F (2,471) = 155.3, P << 0.001; Tukey, P < 0.05; values reported 

below). These shifting baselines, a consequence of seasonal, cohort, and/or maternal effects, 

must be kept in mind when examining the compiled data for a more generalized population 

response to acidification.  

 

A note on egg number 
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 During manuscript preparation, a reviewer suggested that the relationship between 

measured factors (primarily DML and YV) and number of eggs in the egg capsules could be 

examined for potential trade-offs in maternal investment. As two egg capsules were used per 

cup, we could at best calculate average egg number for each treatment cup ([# hatchlings + # 

unhatched eggs] / 2). Rather than showing a trade-off, the data suggested a potential increase in 

both metrics with increasing number of eggs, although the correlation is much stronger for DML 

(Figure S4). While a relationship between initial egg size and hatchling DML has been described 

(Laptikhovsky et al. 2018), as well as negative correlations with egg density (removed eggs in 

petri dishes; Villanueva et al. 2011), a positive correlation between number of eggs and DML or 

YV has not been reported for multi-egg per egg capsule squids to our knowledge.  

Our data represent three egg clutches laid by unknown parents (preselected for 

size/condition) taken in one breeding season and is not robust enough to consider reevaluating 

the entire dataset by (particularly without literature support). Type II ANOVAs of DML and YV 

run with only egg number as an independent covariate and cup (numbered individually rather 

than nested in treatment) demonstrated no effect of cup (P >> 0.05) and a substantial effect of 

egg number (P << 0.001) and a substantial interaction between egg number and cup (P << 0.001) 

in both metrics across trials (Table S5) suggesting that within the scope of our statistical models, 

these factors represent the same effect (if egg number were categorical, it and cup would be 

indistinguishable statistically). Statistical models incorporating egg number as an independent 

continuous covariate are reported in the Supplementary Materials (Tables S7 & S8), but most 

statistics and data presented here are done so under the assumption that random selection of egg 

capsules accounted for this potential source of variability. 

 

Dorsal mantle length 

 Dorsal mantle length decreased with increasing pCO2 in all trials (Figure 3). Overall 

compiled data showed a significant effect of trial and cup on DML, with near significant effects 

of pCO2 and the interaction between pCO2 and hatching date (Table 2). Paralarvae in the Jul 3 

trial showed a broadly linear, but non-significant, decrease of DML with increasing pCO2 (LR, P 

= 0.106). Each treatment in this trial was significantly different from the others (Table S1; 

Tukey, P < 0.05: ESL Ambient/550: 1.64 ± 0.11 mm; 1300 ppm: 1.59 ± 0.12 mm; 2200 ppm: 

1.56 ± 0.12 mm). The Jul 11 trial also showed a significant decrease in DML with increasing 
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pCO2 (Table S1), but showed a non-linear (LR, P = 0.206) step-wise response, with the 850 ppm 

(1.63 ± 0.12 mm) and 1300 ppm (1.63 ± 0.11 mm) treatments being grouped (Tukey, P < 0.05) 

separately from the 2200 ppm treatment (1.53 ± 0.12 mm). Paralarvae in the Aug 7 clutch 

demonstrated a weaker, but significant reduction in DML with increased acidification (Table 

S1). Again, a step-wise (LR, P = 0.123) response was seen, with the 400 ppm treatment (1.59 ± 

0.13 mm) having significantly (Tukey, P < 0.05) larger paralarvae than both the 1900 ppm (1.53 

± 0.13 mm) and 2200 ppm (1.53 ± 0.12 mm) treatments. Compiled by difference from trial 

mean, piecewise regression indicated a two line model, of a low pCO2/greater DML group and a 

higher pCO2/smaller DML group with breakpoint at 1300 ppm, best fit (R2 = 0.858) the data and 

was not significantly different from the stepwise null hypothesis (P = 0.363, Figure 3). The 

compiled dataset of differences showed a significant relative decrease in DML with increased 

acidification (ANOVA, F8,1440 = 16.50, P < 0.001), with statistical groupings splitting at the 1300 

ppm treatment (Tukey, P < 0.05; Figure 3). 

The significant interaction between pCO2, hatching date, and cup on DML in the Jul 3 

trial had the greatest effect size ( Ω2; Table 2). Interactions between pCO2 and hatching date 

alone were also significant (Table 2). The ESL Ambient/550 ppm treatment showed no 

difference in mean DML across the hatching days (ANOVA P > 0.05; Table S2), despite a 

significantly increasing trend (LR, P = 0.023; Figure 4). The 1300 ppm samples were more 

variable, with significant differences in DML over the days of hatching (Table S2), but no 

corresponding trend (LR, P = 0.780; Figure 4). The 2200 ppm exposure approached significance 

for both mean DML over time and a slight decreasing trend (Table S2; LR, P = 0.090; Figure 4). 

The effect of cup (nested in treatment) was significant, with a similar effect size to the 

interaction of pCO2 and date (Table 2). Details of responses by cup have been placed in the 

Supplementary Materials for manuscript brevity, except for the Aug 7 trial. 

The Jul 11 trial also showed a significant interaction of pCO2, hatching date, and cup on 

DML (Table 2). While all factors and interactions showed significant effects on DML, date and 

the interaction between pCO2 and hatching date had the greatest effect sizes (Table 2). All three 

pCO2 treatments showed significant effects of hatching date on DML (Table S2). While all 

treatments showed decreasing paralarvae size with time, only the 850 ppm treatment fit a linear 

trend (LR, P = 0.007; Figure 4). Cup alone was significant, but with a lower effect size than date 

and its interactions (Table 2).  
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Differences in DML were much smaller in the Aug 7 trial, but still showing a significant 

interaction between pCO2, date, and cup (Table 2;). As with the Jul 11 trial, all factors were 

significant here, but cup and date had the greatest effect sizes (Table 2). The effect of hatching 

date on DML was near significance in the 400 ppm treatment and significant in both the 1900 

and 2200 ppm treatments (Table S2). All of the pCO2 treatments demonstrated a non-linear (LR, 

400: P = 0.8632; 1900: P = 0.8733; 2200: P = 0.5168) bimodal distribution of DML over 

hatching, with peaks on the first and fourth days of hatching (Figure 4). 

The Aug 7 trial consisted of egg capsules from two separate adult holding tanks (tank A 

and tank B) sorted into the culture cups for each pCO2 treatment (Cup 1: AA, Cup 2: BB, Cup 3: 

AB). Cup (nested in pCO2 treatment) had the greatest effect size on DML in this trial, while its 

interaction had the lowest (Table 2). At the scale of discrimination by cup, egg number could be 

notably relevant, so values are reported here while detailed statistical analyses can be found in 

the Supplementary Materials. In brief, egg number appears to be a significant covariate 

interacting with all other factors (cup [not nested when acting as a proxy for tank/egg capsule 

source], pCO2, and their interaction in particular, Table S7). Integrated across treatments, 

cup/source had a significant effect on egg number (ANOVA, F2,490 = 284.7, P << 0.001) with all 

cups/sources being significantly different from each other (Tukey, P < 0.05; Cup 1/AA: 128.7 ± 

12.1 eggs/capsule; Cup 2/BB: 169.8 ± 19.9 eggs/capsule; Cup 3/AB: 147.0 ± 14.9 eggs/capsule) 

Within the 400 ppm treatment, cup had a significant effect on paralarval DML (Table S3) 

with Cup 2/BB paralarvae significantly (Tukey, P < 0.05) larger (1.64 ± 0.12 mm, 192.5 

eggs/capsule) than those from Cup 1/AA (1.56 ± 0.12 mm, 117.5 eggs/capsule) and Cup 3/AB 

(1.54 ± 0.11 mm, 126 eggs/capsule). The 1900 ppm treatment also showed significant 

differences between cups (Table S3; Tukey, P < 0.05), but with Cup 1/AA paralarvae (1.46 ± 

0.12 mm, 123 eggs/capsule) much smaller than those from both Cup 2/BB (1.54 ± 0.11 mm, 144 

eggs/capsule) and Cup 3/AB (1.59 ± 0.13 mm, 158.5 eggs/capsule). No difference was seen in 

the 2200 ppm treatment (Table S3; Cup 1/AA: 1.52 ± 0.10 mm, 145.5 eggs/capsule; Cup 2/BB: 

1.56 ± 0.12 mm, 173 eggs/capsule; Cup 3/AB: 1.52 ± 0.14 mm, 156.5 eggs/capsule). Paralarvae 

from Cup 1/AA and Cup 2/BB showed similar patterns of response to the acidification exposure, 

a non-linear decrease with increased exposure (LR, Cup 1/AA: P = 0.4789; Cup 2/BB: P = 

0.2190), while no trend (LR, P = 0.9514) or clear pattern of response was seen in Cup 3/AB (Fig 
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5). Compiled across cups, the data shows the relative decrease in DML, approaching 

significance, reported in data by trial (LR, P = 0.0824; Fig 3, Fig 5).  

Variance of the DML data, assessed by pooling each cup and comparing across 

treatments within a trial, consistently increased with increasing acidification. No individual t-

tests showed significant differences in variance between treatments, likely influenced by low 

sample size (n = 3, two-sample t(2), P > 0.05 for all treatment pairings within each trial). All 

three trials demonstrated non-significant increasing linear trends in DML variance (Figure 3; LR, 

Jul 3: P = 0.1038; Jul 11: P = 0.2297; Aug 7: P = 0.1738). The change in variance, relative to 

trial average, for all pCO2 treatments best fit (R2 = 0.780) a two-line model breaking after 1300 

ppm (no significant difference from stepwise model, P = 0.544; Figure 3). In the Aug 7 trial, 

DML variance was highest in Cup 3/AB (0.0159 ± 0.0035 mm2), but not significantly different 

from the other cups (two-sample t(2), P > 0.05 for all pairings; Cup 1/AA: 0.0129 ± 0.0020 mm2; 

Cup 2/BB: 0.0143 ± 0.0011 mm2). 

 

Yolk sac volume 

 Patterns of response in yolk sac volume were highly variable within and between trials 

(Figure 3). Yolk sac volume in the low/control treatments decreased markedly (one-way 

ANOVA, F(2,471) = 166.8, P << 0.001) between the Jul 3 trial (0.077 mm3, 0.042 - 0.138 mm3) 

and the Jul 11 (0.030 mm3, 0.017 - 0.054 mm3) and Aug 7 (0.029 mm3, 0.020 - 0.044 mm3) trials 

(Tukey, P < 0.05). Despite this, only cup, nested within pCO2 nested within trial, appears 

significant when data is compiled (Table 2). In the Jul 3 trial, YV decreased linearly across pCO2 

treatments (LR, P = 0.017; Figure 3) with the ESL Ambient/550 treatment having significantly 

larger YV (Table S1; Tukey, P < 0.05; 0.077 mm3, 0.070 - 0.084 mm3) than the 2200 ppm 

treatment (0.058 mm3, 0.034 - 0.100 mm3). Conversely, yolk volume increased near-linearly 

(LR, P = 0.060; Figure 3) with increasing acidification in the Jul 11 trial with the 850 ppm 

treatment showing significantly smaller YV (Table S1; Tukey, P < 0.05; 0.030 mm3, 0.017 - 

0.054 mm3) than the 2200 ppm (0.036 mm3, 0.018 - 0.72 mm3) treatment. Yolk sac volume was 

not affected by pCO2 in the Aug 7 trial (Table S1; Figure 3). In the compiled data, normalized to 

trial mean, piecewise regression showed a weakly fitting (R2
 = 0.221) two line model, not 

significantly different from a stepwise null model (P = 0.839) with a breakpoint between 850 and 

1300 ppm (Figure 3). Variance of the YV also showed no trends with increasing acidification 
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(LR, P > 0.05 for all trials; n = 3, two-sample t(2), P > 0.05 for all treatment pairings within each 

trial) with piecewise regression revealing a two line best fit (R2 = 0.609) model breaking at the 

lowest values at 1300 ppm (no difference from stepwise null model, P = 0.304; Figure 3). 

The interaction of pCO2, date, and cup had a significant impact on YV in all three trials 

(Table 2). In the Jul 3 trial, the interaction of pCO2 with date had the greatest effect size (Table 

2) showing trends in YV over hatching similar to the DML data, with the ESL Ambient/550 ppm 

(LR, P = 0.140) increasing slightly, while the 1300 ppm (LR, P = 0.038)  and 2200 ppm (LR, P 

= 0.145)  paralarvae decrease (Figure 4). All factors and interactions were significant in the Jul 

11 trial (Table 2), though weaker than the Jul 3 trial with cup appearing to be a stronger 

interacting factor with pCO2 than date. While YV significantly changed with date under the 850 

and 2200 ppm treatments (Table S2), no particularly strong trends were seen (LR, P > 0.05; 

Figure 4). The Aug 7 trial showed no overall effect of pCO2, but a weak effect of date and near 

significant interaction of pCO2 and date (Table 2, Table S1). There were significant differences 

in YV with date in the 400 and 2200 ppm treatments (Table S2), with all three treatments 

showing weakly increasing trends over hatching (LR, 400: P = 0.079; 1900: P = 0.069; 2200: P 

= 0.144; Figure 4). 

Cup and its interaction showed significant effects in the Aug 7 trial (Table 2). Since the 

correlation of egg number to YV is non-significant and very weak (Figure S4), statistical models 

are included in the Supplementary Materials, but are not reported here (Tables S7 & S8). Cup 

1/AA showed no significant difference with pCO2 (ANOVA, F2,153 = 1.32, P = 0.268), but an 

increasing trend (LR, P = 0.031; Figure 5). Cup 2/BB, conversely showed a significant decrease 

in YV at the 1900 ppm level (ANOVA, F2,170 = 8.36, P < 0.001; Tukey, P < 0.05) driving a 

slight, but non-significant, decreasing trend (LR, P > 0.05; Figure 5). Cup 3/AB showed no 

significant effect (ANOVA, F2,148 = 0.315, P = 0.730) and a very weakly increasing trend (LR, P 

> 0.05) in YV with increasing pCO2 (Figure 5). The 400 ppm treatment varied by cup (Table S3; 

Tukey, P <0.05) with Cup 2/BB having greater YV (0.034 mm3, 0.023 - 0.050 mm3; 192.5 

eggs/capsule) than both Cup 1/AA (0.028 mm3, 0.019 - 0.040 mm3; 117.5 eggs/capsule) and Cup 

3/AB (0.026 mm3, 0.017 - 0.038 mm3; 126 eggs/capsule ). Yolk volume variance did not differ 

between cups of the Aug 7 trial (n = 3, two-sample t test, t(2), P > 0.05 for all cup pairings). 

Based on a comparison of average values for each cup, yolk sac volume was independent of 

dorsal mantle length (LR, P > 0.05, for all trials; Figure 6). 
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Hatching time 

 Increasing acidification consistently delayed hatching in all trials (Figure 7). Days until 

hatching initiation, defined as the day at which 1% cumulative hatching occurred in at least one 

treatment, also increased across trials (Jul 3: 12 days from laying, Jul 11: 14 days, Aug 7: 15 

days). In the Jul 3 trial, the proportions of cumulative hatching over time were significantly 

different between pCO2 treatments (G-test, ESL Ambient x 1300 ppm: G(12) = 156.2556, P << 

0.0001; ESL Ambient x 2200 ppm: G(12) = 412.4811, P << 0.0001; 1300 x 2200 ppm: G(12) = 

517.2413, P << 0.0001). Cumulative hatching proportions also varied significantly between cups 

(G tests, P < 0.0001 for all cup pairs within each pCO2 treatment, except 2200 ppm Cups 1 and 

2, P = 0.2629). Distributions of cumulative fraction hatched over time, compiled by pCO2 

treatment, are considered here for concision (Figure 7). Hatching in the 2200 ppm treatment was 

consistently delayed from the ESL Ambient and 1300 ppm treatments by about 1 day (Figure 7). 

Cumulative hatching reached at least 25% at 13 days from laying in the ESL Ambient and the 

1300 ppm treatment, but took 14 days in the 2200 ppm treatment. Hatching of 75% or greater 

was reached 14 days from laying in the 1300 ppm treatment, 15 days in the ESL Ambient 

treatment, and 16 days in the 2200 ppm treatment.  

 Proportions of cumulative hatching over time, compiled by pCO2 treatment, were also 

significantly different within the Jul 11 trial (850 x 1300 ppm: G(11) = 81.9224, P << 0.0001; 

850 x 2200 ppm: G(12) = 664.3269, P << 0.0001; 1300 ppm x 2200 ppm: G(12) = 500.7742, P 

<< 0.0001). Again, some variability in hatching dynamics was seen between cups (G tests, P < 

0.01 for all cup pairs within each pCO2 treatment, except 2200 ppm Cups 1 and 2, P = 0.2880). 

Compiled, the distributions show a consistent delay of about 1 day, expanding to 2 days, in the 

2200 ppm treatment (Figure 7). Hatching reached at least 25% 15 days after laying in the 850 

and 1300 ppm treatments and 16 days after in the 2200 ppm treatment. Cumulative hatching of at 

least 75% was reached 16 days after laying in the 850 and 1300 ppm treatments and 18 days after 

laying in the 2200 ppm treatment. 

 The Aug 7 trial also showed notable differences between pCO2 treatments in cumulative 

hatching proportions over time (400 x 1900 ppm: G(15) = 693.0624, P << 0.0001; 400 x 2200 

ppm: G(15) = 892.6867, P << 0.0001; 1900 ppm x 2200 ppm: G(12) = 79.242, P << 0.0001) and 

between the cups of each treatment (G tests, P < 0.05 for all cup pairs within each pCO2 
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treatment, except 2200 ppm Cups 2 and 3, P = 0.0564). A consistent delay of about 1 day was 

seen in the 1900 and 2200 ppm treatments, compared to the 400 ppm treatments (Figure 7). At 

least 25% cumulative hatching was seen in the 400 ppm treatment 16 days after laying, but 17 

days after in the 1900 and 2200 ppm treatments. At least 75% hatching occurred after 18 days in 

the 400 ppm treatment, and after 19 days in the 1900 and 2200 ppm treatments.  

 

Hatching success 

 Hatching success was high across pCO2 treatments and trials, with at least 85% hatching 

always seen (compiled by treatment; Table S4). No trends in hatching success with increasing 

acidification were seen in any trial (Jul 3: LR, P = 0.8199; Jul 11: LR, P = 0.2455; LR, P = 

0.8431). Significant differences were seen in the distributions of staged, unhatched embryos and 

hatched paralarvae within treatments and cups in all trials (Table S4; G tests, P < 0.05), but 

followed no pattern with acidification. In the Aug 7 trial, Cup 1 / AA had significantly higher 

embryonic mortality, particularly of middle and late stage embryos, than both Cup 2 / BB and 

Cup 3 / AB in both the 400 and 1900 ppm treatments (G tests, P < 0.05); no differences were 

seen in the 2200 ppm treatment (G test, P > 0.05 for all cup pairs). Occasional spikes in mortality 

of early stage embryos (e.g. 30.9% of eggs in Cup 1 of the ESL Ambient / 550 treatment in the 

Jul 3 trial), either due to natural variability or faults of the culture system, may also have skewed 

results.  

 

Statolith morphometrics 

 Statolith area broadly decreased with increasing acidification, although responses varied 

from trial to trial. In the Jul 3 trial, statoliths from the ESL Ambient (6823.8 µm2, 6449.9 - 

7440.3 µm2) treatment were significantly larger (KW, H2 = 9.0613, P = 0.0108; Dunn, P < 0.05) 

than those from the 1300 ppm (5723.2 µm2, 5134.2 - 6620.3 µm2) and 2200 ppm treatments 

(5803.2 µm2, 5114.0 - 7142.8 µm2), following an apparent step-wise drop (LR, P = 0.4090; 

Figure 8). In the Jul 11 trial, statoliths from both the 850 (7882.4 µm2, 7436.3 - 8115.9 µm2) and 

1300 ppm (7778.3 µm2, 7553.5 - 8017.7 µm2) treatments were much larger (KW, H2 = 13.9475, 

P = 0.0009; Dunn, P < 0.05) than those in the 2200 ppm treatment (4845.0 µm2, 3291.6 - 6747.8 

µm2), again following a step-wise drop (Figure 8; LR, P = 0.3462). There was no difference 

(KW, H2 = 1.8239, P = 0.4017) in statolith area between pCO2 treatments in the Aug 7 trial 
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(400: 6814.4 µm2, 6218.0 - 7074.4 µm2; 1900: 6618.2 µm2, 5920.2 - 7355.9 µm2; 2200: 6473.3 

µm2, 6119.3 - 6836.1 µm2) and no trend in these data (Figure 8; LR, P = 0.7102). Overall, 

relative to trial, statolith surface area best fit (R2
 = 0.638) a two-line model with a breakpoint at 

1300 ppm (at which area decreases), which did not significantly differ from a stepwise null 

hypothesis (P = 0.681, Figure 8). Statolith area appeared to be dependent on mantle length, based 

on a comparison of average values for each treatment, which approached significance (LR, P = 

0.0519, Figure S2). 

 The variance of the internal angle of the statolith outline, the metric of statolith edge 

rugosity, broadly increased with increasing acidification in the compiled data, driven by the Jul 

11 samples. Internal angle variance was significantly higher (KW, H2 = 17.6603, P = 0.0001; 

Dunn, P < 0.05) in the 1300 ppm (507.11 deg2, 412.71 - 715.98 deg2) treatment of the Jul 3 trial 

than either the ESL Ambient (225.96 deg2, 169.39 - 294.59 deg2) and the 2200 ppm (277.83 

deg2, 130.13 - 577.08 deg2) treatments resulting in a nonsignificant increasing trend (LR, P = 

0.8082; Figure 8). In the Jul 11 trial, treatments were not significantly different from each other 

(KW, H2 = 4.8128, P = 0.0901), but internal angle variance of the statoliths followed an 

increasing trend with acidification (850: 89.13 deg2, 63.38 - 367.81 deg2; 1300: 151.25 deg2, 

88.30 - 308.43 deg2; 2200: 348.32 deg2, 158.85 - 521.12 deg2; LR, P = 0.0252; Figure 8). 

Statolith internal angle variance was much lower overall in the Aug 7 trial, and showed no 

differences between treatments (KW, H2 = 4.0206, P = 0.1339) and no particular trend with 

acidification (400: 97.51 deg2, 79.25 - 115.35 deg2; 1900: 110.49 deg2, 92.63 - 129.89 deg2; 

2200: 97.44 deg2, 79.65 - 118.81 deg2; LR, P = 0.5197; Figure 8). The data compiled relative to 

trial means best fit a two-line model (R2 = 0.716) with a breakpoint at 1300 ppm (at which 

internal angle variance increases) that did not differ from a stepwise model (P = 0.277; Figure 8). 

 The average variance of statolith surface pixel intensity (px int2) followed similar patterns 

as internal angle variance, with a stepwise model (R2
 = 0.573, P = 0.521) increasing at a 1300 

ppm breakpoint in the compiled data; again driven by the Jul 11 samples. In the Jul 3 trial, 

average surface pixel variance was highest in the 1300 ppm (1085.18 px int2, 854.73 - 1386.61 

px int2) treatment of the Jul 3 trial, significantly above (KW, H2 = 13.2045, P = 0.0014; Dunn, P 

< 0.05) the ESL Ambient (665.77 px int2, 526.24 - 929.30 px int2) and 2200 ppm (713.83 px int2, 

448.52 - 849.16 px int2) treatments (LR, P = 0.8843; Figure 8). The Jul 11 trial followed a step-

wise jump in surface variation (LR, P = 0.2292; Figure 8), with the statoliths of the 850 (185.41 
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px int2, 116.57 - 290.16 px int2) and 1300 ppm (200.95 px int2, 155.71 - 282.51 px int2) 

treatments having significantly lower surface variation (KW, H2 = 16.0099, P = 0.0003; Dunn, P 

< 0.05) than the statoliths from the 2200 ppm (601.08 px int2, 422.72 - 691.84 px int2) treatment. 

Statolith surface pixel variance was lower in the Aug 7 trial, although it still showed significant 

differences (KW, H2 = 7.9688, P = 0.0186; Dunn, P < 0.05) between pCO2 treatments, with the 

400 ppm treatment (111.24 px int2, 64.36 - 147.25 px int2) having lower surface variation than 

the 1900 ppm (144.26 px int2, 123.33 - 169.51 px int2 and 2200 ppm  (130.42 px int2, 100.26 - 

178.62 px int2) treatments, resulting in a weakly increasing trend with acidification (LR, P = 

0.1406; Figure 8). 

Rectangularity and circularity of the statoliths were inversely related, demonstrating 

weak, non-significant trends with increasing acidification (LR, P > 0.05; Figure 8). Compiled, 

rectangularity fit (R2
 = 0.426, P = 0.791) a stepwise model decreasing at 1300 ppm. Circularity 

also best fit a stepwise model (R2
 = 0.657, P = 0.319), but with a breakpoint increasing 

circularity between 850 and 1300 ppm. In the Jul 3 and Jul 11 trials, where statoliths showed 

impacts of acidification in other metrics, statoliths appear to become less rectangular and more 

circular (Figure 8). Statoliths from the 1300 ppm treatment of the Jul 3 trial had significantly 

lower rectangularity than those from the ESL Ambient/550 treatment (KW, H2 = 17.6603, P = 

0.0001; Dunn, P < 0.05; Figure 8), but this was the only result to support these potential trends, 

likely a factor of low sample sizes and high variability. 

  

Discussion 

 This work expands our knowledge of the physiological impacts of ocean acidification on 

the early development of squid paralarvae, while also demonstrating the capacity for adaptation 

and resilience inherent to this fecund, plastic organism. In response to elevated pCO2, hatchling 

D. pealeii paralarvae demonstrated reduced mantle length, delayed hatching time, and degraded 

statoliths, consistent with the observations by Kaplan et al. (2013). Breakpoints in the compiled 

data were consistently around 1300 ppm CO2 across metrics, although there was notable 

variability in response strength from trial to trial. This value falls above IPCC predictions for 

ocean acidification in the open ocean by 2100 (~850 ppm), but below that for 2250 (~1500 ppm), 

and already occurs naturally, on short time scales, within estuarine and coastal systems (Caldeira 

and Wickett 2003; Doney et al. 2009; Baumann et al. 2015; Gledhill et al. 2015). Although 
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juvenile and adult D. pealeii are known to enter estuarine systems, and thus tolerate some 

substantive pH variability, the eggs are typically laid in a more stable system: the nearshore shelf 

bottom up to 50 m depth (Gray 1992; Jacobson 2005). Even at the extremes of observed egg 

laying habitat, pHt should not be below 7.8 (about 700 ppm in our system), but developing 

embryos appear capable of resisting acidification well beyond that mark (McMahon and 

Summers 1971; Jacobson 2005; Wang et al. 2013). It is likely, as has been observed for D. 

opalescens, that oxygenation delimits egg laying habitat as well as pH (Navarro et al. 2018). 

Oxygen should not be as restrictive on the Northwest Atlantic shelf, but perhaps for D. pealeii 

oxygen, or still other factors, is a more limiting determinant of the egg laying habitat window 

than pH. Whereas thermal and hypoxia thresholds are often considered in physiological work, 

acidification thresholds have primarily been considered for calcifying marine organisms 

(Anthony et al. 2008; Byrne 2011; Gazeau et al. 2013; Rosa et al. 2013). However, a greater 

understanding of acidification tolerance windows in more marine organisms could be extremely 

useful for informing models and producing more robust predictions for fisheries management 

(Hofmann and Todgham 2010).  

Depending on the mechanism through which pH balance is achieved, an organism may 

reach its limit through either increasing energetic costs or through the accumulation of 

bicarbonate (Fabry et al. 2008). Cephalopods are highly effective at pH balancing through ion 

transport, but this process is considered energetically costly (Hu et al. 2011b, 2013). The results 

presented here indicate an OA threshold for the case of embryonic D. pealeii, which have a finite 

energy reserve, but this ”threshold” may not apply to post-hatch paralarvae and later stages of 

development which are potentially capable of moving out of stressful pH environments and may 

supplement energy through feeding (Vidal and Haimovici 1998; Bartol et al. 2008). Similarly, 

although hatching success was consistently high across trials and treatments, this only acts as a 

measure of embryonic survival and we cannot make any claims regarding the viability or 

survival of the resultant hatchlings. 

 

Energy budgets under stress: mantle length and yolk reserves  

The squid in each trial of this experiment demonstrated a different strategy of energy 

budget management in response to OA stress. In all cases, development rate was slowed, 

consistent with the observations of other loliginid embryos under acidification (Kaplan et al. 



 62 

2013; Rosa et al. 2014a; Navarro et al. 2016). It is uncertain if this developmental delay is a 

result of metabolic depression, which is a common response of marine invertebrates (Pörtner et 

al. 1998; Michaelidis et al. 2005). While metabolic depression under increased pCO2 (around 

1000 ppm) has been observed in adult Humboldt squid, Dosidicus gigas, more recent research 

indicated that neither adults and juveniles of these squid nor of D. pealeii demonstrate metabolic 

depression or oxygen limitation under hypercapnia (1410 ppm; Rosa and Seibel 2008; Birk et al. 

2018). Energy may have been sacrificed from growth in our experiments, as dorsal mantle length 

decreased with increasing OA in all trials. Yolk volume, however, responded in numerous ways, 

perhaps a result of varying resiliency, varying coping strategies, or yolk usage being 

inconsistently affected by pCO2 level (Figure 6).  

Comparisons of mantle length and yolk volume highlight potential differences in the 

response to OA stress across the breeding season. In the Jul 3 trial, both DML and YV decrease 

slightly with increasing acidification suggesting a stressed system that requires more energy to 

maintain (Figure 6). In the Jul 11 trial, DML decreases, but YV slightly increases, as 

acidification increases suggesting a system of depressed metabolism/growth (Figure 6). 

Responses were low in the Aug 7 trial, with YV staying constant as DML slightly decreased with 

increasing acidification, suggesting either a potentially resilient system or a reduced impact 

magnitude due to the overall smaller paralarvae in this clutch (Figure 6).  

While DML effect size was small, in context of the typical D. pealeii paralarvae it 

accounted for an approximately 5% reduction in size across trials as a result of acidification 

(integrated over hatching days). Raising D. pealeii paralarvae in captivity is a possible, but 

systemically challenging proposition, so while we unfortunately do not have direct observations 

of survival in this study we can hypothesize about the multiple pathways through which a 

reduction of this magnitude could impact the viability and survival of the hatchlings (Vidal et al. 

2002b; Steer et al. 2003). The post-hatch transition from consumption of yolk reserves to prey 

capture is considered a critical period for squid paralarvae, and hatchling size is considered an 

important factor in prey capture success (Vidal et al. 2002a, b). Further, paralarval 

hydrodynamics and swimming speeds could be impacted by shifts in overall size, potentially 

impairing an already low (40%) ability to escape predation (Bartol et al. 2008; York and Bartol 

2016). Yolk volume reduction was seen only in the Jul 3 trial, but showed an average 24% 

decrease, compounding concerns for paralarval survival of the critical period under that response 
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to acidification stress. Yolk content is also connected to paralarval specific gravity, and has been 

noted as of potential importance in paralarval survival as part of dispersal (Martins et al. 2010a). 

 Dorsal mantle length and yolk volume were often strongly affected by hatching date, 

indicating either natural variability in hatching dynamics and/or an impact of increased exposure 

time. The latter could be compounded by the delay in hatching time caused by increased 

acidification. Assuming growth rate for all embryos is consistent and occurs under the same 

conditions, mantle length would be expected to increase with hatching date, as the embryos that 

were not triggered to hatch continue to grow (Figure 4: ESL Ambient / 550). This model of 

development has been shown in the eggs of bigfin reef squid, Sepioteuthis lessioniana (Ikeda et 

al. 1999). Conversely, seeing a decrease in mantle length as hatching continues indicates 

embryos that either felt a greater impact of the stressor, lagged in development, and/or lacked in 

resources (Figure 4: 2200 ppm; Figure 4).  

We expect that yolk would be consumed as hatching day increased, perhaps to a greater 

extent for paralarvae under stress. The Aug 7 trial however, broadly showed increases in yolk 

volume with hatching date in all treatments. Yolk utilization in squid paralarvae is known to be 

impacted by temperature, driving metabolism, and feeding state (Vidal et al. 2002a; Martins et 

al. 2010b). Both these factors were consistent across trials and so do not account for the different 

patterns in yolk utilization seen. Further, assessments of either varying development or yolk 

utilization rate are confounded by potential differences in maternal ration. Unfortunately, it is not 

feasible to quantify yolk rations within a capsule without disturbing the embryos and potentially 

inducing premature hatching. Because maternity was unknown, and potentially mixed, within the 

egg mops used in each trial, it is possible that differences in maternal investment account for 

these variable patterns of response across the breeding season (Steer et al. 2004). 

 

Construction of the statolith 

 Responses of the statolith to acidification followed similar patterns from trial to trial and 

were fairly consistent across the metrics observed. Statolith length has been correlated to mantle 

length in squid, so the decrease in statolith area seen with increasing acidification in our data is 

likely driven by the concurrent decrease in dorsal mantle length (Figure S1) (Ikeda et al. 1999; 

Steer et al. 2003). However, decreases in statolith area due to combined acidification and 
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hypoxia described in D. opalescens were independent of paralarval size, so in certain stressor 

scenarios, statolith and organism size may be decoupled (Navarro et al. 2016). 

The increases in statolith edge rugosity and surface porosity/malformation with 

increasing acidification (seen primarily in the Jul 11 trial) described by the metrics introduced 

here reflect the results described in Kaplan et al. (2013). Squid statoliths are constructed through 

the growth of long, thin aragonite crystals from a core nucleation site within a protein matrix that 

directs the construction and expansion of the statolith (Radtke 1983). The aragonite crystals were 

long and thin, indicating a good calcification environment (high pH and aragonite saturation 

state) within the statocyst, suggesting that the disorientation of crystals and surficial degradation 

seen was instead an effect of decreased expression or activity of matrix proteins (Cohen and 

Holcomb 2009). Tests of paralarval swimming behavior, run in parallel to these experiments, 

demonstrated impacts of acidification on the energetics of swimming (primarily speed and 

vertical stationing), but did not show impairment to the paralarvae’s ability to orient themselves 

or any aberrant swimming behaviors under hypercapnia (Zakroff et al. 2018). Given reported, 

dramatic responses of cephalopod paralarvae swimming behavior when statoliths are severely 

malformed or absent and hair cells are malfunctioning, these data suggest that despite observed 

statolith degradation, statocyst function may not have been severely impaired (Colmers et al. 

1984; Hanlon et al. 1989; Zakroff et al. 2018). Due to the limitations of the image-based analyses 

performed, only a surficial description of the hatchling statolith can be considered. In further 

studies, it would be worthwhile to examine deeper layers or the density of the statolith to see 

when during embryonic development construction is disrupted by external stress.  

 

A broader squid context 

Many of the previous studies of OA and squid showed repeated significant effects on an 

array of variables (Lacoue-Labarthe et al. 2011; Kaplan et al. 2013; Hu et al. 2014; Rosa et al. 

2014a; Navarro et al. 2016). Here, we had trials that were affected by relatively high levels of 

pCO2 and low pHt, but also trials that were not. This suggests some resiliency or tolerance of 

these squid to OA, at least during embryonic development. Indeed, these animals are tolerant of 

the naturally high pH and low oxygen concentrations of the egg capsule (Long et al. 2016). 

These results align with the limited, variable impacts of OA seen in D. opalescens embryos and 

are not unexpected when considering the relative pCO2 tolerance seen in juveniles and adults of 
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D. pealeii and D. gigas (Rosa and Seibel 2008; Seibel 2015, 2016; Navarro et al. 2016; Birk et 

al. 2018). Upregulation of key proton secretion pathways in response to dramatic acidification 

(pH 7.31) in Sepioteuthis lessioniana embryos also reinforces the scope for pH regulation and 

OA tolerance in this group (Hu et al. 2013). In squids, physiological resiliency to OA may be 

species-specific, influenced by parental environments, and/or under the influence of other 

unknown factors. Importantly, behavioral sensitivity to OA has been shown in adult Idiosepius 

pygmaeus, which, while not a teuthid squid, highlights the potential for neurologically driven 

impacts on these organisms that were not examined here (Spady et al. 2014). 

It has been suggested that marine invertebrates that produce egg capsules containing high 

numbers of embryos have a substantial capacity for plasticity (Oyarzun and Strathmann 2011). 

Cephalopods are broadly considered plastic organisms, altering their life history and population 

structure under different environmental factors (Pecl et al. 2004a; Pecl and Jackson 2008; Rosa 

et al. 2014b). Reproductive strategy and investment are also suggested to be highly plastic in 

cephalopods, and are likely influenced by parental environment (Pecl and Moltschaniwskyj 

2006; Guerra et al. 2010; Robin et al. 2014). The dynamic variability in patterns of response to 

acidification across metrics and trials demonstrated here might be a product of this squid’s high 

fecundity and patent plasticity.  

 As indicated by the potential relationship between our metrics and egg number, the 

variability between culturing cups may act as an extension of variability between egg capsules. 

Variability in the offspring of a single maternal clutch has been noted in the statoliths and DML 

of S. lessioniana (Ikeda et al. 1999). Notable egg capsule variability has also been described in 

D. opalescens, particularly in terms of statolith elemental composition (Navarro et al. 2014, 

2016). In the Aug 7 trial, variability between cups represented a very basic means of 

differentiating parentage, maternity in particular, with embryos from tank B having slightly 

larger paralarvae with slightly greater yolk (from a greater number of eggs per capsule) than tank 

A. Squid are not known to maintain reserves of energy, not even for reproduction. Investment in 

reproduction primarily depends on the tradeoff between overall somatic growth and the 

development of the reproductive organs (Pecl and Moltschaniwskyj 2006). Production of eggs is 

fueled by energy captured through feeding and so fecundity is linked with adult mantle length, as 

size acts as an indicator of both energy intake potential and prey capture success (Boyle et al. 

1995; Collins et al. 1995). While degradation of maternal investment in successive clutches has 
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been demonstrated in some cephalopods, how a female squid distributes available energy among 

eggs and between egg capsules of a single clutch is not well described to our knowledge, 

particularly among the multiple egg per capsule squids (Steer et al. 2004). 

Variation in offspring sensitivity to OA due to parental conditioning and epigenetics has 

been described in fishes, often relating to seasonal variation in the population (Miller et al. 2012; 

Murray et al. 2014; Schunter et al. 2016, 2018). Seasonal effects on sensitivity to OA have also 

been described in L. vulgaris, with winter stock proving more resistant to both acidification and 

warming (Rosa et al. 2014a). The distinctly different response patterns seen, across all metrics, 

between trials suggests that some form of higher scale variability is occurring within the D. 

pealeii sensitivity to OA stress. Doryteuthis pealeii has a roughly described, more 

anecdotally/locally acknowledged, succession of size classes, which may be cohorts, across its 

breeding season (Arnold et al. 1974; Mesnil 1977). Since these population dynamics are not well 

discriminated, a single year’s sampling is not substantive enough to determine whether the 

variation seen between trials represents a consistent effect of seasonality/cohort on sensitivity to 

acidification stress. Further work would require more replications over the course of the breeding 

season to parse out this variability.  

In an organism as dynamic and complex as D. pealeii there are multiple scales of 

variability to consider in assessing a physiological response to a stressor. This experiment served 

to highlight small-scale variabilities: those between individuals, cups, days, and trials. These 

results also highlight the importance of repetition and replication in organismal climate change 

response studies, particularly with organisms that have a high potential for plasticity. As 

evidenced here, neither data from a single trial nor data compiled across trials completely 

represented the scope of this animal’s sensitivity and tolerance to acidification (Figure 3, Figure 

8). Further, dynamics of life history must be considered in sampling, as parsing the data across 

days of hatching demonstrated. At several points, across trials, had only certain days been 

sampled or only integrated data across days been reported, the full dynamics of the stress 

response would not have been revealed (Figure 4). Investigation into sources of variability such 

as culture cup (which may relate to a previously undescribed relationship with egg number) 

served to emphasize aspects of reproductive and population biology that are still not well 

understood in this taxon and help guide needed future work. Examination of data at all of these 

scales is valuable, although each may have its own utility, but it is particularly worthwhile to 
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examine these complex, frankly messy, systems as a whole as we attempt to understand and 

predict how these organisms will fare in a rapidly changing ocean. 
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Table 2. Three-way Type II nested ANOVAs for compiled data and individual trials, for both mantle length and (log-
transformed) yolk volume. Significant p values (α = 0.05) in bold. 
 Mantle Length Yolk Sac Volume 
Source SS df F P Ω2 SS df F P Ω2 
Compiled 
Data           

Trial 0.418 2 17.39 <0.001 0.013 0.002 2 1.478 0.229 0.000 

Trial : pCO2 0.562 15 3.121 0.075 0.013 0.003 15 0.243 0.983 -
0.005 

Trial : Date -2.27*10-9 51 -3.703*10-9 1.000 -0.020 1.4*10-5 51 3.44*10-4 1.000 -
0.023 

Trial : pCO2 : 
Date 9.599 255 3.135 0.077 0.214 0.429 255 2.164 0.142 0.136 

Trial : pCO2 : 
Cup 3.355 36 7.760 <0.001 0.096 0.238 36 8.501 <0.001 0.128 

Residual 16.55 1378    1.023 1316    
Jul 3           

pCO2 0.001 2 0.048 0.828 -0.003 -4.836*10-12 2 -1.615*10-9 1.000 0.000 

Date 0.066 5 1.296 0.271 0.002 0.039 5 5.253 0.001 0.042 

pCO2 : Date 0.563 10 5.491 <0.001 0.070 0.169 10 11.13 <0.001 0.180 

pCO2 : Cup 0.576 6 9.363 <0.001 0.078 0.078 6 8.730 <0.001 0.084 
pCO2 : Date 
: Cup 1.150 30 3.739 <0.001 0.127 0.105 30 2.330 <0.001 0.111 

Residual 4.256 415    0.548 366    

Jul 11           

pCO2 0.162 2 7.473 <0.001 0.018 0.007 2 5.222 0.006 0.015 

Date 0.908 5 16.80 <0.001 0.111 0.010 5 3.108 0.009 0.018 

pCO2 : Date 0.895 10 8.274 <0.001 0.103 0.013 10 1.990 0.033 0.017 

pCO2 : Cup 0.233 6 3.589 0.002 0.022 0.024 6 6.189 <0.001 0.054 
pCO2 : Date 
: Cup 0.669 30 2.061 0.001 0.045 0.038 30 1.860 0.004 0.044 

Residual 4.759 440    0.290 441    

Aug 7           

pCO2 0.326 2 13.81 <0.001 0.036 4.81*10-4 2 1.670 0.190 0.002 

Date 0.828 5 14.06 <0.001 0.091 0.005 5 7.608 <0.001 0.057 

pCO2 : Date 0.457 10 3.874 <0.001 0.040 0.002 10 1.665 0.095 0.012 

pCO2 : Cup 1.054 6 14.90 <0.001 0.116 0.005 6 5.590 <0.001 0.048 
pCO2 : Date 
: Cup 0.603 30 1.705 0.013 0.029 0.008 30 1.806 0.007 0.042 

Residual 5.186 440    0.062 428    
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Figure 1. Doryteuthis pealeii paralarvae imaged for measurements of dorsal mantle length and 
yolk sac volume. a An anaesthetized paralarva photographed for measurement of its dorsal 
mantle length (DML, superimposed cyan line). b A preserved paralarva stained with oil red O 
photographed for measurement of its yolk sac volume. Length and width (superimposed black 
lines) of the anterior yolk sac (AYS) and posterior yolk (PYS) were measured to calculate total 
yolk volume. Scale bars are unique to each image, both representing 1 mm. Photos by CZ 
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Figure 2. Statoliths extracted from control and high acidification exposures measured for size, 
shape, and surface variability. a A statolith from the 400 ppm CO2 treatment with the MATLAB 
surface analysis squares superimposed in yellow and b its outline produced in the R Momocs 
package. c A statolith from the 2200 ppm treatment with analysis squares superimposed and d its 
outline from Momocs. All images are to the same 20 µm scale, shown in a 
 
 
 
 
 
 
 
 
 



 72 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 73 

 
Figure 3. Dorsal mantle length, yolk sac volume, and respective variances of paralarvae exposed 
to a range of pCO2 treatments. Data are presented separated by trial (demarcated by egg capsule 
laying date) compiled across cups and hatching days for each pCO2 treatment (metric n’s in 
Table 1, variance n = 3 cups per treatment per trial). The Compiled plot depicts the data from all 
trials normalized by taking sample values and subtracting its respective trial mean. Differences in 
log transformed yolk sac volume data are not back transformed. Symbols represent means, with 
shape and color corresponding to trial. Error bars represent one standard deviation. Letters 
demarcate statistical groupings from a Tukey’s HSD. Trend lines in trial data depict linear 
regressions; significance is marked with an asterisk (P < 0.05). Models of best fit from piecewise 
regressions are presented on compiled data with corresponding R2 
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Figure 4. Mean dorsal mantle length and yolk sac volume (back transform of logarithmic mean) 
of paralarvae across sampled hatching days. Measurements for the Jul 3, Jul 11, and Aug 7 trials 
are compiled across cups and presented by CO2 treatment; n ~ 30 (~10 per experimental cup) 
paralarvae per symbol. Symbols represent means, with shape and color corresponding to pCO2 
treatment (ppm). Error is not shown for visual clarity. Linear regressions are colored 
corresponding to their pCO2 treatment; significance is marked with an asterisk next to pCO2 
treatment in the legend 
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Figure 5. Dorsal mantle length and yolk sac volume (back transformed from logarithmic data) of 
Aug 7 trial paralarvae separated by culture cup. Cups in the Aug 7 trial each contained two egg 
capsules sorted from two separate adult squid tanks, tank A and tank B (Cup 1 = AA, Cup 2 = 
BB, and Cup 3 = AB). The Compiled plot depicts the data from all cups normalized by taking 
sample values and subtracting its respective cup mean. Differences in log transformed yolk data 
are not back transformed. Symbols represent means, with shape and color corresponding to cup. 
Error bars represent one standard deviation; n = ~53 paralarvae per symbol (~10 per day for 6 
days, often fewer in the latter days of hatching). Letters demarcate statistical groupings from a 
Tukey’s HSD. Lines depict linear regressions; significance is marked with an asterisk (P < 0.05) 
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Figure 6. Comparison of average yolk sac volume and average mantle length. Data are averaged 
for each culture cup and are presented separated by trial; n = 3 experimental cups per treatment 
per trial. Error bars for both axes are not depicted for visual clarity and to focus on trend lines. 
Symbols represent means, with shape corresponding to trial, and color corresponding to pCO2 
(color bar at right). Lines depict linear regressions; none were significant (P < 0.05) 
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Figure 7. Hatching time curves for each pCO2 treatment. Hatching counts are plotted as the 
cumulative percent hatching per day to produce smooth curves. Data are plotted by trial, denoted 
by lay date (titles) and color; n = 3 experimental cups (with 2 egg capsules each) per treatment 
per trial. Error bars/shading not depicted for visual clarity of the curves. Line patterning 
demarcates pCO2 treatment, with lines becoming more solid with increasing acidification 
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Figure 8. Statolith morphometrics across a range of pCO2 treatments. Data are presented 
separated by trial (demarcated by egg capsule laying date) compiled across cups and hatching 
days for each pCO2 treatment. The Compiled plot depicts the data from all trials normalized by 
taking sample values and subtracting its respective trial mean (n’s in Table 1). Models of best fit 
from piecewise regressions are presented on compiled data with corresponding R2

 values. 
Symbols represent means, with shape and color corresponding to trial. Error bars represent one 
standard deviation. Letters demarcate statistical groupings from a Dunn’s test. Lines depict linear 
regressions; significance is marked with an asterisk (P < 0.05) 
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Chapter 3 

 
Ocean acidification responses in paralarval squid swimming 
behavior using a novel 3D tracking system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter was originally published as: Zakroff C, Mooney TA, Wirth C (2018) Ocean acidification responses in 
paralarval squid swimming behavior using a novel 3D tracking system. Hydrobiologia 808:83–106. doi: 
10.1007/s10750-017-3342-9. The Supplementary Materials for this chapter can be found in Appendix B. 
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Abstract 

Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the 

aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming 

behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under 

chronic OA demonstrated measurable impairments to swimming activity and control. This 

required the development of a novel, cost-effective, and robust method for 3D motion tracking 

and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 

400 - 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments 

spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical 

velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant 

decreases at higher concentrations. Activity and horizontal velocity decreased linearly with 

increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been 

obscured by notable individual variability in the paralarvae. Responses were also seen to vary 

between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared 

resilient to OA, with effects being slight. The newly developed 3D tracking system provides a 

powerful and accessible method for future studies to explore similar questions in the larvae of 

aquatic taxa. 
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Introduction 

Ocean acidification (OA) has emerged as a prominent threat to marine systems, with 

rising atmospheric CO2 concentrations decreasing ocean pH at rates unparalleled in geologic 

history (Doney et al. 2009; Honisch et al. 2012). Coastal systems are particularly susceptible due 

to freshwater influx and concurrent anthropogenic impacts, e.g. eutrophication, reducing the 

buffering capacity and increasing the pH variability of these waters (Gledhill et al. 2015). 

Nearshore marine systems provide nursery habitat to a range of ecological and economically 

vital species, including the longfin inshore squid, Doryteuthis pealeii, a keystone species in the 

Northwest Atlantic coastal trophic web and a substantial fishery (Macy III 1982; Beck et al. 

2001; Jacobson 2005; Hunsicker and Essington 2008). This member of the demersal Lolignid 

squids is a seasonal migrator, overwintering on the continental shelf and breeding nearshore 

south of the Mid-Atlantic Bight, before coming north and inshore to areas like Vineyard Sound, 

MA, USA from late spring through early autumn for peak breeding season (Macy III and 

Brodziak 2001; Jacobson 2005). The squid leave mops of egg capsules tied to the seafloor, each 

containing embryos, 50 - 200 per capsule, which must develop under whatever conditions they 

are laid in, enduring environmental stress until hatching (Arnold et al. 1974; Jacobson 2005). At 

hatching, the paralarvae must cope both with the shock of the transition into a neritic, planktonic 

phase and the continued stress of their environment until they are transported by prevailing 

currents (Robin et al. 2014). Paralarval survivorship is naturally low, with greatest mortality 

occurring during the no net growth, post-hatch period while transitioning from yolk reserves to 

exogenous feeding (Vidal et al. 2002a; Robin et al. 2014). Sublethal physiological changes to 

embryonic condition, metabolism, or sensory systems imposed by environmental stressors, such 

as OA, could express as shifts in hatchling paralarval swimming activity and behavior. Any 

impairments arising during this sensitive transitional phase could be detrimental not only to 

individual squid success, but also to overall population structure (Byrne 2011; Robin et al. 2014).  

Swimming is key to paralarval squid survival; the mantle fins are rudimentary post-hatch, 

therefore hatchlings rely primarily on jetting for motion, which is necessary in capturing prey 

and avoiding predators (Vecchione 1981). Paralarvae operate at intermediate Reynolds numbers 

(25 - 90), balancing between the viscous world at low speeds and a more inertial world during 

their high speed jets (Bartol et al. 2009b). They are also negatively buoyant: slowly, passively 

sinking before jetting upwards in bursts, displaying a characteristic ‘hop and sink’ pattern, which 
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is believed to conserve energy (Haury and Weihs 1976; Staaf et al. 2014). Jetting is an 

energetically costly means of motion, but one that provides remarkable propulsive efficiency at 

the paralarval stage (Bartol et al. 2008, 2009a). During the post-hatch transitional phase, 

paralarvae must operate with a finite fuel reserve, the yolk, to power their jets as they avoid 

predation and learn to predate, but this same energy source is also tapped to mitigate stress and 

maintain homeostasis (Vidal et al. 2002a; Sokolova et al. 2012). 

Under natural conditions, the fluid surrounding the chorions of D. pealeii embryos within 

an egg capsule reaches dramatically low pH (7.34) and oxygen concentrations (1.9 µmol l-1) 

prior to hatching: a potentially taxing physiological state that may be exacerbated by ocean 

acidification (Long et al. 2016). Both hypercapnia and decreased pH can elicit metabolic 

depression in marine ectotherms, a common stress coping response (Guppy and Withers 1999; 

Sokolova 2013). Depression of oxygen consumption rate has been shown to occur in the 

embryos and hatchling paralarvae of high-CO2 exposed eggs of the European squid, Loligo 

vulgaris (Rosa et al. 2014a). Cephalopods have substantial homeostatic machinery, energy-

dependent acid-base transporters, with which they can maintain extracellular pH (Gutowska et al. 

2010a). They may be capable, then, of reallocating energy across active biological processes, in 

order to retain their overall metabolic rate (Sokolova et al. 2012). Reduced dorsal mantle length 

(DML) and increased embryonic development time have been seen in D. pealeii hatchlings 

exposed to chronic OA, which may be indicative of such a homeostatic response (Kaplan et al. 

2013). Both metabolic depression and energy budget reallocation during embryonic development 

could result in a subsequent reduction in hatchling paralarvae swimming activity or speed.  

The statoliths (small aragonitic stones connected to sensory hair cells) are the core 

sensory structures for control of motion balance, and orientation in the cephalopods (Messenger 

1970; Arkhipkin and Bizikov 2000). Absence of the paralarval statolith resulting from a lack of 

strontium in artificial seawater has been shown to cause aberrant “spinning” behaviors in several 

cephalopod taxa (Hanlon et al. 1989). D. pealeii paralarvae have demonstrated a reduction in 

statolith size and quality after exposure to high levels of CO2 during development (Kaplan et al. 

2013). This present study sought to repeat and expand on the above mentioned study by 

recording and tracking the movement of squid paralarvae in order to examine if chronic 

embryonic exposure to OA caused impairments to their general swimming activity and 

orientation ability. 
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Squid paralarvae present a distinct challenge in larval tracking with current 

methodologies. As small (approximate DML of 1.8 mm, total length of 3 mm), translucent 

organisms, squid paralarvae are well-suited to digital particle image velocimetry (DPIV) studies 

(Bartol et al. 2008, 2009b, a). These studies, while advantageous for dissecting the mechanics of 

motion and flow in many taxa, are primarily done in two-dimensions (2D) as the set up and 

equipment, and subsequent costs associated with requiring both a laser and high-speed camera, 

are substantial (Stamhuis and Videler 1995; Fuchs et al. 2004; Wheeler et al. 2013). 

Early techniques of larval videography and tracking were enacted in simple, cost-

effective 2D systems, such as petri dishes or round aquariums, where the animal was recorded in 

the horizontal x, y plane from a camera directly above (Wassersug and von Seckendorf Hoff 

1985; Villanueva et al. 1997; Budick and O’Malley 2000). These systems were limiting for a 

study with squid paralarvae given the dominance of vertical motions in their swimming behavior 

(Staaf et al. 2014). Stereoscopic camera systems are commonly used in the field to detect 

accurate depth and positional information of oceanic organisms (Klimley and Brown 1983; 

Boisclair 1992). In lab, this method requires lighting from the front, however, which can alter the 

behavior of positively phototactic organisms like squid. 

Using two perpendicular cameras allows for unbiased lighting while still capturing the 

organism in all three dimensions. Such methods can produce a clear movement track, but often 

require specially designed systems, either with motorized camera set ups or with uniquely shaped 

aquaria that limit movement range in the y axis (Coughlin et al. 1992; Cachat et al. 2011a, b). We 

found we were limited by existing tracking software being both prohibitively expensive and, in 

testing, proving not to successfully function in tracking videos of the squid paralarvae. In order 

to observe swimming at the resolution and accuracy needed to examine our OA-driven questions, 

we had a clear need to develop a method of three-dimensional (3D) analysis that would not limit 

or coerce the motion of the organism and would produce clear, well-lit video wherein the 

organism could be tracked effectively by readily available software.  

The aim of this study was to evaluate the potential effects of ocean acidification on post-

hatch paralarval squid, D. pealeii, swimming behavior using newly-hatched paralarvae reared 

under a range of CO2 concentrations (and thus a range of pH treatments). Across their range, and 

dependent on season, adult D. pealeii can be found in depths ranging from 1 - 400 m, 

temperatures ranging from 4 - 28 ºC, and salinities ranging from 30-37 ppt. Juvenile and adult D. 
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pealeii have been found in the Hudson-Raritan estuary, a system with much greater temperature, 

salinity, and pH variation than the coastal shelf, which may indicate these life stages are capable 

of at least acute exposure to a wide range of environmental conditions (Jacobson 2005). 

Comprehensive measurements of in situ environmental pH in D. pealeii habitat across its range 

have not been performed to our knowledge, but ranges of mean shelf pHtotal(20) of 7.85 - 8.05 

and fCO2(20) of 400 - 700 ppm were reported from North Carolina to New Hampshire from a 

coastal carbon cruise conducted in summer (July/August) (Wang et al. 2013). Little is 

documented about the ecology or environmental exposures of the paralarval life phase of squid, 

but rearing experiments with Loliginids indicate high water quality and a recommended pH > 8.0 

are best for their survival (Hanlon et al. 1983; Vidal et al. 2002b). 

Our study focused on specimens from and comparisons to the Vineyard Sound, MA 

system where D. pealeii eggs are laid every summer. This work encompassed a range of CO2 

levels between current ambient (400 ppm) and the elevated treatment used in Kaplan et al. 

(2013). The high treatment, 2200 ppm, is predicted for 2300 based on IPCC IS92a, but is 

naturally found in the very extreme inshore estuary conditions of Vineyard sound (Caldeira and 

Wickett 2003; McCorkle et al. 2012). The intent was to examine the physiological scope and 

sensitivity of hatchling paralarval swimming. We hypothesized, based on initial work by Kaplan 

et al. (2013), that activity levels, speed, and control of orientation would be impaired in OA-

exposed paralarvae due to impairments to their physiological and sensory systems. The question 

posed required a robust visualization of the energetics and kinematics of paralarval swimming, 

which required the development of a novel, simple, and feasible method of 3D paralarval 

tracking and analysis that we present here alongside the experimental data. 

       

Materials and Methods  

Squid Collection and Husbandry 

Experiments were conducted at the Environmental Systems Laboratory (ESL) at the 

Woods Hole Oceanographic Institution, Woods Hole, MA, USA from June-August 2013, May-

October 2014, and May-June 2015. This timing corresponds with the peak breeding season of the 

Atlantic Longfin squid, Doryteuthis pealeii, in the nearshore of New England (Jacobson 2005). 

Although the full breadth and physical properties of D. pealeii egg habitat is not well described, 

eggs in New England waters are typically found at depths less than 50 m, with temperature and 
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salinity ranges of 10 - 23 ºC, and 30 - 32 ppt, respectively (McMahon and Summers 1971; 

Jacobson 2005; Shashar and Hanlon 2013). Squid were collected during trawls in Vineyard 

Sound at 10-30 meters depth by the Marine Biological Laboratory (MBL). Sea surface 

temperatures in Vineyard Sound, MA, USA ranged from 8.4 - 25.8 ºC with a mean of 19.4 ºC 

from May - October (compiled for 2013 - 2015 from NOAA Station BZBM3). Bottle samples (n 

= 5) were taken in Vineyard Sound at 20 m depth (processed for Alk/DIC using VINDTA) in the 

morning once every two weeks from late July - late September 2014 off of the MBL squid 

trawler at the site of capture, along with accompanying CTD casts (CastAway CTD, SonTek, 

San Diego, USA). These data show a temperature range of 17.4 - 19.6 ºC, salinity range of 31.3- 

32.5 psu, total alkalinity range of 2148.1 - 2195.2 µmol / kg, DIC range of 1962.7 - 2038.2 µmol 

/ kg, pHtotal range of 7.96 - 8.00, and pCO2 range of 439.9 - 486.5 ppm, but are limited in scope 

in reference to the whole breeding season.   

Intact, adult squid (mid-sized, 20-25 cm DML without fin tears/skin lesions) were hand-

selected from the trawl catch at the MBL’s Marine Resources Center dock. Individuals were 

gently placed in seawater-filled coolers and transported by car to the ESL immediately after the 

ship’s return (< 6 hours post-capture), and transferred to the ESL holding aquaria. All transport 

activity was performed as carefully and expediently as possible to minimize stress to the 

breeding adults, but overall capture and transit stress was unavoidable. Eighteen squid were 

selected for breeding; reproductively active females (differentiated by their bright orange 

accessory nidamental gland) and males, displaying visible and dense sperm packets, were 

selected in a 2:1 female:male ratio to enhance breeding probability.  

Upon arrival at the ESL, squid were split equally between two holding tanks (120 cm 

diameter, 70 cm depth), maintaining the 2:1 gender ratio. Holding tanks were flow-through, 

using water pumped directly from Vineyard Sound (approximately 100 yards offshore of the 

ESL) that had been sand-filtered and cooled to 15°C (Salinity = 33 psu, pHnbs = 7.96), and 

continuously bubbled with air. This temperature was within the range naturally experienced by 

the adults during the breeding season and reduced thermal and metabolic stress on the adults, as 

well as the incidence of infighting and cannibalism, compared to if they were housed at ambient 

temperatures. Squid were fed once per day with locally captured killifish, Fundulus heteroclitus, 

gathered from Salt Pond, Woods Hole, MA. Upon discovery, mops of egg capsules were 

transferred into a bucket of water from the adult tank and carried to the room containing the 
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ocean acidification system where they were hand sorted into the experimental cups. Only good 

quality egg capsules, those that were long and finger-like with an orange tinge and laid in neat 

mops, were chosen; egg capsules contained between 90 - 300 eggs, which is expected for this 

species (Arnold et al. 1974; Maxwell and Hanlon 2000). Adult squid were maintained in the 

tanks at the ESL until they died following breeding. 

 

Ocean Acidification System 

In brief, for each trial, D. pealeii egg capsules collected from the squid aquaria were 

randomly sorted into flow-through cups (1-liter PET food service containers [Solo Foodservice, 

Lake Forest, IL]) filled with seawater delivered via drip lines from upstream equilibration 

chambers. These chambers were bubbled with CO2 and air to maintain respective CO2 

concentrations (ranging from 400 ppm to 2200 ppm). All rearing cups were contained within a 

20ºC water bath under a 14:10 hour light:dark cycle. No temperature acclimation was conducted 

for the eggs, as this level of temperature shift did not appear to notably impact embryonic 

development or survival, or paralarval viability. This temperature and light regime approximated 

the average values in Vineyard Sound (19.4 ºC) across the breeding season, late April to early 

October. A rearing temperature of 20 ºC was chosen as it reflected natural conditions, to replicate 

the conditions in the previous work by Kaplan et al. (2013), and because temperature controls the 

development time of D. pealeii, and so resulted in a consistent 14 day time to hatching at the 

control pCO2 (McMahon and Summers 1971; Zeidberg et al. 2011). There were three cups 

containing two egg capsules each and one chemical control cup per treatment per trial. Flow 

rates to the cups were approximately 20 l day-1, which prevented waste accumulation. Water 

quality of the experimental cups was monitored using a pH probe (Orion Star™ A329, Thermo 

Fisher Scientific Inc., Waltham, MA, USA) every three days, while alkalinity, salinity, and 

spectrometric pH readings were taken weekly in order to calculate pCO2 with CO2SYS (Table 1) 

(a full OA system description, experimental procedure, and CO2 monitoring methods can be 

found in the Supplementary Materials).  

 

Paralarvae Sampling 

 Squid embryos were allowed to develop undisturbed in the OA system. Upon hatching, 

paralarvae from each cup were subsampled for a range of experiments, including behavioral 
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videography. At the end of each hatching day, all paralarvae were removed from the system and 

preserved (anesthetized with 7.5 % w/v MgCl2 mixed with equal part seawater and preserved in 

70% ethanol) ensuring that all hatchlings used were less than 24 hours old. Over the first 3 - 6 

days of hatching, 10 - 20 individual paralarvae per cup per treatment were collected for 

behavioral videos, in order to obtain multiple analyzable videos per treatment per trial. 

Paralarvae were haphazardly selected from the cups, avoiding those that exhibited a constant 

spinning behavior, which has been described both as an aberrant effect of aquarium-rearing and 

as a potential stereotyped predator defense (Hanlon et al. 1989; York and Bartol 2016). Tests in 

2013 demonstrated there was no difference in this behavior across CO2 treatments (ANOVA, F5, 

21 = 2.31, p = 0.0805). As there was only one arena/camera set up, videography was done for one 

experimental cup at a time. Per each cup, the arena was filled with water from the control cup for 

that treatment. Individual paralarvae (n = 10 - 15) from the experimental cup were transferred 

using a plastic pipet and kept within a 24 well plate (Falcon® Brand 2.0 cm2 well area, 3.5 mL 

well volume, Corning Inc., Corning, NY, USA) filled with water from the same cup, one 

paralarva per well, until filming occurred. A filming period for one cup took at most an hour ([1 

minute acclimation + 2 minutes recording + 1 minute removal and reset] * 10 - 15 paralarvae = 

40 - 60 minutes per cup). It was assumed, although not tested, that water quality in the well plate 

and arena was that of the experimental treatment sampled and did not notably change over the 

brief filming period. The arena and well plate were refilled for each filming period and 

treatments were selected from in a rotation, so as to not bias sampling by time of day. Overall 

more videos were recorded than were analyzed in both the 2D and 3D systems for all analyses, 

as only videos where the paralarvae was visible, away from the corners, exhibiting normal 

swimming/responses, and, in the case of the 3D metrics, trackable could be used (Table 1) 

 

Swimming Behavior Experiments 

Over the course of developing a viable 3D system, two different arenas were used 

resulting in two separate swimming behavior experiments. Experiment 1 consisted of Trials 1, 2 

and 4 of 2013 and Trial 1 of 2014 (Table 1). Trials were run in a tall, rectangular arena that 

constrained movement in the y axis, but only 2D vertical swimming data could be tracked and 

analyzed from this system. Implemented in Experiment 2 (Trials 2, 3, and 4 in 2014 and in Trial 

1 of 2015; Table 1), the cubic arena and model system allowed for full 3D tracking and analysis. 
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Wall effects were considered for both experiments, however the viscous effects of walls 

at low Reynolds numbers should not impact paralarvae given their size and speed (Vogel 1981). 

Damage caused by wall impacts is a common source of mortality among aquarium housed squid, 

and it is best to make the walls visible to help avoid this, however this would have obscured 

recording and lighting (Summers et al., 1974). Many paralarvae interacted with the walls during 

recordings, but this did not appear to cause harm or behavioral shifts, although paralarvae were 

not subsequently checked for dermal abrasions. Increasing the available swimming volume from 

the 2D to the 3D arena was intended to reduce potential arena effects, although overall arena size 

was limited by available space (e.g. camera viewing scope within the covered light box). 

In order to determine acclimation time, 10-minute recordings of individual paralarvae (9 

useable videos analyzed of 20 videos taken), sampled from all treatments, placed into the arena 

were conducted. Paralarval activity, described by jetting or active mantle pulsation, showed no 

significant differences across 1-minute bins of the ten-minute observation period (Kruskal-

Wallis, p = 0.9284). We do not claim that the paralarvae became accustomed to the arena, 

however there were no significant changes to their behavior within a reasonable recording 

timeframe (Supplementary Materials, Figure S1). An acclimation time of 1 minute was therefore 

used for both experiments, in order to maximize the sample size of videos taken (Table 1). 

 

Experiment 1: 2D Swimming Behavior 

 The trials of the first experiment took place during the summer of 2013 and in May of 

2014. Experiment 1 used a preliminary 2D filming arena constructed from 500 mL tissue culture 

flasks (Corning Inc., Corning, NY, USA) by removing the top, capped portion, creating a 

standing container with internal dimensions of 10.6 cm width, 3.2 cm depth, and 14.0 cm height 

(x, y, and z axes) (Figure S2a). All plastic containers were soaked for 24 hours in seawater and 

DI-water rinsed prior to use. Black card stock was attached to the back of the arena for contrast 

between the translucent organism and the background, allowing for better paralarval tracking. 

400 mL of water from the corresponding CO2 level was added to the chamber, corresponding to 

a 10.5 cm x 3.2 cm x 11.4 cm (x, y, and z) volume. This provided a large area, compared to the 

organism’s size (approximately 3 mm), in the x and z axes while constraining movement in the y 

axis. This chamber was placed within a photobox (76.2 cm3, B&H Foto & Electronics Corp, 

NY), which was covered with black tarp to block ambient light. Two LED panels with diffuser 
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plates were placed on either side of the chamber to create equal lighting from both directions. 

The strong photopositive response by paralarvae required lights be placed precisely and set to 

equal intensities to exclude directional bias. Two HD video cameras were placed inside the 

photobox at a 90º angle to the experimental chamber, one above (Sony HDR-XR550V) fastened 

to a wooden frame and one in front (Sony HDR-CX 580V). Only information from the front 

camera was used in later analyses due to poor larval visibility for tracking in footage from the 

top-mounted camera. Videos were recorded at 29.97 frames per second.  

 For each video, an individual paralarva was pipetted from the tray directly into the center 

of the chamber. After the one-minute acclimation period, swimming behavior was recorded for 

one minute. Paralarvae were removed from the chamber using a pipet and were anesthetized with 

7.5 % w/v MgCl2 mixed with equal part seawater before being preserved in 70% ethanol. 

 

Experiment 1 Data Analysis 

 Individual paralarvae videos were tracked using Tracker, marking the eyes of the 

paralarvae, which were the most distinct and trackable feature (Open Source Physics, 

comPADRE Digital Library). Variability in the 2D system’s video quality, due to issues of light 

reflection and clarity, and individual paralarval trackability (many paralarvae stayed near the 

walls, entrained in the meniscus, or expressed the aforementioned spinning behaviors, which 

made videos unusable) resulted in uneven sampling amongst the 2D data (total n = 394, Table 1). 

Organisms were tracked using the autotracker function when video quality allowed this for 

capability, but this function was corrected with manual tracking as needed. Positional data (x & z 

coordinates) were produced for each frame within the 60-second interval, totaling 1799 points 

per recording.  The z axis of the arena was divided into equal thirds of 4.73 cm and positional 

data were sorted into these depth bins for the top, middle, and bottom of the container using 

Excel (Excel for Mac 2011, Microsoft Corp., Redmond, WA, USA). The number of frames per 

bin, directly proportional to time spent in each depth section, was calculated for each individual 

and compared across CO2 treatment groups. 

 

Experiment 2: 3D Swimming Behavior 

The trials of the primary experiment using the developed 3D analysis system took place 

in the summer of 2014 and May of 2015. The recording arena for the 3D filming consisted of the 
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bottom portion of a plastic display box (10.2 cm x 10.2 cm x 18.4 cm, Amac Plastic Products 

Corp., Petaluma, CA, USA) (Figure S2b). Black card stock was attached to the back of the 

container in the x, z plane and black cotton cloth laid on the bottom of the container in the x, y 

plane, again to contrast translucent paralarvae. In the 2D arena, excessive light reflection could 

obscure paralarvae near the walls and a strong meniscus could entrain paralarvae to the surficial 

corners, but the greater area, and increased wall clarity of the 3D arena prevented these issues.  

The 3D filming arena was set up in the same manner as the 2D arena within the 

photobox. The camera lenses were each aligned to the centroid of the chamber for their 

respective viewing planes (Figure 1, A & B). Each camera was connected to its own monitor 

outside of the photobox so that paralarval swimming could be observed during the trials.   

 The chamber bottom measured 92.16 cm2 inside (9.6 cm x 9.6 cm); therefore, the 

chamber was filled to 9.6 cm depth with water of the appropriate CO2 concentration to create an 

884.7 cm3 cube to contain the organism (the model system requires a cubic water volume, as 

outlined below, but the size can be changed). Individual paralarvae were pipetted from a holding 

tray directly into the center of the filming arena and allowed to acclimate for one minute. 

Swimming behavior was then recorded for two minutes; increased from the previous 2D 

experiments due to the improved video quality and tracking output of the 3D system as well as 

the need for more path data for the more complex 3D metrics. The two minute period was 

concluded by flashing a laser pointer into the filming chamber, which provided a synchronization 

point for the top and side videos. Paralarvae were then removed from the chamber, anesthetized, 

and preserved in 70% ethanol. 

 

Experiment 2 Data Analysis 

 Videos from the top and side cameras were synched using the laser flash and cut to two-

minute clips for each paralarva. Videos were tracked using Tracker, using the eyes of the 

paralarvae as the tracking feature, as with the 2D experiment. Although the 3D arena did not 

diminish video quality as the 2D arena did, a large number of videos could still not be used, due 

to paralarvae staying at walls and corners, or spinning (total tracked video n = 157, Table 1). 

Positional data were produced for each frame in both viewing planes, resulting in 3,598 points 

for each recording plane (x, z) and (x, y). Tracker functioned with the origin point for the 

calibrating axes being set based on the orientation of the camera. Thus prior to correction for 3D, 
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the positional data were all transformed into the same 0, 0, 0 axes frame set at the bottom left 

corner of the front plane of the filming arena using Excel. 

 To merge the two separate 2D positional datasets into a 3D dataset, the filming arena was 

modeled as two series of diminishing planes, “side” and “top” (Figure 1, C & D). In any given 

video frame, the front plane of the chamber had the true dimensions of the arena, 92.16 cm2. 

Along the axis perpendicular to the axes of the video frame, the planes diminish in the image due 

to the vanishing point effect, up unto the back of the arena. The value of the length of the side of 

the cube was known (Q = 9.6 cm). The organism was in some plane along the perpendicular axis, 

so its position within its plane in the image is proportional to its true position in a 9.6 cm-sided 

square, such that 
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where Qs and Qt are the lengths of the plane the organism is in within the image and xis, zis, xit 

and yit are the positional coordinates of the organism within that plane, in the side and top, 

respectively. 
 The positional values of the organism were measureable within the coordinate axes of the 

front plane using Tracker: xs and zs for the side, and xt and yt for the top. The positional values of 

the organism in its image plane were modeled as the difference between these measured 

coordinates and the side of the right triangle formed between the front plane and the organism’s 

image plane (Figure 1, C & D): 

5) 𝑥!! = 𝑥! − 𝑞!" 2 

6) 𝑧!" = 𝑧! − 𝑞!" 2 

7) 𝑥!" = 𝑥! − 𝑞!" 2 

8) 𝑦!" = 𝑦! − 𝑞!" 2 
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where qis and qit are the hypotenuse of the right triangles for the side and top, respectively. The 

hypotenuse divided by the square root of two provides a measure of distance between the front 

plane and the organism’s image plane. It follows then that Qs and Qt are different to Q by twice 

this measure: 

9) 𝑄! = 𝑄 − 2 ∗ 𝑞!" 2  

10) 𝑄! = 𝑄 − 2 ∗ 𝑞!" 2  

The length of the side of the backmost plane was measureable within the film image for both 

the side and top camera (qbs and qbt, respectively). The ratios between these values and the length 

of the filming arena are equal to the ratios between the distances between planes, qis and qit, and 

the true distance of the image plane along the perpendicular axis, y and z, respectively: 
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This results in an over-constrained system. Datasets for individual paralarva with all 

measured values were run through a MATLAB (R2016b, MathWorks, Inc., Natick, MA, USA) 

custom-built script (in the Supplementary Materials and at https://github.com/czakroff/3D-

Swimming-Behavior) which calculated the x, y, and z values for the system by using least sum of 

squares to determine the values for each frame that result in the least error. These data were then 

run in a separate MATLAB custom-built script (in the Supplementary Materials and at 

https://github.com/czakroff/3D-Swimming-Behavior) to visualize paralarval swimming tracks 

and calculate a range of 3D metrics, including total distance traveled (cm), 3D velocity (cm s-1), 

vertical and horizontal velocities (cm s-1), and volume (cm3) transited for each individual 

paralarva. All video measurements were taken and all subsequent analyses using the model 

system and codes were run using centimeters. However, all results have been shifted into 

millimeters for better readability in publication. 3D metrics were further analyzed in ten-second 

time bins across the 120-second recording period for each individual paralarvae, to examine 

individual variability and assess if paralarvae across treatments retained consistent overall 

behavior patterns while in the 3D arena.  

Since squid paralarvae swim in a characteristic cycle of vertical jetting and sinking, average 

vertical velocity canceled out to zero. Therefore, vertical velocity was subdivided into average 
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positive vertical velocity, representative of upward jets, and negative vertical velocity, 

representative of sinking and uncommon, but possible, downward jets. Average jet velocity was 

calculated by measuring the magnitude of the peaks, above a threshold of 0.5 cm s-1 (based on 

visual assessment of the data and on a reported range of jetting velocities in Bartol et al., 2009a), 

of the 3D velocity data across the two-minute recording period for each paralarvae. Jetting rate 

was likewise calculated by enumerating these velocity peaks for each paralarvae. 

Turning angles for each paralarva’s path were calculated between sequential motion vectors 

in the x, y plane at a resolution of thirty frames of video, or approximately one second of motion. 

Tortuosity, a metric of path convolution defined as the ratio of the length of an animal’s path to 

the distance between the start and end points of that path, was calculated for each paralarva on 

path segments of thirty frames of video continuously along the entire path (Benoit-Bird and Gilly 

2012). The one-second resolution for these metrics was chosen to analyze individual paralarval 

paths on a reasonable temporal scale and reduce small-scale motion noise. 

While thresholds of video quality and organism visibility limited the total number of videos 

useable in the 3D tracking analysis, many more videos were useable for simpler analyses. In 

some cases the side video was trackable or could be visually assessed while the top was not, so a 

random subset (n = 282, Table 1) of 3D videos taken was analyzed for time spent in depth bins, 

as in the 2D experiment. A separate randomly selected subset of approximately ten of the two-

minute paralarva swimming videos taken was analyzed per treatment per trial (n = 167, Table 1) 

for general ethography. Sections of each video were coded as either active, defined as a 

paralarvae jetting or pulsing its mantle, or inactive, defined as sinking, non-motile, and non-

pulsing. Two observers each independently coded the same subset of 10 individual paralarvae to 

establish consistency in the definitions and then separately coded different subsets of the full 

dataset. Ethographic observations of activity were compiled as percent time active (converted 

from number of frames using the video frame rate) for the entire two-minute recording period for 

each individual paralarva.  

 

Statistics 

Statistical analyses were run in MATLAB, Python (3.5.2), and Excel. Normality was 

tested for using the Shapiro-Wilk test (α = 0.05) and by examining quantile plots of the data for 

each factor, both within each treatment and as a whole. Datasets that were normally distributed 
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were tested for differences among CO2 treatments with a single factor ANOVA, while 

nonparametric data were tested with Kruskal-Wallis (KW) tests. Any significant (p < 0.05) KW 

test was subsequently run through a Dunn’s posthoc test to determine which groups were 

significantly different from each other. Linear trend lines of the medians for each factor across 

CO2 treatments were plotted in order to examine goodness of fit to the trend. Variability was 

examined through calculation of the variance, comparable within a metric, and the coefficient of 

variation (CV), which is comparable across metrics. All normally distributed statistics are 

reported as means ± 1 standard deviation (SD) while nonparametric statistics are reported as 

medians and interquartile range (IQR). 

 

Results 

Water Quality 

No significant differences (Kruskal-Wallis, p > 0.05 for pHtotal and pCO2 for all trials) in 

water quality were seen between experimental cups within a treatment, so values are compiled 

and reported by treatment (Table 1). Temperature and salinity were stable across the duration of 

a trial, but varied slightly between trials, most likely due to local environmental variability. pCO2 

equilibrations were harder to control at higher concentrations, likely due to variability in the 

alkalinity and flow rate of ESL water (potentially due the expanded system, longer time frame, 

and increased demand in 2014 & 2015), as input gas concentrations and pressure were 

maintained throughout experiments and pHtotal remained consistent within trials (Table 1). 

Results are grouped and reported by input gas concentration for concision, but it should be noted 

that the 2200 ppm group encompasses a range from 1750 - 2400 ppm in calculated pCO2 values. 

 

Experiment 1: 2D Depth 

  Squid paralarvae showed a slight, but significant (KW, p < 0.001) difference in 

proportion of time spent in the top depth bin between CO2 treatment groups in 2013 (Figure 2A), 

but no significant response in 2014 (KW, p = 0.078)(Figure 2B). In the compiled dataset, within 

the top depth bin, the 400 and 1300 ppm CO2 treatment groups were found to be different from 

the 1900 and 2200 ppm treatment groups, with less time spent at surface in the higher CO2 

treatments (Table 2). Similarly, tests for proportion time spent in the middle and bottom depth 

bins also showed differences between treatment groups (KW, pmid = 0.001, pbottom = 0.002), 
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wherein the 1300 ppm treatment group was distinct from the 1900 and 2200 ppm treatment 

groups, with more time spent in the middle and bottom depth bins in the higher CO2 treatments 

(Table 2). This reflects the extremely low variance in the 1300 ppm treatment group compared to 

all other treatments in all depth bins (σ2 ≤ 0.001, Table 3). Variance did not significantly increase 

with CO2 level in the top or bottom depth bin, but showed an increasing trend with increasing 

CO2 level in the middle depth bin (R2
 = 0.609, Table 3). Despite notable individual variability 

across treatments and interannual variability in response, the experiment indicated that squid 

paralarvae spent less time at the surface in CO2 treatments of 1900 and 2200 ppm overall (Figure 

2C).  

 

Experiment 2: 3D Metrics 

In the 3D system, paralarvae showed no difference in the proportion of time spent in any 

depth bin across CO2 treatments (KW, ptop = 0.1094, pmid = 0.0568, pbottom = 0.0694, Table 4) in 

all trials of both 2014 and 2015, nor were there any notable trends in the variance for this metric 

(Table 5). The proportion of time spent in the top depth bin showed a weak, non-significant 

decrease with increasing pCO2 (R2 = 0.6455) and proportions of time spent in the mid and 

bottom depth bins showed corresponding, non-significant increasing trends with increasing 

acidification (Table 4). 

Of the 3D metrics measured for the paralarvae, total distance (KW, p = 0.0342), average 

velocity (KW, p = 0.0354), average positive vertical velocity (KW, p = 0.0126), and average 

negative vertical velocity (KW, p = 0.0028) showed significant effects of CO2 treatment (Table 

4). Dunn’s posthoc test revealed the difference to be between the 400 and 1000 ppm groups for 

all of these metrics (Table 6). Average velocity was slightly higher in the 400 ppm treatment 

level, 9.4 mm s-1 (8.2 - 11.7), compared to the other CO2 treatments: 8.0 mm s-1 (7.1 - 9.3), 8.3 

mm s-1 (7.6 - 9.9), and 8.2 mm s-1 (7.0 - 9.7) for 1000, 1600, and 2200 ppm, respectively (Table 

4). A linear fit (R2 = 0.4591) of the median average velocities across treatments demonstrates 

this potential decreasing trend with increasing pCO2. The step-wise nature of this trend is 

reflected in the average positive and negative vertical velocity values (Table 4), while the 

horizontal component of the velocity showed a significant fit to a linear decreasing trend (R2 = 

0.9798, p = 0.0101) rather than any significant differences between treatments (KW, p = 0.1945). 

Percent time active, as assessed in the ethological work, also followed a significant decreasing 
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linear trend (R2 = 0.9798, p = 0.0077), without significant differences between groups (KW, p = 

0.242). 

Analyzed individuals exhibited the expected, stereotypical motion of hatchling 

paralarvae, swimming with repeated, and dominantly vertical, jetting motions (Figure 3). 

Average jet velocity was highest in the 400 ppm treatment, 17.6 mm s-1 (14.2 - 19.6), and 

notably, but not significantly (KW, p = 0.1192) lower, in the 1000, 14.9 mm s-1 (13.1 - 16.5), 

1600, 14.7 mm s-1 (13.0 - 16.9), and 2200 ppm, 15.1 mm s-1 (12.5 - 17.9) treatments. Peak 

velocity was highest in the 400 ppm treatment, 139.6 mm s-1 (99.9 - 206.9), and the 1000 ppm 

treatment, 138.2 mm s-1 (78.8 - 228.7), notably lower in the 1600 ppm, 108.1 mm s-1 (86.4- 

163.3), and 2200 ppm treatments, 123.9 mm s-1 (82.1 - 187.5), showing a weak decreasing linear 

trend (R2 = 0.4578), but no statistical significance (KW, p = 0.4378). Vertical and horizontal 

peak velocities also show this pattern of more step-wise and weakly linear, non-significant 

decrease from 400 ppm (Table 4). Jetting rate, on the other hand, showed similar values between 

400 ppm, 2.73 Jets s-1
 (2.51 - 3.02), 1000 ppm, 2.70 Jets s-1

 (2.51 - 2.89), and 1600 ppm, 2.72 Jets 

s-1
 (2.47 - 2.85), and only decreased slightly at 2200 ppm, 2.63 Jets s-1

 (2.38 - 2.81) (KW, p = 

0.3436). 

Three-dimensional polygons of volume transited, tortuosity paths, and turning angle 

distributions were also determined (Figure 4). Volume traveled by the paralarvae during the 

swimming recording was notably, but not significantly (KW, p = 0.7416) lower in the 2200 ppm 

treatment, 46,406 mm3
 (22,078 - 118,883), compared to the other treatments, 53,786 mm3 

(20,550 - 95,664), 65,076 mm3 (33,647 - 125,970), and 53,315 mm3 (30,734 - 103,950) for 400, 

1000, and 1600 ppm respectively, and demonstrated a weakly decreasing linear trend (R2 = 

0.4334). Variance was high for volume transited across treatments (σ2 range = 2.86 × 109 - 7.71 

× 109, overall CV = 0.918) and appeared to increase with increasing CO2 (R2
 = 0.8710, Table 5).  

Average turning angle was highest in the 400 ppm treatment group, 56.53º (48.84º - 

64.54º), whereas values were similar amongst the other treatments: 53.49º (48.45º - 62.04º), 

52.05º (45.92º - 60.00º), and 52.30º (43.64º - 63.71º) for 1000, 1600, and 2200 ppm, 

respectively, resulting from a slightly higher occurrence of reversals in the 400 ppm group. 

Similar to other metrics, average turning angle was not statistically significant (KW, p = 0.4334), 

but still showed a slightly decreasing linear trend (R2 = 0.7863). No apparent impacts of 

acidification on paralarval control of orientation were observed. Distributions of the turning 
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angles from the entire paralarval path did not vary between treatments, except in the 120º - 130º 

bin where turns were rare (Average frequency of turns, 120 - 130º, all treatments  < 0.025; 

KW120-130, p = 0.013; KW, p > 0.05 for all other turning angle bins). All experimental paralarvae 

demonstrated primarily forward and reverse motions, due to the dominance of jetting, and a 

slightly higher frequency of shallow (10 - 40º) forward turns along their swimming paths. 

Average tortuosity did not vary notably between CO2 treatments (KW, p = 0.6730). It 

was highest in the 2200 ppm treatment, 3.63 (3.07 - 5.19), and lowest in the 1600 ppm treatment, 

3.39 (2.92 - 4.51), showing a weakly increasing trend with increasing CO2 (R2 = 0.4065, Table 

4). 

Variance was higher in the 400 and 2200 ppm treatments than in the other CO2 

treatments for several metrics (total distance, average velocity, turning angle) (Table 5). Overall 

variability, as demonstrated by the CV for each metric, was highest in peak velocities, average 

vertical velocity components, volume transited, and average tortuosity (Table 5). Except for 

volume transited, as previously noted, and average jet velocity, which had an increasing trend in 

both variance and CV with increasing CO2 (σ2 R2 = 0.6506, CV R2 = 0.8647) variability did not 

fit an increasing or decreasing trend across CO2 treatments for the 3D metrics (Table 5). Patterns 

of variance seen in the 3D metrics do not appear to align with variation in the total number of 

individuals recorded for each CO2 treatment (Table 1). Although individual paralarvae were 

quite variable over the course of their swimming path, medians and overall trends of the total 

dataset were consistent across the entire recorded swimming period (KW, p > 0.05 across 10-

second time bins within CO2 treatments for all 3D metrics)  (Figure 5). 

 

 Discussion  

Paralarvae recorded in the 2D behavior arena demonstrated a decrease in time spent in 

the top, near-surface depth bin at the highest CO2 concentrations tested. Squid paralarvae are 

negatively buoyant and “hop” with pulsed jetting to maintain their position in between sinks, the 

rate of which could decrease with decreased available energy (Seibel et al. 2000). Squid jetting 

comes at a high energetic cost, which has been proposed as a driver of their “live fast, die young” 

lifestyle and highlighted as a limitation in their ability to compete directly with fish (O’Dor and 

Webber 1986). Propulsive efficiency, of just the jetting contraction phase, has been shown to be 

quite high in D. pealeii paralarvae, greater than 80%, decreasing with growth to the juvenile & 
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adult phases (Bartol et al. 2008, 2009b). Modeled hydrodynamic efficiency for squid, 

considering the whole jetting cycle, however, demonstrated that efficiency increases with growth 

from hatching to a peak efficiency of about 40% at 10 mm DML, decreasing slightly thereafter 

(Staaf et al. 2014). The decrease in time spent near the surface seen in high CO2-exposed 

paralarvae in the 2D analysis may have been caused by a reallocation of available energy by 

these paralarvae towards stress response resulting in decreased swimming activity, a reduction in 

jetting efficiency due to slightly smaller mantle size (seen in Kaplan et al., 2013), or a 

combination thereof, resulting in increased time spent sinking. Limitations in the analytical 

power of the 2D system prevented further disentanglement of these factors. 

 The significant reductions in average 3D velocity and average positive vertical velocity, 

as well as the significant decreasing trend in paralarval activity from the 3D system, support the 

idea that acidification impacts the energetics of the paralarvae, even if effects are slight. Other 

observed metrics of 3D swimming activity did not demonstrate significant shifts across CO2 

levels, but exhibited decreasing patterns with increasing CO2 exposure, further suggesting a 

subtle impact of acidification on the energetics and dynamics of swimming. Hypercapnia has 

been shown to depress energy expenditure rates in embryonic and pre-hatchling cuttlefish, Sepia 

officinalis (Rosa et al. 2013). Adults and juveniles of this species appear capable of withstanding 

chronic acidification through a system of branchial acid-base transporters, but embryos were 

seen to a downregulate ion regulatory and metabolic genes under increased acidification (Hu et 

al. 2011a). Ion pump activities were seen to be even lower in the embryos and paralarvae of a 

Loliginid squid, Loligo vulgaris, than in S. officinalis, suggesting a greater pH sensitivity in this 

taxa (Hu et al. 2010). However, embryos of another squid, Sepioteuthis lessoniana, upregulated 

genes of a proton secretion pathway under severe chronic acidification (pHnbs = 7.31) 

demonstrating the potential for a powerful homeostatic response (Hu et al. 2013). Given that 

cephalopod eggs naturally become acidified due to embryonic respiration over the course of 

development, it is possible that, while variable, a general pH resilience is a conserved feature of 

the class, which may serve to explain the weakness in OA responses seen here (Gutowska and 

Melzner 2009; Long et al. 2016). 

The OA effects on vertical swimming in 2013 and decreasing trends in 3D swimming 

behaviors in 2014 demonstrated a remarkable resilience, requiring intense, chronic exposures (> 

1900 ppm) to acidification that D. pealeii should at most experience acutely in estuarine 
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environments (Jacobson 2005; Baumann et al. 2015). These levels of acidification are predicted 

in models only under a high emissions scenario after several hundred years (Caldeira and 

Wickett 2003). Early physiological work exposing adult D. pealeii to hypercapnia noted the 

remarkable CO2 tolerance of this species, suggesting that even with the Bohr effect, decreased 

pH reducing oxygen carrying capacity of their hemocyanin, they would not be significantly 

stressed unless exposed to concurrent hypoxia (Redfield and Goodkind 1929). Embryos of the 

California market squid, Doryteuthis opalescens, which naturally experience sporadic pH 

reduction (down to 7.65) due to upwelling, showed development delay and smaller statoliths 

under a combined regime of OA (pH 7.57) and hypoxia (80µM), while under only decreased pH 

(7.56) showed a reduced yolk volume, but larger statoliths compared to hypoxia alone (Navarro 

et al. 2016). Given the substantial acid-base balancing machinery of cephalopods, it is possible 

that if subtle effects of acidification are seen, particularly in relation to energy and activity, it is 

due to a slightly reduced oxygen availability owing to the pH sensitivity of their hemocyanin, but 

that they are otherwise fairly resistant to acidification in a well oxygenated system (Hu et al. 

2010; Seibel 2013). 

While the 2013 2D depth results showed a clear impact of high, chronic acidification on 

paralarval swimming behavior (Figure 2A), no significant effect of pCO2 on paralarval 

swimming depth was seen in the 2014 2D trial and all subsequent 3D trials (run in 2014 & 2015) 

(Figure 2B, Table 4), indicating a possible interannual or cohort-based variance in the strength of 

embryonic and paralarval response to this stressor. Seasonal cohorts of L. vulgaris eggs were 

shown to respond differentially to warming and OA, with the summer clutches showing greater 

sensitivity (Rosa et al. 2014a). Murray et al. have demonstrated intraspecies seasonal variability 

in OA stress response for the Atlantic silverside, Menidia menidia, dependent on parental 

exposure and offspring conditioning (2014). The annual D. pealeii breeding cycle in Vineyard 

Sound is known to have some weak seasonal structuring with the earliest mating (April-May) 

involving robust two-year olds, while the rest of the breeding season is dominated by the 

previous year-class, however our data does not correlate with any clear seasonal signal (Arnold 

et al. 1974). Squid populations have been noted to demonstrate interannual variability, 

potentially as a plastic response of the year-class to environmental influence (Pecl et al. 2004a). 

It is possible that an organism as plastic and fast-lived as D. pealeii could exhibit differential 
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responses to stressors dependent on the experiences of the year-class and on how those adults 

condition their resultant offspring (Summers 1971). 

Considerable variability in behavior and response was seen individually within the 

paralarvae, both overall (Figure 5) and across CO2 treatments (Table 3, Table 5). Seemingly high 

variance may be partly due to moderate sample sizes in some treatments (Table 1).  However, the 

distributions of variance across CO2 treatments, and the high coefficients of variation for many 

3D metrics, indicate a more prominent effect of individual variability (Table 5). Complexity and 

plasticity are hallmarks of the cephalopods, and individual variability is a strong benefit for fast-

lived, highly fecund, r-selected organisms such as squid, as it provides adaptive flexibility in the 

face of rapid environmental change (Herke and Foltz 2002; Pecl et al. 2004a). While variability 

between cohorts of eggs is likely due to differences in parentage, variability within a clutch is an 

effect either of differential fathership and/or maternal condition (Buresch et al. 2001, 2009; Steer 

et al. 2004). Intracapsular variability within a maternal clutch has been noted in the elemental 

composition of statoliths, DML, and yolk volume in late stage D. opalescens embryos (Navarro 

et al. 2014, 2016). Given the complexity of squid parentage, differential parental conditioning 

and any resultant epigenetic effects might also express as differential responses or behaviors, 

particularly when dealing with a stressor, as is seen in other marine species (Buresch et al. 2001; 

Miller et al. 2012; Putnam and Gates 2015). Maternal variation in transmitted yolk content could 

have impacts on both the paralarval energy budget and their specific gravity, both of which could 

translate to swimming behaviors (Vidal et al. 2002a; Martins et al. 2010a). Embryo position in 

the egg capsule itself, and the resultant exposure to differential levels of hypoxia and 

acidification over development, could also explain the dynamic variability in individual 

swimming behaviors and activities seen in our experiment (Long et al. 2016). 

It is likely that our power to see effects caused by OA was reduced by this intense 

individual variability and the logistical challenge of acquiring a large enough sample size of 

useable paralarvae videos. Differences in the 2D system were only seen between those treatment 

groups with either a substantial sample size of useable videos (400, 1900, and 2200 ppm, Table 

1) or a particularly low variance (1300 ppm, Table 3). The videos resulting from the cubic arena 

provided substantially clearer imagery and allowed both for better observation and tracking of 

the squid paralarvae (Figure 3, Figure 4). An advantage of the new methodology implemented 

here is that it is easily set up and repeated. We were limited primarily by our organism’s 
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breeding window, the low ratio, for our paralarvae, of useable videos to videos taken, and the 

time needed for experimentation and processing (Table 1)(Vecchione 1981; Hastie et al. 2009).  

Three-dimensional positional data acquired through observer corrected automated 

tracking in Tracker and processing in the 3D model equations described above resulted in clear 

tracks for each individual, similar to those determined by other established methods (Cachat et 

al. 2011a). Individual tracked paths produced by the system provide a powerful basis for 

analyzing movement patterns in marine and aquatic organisms. Total distance traveled and 

average velocity of the paralarvae were significantly different between the 400 and 1000 ppm 

groups, but most of the 3D metrics examined demonstrated only weakly decreasing trends with 

increasing CO2 (Table 4). Average velocities for D. pealeii paralarvae recorded from the 3D 

system, 8.3 mm s-1 ± 2.5 (median ± SD), fall within, but on the low end, of the range previously 

reported for the species during mantle contraction, 6.6 – 30.5 mm s-1 (Bartol et al. 2009b). 

Limitations in these metrics may arise from the general, undirected swimming of the organisms. 

All the animals studied swam at about the same rate and for the same general distance; however, 

the absence of flow, predators, prey, conspecifics, or other major sensory cues throughout these 

tests should be noted. It is possible that potential acidification effects in the 3D swimming 

system did not emerge, both because of the high multi-scale variability and because the 

paralarvae were not sufficiently challenged in their motion. Sensory-driven experiments taking 

advantage of the squid paralarvae’s innate photopositivity as a target may better elucidate stress 

effects by coercing the organism into predictable, directed motion. 

Both arenas used likely enacted some influence over the behavior of the paralarvae. Both 

systems only allowed for a still water experimentation regime and did not provide analysis of the 

natural impacts of turbulence and flow that other methods, particularly DPIV, are capable of 

(Fuchs et al. 2004; Wheeler et al. 2015). Stillwater also resulted in a flat surface layer, which was 

necessary for filming from above, but also allowed for the influence of surface tension, which 

was found to entrain paralarvae in the meniscus of the 2D system, and has been shown in other 

studies to influence the speed and survival of marine larvae (Hidu and Haskin 1978; Yamaoka et 

al. 2000).  Paralarval D. pealeii do not live in a still water environment, but instead navigate the 

dynamic surface ocean; although their precise behaviors are not well known (Vecchione et al. 

2001; Barón 2003; Jacobson 2005). Therefore, while the system was effective at exploring 

fundamental, physiologically-driven differences in hatchling swimming capability it does not 
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directly reflect how paralarval swimming behaviors might shift in response to OA in the natural 

system or throughout ontogeny. 

This study set out to examine the potential impacts of developmental exposure to OA on 

the swimming behavior of hatchling squid paralarvae. The study required and inspired the 

development of a novel, simple, and feasible system for recording, tracking, and analyzing the 

3D motion of a motile marine larvae. Early results demonstrated an impact of high CO2 

exposures on paralarval activity and vertical positioning. Measured in the 3D system, average 

velocity and average positive vertical velocity showed significant decreases from ambient, 400 

ppm, to 1000 ppm, while horizontal velocity showed a significantly decreasing trend further 

indicating an impact of OA on hatchling energetics. However, most metrics only demonstrated 

subtle, nonsignificant, decreasing trends with decreased pH, supporting the idea that acidification 

may be a weak stressor in cephalopods. Notable individual variability, as well as potential 

interannual and/or cohort scale variability, was also seen in the response to acidification, 

indicating a substantial plasticity and general pH resilience for the population. Further study into 

the physiological tolerances and behavioral responses of this taxon would require incorporating 

higher CO2 levels, beyond 2200 ppm, or the introduction of compounding stressors in a 

multifactor design. Replication of this and related stress experiments across multiple years would 

also be required in order to better describe the patterns and drivers of individual, intra-annual, 

and interannual variabilities. The 3D model system has potential utility in a wide variety of 

applications, including complex tracking of aquatic or marine larvae from other taxa, tracking of 

multiple individuals within the same arena, predator-prey interactions, as well as sensory studies. 

The range of organismal responses to anthropogenically induced global ocean change continues 

to grow in diversity and complexity as more taxa and stressors are examined. Improvements in 

the accessibility of methods to address this ever-expanding field of questions are necessary in 

order to facilitate and support this substantial effort. 
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Table 2. Significant Dunn’s posthoc test statistics for differences between CO2 treatments within 
all depth bins examined. Data compiled from all trials of Experiment 1, Qcrit = 3.12 
CO2 Treatment (ppm) 1900 Top 2200 Top 1900 Mid 2200 Mid 1900 Bottom 1900 Bottom 
400 Top 3.52 3.72 - - - - 
1300 Top 3.97 4.06 - - - - 
1300 Middle - - 3.21 3.36 - - 
1300 Bottom - - - - 3.58 3.74 
 
 
Table 3. Variance of 2D depth bins per CO2 level compiled over all trials of Experiment 1. R2 are 
of fits of linear trend lines (p > 0.05 for all regressions) 
σ2 400 

ppm 
550 
ppm 

850 
ppm 

1300 
ppm 

1500 
ppm 

1700 
ppm 

1900 
ppm 

2200 
ppm 

R2 

2D Top 0.105 0.143 0.036 0.001 0.178 0.047 0.156 0.156 0.054 
2D Middle 0.006 0.000 0.007 0.001 0.027 0.033 0.015 0.036 0.609 
2D Bottom 0.091 0.129 0.023 0.000 0.117 0.005 0.156 0.116 0.015 
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Table 4. Values of the 3D swimming behavior metrics at each CO2 treatment. Reported values are 
medians and IQR. Significant Kruskal-Wallis p values marked with * (p < 0.05). R2 are of fits of linear 
trend lines. Significant regressions are marked with * (p < 0.05). 
3D Metric  400 ppm 1000 ppm 1600 ppm 2200 ppm KW p 

value 
R2 

3D Top (% Frames) 0.95 
(0.64 - 1.00) 

0.88 
(0.53 - 1.00) 

0.92 
(0.72 - 1.00) 

0.81 
(0.43 - 0.98) 

0.1094 0.6455 

3D Mid (% Frames) 0.01 
(0.00 - 0.12) 

0.07 
(0.00 - 0.21) 

0.05 
(0.00 - 0.13) 

0.06 
(0.00 - 0.17) 

0.0568 0.5030 

3D Bottom (% Frames) 0.00 
(0.00 - 0.16) 

0.03 
(0.00 - 0.17) 

0.00 
(0.00 - 0.08) 

0.04 
(0.00 - 0.30) 

0.0694 0.3775 

Ethology (% Active) 95.8 
(88.1 - 100) 

93.8 
(86.5 - 100) 

91.7 
(68.5 - 99.4) 

88.3 
(69.2 - 100) 

0.242 0.9847* 

Total Distance (mm) 1128.7  
(985.1 - 1403.9) 

961.8  
(855.7 - 1116.3) 

997.9  
(912.5 - 1187.9) 

985.4  
(840.2 - 1165.6) 

0.0342* 
 

0.4590 

Average Velocity  
(mm s-1) 

9.4 
(8.2 - 11.7) 

8.0  
(7.1 - 9.3) 

8.3 
(7.6 - 9.9) 

8.2 
(7.0 - 9.7) 

0.0354* 
 

0.4590 

Peak Velocity (mm s-1) 139.6 
(99.9 - 206.9) 

138.2  
(78.8- 228.7) 

108.1  
(86.4 - 163.3) 

123.9 
(82.1 - 187.5) 

0.4378 0.4578 

Average Jet Velocity  
(mm s-1) 

17.6 
(14.2 - 19.6) 

14.9 
(13.1 - 16.5) 

14.7 
(13.0 - 16.9) 

15.1 
(12.5 - 17.9) 

0.1192 0.5168 

Jetting Rate (Jets s-1) 2.73 
(2.51 - 3.02) 

2.70 
(2.51 - 2.89) 

2.72 
(2.47 - 2.85) 

2.63 
(2.38 - 2.81) 

0.3436 0.6270 

Average Vertical Velocity 
(mm s-1) 

0.0  
(-0.1 - 0.1) 

0.0  
(-0.1 - 0.3) 

0.1 
(0.0 - 0.4) 

0.0  
(-0.1 - 0.3) 

0.1935 0.0678 

Average Positive Vertical 
Velocity (mm s-1) 

9.6 
(7.9 - 10.6) 

8.7 
(6.8 - 9.3) 

8.7 
(7.1 - 9.6) 

8.7 
(7.4 - 9.7) 

0.0126* 0.5540 

Peak Vertical Velocity 
(mm s-1) 

100.3  
(75.0 - 150.6) 

83.8  
(60.6  - 138.3) 

85.9 
(62.4 - 127.0) 

83.2 
(66.6 - 106.9) 

0.2584 0.6194 

Average Negative Vertical 
Velocity (mm s-1) 

-5.7  
(-6.2 - -4.9) 

-4.6 
(-5.3 - -3.9) 

-4.9 
(-5.9 - -4.3) 

-5.0 
(-5.7 - -4.5) 

0.0028* 0.2847 

Minimum Vertical Velocity 
(mm s-1) 

-83.5  
(-122.2 - -62.8) 

-63.1 
(-118.6 - -44.5) 

-74.9  
(-101.4 - -54.6) 

-79.9 
(-117.1 - -49.5) 

0.4982 0.0002 

Average Horizontal 
Velocity (mm s-1) 

4.6 
(3.1 - 6.2) 

4.3 
(3.2 - 5.1) 

3.7 
(3.0 - 5.1) 

3.4 
(2.8 - 4.6) 

0.1945 0.9798* 

Peak Horizontal Velocity  
(mm s-1) 

108.8 
(72.7 - 138.8) 

112.6 
(61.2 - 174.5) 

86.8 
(58.6 - 107.5) 

78.7 
(67.8 - 149.1) 

0.2712 0.8224 

Volume Transited (mm3) 53,786  
(20,550 - 
95,664) 

65,076 
(33,646 - 
125,970) 

53,314 
(30,734 - 
103,950) 

46,406 
(22,078 - 
118,882) 

0.7416 0.3207 

Average Turn Angle 
(degrees) 

56.53 
(48.84 - 64.54) 

53.49 
(48.45 - 62.04) 

52.05 
(45.92 - 60.00) 

52.30 
(43.64 - 63.71) 

0.4334 0.7863 

Average Tortuosity 3.43 
(3.00 - 4.79) 

3.46 
(2.97 - 4.35) 

3.39 
(2.92 - 4.51) 

3.63 
(3.07 - 5.19) 

0.6730 0.4065 
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Table 5. Variance and coefficient of variation (CV) both per CO2 treatment and overall for all of 
the 3D arena metrics. R2 are of fits of linear trend lines (p > 0.05 for all regressions) 

3D Metric  400 ppm 1000 ppm 1600 ppm 2200 ppm R2 Overall 

3D Top (% Frames) σ2 0.1251 0.1007 0.0793 0.1162 0.0956 0.1073 
CV 0.473 0.440 0.352 0.503 0.0000 0.443 

3D Mid (% Frames) σ2 0.0114 0.0210 0.0106 0.0131 0.0196 0.0143 
CV 1.48 1.16 1.22 1.09 0.7038 1.26 

3D Bottom (% Frames) σ2 0.1107 0.0592 0.0585 0.1059 0.0048 0.0852 
CV 1.85 1.59 2.10 1.50 0.0637 1.77 

Ethology (% Active) σ2 593 597 910 590 0.0607 685 
CV 0.284 0.291 0.393 0.303 0.1615 0.321 

Total Distance (mm) σ2 99,095 58,994 65,760 106,467 0.0248 87,981 
CV 0.265 0.241 0.240 0.314 0.2961 0.275 

Average Velocity (mm s-1) σ2 6.81 4.10 4.56 7.39 0.0305 6.08 
CV 0.264 0.241 0.240 0.314 0.3072 0.275 

Peak Velocity (mm s-1) σ2 95,801 192,554 51,533 341,842 0.3596 177,644 
CV 1.20 1.56 1.33 1.89 0.3072 1.64 

Average Jet Velocity (mm s-1) σ2 14.74 11.34 16.80 25.37 0.6506 17.99 
CV 0.221 0.221 0.258 0.314 0.8647 0.262 

Jetting Rate (Jets s-1) σ2 0.1553 0.1556 0.0806 0.2751 0.2083 0.1745 
CV 0.145 0.150 0.106 0.208 0.1974 0.158 

Average Vertical Velocity 
(mm s-1) 

σ2 0.067 0.158 0.102 0.126 0.1664 0.116 
CV 9.63 6.80 2.24 5.65 0.4854 4.61 

Average Positive Vertical 
Velocity (mm s-1) 

σ2 4.87 5.19 3.15 4.75 0.1147 4.89 
CV 0.232 0.293 0.207 0.260 0.0001 0.258 

Peak Vertical Velocity  
(mm s-1) 

σ2 13,692 45,967 4,545 4,056 0.2109 17,112 
CV 0.823 1.48 0.645 0.626 0.2097 1.07 

Average Negative Vertical 
Velocity (mm s-1) 

σ2 2.02 1.65 1.50 2.22 0.0338 2.02 
CV 0.248 0.280 0.235 0.288 0.1519 0.274 

Minimum Vertical Velocity 
(mm s-1) 

σ2 14,914 48,003 4,191 179,322 0.5174 65,185 
CV 0.988 1.73 0.718 2.68 0.3575 2.04 

Average Horizontal Velocity 
(mm s-1) 

σ2 4.30 2.86 3.29 4.57 0.0389 3.86 
CV 0.429 0.378 0.414 0.523 0.4426 0.442 

Peak Horizontal Velocity 
(mm s-1) 

σ2 94,830 158,355 49,637 185,639 0.1181 125,379 
CV 1.44 1.72 1.68 1.91 0.8284 1.76 

Volume Transited (mm3) σ2 2.86 × 109 4.39 × 109 4.56 × 109 7.71 × 109 0.8710 5.06 × 109 
CV 0.820 0.785 0.919 1.04 0.8015 0.918 

Average Turn Angle (degrees) σ2 238.7 181.8 158.3 241.7 0.0020 211.0 
CV 0.262 0.248 0.236 0.281 0.0890 0.261 

Average Tortuosity σ2 33.51 3.18 3.59 37.56 0.0076 20.20 
CV 1.18 0.430 0.478 1.09 0.0054 0.959 
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Table 6. Significant Dunn’s posthoc test statistics for differences between CO2 treatments in 3D 
metrics, Qcrit = 2.631 
Metric: Treatment 400 ppm 1000 ppm 1600 ppm 2200 ppm 
Total Distance (mm): 400 ppm - 2.710 - - 
Average Velocity (mm s-1): 400 ppm - 2.700 - - 
Average Positive Vertical Velocity (mm s-1): 400 ppm - 3.200 - - 
Average Negative Vertical Velocity (mm s-1): 400 ppm - 3.741 - - 
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Figure 1. (A) The set-up for 3D behavior recording placed inside of the tarp-covered photobox 
showing the wooden frame used to mount the top-facing video camera, the 3D arena in center, 
with ruler attached for scale, flanked by LED panels on each side, and the front facing video 
camera. (B) A schematic of the arena set-up showing relative placement of the arena, cameras, 
and lights. Solid lines indicate seawater volume, while dotted lines indicate arena volume (not to 
scale, see supplementary Fig. S2). The accompanying model system for the side view (C) and 
top view (D) to correct positional data for the effect of diminishing axes frames 
 
 
 
 



 112 

Figure 2. The proportion of paralarval time spent in the top depth bin in the 2D arena of 
Experiment 1 across CO2 treatments from trials in 2013 (A), 2014 (B), and all trials compiled 
(C). Dotted circles denote medians and plus signs denote outliers. Lower case letters denote 
statistical groups 
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Figure 3. (A) Vertical swimming profile for an ambient (400 ppm) D. pealeii paralarvae 
(individual 69_69_08_02) showing depth (blue), vertical velocity (red), and vertical acceleration 
(gray) over the entire 120-second recording period. (B) A ten-second slice of the swimming 
profile in A, from 20 seconds to 30 seconds in the video, shows the paralarvae made “hop and 
sink” jets during descent, rapid ascent, and slow ascent. The velocity peaks represent individual 
vertical jets 
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Figure 4. (A) Three-dimensional track of a swimming path for an ambient (400 ppm) D. pealeii 
paralarvae (individual 69_69_08_02). The front of the arena, which the side camera was pointed 
at, was the right axis face. (B) Three-dimensional polygon of volume transited by the paralarvae 
during recording. (C) Tortuosity of path traversed by the paralarvae sampled on a sliding frame 
of one-second path segments. (D) Turning angles along paralarval path, sampled at sequential 
vectors of one-second path segments 
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Figure 5. (A) Three-dimensional velocity averaged in ten-second bins across the 120-second 
recording period. Each line represents an individual paralarvae, with line color denoting their 
CO2 treatment (400 ppm, blue; 1000 ppm, green; 1600 ppm, orange; 2200 ppm, red). The thick 
lines represent the median values for all individuals compiled per each CO2 treatment. Although 
individuals are remarkably variable over their path and overall, the median lines demonstrate 
both the decrease in velocity at exposures above 400 ppm and the consistency in overall behavior 
over time in the arena. (B) The time-binned average velocity data (lines denote medians, colors 
denote CO2 treatment as in A) reinforces the high variability in the whisker length and number of 
outliers (represented as plus signs), and shows both consistently higher velocities in the 400 ppm 
treatment and broadly consistent median values within CO2 treatments across the recording time 
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Chapter 4 
 
Interannual and seasonal variability in the response of squid 
embryos and paralarvae to ocean acidification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In preparation for submission to Global Change Biology. The Supplementary Materials for this chapter can be found 
in Appendix C. 
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Abstract 

Ocean acidification is occurring rapidly, particularly in coastal systems where buffering capacity 

is reduced by riverine input and human impacts. Across taxa, developing embryos raised under 

high exposures of acidification have shown impacts to their development, physiology, and 

behavior. Most studies have been run with discrete replicates within a single breeding year; 

however cohorts may vary substantially from year-to-year, with OA responses subsequently 

varying, reflecting a taxon’s resiliency. In the northwest Atlantic, the longfin squid, Doryteuthis 

pealeii, comes inshore to breed, leaving thousands of encapsulated embryos tied to the nearshore 

benthos. Seasonal variability in acidification response has been observed in this species, but little 

has been done to explore this potential plasticity more robustly. Here, we compile data from five 

years of experiments (2011, 2013 - 2016), in which we reared squid under a range of 

acidification exposures (400 - 2200 ppm CO2) and examined embryonic development (hatching 

time and hatching success) and morphology and physiology (dorsal mantle length and yolk sac 

volume) of the paralarvae. Effect sizes, characterized via response ratios, are used to examine 

trends within breeding seasons and across years. Response intensity shifted across trials within 

sensitive years (2011, 2013, and 2016), suggesting higher variability at the tails of the breeding 

season. Baseline paralarval state consistently shifted across the season, which strongly correlated 

with ambient temperature, suggesting conditioning from the parental environment. Further, 

sensitivity to acidification varied on an interannual scale, likely an impact of the environmental 

history of the spawning cohorts. These data illustrate the adaptability and sensitivity of a short-

lived, highly fecund, and plastic organism, allowing for new insights into understanding how 

such taxa may respond to climate stressors. Additionally, this work emphasizes the need to run 

long-term studies to understand population variability as part of assessing potential winners and 

losers under global ocean change.  
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Introduction 

 Ocean acidification (OA) is a process of anthropogenic change occurring, and affecting 

marine ecosystems, across spatial and temporal and biological scales (Sabine et al. 2004; Fabry 

et al. 2008; Doney et al. 2009; Pachauri and Meyer 2014). OA is also a variable stressor, not 

occurring at the same rate in all regions, which interacts with other variable stressors such as 

warming to produce a complex system of global change that is difficult to recreate in the 

laboratory (Hobday and Pecl 2014; Gledhill et al. 2015; Kroeker et al. 2017). Research into the 

impacts of OA on marine organisms has been comprised largely of small scale, short-term 

exposure experiments, which provide vital information about the physiological capacities of the 

study organism, but little mechanistic understanding of OA impacts or context for the variability 

of the stress response (Browman 2016). Long-term organismal studies are challenging both to 

fund and to perform, but are critical for a greater understanding of an organism’s, and its 

population’s, potential for resistance, plasticity, and adaptation under anthropogenic stress 

(Baumann et al. 2018). Observations of response consistency and variability come through 

experimental designs that consider the life history and potential sources for variability in the 

organism and through robust replication. This is even more important if the system the organism 

comes from is itself substantially variable. 

 Coastal systems are changing much more rapidly and variably under anthropogenic 

drivers than the open ocean, with levels of acidification and warming occurring now, on short 

time scales, which won’t be seen for decades to centuries in the wider ocean (Caldeira and 

Wickett 2003; Feely et al. 2010; Baumann et al. 2015; Gledhill et al. 2015). Concurrent with the 

regional and temporal variability of coastal systems, is a complex of biology across life history 

stages. Nearshore environments serve as nursery habitats for a range of marine taxa, which often 

includes seasonal migrations of these organisms from the shelf and open ocean (Auster and 

Shackell 2000; Beck et al. 2001; Jacobson 2005). These seasonal breeding aggregations provide 

the foundation for the next generation, and their success, as well as the success of their offspring, 

determines the sustainability of the population (Pecl and Moltschaniwskyj 2006; 

Moltschaniwskyj and Pecl 2007; Murray et al. 2014). Within a breeding season, environmental 

influence has been shown to precondition parents, resulting in differential sensitivity of the 

offspring to stressors such as acidification (Murray et al. 2014; Putnam and Gates 2015; Schunter 

et al. 2016). Conditions in these systems can vary from year to year as well, and thus so can the 
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experience and condition of the potential parents, resulting in annual scale, year-class variability 

in these populations (Brodziak and Hendrickson 1999; Pecl et al. 2004a; Rodhouse et al. 2014). 

These epigenetic, transgenerational effects are only beginning to be observed and understood in 

those marine species that are more visibly threatened by OA, such as corals, but similar 

processes may influence sensitivity in many taxa (Ross et al. 2012; Jensen et al. 2014; Munday 

2014; Schunter et al. 2018). Describing and attempting to understand this variability in response 

to global processes of ocean change, in part by concurrently linking environmental observations 

to laboratory studies, is key to building better models and making predictions of species success, 

ecological interactions, and ecosystem management (Kroeker et al. 2013, 2014). 

Myopsid squids, the coastal squids, are a core component of nearshore food webs and are 

an important human protein source, comprising valuable fisheries (Jacobson 2005; Rosa et al. 

2014b; NOAA 2019). Cephalopods are a unique taxon among the marine invertebrates. They are 

primarily short-lived (1-2 year), mostly highly fecund, and notorious for flexibility, and so are 

thought to be well poised to maintain viable populations under global ocean change (Doubleday 

et al. 2016). Studies of cephalopod response to OA have been primarily short-term, showing a 

range of responses from hypercalcification of the cuttlebone in cuttlefish to changes in activity 

and behavior in pygmy squid (Gutowska et al. 2008; Spady et al. 2014). Physiologically, squid 

have been of particular interest because they are thought to exist constantly near the limits of 

their aerobic scope (Pörtner 1990, 1994; Seibel 2016). However, recent research has 

demonstrated that adult squids are able to maintain oxygenation of tissue and do not show 

metabolic suppression under acidification (Birk et al. 2018; Spady et al. 2019).  

 The response of squid embryos to acidification and related stressors has been another 

active avenue of research, focusing on developmental impacts and the state of the hatchling 

paralarvae (Kaplan et al. 2013; Navarro et al. 2014, 2016; Rosa et al. 2014a; Zakroff et al. 2018, 

2019). Early life stages of marine organisms are often thought to be more sensitive to 

environmental stress than adults due to a lack of existing homeostatic machinery (Byrne 2011; 

Haigh et al. 2015). There are suggestions however, that developing embryos, particularly 

encapsulated ones, may be built to handle natural variability (Hamdoun and Epel 2007; Noisette 

et al. 2014). Whether these systems are capable of managing under anthropogenically-boosted 

stressor variability is less certain. Embryos, removed from the capsule, of the European market 

squid, Loligo vulgaris, demonstrated metabolic suppression, developmental delay, and increased 
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premature hatching under decreased pH, suggesting potential sensitivity for this life stage (Rosa 

et al. 2014a). Developing embryos of the big fin squid, Sepioteuthis lessoniana, however, have 

been shown to increase expression of epithelial ion transporters under increased acidification, 

suggesting substantive mechanisms for resistance to acidification (Hu et al. 2013, 2014). 

 The inshore longfin squid, Doryteuthis pealeii, comes to the nearshore of the northwest 

Atlantic coast to breed, entering Vineyard Sound, MA from May - October every year (Arnold et 

al. 1974; Mesnil 1977; Jacobson 2005). Limits of egg laying habitat for this squid have been 

described as coastal soft bottom areas with temperatures ranging from 10 - 23 ºC, salinities of 30 

- 32 ppt, and an expected pHt range of 8.2 - 7.88 (250 - 600 ppm CO2), but the specific 

variability these eggs experience has not been directly observed to our knowledge (Jacobson 

2005; Zakroff et al. 2019). Egg laying habitat of the California market squid, Doryteuthis 

opalescens, appears to be constrained primarily by pHt (greater than 7.8) and oxygen (greater 

than 160 µmol), though these factors vary much more substantially in the California coastal 

system than they do off of Massachusetts (Navarro et al. 2018).  

While D. pealeii has a long history as a research subject, primarily in neuroscience, the 

dynamics of its physiology under stress have primarily been examined in short-term studies 

within a breeding season (Kaplan et al. 2013; Zakroff et al. 2019). Early studies of hypercapnia 

in this squid showed adults were capable of surviving exposures up to 31,500 ppm CO2 unless 

compounded by hypoxia (Redfield and Goodkind 1929). Birk et al. (2018) further demonstrated 

that juveniles and adults of this species are able to manage metabolically under acidification 

(1410 ppm). The embryos, conversely, have some sensitivity to acidification, with 

developmental delays, decreased mantle length, and degraded statoliths being observed in eggs 

reared at 1300 ppm and above (Kaplan et al. 2013; Zakroff et al. 2019). Zakroff et al. noted, also, 

shifts in the intensity of these acidification responses across the breeding season (2019). 

Paralarvae may have even greater sensitivity, with decreases to swimming activity and velocities 

having been observed at 1000 ppm and above (Zakroff et al. 2018). Here, however, the potential 

for interannual variability in response was posited, as a markedly reduced ability to maintain 

vertical station seen in 2013 was not observed in 2014 and 2015 in these experiments (Zakroff et 

al. 2018). 

 This study builds off of the experiments run in 2011 and 2013 (Kaplan et al. 2013; 

Zakroff et al. 2019) and compiles these data with three additional years (2014 - 2016) of 
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experimentation with D. pealeii eggs reared under chronic acidification to examine these 

variations in sensitivity observed on seasonal and interannual scales. Data from all years are 

compiled and presented to examine the range and variability of positive and negative responses 

with respect to the experimental and natural (observed) environmental conditions. Using 

response ratios, a technique primarily used in meta-analyses, we focus on responses at one pCO2 

treatment (2200 ppm) within four metrics (dorsal mantle length, hatching time, internal yolk 

volume, and hatching success), all measured within most experiments, to examine variability 

across years and within the breeding season. Additionally, we report observations of seasonal 

shifts in the control response/baseline state of the embyros and paralarvae that occur independent 

of rearing conditions. We tie these observations to parental preconditioning by using local 

temperatures as a proxy for broad environmental variability. We also discuss the physiological 

relationships between metrics and their observed response variability and describe what 

characterizes an acidification-sensitive versus resistant clutch of developing eggs for this squid. 

 

Materials and Methods 

 

Summary of Experimental System 

 Data analyzed here are all from experiments performed at the Environmental Systems 

Laboratory (ESL) of the Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 

USA between the months of May and October over several years (2011, 2013 - 2016), as 

summarized in Table 1. A concise description of the experiments will be provided here with 

notable differences highlighted. Detailed methods for years with published data can be found in 

their corresponding citations (Table 1). 

 In brief, adult longfin squid, in the best condition possible after being trawled from 

Vineyard Sound, were acquired from the Marine Biological Laboratory Marine Resources Center 

and transported to the ESL. Squid were housed (in different sex ratios depending on year/study; 

2016 notably only used individual females) in flow-through rounds tanks (120 cm diameter, 70 

cm depth) that were maintained with sand-filtered, temperature-controlled water (20 ºC in 2011, 

reduced to 15 ºC from 2013-2016 to reduce metabolic stress and damage through infighting; 

Salinity ~32 psu, pHnbs ~7.96) pumped directly from Vineyard Sound. Egg capsules were 

typically laid in these tanks 2-3 days after transport. D. pealeii deposits eggs in mucosal 
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capsules, 50-300 eggs per capsule, which are strung together and bound to benthic substrate or 

structure (Jacobson 2005). After being laid, eggs capsules were randomly sorted into the 

treatment cups of the acidification system to initiate a trial (2 per cup in 2011, 2013 - 2015; 1 per 

cup in 2016). 

 Experimental cups (3 - 4 per treatment) were maintained in a 20 ºC (average temperature 

for Vineyard Sound from May - October, NOAA Station BZBM3) water bath. An additional cup 

without egg capsules served as a water-chemistry control. Egg capsules were transferred directly 

to this temperature in 2011, 2013 - 2015 and the May 13 trial of 2016, but were started at 15 ºC 

and acclimated 1 ºC per two hours in the remaining trials of 2016. Vineyard Sound seawater 

(UV-sterilized and 10 µm filtered from 2013 onward) was warmed/chilled to 20 ºC prior to 

entering a header tank in the egg capsule culture room. The seawater was then apportioned to ‘H’ 

shaped PVC equilibration chambers, within which CO2 gas mixtures were vigorously bubbled 

(Figure 1B). Early experiments (2011 and Jul 3 trial of 2013) used ambient facility water, 

bubbled with ambient air, as the control; however, ESL water is slightly acidified compared to its 

source in Vineyard Sound (~550 ppm compared to 400 ppm at source). The system was outfitted 

with additional equilibration chambers during the Jul 11 trial of 2013, which has no control or 

ambient treatment, but a low treatment (850 ppm; see assumptions below). Equipment necessary 

to obtain a 400 ppm control was installed for the Aug 7 trial of 2013 and used throughout the 

remaining experiments.  

Treatment seawater entered a PVC manifold and then was fed via tubing to the 

experimental cups (~20 L day-1
 flow per cup). Cups were bubbled with treatment gas mixtures, 

with the bubbler positioned in front of the mesh outflow window to push hatched paralarvae 

away from the outflow current. Seawater chemistry for all cups was monitored by regular (every 

3 days) measurement pHnbs, while more robust sampling and measurement for salinity, 

alkalinity, and spectrophotometric pHt was performed every seven days on control cups during 

the trials. Water bath temperature and room lighting (14:10 light:dark photoperiod) were 

monitored with data loggers at 15 minute intervals (HOBO pendant model UA-004-64, Onset 

Data Loggers, Bourne, Massachusetts, USA). Seawater concentrations were then calculated with 

CO2SYS (Pierrot, Lewis, & Wallace, 2006; Table 1).  

 

Summary of Metrics 
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 Eggs in the acidification culture system developed for ~14 days at 20 ºC at low pCO2 

treatments. Cups were monitored daily for hatching. Once hatching began, paralarvae were 

removed from cups, counted, and subsampled for a range of morphological, physiological, and 

behavioral measurements; not all measures were performed in all trials or all years. This 

manuscript focuses on four metrics measured across most of the experiments performed: Dorsal 

mantle length (DML) of hatchling paralarvae anesthetized in 7.5% w/v MgCl2 mixed with equal 

part seawater and photographed under dissecting scope (Figure 1A); Hatching time (HT), 

reported here as the time to 50% hatching, calculated from counts of paralarvae transformed into 

curves of cumulative percent hatching over time for each cup/treatment (Figure 1B); Yolk sac 

volume (YV) measured in a subsample of anesthetized and formalin fixed paralarvae stained 

with oil red O and calculated from dissecting scope photographs using the methods of Vidal et 

al. (2002; Figure 1C); Hatching success (HS), which was determined by dissecting egg capsules 

post-hatch, counting the remaining embryos, and using that number to produce a percentage of 

hatched to total eggs (Figure 1D). YV and HS were added as metrics in 2013, and so were not 

measured in 2011. Only DML was measured in the May 22 trial of 2015, and all but YV 

measured in the Jun 6 trial of 2015. 

 

Summary of Experiments  

The experiments performed in 2011 used just ambient and 2200 ppm treatments to look 

for an acidification response (Kaplan et al. 2013). In 2013, a range of treatments was chosen as 

part of determining the threshold dose response of squid eggs to acidification, and the set of 

metrics examined was expanded (Zakroff et al. 2018, 2019). 2014 was intended to be a set of 

consistent replicates focused around the threshold(s) uncovered in 2013. Following the 

unexpected resilience in 2014, 2015 experiments initially repeated 2014 treatments as part of a 

rapid assessment of responses for the year and then were increased above 2200 as part of 

determining a new positive control (data not discussed here). Data from 2016 comes from 

experiments performed in a multifactor design with warming included as an additional stressor; 

data is from the 20 ºC temperature controls from those trials (Chapter 5 of this dissertation).  

Treatments used in each trial of each year are reported in Table 1. All experiments 

included a low/ambient/control pCO2 and 2200 ppm, a value originally expected to be a 

relatively extreme positive control despite its occurrence on short times scales in nearshore and 
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estuarine systems (Baumann et al. 2015; Gledhill et al. 2015), which serve as the focus of this 

manuscript. Other treatments are used to illustrate trends in metrics over a range of acidification, 

but do not enter these analyses beyond that. 

 

Response Ratios 

 Data are primarily presented here as log-transformed response ratios (RR), a measure of 

effect size often used in ocean acidification meta-analyses (Kroeker et al. 2010; Harvey et al. 

2013; Cattano et al. 2018). Baumann et al., however, used response ratios as a means of 

quantifying and resolving trends in acidification sensitivity in a single, robustly and serially 

studied species of fish (2018). Here, we similarly use this measure in a single species, which has 

been robustly and serially experimented upon. In this case, we examine effects of acidification in 

a cephalopod, using this metric to examine shifts in sensitivity on large temporal scales, and, 

further, compare responses between metrics to examine physiological relationships and 

hypothesize about potential mechanisms of resistance. The means at 2200 ppm and the lowest 

pCO2 treatment (typically 400 ppm) for each metric in each trial were used to calculate the 

response ratio, e.g., RR = ln(DML2200) - ln(DMLLow). Mean RR’s and 95% confidence intervals 

were calculated for each year (using a bias-corrected accelerated bootstrap; bootstrap in arch 

4.8.1; ARCH for Python, https://pypi.org/project/arch/). Acidification effects are considered 

significant if the 95% confidence interval does not include zero. 

 

Statistics 

 Calculation of response ratios, confidence intervals, and all other statistical analyses were 

performed in Python (version 3.5.5, Python Software Foundation) within a Jupyter Notebook 

(Project Jupyter). Raw data was visually assessed for normality through quantile plots and 

histograms (yolk volume data was normalized by log transformation). Normally distributed data 

(DML, YV, and HT) were then assessed in Type II ANOVAs for shifts in mean as a result of 

year, trial (nested within year), pCO2, and their interactions. Trends in data are described with 

linear regressions (LR) with the goodness of fit (R2) and p values listed. Higher order (> 2nd 

degree) polynomial trend lines are used as visual aids and are not presented to demonstrate 

statistical power. Correlations between regressions were assessed with Pearson’s correlation 

coefficient by comparing values from curves at the same set of 200 points (one per day over the 
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time period examined). Response ratios for all metrics were scaled and incorporated into a 

principle components analysis to visually assess differences between years and how metrics and 

responses drove the separation/grouping of data. 

 

Assumptions 

Early trials of 2011 and 2013 using the ESL ambient pCO2 level (~550 ppm) as a control, 

and the Jul 11 trial of 2013, which has a lowest pCO2 of 850 ppm, are included as low/control 

treatments in this analysis. It is assumed to be a reasonable choice on the basis that both response 

intensities between 2200 ppm and these levels are of similar magnitudes to those at 400 ppm 

within these sensitive years and Zakroff et al. (2019) found acidification impacts did not 

observably emerge until around 1300 ppm in 2013. Further, stable equilibrations in the flow 

through system proved challenging at higher input CO2 concentrations, possibly owing to 

fluctuations in alkalinity. Calculated equilibrations are reported in Table 1, but are reported and 

referred to by the concentration of the input gas mixture, 2200 ppm, for concision and clarity. 

While there is some variation from this mark between trials and years, it is assumed to be 

representative of a substantial amount of acidification across experiments. 

 

Results 

  Trends with increasing acidification varied from year to year across metrics, with 

significant regressions in 2013 and 2016 for decrease in DML and increase in HT (Figure 2). The 

same trends neared significance in 2011 (Figure 2). Despite clear shifts in the response intensity 

of DML across years, the interaction between year and pCO2 was not significant for this metric 

(p > 0.05; Table 2). Both pCO2 alone and trial, nested within year, were significant influences on 

the DML dataset compiled across years (p < 0.05; Table 2). The variance of DML increased 

slightly with acidification in 2011, increased significantly in 2013, and decrease slightly in all 

subsequent years of experimentation. Time to 50% hatching was most strongly influenced by the 

interaction between year and pCO2 (ω2 = 0.735), although interactions with trial were also 

influential on this metric (Table 2). Hatching time consistently increased with acidification in all 

years except 2014. Yolk data were most strongly impacted by the interaction of year with pCO2 

treatments (ω2 = 0.981; Table 2). Yolk volume slightly decreased with acidification, nearly 

significantly in 2015, across years except in 2014, which showed no trend (Figure 2). No 
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consistent trends in yolk volume variance were observed across years. Hatching success was 

always fairly consistently high across acidification in all years, though 2015 is notable for its 

slightly improved hatches at higher acidification (Figure 2). 

 Response ratios for 2200 ppm CO2 compiled by year more clearly demonstrate 

acidification sensitive years (Fig 3). 2011, 2013, and 2016 all showed significant decreases in 

dorsal mantle length and increases in hatching time (Fig 3). For both metrics, 2013 showed the 

greatest effect sizes: a 4.9% (3.9 - 6.2%) decrease in mantle length and a 9.3% (5.6 - 11.2%) 

increase in time to 50% hatching. 2014 showed a non-significant 1% (0 - 2.5%) increase in 

mantle length at 2200, while 2015 showed a similar near-zero decrease. Hatching time effect size 

was slightly reversed in 2014, with a 2% decrease (0 - 6.8%) in hatching time at 2200 ppm. Yolk 

volume response was negative in all years, but only showed a significant, 24.0% (24.0% - 

30.6%), decrease in 2015 (Figure 3). Hatching success was pretty consistently a near zero 

change, though showed a near significant, 5.0% (0 - 8.1%) increase in 2015 (Figure 3). Both in 

the condensed graph and using the trends imposed on the extended timeline, DML and HT 

responses appear to reflect each other on an annual scale (Figure 3). YV and HS also show some 

annual reflection in the condensed graph, but patterns appear more seasonally reflected when 

individual trials are plotted over time (Figure 3). 

 Baseline responses at the lowest pCO2 treatments changed over the breeding the season 

(Figure 4A). DML and YV both fit slightly parabolic curves, decreasing into the summer then 

slightly rebounding in fall. These curves strongly correlate to the curve for ambient sea surface 

temperatures parents experienced in Vineyard Sound (DML: r(200) = -0.93, p < 0.001; YV: 

r(200) = -0.98, p < 0.001). Baseline HT increased significantly over the season, following a 

linear trend that only weakly correlated to the ambient temperature curve (r(200) = -0.18, p = 

0.012). HS slightly, but very weakly decreased across the breeding season; since these data did 

not fit a regression well it was not compared to the temperature curve. 

 Relative effect size showed weak trends in all metrics across the breeding season (Fig 4B, 

C). DML and YV again were slightly parabolic, demonstrating greater negative responses at the 

tails of the breeding season (Figure 4B). YV in particular, showed a significant decrease in 

relative effect size toward the end of the breeding season (Figure 4C). HT was weakly linear, 

with hatching delay effect size increasing slightly with season; when response ratios were 

compiled into monthly bins, a significant increase in HT response ratio in the August and 
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September bin emerged (Figure 4C). HS showed only a weak decreasing trend with season, 

which may be driven by outlier responses. However, DML, HT, and HS all demonstrated larger 

confidence intervals in either the early season bin, late season bin or both, indicating that 

acidification response intensities vary more at the tails of the breeding season. 

 The principle components analysis did not demonstrate any obvious clustering of 

sensitive vs. resistant trials or years (Figure 5). Instead of clusters, the data split in a more 

lamellar way along the axes of the loadings. Years differentiate along the DML/HT axes, while 

trials vary within a year layer along the YV/HS axes (Figure 5). This pattern fits reasonably well 

outside of the particularly sensitive trial in 2016, which falls within the response area of the 2013 

data. 

 The patterns emergent in Figure 5 suggested pair-wise relationships between metrics: 

DML and HT on the scale of year, and YV and HS on the scale of season. Both pairings show 

significant inverse linear relationships when plotted against each other (Figure 6). Greater 

decreases of DML correlated with greater increases of HT, with all data points falling within that 

sector of the plot being from 2011, 2013, and 2016 (shaded box, Figure 6A). Trials that fall 

within this area also appear to typically have clutches with smaller baseline paralarvae. Greater 

decreases in yolk volume under acidification corresponded to increased hatching success, with 

trials falling in this sector coming from all years, but mainly from those where the low treatment 

paralarvae hatched with more remaining yolk (Figure 6B). 

 

Discussion 

 The responses of D. pealeii embryos and paralarvae to ocean acidification were strongly 

influenced by year and season, suggesting influences of both year class and parentage in the 

conference of sensitivity to offspring. While the raw data demonstrated trends that demarcated 

2011, 2013, and 2016 as years containing acidification sensitive clutches, use of response ratios 

allowed for a much more nuanced examination of temporal trends in metrics and relationships 

between metrics. A clear shift in OA sensitivities was observed in the response ratio data 

compiled by year (Figure 3). To our knowledge interannual variability in stress responses has not 

been described previously in cephalopods, yet such variation has been observed as part of 

abundance measurements and stock assessments (Yatsu et al. 2000; Pierce and Boyle 2003; Tian 

2009; Keyl et al. 2011) and has also been described in the plastic life history strategies of squid, 
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which may underlie shifts in population structure (Pecl et al. 2004a; Hoving et al. 2013). As a 

year class taxa, with a high fecundity, myopsid squids are expected to be quite plastic and 

adaptable in the face of environmental change (Pecl et al. 2004a; Pecl and Jackson 2008; Guerra 

et al. 2010; Rosa et al. 2014b; Doubleday et al. 2016). Part of this presumed plasticity stems 

from inherent variability in offspring size and state, which is thought to serve as a bet hedging 

strategy against environmental variability (Marshall et al. 2008; Crean and Marshall 2009).  

Acidification induced responses to DML appeared to vary primarily on annual scales, 

although response intensity varied across the breeding season (Figure 3). This link to year is 

reflected in the relationship of DML with HT (Figure 6A). Hypotheses for these responses in the 

2013 data, from potential metabolic suppression or greater spending of the energy budget in 

homeostasis are discussed in Zakroff et al. (2019). A potential hypothesis for shifting response 

intensities in DML is that greater responses occur in clutches with larger baseline paralarvae, i.e., 

they respond more strongly as they have farther to go before reaching their minimum viable size. 

Examining data compiled across several years, it appears the reverse, clutches that produce 

smaller paralarvae show greater acidification sensitivity, is instead the case (Figure 6A); 

although some effect of response intensity variation might be explained by changes to baseline 

paralarvae size within a sensitive year.    

The seasonal shifts in the baseline responses of the embryos and paralarvae, which were 

all reared at the same temperature (20 ºC) and low or atmospheric ambient (400 ppm) pCO2 

treatments, demonstrate the importance of having a solid characterization of the local system for 

a study species before interpreting experimental findings (Vargas et al. 2017). While a 

succession of size classes in the adult squid across the breeding season is widely accepted 

anecdotal knowledge in the Woods Hole scientific community (Arnold et al. 1974; Mesnil 1977; 

Macy III and Brodziak 2001), these shifts in hatchling paralarval size, yolk volume, and hatching 

time had not been previously described in this squid to our knowledge. In the cases of DML and 

YV, quality of paralarvae appears to decrease into summer and then slightly increase again at the 

end of the breeding season, while for HT, the hatching period appears to just increase over time 

(again, despite all eggs being reared at the same temperature; Figure 4A). This latter effect 

presumes some form of inherent shift in the rate of embryogenesis as a result of time of year, 

perhaps to counteract the increase in development rate as ambient temperatures increase into 

summer. However, this suggests that late breeding season eggs should be substantially delayed in 
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development compared to early season, potentially exposing them to increased fouling or 

predation.  

Seasonal shifts in paralarval size have been seen in the hatchlings of the southern 

calamari, Sepioteuthis australis, captured in situ, although demonstrating a different curve over 

the measured period (with peak sizes toward the middle of the sampling period; Steer et al. 2003) 

than the one found here. Further, this study showed that larger hatchlings of this species were 

more likely to successfully reach adulthood, indicating that paralarval size is related to likelihood 

of survival (Steer et al. 2003). Hatchling size is important for prey capture success during the 

critical period when paralarvae must transition from yolk reserves to hunting (Vidal et al. 2002a). 

This indicates, then, that survival of hatchlings from this breeding population likely follows a 

similar trend of decreasing across most of the season and then increasing slightly at its end, and 

suggests that smaller (OA impacted) paralarvae may have poorer survivorship rates.  

Here, YV is a measure of the remaining internal yolk upon hatching, not necessarily the 

initial input, particularly under acidification stress. A greater amount of remnant yolk in control 

treatments could be the result of greater initial maternal investment or could be caused by a 

reduced metabolic rate. Squid do not store lipids, so maternal investment is largely driven by the 

tradeoff between putting energy into the development of somatic vs. reproductive tissue during 

growth and the amount of energy captured through feeding prior to egg production (Steer et al. 

2004; Moltschaniwskyj and Pecl 2007). Steer et al. (2004) demonstrated that the fecundity and 

quality of dumpling squid, Euprymna tasmanica, eggs and the rate of embryonic mortality was 

significantly impacted by food intake, but not temperature. They posited that maternal 

investment of yolk, as it fuels embryogenesis, is key to the success of the embryos (Steer et al. 

2004). This suggests not only that hatchling paralarvae are less likely to survive as the breeding 

season progresses, due both to smaller sizes and reduced yolk, but also that the total proportion 

of paralarvae hatched may also follow this trend across the season. This seasonal shift in baseline 

YV could feed into the response of embryos to acidification, as seen in its relationship with HS, 

where acidification exposed embryos that consumed more yolk relative to low treatments 

showed a correspondingly greater proportion of embryos surviving to hatch (Figure 6B). This 

indicates that egg clutches with greater initial maternal investment are more likely to survive 

under acidification stress, which could indicate a greater survival potential in early season 

embryos in this system (Figure 4A). 



 135 

Seasonal trends in DML and YV correlated strongly with ambient temperatures (Figure 

4A). The relationship between increasing temperature and decreasing size in ectotherms is 

extremely well characterized (Atkinson 1994). As with other ectotherms, cephalopod growth 

rates increase with warming, resulting in smaller size at maturity (Leporati et al. 2007; Moreno et 

al. 2012; Hoving et al. 2013). Temperature has been shown to impact maternal reproductive 

output and hatching success in Octopus maya (Juárez et al. 2015). The trends seen here, 

however, are from a scenario where offspring are not being directly exposed to, but are still 

potentially seeing the effects of ambient temperatures. This could owe to conditioning of the 

eggs and sperm prior to capture or of the parents themselves (Marshall 2015; Bonduriansky and 

Crean 2018). Temperature has been shown to induce maternal effects, with the goal that 

offspring are conditioned to experience the same environment as the parent, a strategy that 

depends heavily on environmental predictability (Burgess and Marshall 2011). This temperature 

conditioning both pre- and post-embryonic development may in part explain the succession of 

size classes seen in Woods Hole, as smallest squids arrive in peak summer (Arnold et al. 1974; 

Mesnil 1977). 

Responses to acidification were strongest and most variable at the tails of the breeding 

season for several of the metrics examined here (Figure 4B, C). In particular, this was driven by 

greater sensitivity in the early trials of 2013 and the last trial of 2016. This suggests that rather 

than a consistent impact of time of year on embryo sensitivity, there is some shift in the state of 

the spawning population across the season, which can result in either end being sensitive or 

resistant. This stands in contrast to the differential sensitivities to acidification in warming 

described in the European market squid, Loligo vulgaris, which was due to the presence of 

separate and distinct spawning aggregations in winter and in summer (Rosa et al. 2014a). 

Notably, though, this study saw greater sensitivities in summer progeny, suggesting the potential 

for greater acidification sensitivity driven by increased temperature history in the parents (Rosa 

et al. 2014a).  

A population succession schema, based on the size class succession noted above, has 

been proposed for D. pealeii in the northwest Atlantic, but has never been robustly quantified or 

measured (Arnold et al. 1974; Mesnil 1977). In brief, this model proposes that squid comprising 

the spawning aggregation are primarily hatched in the summer/fall of two years prior at the 

beginning of the season (< 2 years old) and transition to squid hatched from the previous year 
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around July/August (< 1 year old; Mesnil 1977). There is likely a lot of mixing and variability in 

this schema, particularly as males and females respond to their environment, and thus mature, 

differently (Pecl et al. 2004a). It is important to note that the Mesnil (1977) model presents a 

scenario wherein these squid hatched 2 years prior are upwards of 20 months of age, however 

ages of D. pealeii (sampled broadly across the southern New England region across many years) 

estimated from statolith increments indicate the standing stock is typically 135 - 180 days old (4 

- 6 months), with maximum ages estimated of around 231 days (7.7 months; Macy III and 

Brodziak 2001). Southern calamari were thought to spawn in one large aggregation, but were 

shown to be a succession of microcohorts, where newly mature six month old squid were 

continually coming to maturity and joining the aggregation (Moltschaniwskyj and Pecl 2007). It 

is possible D. pealeii follows a similar model. There is also evidence showing that, despite 

offshore aggregation of D. pealeii over winter, there is some genetic stock separation 

geographically, which suggests these squid may return to hatching locations or migrate inshore 

in genetically related groups (Buresch et al. 2006). As such, overwintering environmental history 

may be relatively consistent among this population of squid, which could potentially serve as a 

proxy to assess and potentially discriminate year class effects in the acidification responses. 

Synthesizing this information with the observations reported here, we could begin to 

propose and test preliminary hypotheses about what may be driving shifts in acidification 

sensitivity on interannual scales. For the sake of investigation, we will consider the Mesnil 

(1977) model wherein the breeding aggregation of D. pealeii in Vineyard Sound within in any 

year is the result of a combination of squids hatched two and one year prior. Assuming that 

temperature serves as the most direct influence on parental condition and conferred sensitivity, 

we can presume that the environmental history of those squid can very broadly be characterized 

by the two-year average temperature anomaly for the previous two winters (Dec - Feb; Figure 3). 

These data are not necessarily available for locations where these squid aggregate in the deep 

waters of the continental shelf, but the regional impact for each year can be assessed from local 

data (NOAA buoy BZBM3, in this case). It should be clear that there is some potential error in 

this thought exercise, but keeping those assumptions in mind, we can plot metric response ratios 

against these two year average overwinter anomalies (Figure S1). Doing so resolves weak linear 

relationships between both DML and YV and overwintering temperatures (DML: R2 = 0.514, p 

= 0.173; YV: R2 = 0.591, p = 0.231). These data suggest the possibility that anomalously warm 
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winters result in greater reductions to mantle length under acidification and reduced yolk 

consumption (a potential indicator of less initial yolk and thus reduced hatching success).  

This conceptual model could also be taken a step further by accepting the assumptions of 

the proposed D. pealeii population structure: use two-year overwinter anomaly values for squid 

laid from May - July, and one-year for squid laid from August onward. Under this hypothesis, 

there is a significant correlation between overwintering temperature anomaly and mantle length 

response to acidification (R2 = 0.505, p = 0.001; Figure S2). In addition, there is a weak, but near 

significant decreasing trend in hatching success with increasing overwinter anomaly (R2 = 0.268, 

p = 0.058; Figure S2). Here again, our metrics demonstrate their paired inverse relationships 

(DML and HT, YV and HS), suggesting related physiological mechanisms in these responses. 

Overwinter temperature anomaly may be a proxy for a number of impacts to the squid 

population, such as metabolic stress or trophic cascades, but regardless, under this framework, 

parental conditioning due to environmental history results in differential sensitivities to 

acidification.  

This thought exercise partially illustrates the dearth of data still needed to resolve the 

mechanisms underlying these large-scale temporal shifts in squid offspring sensitivity to OA. 

Mechanisms for parental conditioning and epigenetic transfer are not well described in 

cephalopods, but have been outlined as a research goal (Albertin et al. 2012; Xavier et al. 2015). 

Key features such as the development of the germline have not yet been described (the closest 

relative in which it has is an oyster, Crassostrea gigas; Fabioux et al. 2004a, b). Molecular 

flexibility in cephalopods is becoming more established, with some work on DNA methylation 

work having been done in Octopus vulgaris and RNA-editing becoming a prominent and better 

understood feature of cephalopod adaptability (Albertin et al. 2015; Rosenthal 2015; Alon et al. 

2015; Liscovitch-Brauer et al. 2017; García-Fernández et al. 2017). Transgenerational responses 

are also challenging to study in cephalopods due to the challenging nature of their culture, but 

are potentially on the horizon with improvements to culture systems and the establishment of 

model cephalopods (Lee et al. 2009; Vidal et al. 2014). Future cephalopod stress response 

studies may also be served by linking in assessments of parentage, parental condition, and/or 

lipid content of the eggs (Buresch et al. 2001; Steer et al. 2004). 

This research uncovered novel patterns of interannual and seasonal variability in the 

response of D. pealeii eggs to ocean acidification, which appear to be driven by interactions of 
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parentage, year class, environmental history, and seasonal temperatures. Impacts seen in Kaplan 

et al. (2013) and Zakroff et al. (2019) were valid observations within the context of the sampled 

time period, but are not, even together, representative of the full potential for sensitivity and 

resistance in this organism. Only by running experiments with shared treatments over a longer 

period do we start to resolve patterns of variability and construct a platform from which to 

hypothesize about mechanisms underlying population response to acidification stress (Browman 

2016; Baumann et al. 2018). This work serves as a reminder that organisms are often much more 

dynamic than a single experiment can quantify and, hopefully, provides support for more 

replication and long-term studies in the future as we work to resolve organismal responses to 

global ocean change. 
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Table 1. Summary of squid egg ocean acidification experiments compiled in this study with abbreviated equilibrated pCO2 
data, written as mean (standard deviation), for treatments used in response ratios. Calculated seawater pCO2 values in 
Kaplan et al. 2013 are reported as an average for each treatment across trials, and error is not given. 

Year Trial 
(Lay Date) pCO2 Treatments (ppm) CO2SYS Calculated  

Lowest pCO2 (ppm) 
CO2SYS Calculated 

2200 ppm pCO2 (ppm) Publication/Chapter 

2011 
Jul 2 ESL Ambient, 2200 

626 2440 Kaplan et al. 2013 
Jul 12 ESL Ambient, 2200 

2013 
 

Jul 3 ESL Ambient, 1300, 2200 565.68 (43.90) 2199.56 (173.47) 
Zakroff et al. 2018, 

2019 
 

Chapters 2 & 3 

Jul 11 850, 1300, 2200 987.43 (20.30) 2380.50 (70.62) 

Aug 7 400, 1900, 2200 488.58 (10.50) 2130.17 (40.31) 

2014 
 

May 26 400, 1500, 1700, 2200 471.27 (28.31) 2001.40 (103.08) 

Zakroff et al. 2018 
 

Chapter 3 

Jul 2 400, 1000, 1600, 2200 439.52 (58.83) 1787.99 (282.04) 

Jul 18 400, 1000, 1600, 2200 439.87 (24.74) 2033.82 (136.79) 

Sep 6 400, 1000, 1600, 2200 418.25 (31.45) 1909.49 (148.80) 

2015 
 

May 22 400, 1000, 1600, 2200 454.10 (51.43) 1770.29 (97.62) 

Jun 6 400, 1000, 1600, 2200 408.61 (26.66) 1680.39 (79.07) 

Unpublished  
Jul 19 400, 2200, 3500, 4800 424.37 (40.05) 1716.99 (115.18) 

Jul 29 400, 2200, 3500, 4800 393.03 (37.62) 1857.39 (153.39) 

2016 

May 13 400, 2200, 3500 432.60 (15.40) 1907.51 (24.84) 

Jun 19 400, 2200, 3500 474.96 (17.70) 2005.07 (53.17) 

Chapter 5 Jul 28 400, 2200, 3500 426.05 (46.27) 1856.25 (138.93) 

Sep 14 400, 2200, 3500 387.25 (28.31) 1908.70 (88.79) 
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Table 2. Type II ANOVAs for normally distributed metrics. Yolk volume data was 
log-transformed for normalization. Significant p values (< 0.05) are bolded. 
Source SS df F P ω2 
Mantle Length      

Year 0.001 4 0.016 0.999 -0.001 

pCO2 0.830 9 5.155 <0.001 0.006 

Year : Trial 0.638 15 2.376 0.004 0.003 

Year : pCO2 -1.02*10-10 36 -1.58*10-10 1.000 -0.006 

Year : Trial : pCO2 0.841 135 0.348 0.706 -0.015 

Residual 105.4 5887    

Hatching Time      

Year -0.214 4 -0.187 1.000 -0.000 

pCO2 10.62 9 4.126 <0.001 0.011 

Year : Trial 31.86 15 7.427 <0.001 0.033 

Year : pCO2 718.9 36 69.83 <0.001 0.735 

Year : Trial : pCO2 189.6 135 4.911 <0.001 0.194 

Residual 27.74 97    

Yolk Sac Volume      

Year 3.399 3 3.527 0.029 0.000 

pCO2 -5.26*10-10 9 -1.82*10-10 1.000 -0.000 

Year : Trial -0.892 12 -0.231 1.000 -0.000 

Year : pCO2 7.578*104 27 8738 <0.001 0.981 

Year : Trial : pCO2 122.4 108 3.527 0.029 0.001 

Residual 1314 4092    
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Figure 1. Visual summary of metrics measured across acidification experiments. (A) Mantle 
Length. A typical paralarva anesthetized and photographed under a dissecting microscope. The 
yellow superimposed line measures the dorsal mantle length (DML). A 1 mm white scale bar is 
at the bottom of the image. (B) Hatching Time. The acidification and squid egg culture system, 
comprised here, in 2015, of two 20 ºC water baths (potential for two simultaneously run trials) 
each containing four pCO2 treatments (color tape marking on cups and PVC) with four cups per 
treatment (3 with egg capsules, one without). The white PVC towers are ‘H’ shaped equilibration 
chambers within which air stones rigorously bubbled flow-through seawater with gas mixtures; 
equilibrated seawater fed into the manifold at center right, from which drip lines (clear tubing) 
go to individual cups. The blue tubing comprises gas lines to equilibration chambers and cups. 
Squid eggs were cultured under flow-through, acidified water in this system until hatching, at 
which point paralarvae were counted and subsampled for morphometrics. (C) Yolk Sac Volume. 
A fixed squid paralarva stained with oil red O to measure yolk sac volume. Yellow lines indicate 
measurements of the length and width of the interior yolk stores. The anterior yolk sac (AYS) 
was modeled as either a cone or cylinder (cylinder, here), while the posterior yolk sac (PYS) was 
modeled as an ellipsoid. A 1 mm white scale bar is at the bottom of the image. (D) Hatching 
Success. A single egg capsule removed from the system after hatching had concluded, 
photographed prior to dissection for counting and categorical staging of remaining embryos 
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Figure 2. Trends in acidification response for all metrics across all years of experiments. Data 
are presented as differences from trial mean to account for shifting baseline size of paralarvae 
over the breeding season and allow for comparison of relative responses across trials within a 
year. Yolk volume data was log-transformed to normalize data; differences are not back-
transformed. Symbols represent means and bars show one standard deviation. Symbol shape and 
column title indicate year, while symbol shade indicates trial date, denoted by the date the eggs 
were laid (see legend at bottom left; earlier trials dark, later trials light). Lines represent linear 
regressions, with R2 and p value reported at the top of each graph. Significant p values (α = 0.05) 
are marked with an asterisk 
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Figure 3. Log-transformed response ratios for each metric. Data are presented at left as mean 
(symbol) and 95% confidence interval (bar) for each year. The extended graphs to the right 
denote the response ratio for each individual trial (symbol). The blue curves are polynomial 
regressions, to act as visual aids for comparing trends; they are not intended to demonstrate 
statistical power. The gray line graph depicts the sea surface temperature anomaly (ºC) for 
Vineyard Sound over the depicted period (data from NOAA buoy BZBM3) 
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Figure 4. (A) Relative change in baseline (lowest pCO2 value for the trial) response for each 
metric in the embryos/paralarvae over the breeding season. Data are presented as difference from 
their year’s mean to normalize for differences across years and focus on changes across the 
breeding season. Symbols represent mean differences. Error is not shown for visual clarity. 
Shapes correspond to year, but are not shaded by trial, as the x-axis resolves trial order and lay 
date. Black curves are the best-fit (by R2, presented in plot) regressions, with corresponding p 
values presented. Significant p values (α = 0.05) are marked with an asterisk. The gray curve is 
the sea surface temperature for Vineyard Sound, MA, over the squid breeding season, averaged 
across the years of study (2011-2016). (B) Relative change in log-transformed response ratio at 
2200 ppm over the breeding season. Data are the differences in log-transformed response ratio 
for each trial from the mean of all response ratios for that trial’s year, to normalize for difference 
across years and focus on seasonal trends. Symbols, curves, and related statistics are as in (A). 
(C) Relative response data from (B) binned by trial months into early season (May and June), 
mid season (July), and late season (August and September) bins. Symbols represent means and 
bars represent 95% confidence interval. Lines are linear regressions with corresponding fit and p 
value presented in plot 
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Figure 5. Principle component’s analysis using log-transformed response ratios for each metric 
(for only those trials where all four metrics were measured). Symbols represent principal 
component value along the first and second components, while shape and color represent year. 
Axes of variable contribution are imposed to show how metrics (DML: Mantle Length; HT: 
Hatching Time; YV: Yolk Volume; HS: Hatching Success) influence spread along the PCA axes 
of variation 
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Figure 6. Scatterplots comparing log-transformed response ratio for each trial between metric 
pairs: (A) Dorsal mantle length vs. hatching time; (B) Hatching success vs. yolk sac volume. In 
both plots, symbols represent response ratio values for each trial, with the shape of symbol 
representing the year. Color represents binned values of (A) dorsal mantle length and (B) yolk 
volume measured in paralarvae from the lowest pCO2 treatment from each trial. Gray boxes are 
drawn for regions of interest responses: decreased DML and increased HT for sensitive years in 
(A), decreased yolk volume and increased hatching success in (B). Linear regressions of the data 
are presented in both plots with corresponding fit and p values presented in the bottom left 
corner. Significant p values (α = 0.05) are marked with an asterisk 
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Chapter 5 
 
Antagonistic interactions and clutch-dependent sensitivity induce 
variable responses to ocean acidification and warming in squid 
(Doryteuthis pealeii) embryos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is a pre-print of a submitted manuscript, authored by Zakroff, CJ and Mooney, TA, to a special issue of 
Frontiers in Physiology: Invertebrate Physiology: Cephalopod Research Across Scales - Molecules to Ecosystems. 
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Abstract 

Ocean acidification (OA) and warming seas are significant concerns for coastal systems and 

species. The Atlantic longfin squid, Doryteuthis pealeii, a keystone of the Northwest Atlantic 

trophic web, has demonstrated impacts under high chronic exposure to acidification (2200 ppm), 

but the combined effects of OA and warming have not been explored in this species. In this 

study, D. pealeii egg capsules were reared under a combination of acidification levels (400, 

2200, & 3500 ppm) and temperatures (20 & 27 ºC). Hatchlings were measured for a range of 

metrics (mantle length, yolk volume, malformation, and hatching success) in three trials over the 

2016 breeding season (May - Oct). Although notable resistance to stressors was seen, 

highlighting variability within and between clutches, reduced mantle lengths and malformation 

of the embryos occurred at the highest OA exposure. Surprisingly, increased temperatures did 

not appear to exacerbate OA impacts, although responses were variable. Rather, high OA-

exposed hatchlings from the warmer conditions often showed reduced impacts compared to those 

reared in ambient temperatures. This may be due to the increased developmental rate and 

subsequently reduced OA exposure time of embryos in the higher temperature treatment. These 

results indicate a substantive potential plasticity to multiple stressors during the embryonic 

development of this species of squid, but do not predict how this species would fare under these 

future ocean scenarios. 
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Introduction 

 Coastal ecosystems are seeing levels of acidification and warming today that are not 

predicted for the open ocean for hundreds of years (Pachauri and Meyer 2014). Ocean 

acidification (OA) can be enhanced in coastal regions due to increased pH variability from 

freshwater influx, urbanization, and pollution (Gledhill et al. 2015). Rapid coastal warming, 

particularly in marine hotspots like the northwest Atlantic and the Gulf of Maine region, is 

already causing substantive impacts to vital marine services and valuable fisheries (Hobday and 

Pecl 2014; Pershing et al. 2015; Saba et al. 2016). The complexity of this scenario is further 

compounded by the potential for interactive effects, whether additive, synergistic, or 

antagonistic, between these stressors for a range of potentially sensitive organisms and processes 

(Crain et al. 2008; Kroeker et al. 2013; Breitburg et al. 2015). Further, it is becoming clear that 

while data on global change is limited and generalizations are to some degree necessary, many 

organismal responses to multistressor scenarios are context-specific to population and/or region 

(Kroeker et al. 2017). Life stage-specific responses, for example, particularly for early 

development and dispersal where sensitivities are often thought to be highest, are foundational to 

understanding how populations may be impacted under multistressor scenarios (Byrne 2011; 

Haigh et al. 2015). 

 Coastal squids, the myopsid squids, are a fundamental component of shelf and nearshore 

food webs, and the longfin inshore squid, Doryteuthis pealeii, takes this place along the 

northwest Atlantic shelf system (Jacobson 2005). These squid also support a valuable fishery in 

New England, with landings of 11,000 mt in 2018 (NOAA 2019). These benthopelagic squid 

overwinter in the deeper, warmer waters of the shelf, but from May to October they aggregate in 

the shallow nearshore along the northwest Atlantic coastline to breed (Jacobson 2005). They lay 

their eggs in mucous-bound capsules, which are tied, often in masses, to benthic structures or the 

substrate (Shashar and Hanlon 2013). These eggs are stationary and must develop under 

whatever environmental conditions and variability they are exposed to. Observers have recorded 

eggs laid at depths of up to 50 m, in temperatures of 10 - 23 ºC, and salinities of 30-32 ppt, 

which contextualizes a presumed preferred laying habitat for this species (McMahon and 

Summers 1971; Jacobson 2005). Less is known about the preferences for pH of egg laying 

habitat for this species, but pHt calculated from shelf carbonate system profiles throughout their 

habitat range indicate a typical exposure range of 7.88-8.2 (600-250 ppm pCO2) during the 
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breeding season (Wang et al. 2013; Zakroff et al. 2019). Navarro et al. (2018) reported preferred 

egg laying habitat for the California market squid, Doryteuthis opalescens, as requiring pHt 

greater than 7.8 and O2 concentrations greater than 160 µmol with no apparent temperature 

limitation within the region. These static ranges do not account for the possible variability of 

temperature and carbonate system measures across temporal scales, as has been observed in this 

nearshore system, but at least provide a framework for ideal tolerance windows (Hong et al. 

2009; Connolly and Lentz 2014).  

 Developing embryos are often thought to be particularly sensitive to added stressors 

because they have limited available energy stores and are actively building the machinery needed 

to maintain homeostasis (Steer et al. 2004; Hu et al. 2010). This paradigm is challenged, 

however, by the inherent need for coastal embryos to cope with a highly variable environment 

and the potential plasticity of an embryo given active and adaptive developmental pathways 

(Hamdoun and Epel 2007). The question, then, becomes one of the limits of resilience and 

plasticity during embryonic development, and when human-driven global ocean change will 

push systems past those limits. 

 A growing body of research has examined the impacts of various stressors on the early 

life stages of myopsid squid. Egg capsules of D. opalescens reared under acidification (pH 7.57, 

pCO2 ~ 1440 ppm) and hypoxia (80 µM O2) showed delays to development, potential 

reductions in yolk volume, and decreases in statolith size relative to the embryo (Navarro et al. 

2016). Pimentel et al. (2014) exposed egg capsules of the European market squid, Loligo 

vulgaris, to warming (+2 ºC above regional seasonal averages) and described a 28-fold increase 

in oxygen consumption during embryogenesis, resulting in rapid depletion of available oxygen 

and causing metabolic suppression in late stage embryos. Further work with L. vulgaris embryos 

under +2 ºC warming, removing embryos from the egg capsule, resulted in metabolic 

suppression that encouraged premature hatching, with an increase in malformations observed 

among the hatched paralarvae (Rosa et al. 2012). This study also noted that warming-exposed 

paralarvae, as opposed to encapsulated embryos, activated a stress responses through heat shock 

proteins and antioxidant enzymes, suggesting the transition to planktonic life could come with 

the addition of a more robust stress response toolbox (Rosa et al. 2012; Robin et al. 2014). Few 

studies of warming and acidification have been performed with myopsid squid embryos. Rosa et 

al. (2014) exposed seasonal clutches of L. vulgaris embryos, removed from their egg capsules, to 



 157 

this combination (+2 ºC and pCO2 ~ 1650 ppm) of stressors, with summer embryos showing 

greater sensitivity through: decreased hatching success, increased premature hatching and 

abnormalities, and acidification-driven delays in development time and decreases in oxygen 

consumption relative to the increases caused by warming; the effects of removing developing 

animals from their embroyonic capsule were not determined.    

 Despite their ecological and economic importance as a myopsid squid, we know little 

regarding the interactive effects of OA and temperature on D. pealeii. Studies with this species 

have focused on acidification with early results mirroring those seen in the embryos of L. 

vulgaris and D. opalescens. Kaplan et al. (2013) reared D. pealeii egg capsules under low (550 

ppm) and high acidification (2200 ppm), observing development delays of about one day, a 

decrease in hatchling paralarvae dorsal mantle length, and decreased size and quality of the 

statoliths. Subsequently, Zakroff et al. (2019) expanded upon this preliminary work, exposing D. 

pealeii egg capsules to a range of pCO2 levels (from 400 to 2200 ppm), noting delays in 

development time, decreases in dorsal mantle length, and smaller, rougher statoliths that 

indicated a potential dose response threshold of 1300 ppm. In addition, this study highlighted 

notable variability in response intensity across the breeding season, demonstrating potentially 

different physiological strategies or responses to acidification stress within the egg capsules that 

expressed as different levels of sensitivity or resistance across the season (Zakroff et al. 2019). 

Further experiments, described in the behavioral studies in Zakroff et al. (2018), showed full 

years where embryos showed little to no response to acidification even up to the original 2200 

ppm level, suggesting greater levels of resilience than had been expected.  

In this study, we examined the extent of stress resistance and response variability in 

developing D. pealeii embryos by both increasing the acidification exposure (2200 ppm was 

considered an exposure level that would elicit a variable response, while 3500 ppm was used as a 

positive control) and by adding warming (+2 ºC above peak breeding season temperature for 

Vineyard Sound, MA, USA) as a potentially compounding stressor. Metrics analyzed are the 

same as those in Zakroff et al. (2019) except that proportions of malformation in the paralarvae 

were added based on their prevalence in work by Rosa et al. (2012; 2014) and statolith data is 

not included here to maintain concision in this manuscript. Further, unlike most of the previously 

cited work, which used wild collected or lab produced egg capsules most likely sourced from 
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multiple parents, egg capsule maternity was monitored, allowing for an examination of both 

between and within clutch variability of stress responses. 

 

Methods 

 The experiments described here were performed between May and October of 2016 at the 

Environmental Systems Laboratory (ESL) of the Woods Hole Oceanographic Institution, Woods 

Hole, Massachusetts, USA during peak breeding season of Doryteuthis pealeii for this region 

(Arnold et al. 1974; Jacobson 2005). Methods presented throughout are similar to those reported 

in detail in Zakroff et al. (2019), so will be reiterated in brief, but with differences noted.  

 

Squid capture and care 

Squid were acquired from the Marine Biological Laboratory (MBL) Marine Resources 

Center from trawls performed at 10-30 meters depth in Vineyard Sound at the Menemsha Bight 

of Martha’s Vineyard. Squid were either selected on ship or following offloading from the ship, 

but prior to deposition into holding aquaria at the MBL. Females of 15-25 cm dorsal mantle 

length that exhibited the least signs of stress (calmly resting at bottom or gently hovering with no 

damage or lesions to fins or skin) and had bright orange accessory nidamental glands were 

selected. Per trip, three adult females were hand-selected from the catch and each carefully 

placed into their own seawater filled cooler. The squid were then driven quickly and gently to the 

Environmental Systems Laboratory (ESL) at the Woods Hole Oceanographic Institution. Female 

squid were gently transferred from the coolers into one of three flow-through round tanks (120 

cm in diameter, 70 cm depth). Overall, time from capture to introduction to the tanks at the ESL 

was less than six hours from capture to tank.  

 Each female had her own tank with no males or other squid present. These tanks were fed 

by Vineyard Sound seawater that had been sand-filtered and cooled to 15 ºC (Salinity = 32  psu, 

pHnbs = 7.96). As noted in Zakroff et al. (2019), this temperature occurs during the breeding 

season (9.60 - 25.40 ºC from May - October 2016 from NOAA Station BZBM3), but is typically 

lower than the ambient mean (19.57 ºC from May - October 2016 from NOAA Station BZBM3), 

and was used to avoid increased damage and stress due to increased metabolism and activity 

under higher temperatures. Each aquarium had a ca. 2 cm thick layer of sand at the bottom, was 

continuously bubbled with air, and was covered throughout the day to avoid startling. Each tank 
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included false egg capsules, comprised of the inflated fingers of nitrile gloves, which had been 

seawater soaked and cleaned, zip-tied to a weight, to encourage egg-laying on a clean surface 

away from the substrate or air hose. Squid were fed once per day with local killifish, Fundulus 

heteroclitus. All female squid were fed and maintained in the ESL until they died following egg 

laying.  

New female squid were brought in for each trial. Female squid typically laid egg capsules 

after two days of capture, producing small mucous-bound mops of around 20-30 egg capsules, 

each containing 80-300 eggs. These female squid fertilized eggs with stored sperm from 

breeding that occurred prior to capture, so paternity was unknown (and potentially complex; 

Buresch et al. 2001), but maternity of all eggs was known. Tanks were checked for eggs each 

morning. If eggs were present, they were immediately hand-transferred into a clean 5-gallon 

bucket of 15 ºC, filtered seawater and taken to the room containing the egg culturing system. 

Only egg capsules of high quality (orange-tinted, thin, and oblong fingers with no notable air 

pockets or other damages) were selected and randomly hand sorted into the experimental system 

to initiate a trial (described below). 

 

Squid egg culture system: acidification and warming 

 Details of the culture and acidification system are the same as those reported in Zakroff et 

al. (2019). In brief, 15 ºC, 10 µm filtered, and UV-treated Vineyard Sound water was fed into an 

air-bubbled header tank, which gravity-fed several H-shaped PVC equilibration chambers that 

each contained four airstones (two per leg) bubbling with gas mixtures (400, 2200, and 3500 

ppm CO2) for the three acidification treatment lines. Treatment gases were not tested with a CO2  

analyzer as they were in Zakroff et al. (2019) because treatments exceeded the range of the 

meter. Water in the ESL increases in pCO2 compared to environmental ambient, from 400 ppm 

to about 550 ppm, so the water in the 400 ppm control was first degassed with N2 in one H-

chamber and then re-equilibrated with ambient air in two subsequent chambers. Given the 

several stages of holding and filtration input water goes through as it enters both the ESL and the 

acidification system, it is presumed that it is not subject to small-scale environmental variability 

due to mixing over time. No such variability was noted in temperature, salinity, or pH, but 

moderate variability in alkalinity was observed within and between trials (Table 1).  
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Acidified water left the equilibration chambers and entered PVC manifolds and was 

carried by drip lines to the individual experimental culture cups (pre-soaked, 1-liter PET 

containers, Solo Foodservice, Lake Forest, IL; 5 cups per treatment * 3 treatments per water bath 

= 15 cups per water bath). Each cup was sealed with a lid through which a drip line was fed to 

the bottom of the cup. A bubbling line of the appropriate gas concentration was also fed through 

the lid to about half way up the cup and aligned underneath the outflow window, so as to not 

disturb the egg capsule during development, but push hatched paralarvae away from the outflow 

screen. Water outflowed through a 5 µm mesh window in the treatment cups into the 

surrounding water bath, which then outflowed to the drain.  

Each water bath was maintained at 15 ºC by an aquarium chiller (Oceanic Aquarium 

Chiller 1/10hp, Oceanic Systems, Walnut Creek, California, USA) and heaters (JÄGER 3603, 

EHEIM GmbH and Co., Deizisau, DE) to match the maternal holding tanks until introduction of 

eggs for a trial. Although in Zakroff et al. (2019) temperature acclimation between holding tanks 

and experimental tanks was not performed, as transfer from 15 to 20 ºC showed no impact to the 

eggs, the shock from 15 to 27 ºC was highly impactful to egg capsule survival in preliminary 

experiments and so methods were changed to acclimate eggs slowly to temperature. Upon 

introduction of eggs, water baths were increased in temperature 1 degree every 2 hours until 

desired treatments temperatures were reached: 20 ºC, the average seasonal temperature, and 27 

ºC, two degrees above peak temperature (25 ºC) in Vineyard Sound from May - October. At least 

two water baths were run per trial, although the Jun 18 and Jul 28 trials each had a third 

temperature treatment (25 ºC and 30 ºC respectively) not reported here. Water bath temperatures 

were rotated between the Jun 19 and Jul 28 trials (Table 1). Each water bath was monitored with 

a HOBO data logger (HOBO pendant model UA-004-64, Onset Data Loggers, Bourne, 

Massachusetts, USA), which recorded temperature and ambient light every 15 minutes. The 

culture room used ceiling mounted fluorescent lighting, which was set to a 14:10 light:dark 

photoperiod (broadly that of the natural system during this time). 

  

An experimental trial: egg rearing and monitoring 

 Trials were initiated by the presence of eggs in the maternal holding tanks and are 

demarcated by lay date (Jun 19, Jul 28, and Sep 14). Egg capsules were randomly sorted by hand 

into four out of the five cups in each treatment (with the last cup acting as an abiotic control for 
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monitoring of seawater chemistry). A full trial therefore was comprised of 12 egg capsules per 

water bath, requiring 24 capsules for two baths or 36 for three. This “full” number of egg 

capsules was not always reached in each trial, so egg capsules were sorted to prioritize each 

treatment having as many replicates as possible (see n’s in Table 1). Only the core treatments of 

acidification (400, 2200, and 3500 ppm) for acclimated temperatures (20 and 27 ºC) consistently 

repeated across all three trials are reported here. 

Following the introduction of eggs and temperature acclimation, water samples were 

taken from every cup for carbonate system measurements. These methods mirror exactly those 

described in Zakroff et al. (2019) except that salinity was no longer taken with bottle samples 

and was instead measured using a salinity probe (Orion Star™ A329, Thermo Fisher Scientific 

Inc., Waltham, Massachusetts, USA). Data from spectrophotometric pHt, alkalinity, salinity, and 

temperature were input into CO2SYS (Pierrot et al. 2006), calculated with dissociation constants 

from Mehrbach et al. (1973) and sulfate constants from Dickson (1990), to produce pCO2 values 

for the seawater treatments (Table 1). These measurements were repeated on just the abiotic 

control cup every seven days after a trial’s initiation (twice more, usually). The pHnbs of all cups 

was measured every three days using a three-point standard calibrated pH probe (Orion Star™ 

A329, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA). These pH measurements 

were used primarily to monitor the stability of the pH in the system and ensure pH of the biotic 

cups did not vary notably from the abiotic controls.  

Egg capsules were left to develop undisturbed, with particular care taken during chemical 

monitoring, within the treatment system. Cups were checked daily to observe development and 

check for hatchlings. Under ambient pCO2, hatching typically initiated after 13-15 days in the 20 

ºC temperature control, and 8-10 days in the 27 ºC warming treatment. Each hatching day, all 

paralarvae were removed, counted, and subsampled for the various measurements described 

below. All paralarvae not preserved separately as part of a specific analysis were anesthetized 

with 7.5 % w/v MgCl2 mixed with equal part seawater and preserved in 70% ethanol in 

microcentrifuge tubes (0.65 mL and 1.7 mL Costar microcentrifuge tubes, Corning, Inc., 

Corning, New York, USA). No hatched squid remained in the cups across days, so all paralarvae 

included in the data are from their day of hatching (less than 1 day old). 

 

Metrics 
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Methods for measurements of dorsal mantle length (DML) and yolk sac volume (YV) 

were the same as those reported in Zakroff et al. (2019). In brief, anesthetized paralarvae (around 

10 per treatment for the first four days of hatching) were photographed under dissecting 

microscope (SteREO Discovery.V8, Carl Zeiss AG, Oberkochen, DE) and measured for DML 

using ImageJ (National Institutes of Health, Rockville, Maryland, USA; Figure 1A). Yolk sac 

volume was measured by anesthetizing, fixing, and staining paralarvae with oil red O following 

Gallager et al. (1986) and processing in ImageJ (Figure 1B) following the methods of Vidal et al. 

(2002). No premature paralarvae, those with external yolk remaining, were included in either the 

DML or YV datasets. 

 Hatching time and success likewise were as described in Zakroff et al. (2019). Hatchling 

paralarvae were counted and preserved until two days with no paralarvae found in the cup was 

reached. The egg capsule would then be removed, photographed, and dissected under dissecting 

scope. The remaining unhatched embryos were counted and categorized by simple visual 

discrimination of their stage of development (early: stages 1-16, middle: stages 17-26, and late: 

stages 27-30) adapted from Arnold et al. (1974). 

 

Malformation 

 On the largest day of hatching for each cup, a random subsample of around 50 paralarvae 

were taken and categorized for malformations (sample sizes varied depending on hatching 

dynamics, but only samples of 20 paralarvae or more were used in the analysis). The subsampled 

paralarvae were categorized as either Normal: showing no external yolk or malformations, 

Premature: showing external yolk remaining post-hatch, but no other notable malformations, 

Eye Bulge: showing an inflation of the membrane around the eyes, or Malformed Head, showing 

a misshapen, often pointed or oblong head, occasionally also with odd growths or a malformed 

mantle (Figure 5A). 

 

Statistics 

 Statistical analyses were run in a Jupyter Notebook (Project Jupyter) using Python 

(version 3.5.5, Python Software Foundation). Data were first tested for normality through visual 

assessment of quantile plots and histograms. Normally distributed data was then processed for 

group differences of means with multi-factor Type II ANOVAs. ANOVA data are presented 



 163 

with calculated effect sizes (ω2). A Tukey’s HSD posthoc test was used to determine which 

groups showed statistically significant (p < 0.05) differences. All data are reported as means ± 

one standard deviation, primarily for easier relation to their visualizations. The yolk volume data 

was normalized through log transform and then tested as above. It is reported as the back 

transformed mean and values ± one standard deviation. Nonparametric water quality data were 

analyzed with Kruskal-Wallis (KW) tests for difference between treatments. Nonparametric 

distributional data (hatching time curves, hatching success, and malformation) were analyzed 

using G-tests and are described for trends with linear regressions (LR), though the statistical 

power of these regressions is low due to low sample size (data for these metrics is per cup/egg 

capsule; maximum n = 4; Table 1). Parametric data are also often presented with a LR trend line, 

but these are not presented for statistical power; they serve as visual aids of trends. 

 

Assumptions 

Although each trial in this experiment contains eggs from a single, separate mother, since 

replicates of different mothers were not run at or very near the same time point, the effects of 

maternity and seasonality cannot be disentangled here. Maternal wet weight is noted in Table 1, 

but is not included in statistical models, as both the low sample size of mothers and the 

experimental design did not allow for it to be statistically distinguishable from trial effects.  

 Number of embryos within an egg capsule was noted in Zakroff et al. (2019) as a 

potentially impactful continuous variable on the state of hatched paralarvae, particularly for 

DML. As each cup contained only a single egg capsule in these experiments, any effects 

particular to the culture cup could not be disentangled from effects of egg capsule (or number of 

eggs per capsule). Number of eggs per capsule is discussed further in the Results. 

 On top of trial and cup effects, Zakroff et al. (2019) highlighted different responses to 

stressors across the days of the squid eggs hatching. While responses do change across hatching 

days here as well, digging into them is beyond the scope of this manuscript. Further, samples 

were taken over fewer days of hatching in this dataset (four days compared to six) making the 

dataset less robust for that type of analysis. Statistical models are presented here with the 

assumption that effects of hatching date are occurring, but can be ignored in order to investigate 

the overall impacts of the stressors. 
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Results 

Water quality 

 Water chemistry, particularly temperature, salinity, and pHt, was quite stable within and 

between experiments (Table 1). Seawater alkalinity varied the most in this system, which may 

have contributed to the variability of the pCO2 equilibrations. Within a treatment, pHt and 

calculated pCO2 were consistent across cups (KW, p > 0.05 for all treatments in all trials). Input 

gas mixtures were the same across trials, but resultant pCO2 equilibrations were variable between 

temperature treatments and across trials (Table 1). This variability was most likely due to the 

flow-through nature of the system and fluctuations in seawater input flow rates, although it may 

also represent some seawater variability that was note controlled for due to the natural sourcing 

of water from Vineyard Sound. Equilibrations at higher CO2 concentrations were much more 

challenging to maintain, resulting in seawater pCO2 values somewhat lower than the input gas 

concentrations (e.g. 2729.6 ppm for the 20 ºC X 3500 ppm treatment in the Jul 28 trial; Table 1). 

Despite these variations, data are reported across trials by the input gas concentrations for 

concision and clarity. However, it should be understood that these three concentrations, 400, 

2200, and 3500 ppm, are acting more as a negative control, variable response level, and positive 

control, respectively, across these experiments rather than a precise representation of response at 

that equilibrated seawater CO2 concentration. 

 

Dorsal mantle length 

 Dorsal mantle length of the paralarvae was impacted by both acidification and warming, 

but responses varied substantially between trials (Figure 1C). Control treatment (20 ºC X 400 

ppm) DML shifted across trials similar to the pattern reported in Zakroff et al. (2019). Notably, 

this pattern of seasonal DML shift appears unrelated to maternal weight: DML started around the 

typical parlarvae size of 1.8 mm (Jun 19, 44.5 g mother: 1.80 ± 0.11 mm), reached its minimum 

at the peak of summer (Jul 28, 56.5 g mother: 1.64 ± 0.13 mm), and then increased again (Sep 

14, 62.5 g mother: 1.74 ± 0.07 mm). Compiled, the data indicate that while interactions between 

all factors are significant, the individual factors of trial (ω2 = 0.257), pCO2 (ω2 = 0.119), and 

temperature (ω2 = 0.054) had the greatest effects on DML (Table 2). Statistical results of 

significant, relatively strong effects of acidification across trials are driven by the consistent 
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efficacy of the 3500 ppm positive control (Figure 1C). Assessments of a response to acidification 

are therefore focused on results from the 2200 ppm treatment. 

 Paralarvae from the Jun 19 trial were resistant to both stressors in terms of DML, only 

showing a notable decrease in size at the 3500 ppm (20 ºC: 1.63 ± 0.13 mm; 27 ºC: 1.64 ± 0.13 

mm) positive control acidification level (Figure 1C, Table 2). The 2200 ppm exposed paralarvae 

from the 27 ºC treatment (1.74 ± 0.11 mm) showed a slight decrease relative to their acidification 

control (1.81 ± 0.14 mm), but were not different from the 2200 ppm from the 20 ºC water bath 

(1.78 ± 0.12 mm; Figure 1C). Interactions between pCO2 and temperature were not significant in 

this trial (Table 1). 

 The Jul 28 trial showed a substantial response to temperature in the DML data 

(decreasing to 1.49 ± 0.10 mm at the 27 ºC X 400 ppm treatment), but no effect of acidification 

at the 2200 ppm level (Table 2, Figure 1C). The 3500 ppm positive control resulted in pCO2 

having the greatest effect size in this trial (ω2 = 0.132), but temperature was nearly as impactful 

(ω2 = 0.077), and these stressors appeared to interact slightly (ω2 = 0.029, Table 2). 

 Decreases in DML were seen in the Sep 14 trial with both acidification at the 2200 ppm 

treatment (20 ºC: 1.63 ± 0.07) and warming (27 ºC X 400 ppm: 1.53 ± 0.10; 27 ºC X 2200 ppm: 

1.49 ± 0.09; Figure 1C). Both acidification (ω2 = 0.165) and warming (ω2 = 0.252) had 

significant impacts on DML, as did their interaction (ω2 = 0.090), which was the largest of all the 

trials (Table 2). 

 Notably, warming did not simply transpose the acidification impact downward or 

exacerbate the slope/severity of acidification effects (Figure 1C). Rather, in trials where warming 

had a significant effect (Jul 28 and Sep 14), acidification impacts in the warming treatment were 

decreased (e.g. order of magnitude decrease in slope in Sep 14; 20 ºC LR: -6.97*10-5, 27 ºC LR: 

-8.10*10-6). In the compiled data, this results in a shift from a significant decrease with 

increasing acidification (20 ºC, LR, slope = -5.75*10-5, R2
 = 0.824, p < 0.001) to a slight 

decrease with increase acidification under warming (27 ºC, LR, slope = -2.27*10-5, R2
 = 0.406, p 

= 0.065; Figure 1C). 

 

Variance of dorsal mantle length data 

 Variance in DML showed broadly similar patterns between the Jun 19 and Sep 14 trials, 

with variance increasing with acidification at 20 ºC and decreasing with acidification at 27 ºC, 
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while the Jul 28 trial showed the opposite trends (Figure 1C). As a result, the compiled data 

show a weak increasing trend with acidification at 20 ºC (LR, slope = 1.19*10-6, R2
 = 0.445, p = 

0.057) that diminishes to roughly flat line at 27 ºC (LR, slope = 4.19*10-7, R2
 = 0.025, p = 0.682; 

Figure 1C). Individual paired t-tests of variance between treatments broadly showed no 

significant changes in DML variance (two-sample t(2), p > 0.05 for most treatment pairings 

within in each trial), except in the Sep 14, 20 ºC, 400 X 3500 test (two-sample t(2) = -2.96, p = 

0.042), although these results are likely impacted by low sample sizes (Table 1: number of egg 

capsules per treatment). 

 Distributions of dorsal mantle length data for each capsule within a treatment were 

relatively similar in shape, indicating consistency in responses among the egg capsules of a 

mother’s clutch (Sep 14: Figure 2; Jun 19: Figure S1; Jul 28, Figure S2). In the Sep 14 trial, 

where DML was sensitive to both stressors, egg capsule distribution demonstrated wider spread 

with decreased peaks under warming (Figure 2). At 20 ºC, acidification caused Sep 14 egg 

capsules to translated to decreased sizes at 2200 ppm, but distributions retained the same shape, 

before flattening, spreading, and become more varied at 3500 ppm (Figure 2). 

 

Yolk sac volume 

 Yolk volume responses appear to have been consistently affected (compiled data Type II 

ANOVA, p < 0.001 for all factors; Table 2) by both temperature (ω2 = 0.045) and pCO2 (ω2 = 

0.008), but the direction and intensity of those responses shift strongly between trials (ω2 = 

0.383, Figure 1C), particularly due to the interaction between trial and warming response (ω2 = 

0.153). Control treatment hatchling YV followed a similar pattern as DML across trials, 

decreasing to its minimum in the Jul 28 trial (20 ºC X 400 ppm: Jun 19, 0.030 mm3  [0.019 - 

0.048 mm3]; Jul 28, 0.017 mm3 [0.011 - 0.024 mm3]; Sep 14, 0.025 mm3  [0.018 - 0.037 mm3]).  

In the Jun 19 trial, warming appeared to have the most substantial effect (ω2 = 0.410; 

Table 2) on remaining paralarval yolk reserves, which increased under warming and increased 

further under combined warming and acidification (Figure 1C). Paralarvae reared at 3500 ppm in 

the 20 ºC water bath hatched with internal yolk volumes of 0.031 mm3 (0.021 - 0.046 mm3), 

similar to the control, while YV of those in the 27 ºC water bath were 0.240 mm3 (0.181 - 0.317 

mm3). 
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For the Jul 28 trial, while all factors were significant (Table 2), the interaction between 

warming and acidification had the greatest impact (ω2 = 0.045) on paralarval YV. Similar to the 

Jun 19 trial, acidification had no notable effect on YV in the 20 ºC water bath and warming 

increased (though by much less than in Jun 19) remaining YV at the 400 ppm treatment (0.027 

mm3 [0.014 - 0.052 mm3]). In contrast to Jun 19, however, YV in the 27 ºC water bath decreased 

with increasing acidification in this trial (3500 ppm, 0.019 mm3 [0.010 - 0.035 mm3]; Figure 1C). 

Paralarvae in the Sep 14 clutch showed weak, but significant, overall responses in YV, 

with temperature having the greatest effect (ω2 = 0.109; Table 2). Unlike the other trials, the Sep 

14 paralarvae showed a slight decrease in hatching YV with increasing acidification in the 20 ºC 

water bath (Figure 1C). Also unique to the Sep 14 trial, warming to 27 ºC resulted in paralarvae 

hatched with less YV at the 400 ppm treatment (0.016 mm3 [0.010 mm3- 0.024 mm3]). 

Increasing acidification resulted in slightly increased remnant YV in the 27 ºC water bath, 

similar to, but much weaker than, the Jun 19 data (Figure 1C). 

Patterns of yolk volume variance were inconsistent across trials and broadly showed no 

notable trends across acidification (two-sample t(2), p > 0.05 for most treatment pairings within 

in each trial). A significant decrease in yolk volume variance was seen in the 27 ºC water bath of 

the Jun 19 paralarvae between both the 400 ppm (1.044 ± 0.079 mm6; two-sample t(2) = 13.30, p 

< 0.001)  and 2200 ppm (0.935 ± 0.061 mm6; two-sample t(2) = 13.92, p = 0.005) treatments and 

the 3500 ppm sample (0.083 ± 0.007 mm6). 

 

Comparing DML & YV 

 In order to investigate clutch-specific patterns of physiological response to both 

acidification and warming stress, YV was plotted against DML for each egg capsule of each 

treatment (Figure 1D). The 27 ºC treatment of the Jun 19 showed the strongest trend (LR, slope 

= -8.60, R2
 = 0.865, p = 0.002; Figure 1D), with warming and acidification having resulted in 

smaller paralarvae with less consumed yolk before hatching. The Jul 28 eggs, conversely, 

showed a weak trend of smaller paralarvae hatching with more yolk consumed under the same 

conditions. The Sep 14 clutch demonstrates a much weaker trend under both acidification and 

warming, but of a similar response type to the Jun 19 clutch. This trial also differs by having the 

only positive slope of the 20 ºC exposures (LR, slope = 0.020), with paralarvae having hatched 

smaller and with less yolk under increased acidification (Figure 1D).  
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Egg number 

 Statistical models were run with number of eggs per capsule as an independent 

continuous covariate, but did not appear to have a significant effect on DML or YV in these 

experiments (multi-factor Type II ANOVA, p > 0.05 for all trials and in combined data) and so 

are not presented here. 

 

Hatching Time 

 Increased temperature increased the rate of embryonic development, resulting in 27 ºC 

egg capsules consistently hatching sooner (around 9 days) than their 20 ºC counterparts (around 

14-15 days) in all trials (Figure 3A). While time to hatching increased for the 20 ºC treatments 

across the breeding season, as was seen in Zakroff et al. 2019, this seasonal increase in hatching 

time disappears in the 27 ºC treatments (see y-intercepts in Figure 3B). Increasing acidification 

broadly delayed hatching by around 1.5 days, but these impacts were somewhat dampened by 

warming, although responses to combined stressors varied across trials (see slopes in Figure 3B). 

 In the Jun 19 eggs, time to 50% hatching was delayed in the 20 ºC treatment from 14.09 

± 0.40 days at 400 ppm to 14.79 ± 0.10 days at 2200 ppm and 15.13 ± 0.32 days at 3500 ppm 

(Figure 3B). Hatching distributions were significantly different between the 400 ppm and both 

increased acidification treatments (G(7), p << 0.001 for both pairs) at this temperature, but the 

2200 and 3500 ppm curves were not statistically distinct (G(6) = 4.699, p = 0.583). In the 27 ºC 

treatment, time to 50% hatching was delayed from 9.67 ± 0.08 days at 400 ppm and 9.83 ± 0.05 

days at 2200 ppm to 11.01 ± 0.32 days at 3500 ppm CO2. At this temperature, all hatching curves 

were different from each other (G(7), p << 0.001 for all pCO2 treatment pairs), but the 

differences between 400 and 2200 ppm were two orders of magnitude lower (G statistic of 

around 50 compared to around 1000) than pairings with the 3500 ppm treatment.  

 Delays in hatching occurred more consistently and progressively with increasing 

acidification in the Jul 28 trial (Figure 3). Within each temperature treatment, each hatching 

distribution at each pCO2 treatment was significantly different from each other (20ºC, G(6), p << 

0.001 & 27ºC, G(11), p << 0.001 for all pCO2 treatment pairs). Time to 50% hatching increased 

at 20 ºC from 15.04 ± 0.49 days at 400 ppm to 15.92 ± 0.27 days at 2200 ppm and 16.54 ± 0.36 
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days at 3500 ppm. At 27 ºC, 50% hatching was delayed from 9.81 ± 0.59 days, to 10.52 ± 0.70 

days, then to 11.22 ± 1.62 days with increasing acidification (Figure 3B). 

 While hatching was clearly delayed in the 20 ºC water bath of the Sep 14 trial, 

acidification responses were strongly dampened at 27 ºC (Figure 3). Distributions of cumulative 

percent hatching were statistically distinct in both the 20 ºC (G(6), p << 0.001 for all pCO2 

treatment pairs) and 27 ºC (G(11), p << 0.001 for all pCO2 treatment pairs) water baths, but the 

differences (as assessed by G statistics and p values) are an order of magnitude higher in the 20 

ºC samples. Time to 50% hatching had the greatest delay in the 20 ºC samples of the Sep 14 trial, 

increasing from 15.83 ± 0.06 days at 400 ppm to 17.87 ± 0.452 at 3500 ppm (Figure 3B). 

Contrastingly, this trial also had the smallest delay in its 27 ºC samples, increasing from 9.54 ± 

0.18 days to 10.04 ± 0.14 days. 

 

Hatching Success 

 Hatching success decreased both with acidification and warming, with increased 

acidification typically resulting more late stage losses, while warming resulted in more early to 

middle stage losses (Figure 4). Response patterns in hatching success were unique in each trial, 

as with previous metrics.  

In the Jul 19 trial, hatching was quite high in the 400 (98.9 ± 1.0 %) and 2200 ppm (92.7 

± 3.9 %) treatments of the 20 ºC and the 400 ppm at 27 ºC (96.1 ± 2.9 %). Distributions of staged 

failed embryos and hatched paralarvae were significantly different for all pCO2 treatment 

combinations within each temperature (G(3), p < 0.001 for all pCO2 treatment pairs) and for all 

pCO2 comparisons across temperatures (G(3), p < 0.001 for comparison of 2200 and 3500 ppm 

across temperatures) except at 400 ppm (G(3) = 5.313, p = 0.150; Table S1). The 2200 ppm at 27 

ºC sampled had a single egg capsule completely fail at the middle stages, which drove down over 

hatching success for the treatment (59.2 ± 42.2 %). The 3500 ppm treatments at both 

temperatures (20 ºC: 73.2 ± 10.3 %; 27 ºC: 84.1 ± 6.6 %) had decreased hatching due to losses at 

late stages.  

Egg capsules of the Jul 28 trial showed high hatching success across acidification 

treatments at 20 ºC (all above 90%; Table S1), but had substantive decreases in the 400 (34.0 ± 

31.9 %) and 3500 ppm (54.7 ± 36.3 %) treatments at 27 ºC. Embryos halted development in 

multiple egg capsules of the 400 ppm treatment at all stages, but mostly early, while late stage 
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losses drove the decrease in hatching success at 3500 ppm (Table S1). Hatching success 

distributions were all distinct for all treatments within this trial (G(3), p < 0.001 for almost all 

pCO2 and temperature treatment pairs; Table S1), though the 400 and 3500 ppm treatments at 20 

ºC were nearly the same due to the presence of slight late stage losses (G(3) = 10.77, p = 0.013). 

Hatching success was highest in the 400 (94.0 ± 5.0 %) and 2200 ppm (93.8 ± 2.8 %) 

treatments at 27 ºC in the Sep 14 data (Table S1), which showed very similar distributions with 

only slight early stage losses (G(3) = 3.524, p = 0.318). All other treatment combinations showed 

significant differences in hatching success distribution within this trial (G(3), p < 0.001; Table 

S1). The 3500 ppm treatment at 27 ºC had low hatching success (56.8 ± 40.7 %) driven by near 

complete early stage loss in a single capsule, as well as slight early stage losses in the other 

capsules. The 400 ppm treatment at 20 ºC had relatively high hatching success (85.1 ± 8.3 %), 

although lower compared to the 27 ºC due to high early stage losses. Increased acidification at 20 

ºC had much higher decreases in hatching success, however, due to large late stage losses in both 

the 2200 (57.8 ± 41.0 %) and 3500 ppm (74.2 ± 15.0 %) treatments. 

 

Malformation 

 The patterns of malformation were relatively consistent across trials, with increasing 

acidification producing greater proportions of premature and eye bulge paralarvae, while 

warming dampened the acidification impacts slightly and increased the proportion of malformed 

head paralarvae (Figure 5B). In all trials, proportionally less premature paralarvae were seen in 

the 3500 ppm treatment at 27 ºC than at 20 ºC (Table S2). Distributions of categorized paralarvae 

for each treatment combination compared across trials, showed significant shifts as a result of 

trial in the 20 ºC X 2200 ppm treatment and all 27 ºC treatments (G(6), p < 0.001 for listed 

treatments).  

 Paralarvae from the Jun 19 trial generally demonstrated the pattern described above, but 

with particularly notable increases in malformed head paralarvae in all acidification levels at 27 

ºC (Figure 5; Table S2). All distributions in all within temperature and within pCO2
 pairings in 

this trial significantly differed from each other (G(3), p < 0.01; Table S2). 

 In the Jul 28 trial, paralarvae showed broadly similar patterns of malformation across 

temperatures, with acidification impacts being slightly more prominent in the 20 ºC and 

temperature impacts being minimal (in part possibly driven by sample size shifts between 
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temperatures; Table S2). Although all within temperature comparisons of malformation 

distributions between pCO2 treatments were significant, those at 27 ºC were less different than 

those at 20 ºC (G(3), p ≤ 0.001; see exponents in Table S2). Notably, distributions of 

malformations between pCO2 treatments across temperatures were either comparatively weakly, 

in the case of 400 ppm (G(3) = 11.57, p = 0.009), or not significantly different, for 2200 (G(3) = 

4.485, p = 0.214) and 3500 ppm (G(3) = 0.338, p = 0.953), in this trial. 

 The Sep 14 paralarvae also demonstrated more prominent acidification impacts at 20 ºC 

that were slightly dampened with warming, which only showed a slight, but weak, increase in 

malformed head proportions (Figure 5). Distributions of malformations were significantly 

different between all pCO2 treatment pairs within temperatures (G(3), p < 0.001; Table S2) 

owing to increasing premature and eye bulge proportions with increasing acidification. 

Differences across temperatures, driven by the dampening and shifts described with warming 

above, were significant in the 400 ppm (G(3) = 16.32, p < 0.001) treatment and neared 

significance in the 2200 (G(3) = 6.622, p = 0.085) and 3500 ppm (G(3) = 6.829, p = 0.078) 

treatments. 

 

Discussion 

 These experiments demonstrated clutch-dependent sensitivity to high levels of combined 

acidification and warming stress in the egg capsules of D. pealeii across the 2016 breeding 

season. Embryos appear to be capable of developing normally, at least in terms of size, yolk 

consumption, and survival up to at least 2200 ppm CO2, a value which is not predicted in open 

ocean, no reduction of emissions scenarios until at least the year 2300 (Caldeira and Wickett 

2003). The consistent hatching delay, as well as the increased proportion of late stage loss and 

premature paralarvae observed, suggest that acidification may cause metabolic suppression, 

particularly late in development, as was described for L. vulgaris embryos under warming 

(Pimentel et al. 2012; Rosa et al. 2012). Metabolic suppression was long suggested as an 

expected impact of OA on squid because squid hemocyanins are very sensitive to pH, squid 

operate at the very peak of blood oxygen utilization, and the resultant Bohr shift would starve the 

animal of oxygen (Pörtner 1990, 1994; Fabry et al. 2008; Seibel 2016). While metabolic 

suppression was observed in jumbo squid, Dosidicus gigas, exposed to 1000 ppm CO2, more 

recent studies have demonstrated no metabolic impacts to adults of bigfin reef squid, 
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Sepioteuthis lessoniana, and pygmy reef squid, Idiosepius pygmaeus, as well as adults and 

juvenile D. gigas, and D. pealeii at equal or greater levels of acidification (Rosa and Seibel 2008; 

Hu et al. 2014; Birk et al. 2018; Spady et al. 2019). It is possible that metabolic sensitivity to 

acidification is life stage-dependent in cephalopods with juveniles and adults having the robust 

physiological machinery needed to manage under OA stress, while the gears of development 

may be slowed in embryos. Of particular interest, then, is the metabolic scope of the paralarvae 

under acidification, which are thought to be quite sensitive based on aquaculture studies (pH 

range of 8.1-8.4 for loliginid paralarvae), and the transition from paralarvae to juvenile in squid 

(Vidal et al. 2002b).  

Observed impacts of acidification to the squid suggest systems of pH and ionic/osmotic 

balance may be strained, particularly under the severe dosage of 3500 ppm. Zakroff et al. (2019) 

discussed potential mechanisms of acidification impact to DML and YV, in the context of a 

limited energy store and energy budget, suggesting that reductions in growth and yolk volume 

under hatching are a potential product of upregulation and increased activity of energetically-

costly proton secreting transporters in ion-transport epithelia (Hu et al. 2010, 2013). The 

increased proportion of paralarvae showing inflation of the membrane around the eyes under 

increased OA further suggests a breakdown in osmoregulatory controls, particularly given the 

prevalence of ionocytes in the epidermis of cephalopod embryos (Hu et al. 2011b). Though it is 

also plausible that this inflation is related to poorly known osmotic mechanisms that cause the 

swelling of the egg capsule during development (Hu and Tseng 2017).  

In sensitive clutches, warming strongly impacted development time, DML and YV, 

hatching success, and malformations, likely through an increase in metabolic and developmental 

rates. Warming of +2 ºC is a standard experimental choice given predicted scenarios under no 

emission reductions (Pachauri and Meyer 2014). 27 ºC (+2 ºC above peak for Vineyard Sound) 

is within the habitat window reported for D. pealeii juveniles and adults, but well above the 23 

ºC maximum reported for egg laying habitats (Jacobson 2005). Cephalopod eggs typically 

demonstrate curves wherein hatching success is quite high (>80%) within the preferred window 

and then drops off rapidly and precipitously above and below certain temperature thresholds 

(Cinti et al. 2004; Staaf et al. 2011; Zeidberg et al. 2011). This threshold was reported to be 

between 22 - 25 ºC in D. opalescens, but appears to be higher for D. pealeii (Zeidberg et al. 

2011). Loss of embryos under warming was primarily in early- and mid-stages of development, 
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suggesting, despite acclimation, a clear and immediate impact to physiology that could easily 

push embryos past their limits. Disruption of the developmental machinery by warming likely 

also explains the increased proportion of paralarvae with malformed heads and odd growths, as 

has been described in L. vulgaris (Rosa et al. 2012). 

Contrary to some of the observations of temperature and acidification compounding 

stress effects in L. vulgaris embryos and paralarvae, these stressors appear to act antagonistically 

for most of the factors we measured in the early life stages of D. pealeii (Rosa et al. 2014a). In 

part, this antagonism may be due to the much stronger effect size of warming in sensitive 

clutches. In the DML data, for example, warming may have driven embryos to their size floor, 

the minimum size viable for a paralarvae to hatch, and therefore no further decreases due to 

acidification could be observed. The two stressors counteract most clearly in hatching time, 

where warming increases oxygen consumption and developmental rate, while acidification 

causes developmental delay and potentially metabolic suppression (Pimentel et al. 2012; Rosa et 

al. 2014a; Navarro et al. 2016; Zakroff et al. 2019). In hatching success and malformation, the 

dampening of acidification impacts is likely driven by a reduction in acidification exposure time 

as a result of the drastic decrease in time to hatching. The data compiled here suggests that 

warming impacts D. pealeii eggs early in development with disruptions, like malformed bodies, 

potentially propagating to hatching if development doesn’t cease altogether. OA, conversely, 

appears to be a slow burn across development, compounding the buildup of CO2 and 

acidification that would naturally occur due to respiration and thereby causing greater impacts to 

late stage embryos (Gutowska and Melzner 2009; Long et al. 2016). 

 Each clutch of eggs (each trial) demonstrated a different set of responses to acidification 

and warming across most metrics, particularly DML and YV. As in Zakroff et al. (2019), the 

comparison of these metrics provides potential insight into the range of physiological coping 

responses available to D. pealeii embryos under multiple stressors (Figure 1D). In the Jun 19 

trial, eggs under warming and acidification were smaller in size with less consumed yolk, 

suggesting an overall metabolic suppression that resulted in a relatively resistant clutch. The Jul 

28 trial showed the reverse, with more yolk consumed in smaller paralarvae of the combined 

acidification and warming treatment, suggesting warming outpaced acidification, taxing embryos 

to consume more yolk. The Sep 14 clutch showed larger paralarvae with slightly more yolk in 

the control condition, indicating both acidification and warming taxed the energy budgets of 
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these developing embryos. Unfortunately, while it is possible to culture myopsid paralarvae in 

aquaria (Vidal et al. 2002b), it is a very challenging proposition for D. pealeii that we tried, but 

could not accomplish here. Thus, a question that remains is: given these differential responses to 

the same stressors between clutches, which strategy would produce the most viable paralarvae in 

a stressful ocean? 

There were two aspects of clutch variability highlighted in these experiments, the first of 

which is variability between clutches/mothers (which cannot be disentangled from seasonality 

here). Parental conditioning has been shown to impact sensitivities conferred to offspring in 

fishes and corals (Miller et al. 2012; Putnam and Gates 2015; Schunter et al. 2016, 2018). 

Murray et al. described seasonal pH conditioning of parents in a coastal fish, Menidia menidia, 

which resulted in differential pH sensitivity in offspring (Murray et al. 2014). In cephalopods, 

embryos from winter and summer cohorts of L. vulgaris were shown to respond very differently 

to acidification and warming stress, with summer cohorts being more sensitive (Rosa et al. 

2014a). Scientists, staff, and fisherman that work with D. pealeii at the various scientific 

institutions in Woods Hole, MA, USA anecdotally acknowledge the presence of cohorts within 

the breeding season, or at least a succession of size classes, but this shift has only roughly been 

described in the literature as a transition between an early two-year old cohort and the new one-

year old cohort (Arnold et al. 1974; Mesnil 1977). In Zakroff et al. (2019) sensitivity to 

acidification started strong and decreased as the season went on, while here, the earliest trial was 

the most resistant and the latest the most sensitive. This appears to indicate some form of change 

in parental conferred sensitivity across the 2013 and 2016 seasons from the early summer squid 

to the early autumn squid, although in opposite directions between these years, which may 

support the idea of shifting cohorts within the breeding season and suggests that it is parentage 

rather than seasonality that is driving offspring sensitivity. 

 The second form of egg clutch variability examined here is variability between the egg 

capsules of a single mother’s clutch. Even among egg capsules of a single female, squid 

parentage is a complex proposition since mating can occur with, and sperm can be stored from, 

multiple males (Buresch et al. 2006). Stress responses and statolith elemental composition have 

been observed to vary between egg capsules in D. opalescens (Navarro et al. 2014, 2016). Ikeda 

et al. noted variability within the paralarvae from a single S. lessoniana mother, indicating a 

range of mantle lengths correlated with statolith size and hatching time (1999). The results here 
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suggest that, for DML at least, each egg capsule results in a hatch of paralarvae with sizes 

approximating a normal distribution, but each egg capsule from an individual mother has about 

the same distribution (Figure 2). Under stress however, these distributions shift. Relatively light 

stress appears to simply shift the distributions, while heavier stressors cause flattening and 

spreading of these curves (Figure 2). It has been theorized that size variation among offspring 

acts as a kind of adaptation to unpredictable environments, with selection pressures (in this case 

increased environmental stress) acting upon both the mean and variance of an offspring 

distribution (Marshall et al. 2008).  

In cephalopods, paralarval size is, on a taxonomic level, known to correlate to egg size 

(Laptikhovsky et al. 2013). Squid do not retain lipid reserves, so maternal investment in 

reproduction is primarily driven by the allocation of resources between somatic vs. reproductive 

growth (Pecl and Moltschaniwskyj 2006). Energy for egg production is captured through recent 

feeding, so while successive clutches of eggs may degrade in quality as the state of the mother 

degrades, maternal input within a clutch may, as appears to be supported here by DML evidence, 

be relatively consistent across egg capsules (Steer et al. 2004). It is plausible then that the 

breakdown of similarities between egg capsules under stress could owe to differences in genetic 

background due to paternity, though this is purely speculative without much more robust 

experimentation.  

This study demonstrated that D. pealeii embryos and paralarvae reared under severe, 

chronic acidification and warming could show a range of responses from sensitive to resistant. 

These responses are driven by between clutch differences, which are likely representations of 

parentage, but may also be influenced by seasonality. Responses are also variable given the 

complexity of interacting and antagonistic physiological processes influenced by warming and 

acidification in this system. These experiments were limited in a number of key ways. As an in 

lab experiment, factors of flow, egg capsule density, and variability that occur in the natural 

system are not represented here. Variability of pH in natural systems is thought to decrease 

impacts in some organisms by reducing exposure time, which appears to be an important factor 

in acidification’s impact on D. pealeii eggs (Shaw et al. 2013). While a growing body of 

literature is beginning to suggest squid, at least embryos and adults (there is still a great deal left 

to understand with respect to paralarvae), may be fairly robust in the face of ocean acidification, 

these responses may be taxon-, population-, or region-specific making it difficult to generalize 
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(Kroeker et al. 2017; Birk et al. 2018; Spady et al. 2019). Warming, however, clearly places 

limits on D. pealeii embryonic development, but squid have the advantage of mobility in coping 

with that (Doubleday et al. 2016). A fecund, plastic, year class species, such as Doryteuthis 

pealeii, appears well suited to rapid adaptability under rapid global ocean change. It is important, 

therefore, to continue to describe the signs and understand the mechanisms of that adaptability, 

and to investigate its limits, in order to inform how we design experiments to diagnose sensitivity 

and adaptability in other marine taxa.  
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Table 2. Three-way Type II ANOVAs for dorsal mantle length and (log-transformed) yolk volume data, for each trial and 
compiled across trials. Significant p values (α = 0.05) in bold. ‘<<’ indicates a p-value with a negative exponent of 50 or greater. 
 Mantle Length Yolk Sac Volume 
Source SS df F P ω2 SS df F P ω2 
Jun 19           

Temp 0.011 1 0.728 0.394 -0.000 165.9 1 326.3 <<0.001 0.410 

pCO2 2.146 2 69.37 <0.001 0.217 18.52 2 18.21 <0.001 0.043 

Temp : pCO2 0.064 2 2.059 0.129 0.003 13.86 2 13.63 <0.001 0.032 

Residual 7.516 486    204.9 403    

Jul 28           

Temp 0.887 1 52.11 <0.001 0.077 1.780 1 9.091 0.002 0.020 

pCO2 1.514 2 44.46 <0.001 0.132 1.358 2 3.466 0.032 0.012 

Temp : pCO2 0.362 2 10.62 <0.001 0.029 3.942 2 10.06 <0.001 0.045 

Residual 8.460 497    71.87 367    

Sep 14           

Temp 2.203 1 256.4 <0.001 0.252 9.148 1 59.41 <0.001 0.109 

pCO2 1.453 2 84.52 <0.001 0.165 1.928 2 6.273 0.002 0.020 

Temp : pCO2 0.800 2 46.51 <0.001 0.090 3.341 2 10.87 <0.001 0.037 

Residual 4.237 493    68.25 444    

Compiled            

Trial 10.32 2 376.6 <<0.001 0.257 352.2 2 619.5 <<0.001 0.383 

Temperature 2.148 1 156.9 <0.001 0.054 41.59 1 146.3 <0.001 0.045 

pCO2 4.768 2 174.1 <<0.001 0.119 7.062 2 12.42 <0.001 0.008 

Trial : Temp 1.056 2 38.52 <0.001 0.026 140.2 2 246.7 <<0.001 0.153 

Trial : pCO2 0.408 4 7.443 <0.001 0.010 11.93 4 10.50 <0.001 0.013 

Temp : pCO2 0.782 2 28.54 <0.001 0.019 6.433 2 11.32 <0.001 0.007 
Trial : Temp 
: pCO2 

0.443 4 8.093 <0.001 0.011 14.71 4 12.94 <0.001 0.016 

Residual 20.21 1476    345.1 1214    
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Figure 1. Morphometrics measured on Doryteuthis pealeii paralarva through microscope 
imagery. (A) Dorsal mantle length (DML; the superimposed yellow line) of an anesthetized 
paralarvae. (B) Squid paralarvae were fixed and stained with oil red O for measurement of yolk 
sac volume. The length and width of both the anterior yolk sac (AYS), which was modeled as 
either a cone or cylinder (cone, in this case), and the posterior yolk sac (PYS), which was 
modeled as an ellipsoid were measured (superimposed yellow lines). Each image has a unique 1 
mm white scale bar at bottom left. (C) Dorsal mantle length, its variance, and yolk sac volume 
data from three experiments rearing squid eggs under acidification (in parts per million CO2; x-
axis) and warming (color; blue/dark = 20 ºC, red/light = 27 ºC). Yolk data was transformed to 
logarithmic scale for statistical analyses and has been back transformed for the depiction of trial 
data. The scale of the y-axis in the yolk data changes from the Jun 19 and Jul 28 trials because 
the Jun 19 paralarvae showed substantially more yolk than the Jul 28 and Sep 14 trials. Symbols 
represent trial, demarcated by dates eggs were laid (titles). The compiled plots show data from 
all trials normalized by subtracting the average value for a trial from its data; relative differences 
in yolk data have not been back transformed from the logarithmic scale. Symbols depict means 
with error bars of one standard deviation. Letters indicate statistical groups across acidification 
levels within a temperature treatment from a Tukey’s HSD. Asterisks indicate statistically 
significant differences between temperature treatments at the same acidification level. 
Regression lines are presented primarily as an aid to visualizing trends in the data and are not 
intended to indicate statistical power. (D) Response of individual egg capsules within a clutch to 
acidification and warming as indicated by comparing yolk volume (y-axis; note again scale shift 
from Jun 19 to Jul 28) with DML (x-axis). Shape indicates trial (also denoted by title). Color and 
symbols within a plot denote temperature treatments: blue/dark with circle/square/downward 
triangle = 20 ºC; red/light with hexagon/diamond/upward triangle = 27ºC) while shade indicates 
acidification treatment (darker = more acidic). Symbols represent the means for a single egg 
capsule (one cup within the experimental system). No error bars are depicted for visual clarity. 
Trend lines are regressions of each temperature treatment, but are only presented as visual aides 
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Figure 2. Fitted normal distributions of dorsal mantle length frequency histograms from 
individual egg capsules in each treatment of the September 14 trial. Histograms are not shown 
for clarity of curves, but DML data were segmented in 0.05 mm bins. Each plot is a treatment 
combination, with column determining acidification (titles) and row determining temperature 
treatment (also differentiated by color: top/blue = 20 ºC, bottom/red = 27 ºC). Each line 
represents the curve from the sampling of an individual egg capsule for dorsal mantle length (x-
axis). Lines are shaded and patterned to help differentiate individual egg capsules within a plot, 
but this carries no relationship or meaning across the plots. The filled triangle on the x-axis 
marks the mean value for the compiled sample of that treatment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sep 14
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Figure 3. Hatching data from experiments depicted as (A) cumulative hatching curves and (B) 
plots of time to 50% hatch. (A) Cumulative hatching curves are shown for each trial (lay date in 
title). Patterning of lines represents acidification treatments (smaller hash = more acidic), while 
color represents temperature treatment (blue/dark = 20 ºC, red/light = 27 ºC). Error bars/shading 
omitted for visual clarity of the curves. The gray dashed line represents the 50% hatching mark. 
(B) Time to 50% hatching data across acidification exposures, calculated from the curves in (A), 
plotted for each trial. Symbols depict means (and represent trial) with errorbars of one standard 
deviation (most error ranges are so small that errorbars are contained within the symbol). Color 
represents temperature treatment as in (A). Regression lines with related equations are presented 
to visualize trends and assess changes in slope and y-intercept across treatments and trials 
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Figure 4. Embryonic survival data depicted for each trial (column title) on spider plots: axes 
represent categorical variables, while rings represent proportions of embryos in each category 
(labeled in Jun 19 plots). Categories include, clockwise from top left, Hatched: embryos that 
successfully hatched from the egg capsules (includes premature and malformed hatchlings), and 
embryos that ceased development either Early: Arnold stages 1 - 16, Middle: Arnold stages 17 - 
26, or Late: Arnold stages 27 - 30 (Arnold et al., 1974). Lines represent means, while shading 
represents one standard deviation. Line patterns and shade of color represent acidification 
treatments (smaller hash/ darker color = more acidic). Plot position and data coloration represent 
temperature treatment (top/blue = 20 ºC, bottom/red = 27ºC) 
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Figure 5. (A) Images of types of hatched Doryteuthis pealeii paralarvae corresponding to the 
axes categories in the data figure (B), as referenced by the ‘X.’ From top left: Normal: a typical 
hatchling paralarva, Premature: a paralarva showing remaining external yolk, Eye Bulge: a 
paralarva with inflation of the membrane around the eye, and Malformed Head: a paralarva with 
misshapen head, can also present with strange growths or misshapen mantle. All images have a 
unique 1 mm white scale line in the bottom left. (B) Malformation data for each trial (column 
title) on spider plots: axes represent categorical variables, while rings represent proportions of 
embryos in each category (labeled in Jun 19 plots). Categories include, clockwise from top left, 
Normal, Premature, Eye Bulge, and Malformed Head as depicted in (A). Lines represent means, 
while shading represents one standard deviation. Line patterns and shade of color represent 
acidification treatments (smaller hash/ darker color = more acidic). Plot position and data 
coloration represent temperature treatment (top/blue = 20 ºC, bottom/red = 27 ºC) 
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Chapter 6 

 
Conclusion and Future Directions 
 
Early squid development under acidification: advances to the 
conceptual model following this dissertation 
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6.1 Summary 

 Coastal systems, particularly those in the northwest Atlantic, are undergoing rapid change 

due to anthropogenic stressors from industrialization and carbon dioxide emissions, such as 

ocean acidification and warming (Hobday and Pecl 2014; Pachauri and Meyer 2014; Gledhill et 

al. 2015). While we still struggle to understand the expected extent of damage already done, it is 

important that we continue to study what impacts these changes may have on the organisms that 

support the fisheries and ecosystems on which we rely (Pecl and Jackson 2008; Kroeker et al. 

2013; Hobday et al. 2016). Organismal studies of key, representative, and accessible species 

inform models and provide the foundation for further mechanistic and ecological hypotheses. 

Performing these studies with a non-model organism that is hard to maintain in aquarium 

systems is another challenge, but one where because of, rather than in spite of, the mess, there is 

a lot to learn (Vidal et al. 2014). Cephalopods, and squid in particular, are interesting because 

they are so plastic and complex and unpredictable. You cannot put a dynamic animal in a 

dynamic situation and expect straightforward results, but if you stick with it, learn from it, and 

adapt along with it, some really interesting and valuable patterns can emerge. 

This dissertation sought to more deeply examine the impacts of ocean acidification on the 

early life history of the inshore longfin squid, Doryteuthis pealeii, by measuring metrics of 

embryonic development and morphology, physiology, and behavior of the hatchling paralarvae. I 

expanded upon the preliminary data collected by Kaplan et al. (2013) and the early analyses 

performed in my Master’s degree (Zakroff 2013) by developing novel, quantitative 

methodologies and applying them to measurements of the morphology of paralarvae reared 

under chronic acidification over a range of pCO2 concentrations. In parallel to that I expanded 

into behavioral analyses, which constantly evolved in order to try to best capture change in a 

dynamic and plastic organism. While the squid did not act predictably and replicate the results 

seen in 2013 in subsequent years, I adapted and shifted experimental treatments and added 

methodologies (many of which were not successful and are not discussed here, e.g. survival 

chambers for paralarvae from six multiple stressor treatments was too challenging a system for 

me to build and maintain on top of everything else) as needed to endeavor to capture what was 

going on with this squid’s remarkable resistance to high levels of acidification and the variability 

of its sensitivity to OA on larger time scales. And doing so I found interannual patterns of 

variability, relationships to parental conditioning from the environment, and relationships 
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between metrics I would otherwise not have thought to examine. Pushing into multistressor 

experimentation by adding warming increased the complexity of experiments, but also allowed 

for some real insights into when and how these stressors affect embryonic development and the 

state of hatchling paralarvae. In sum, I found that these benthically bound eggs are quite robust 

in the face of acidification, though there are factors that can cause sensitive clutches through 

sensitive cohorts/year classes. It is likely then that this population can manage under predicted 

levels of future change, assuming replete food, but worth considering both that these experiments 

do not assess the viability of the paralarvae and their ability to reach the juvenile stage and that 

as warming increases, the likelihood of a particularly OA sensitive year may also increase. 

 
6.1a The conceptual model when we started 

 Prior to beginning this dissertation work, our understanding of acidification impacts on 

the embryonic development of coastal squid eggs had to be pieced together from a number of 

sources. What is broadly true among this taxon, the loliginid squids that lay multiple eggs per 

capsule, is that an individual fertilized egg is packaged with anywhere between 50-300 siblings 

(sometimes half-siblings because paternity and fertilization is complicated; Arnold et al., 1974; 

Jacobson, 2005; Buresch et al., 2006). Each embryo is instilled with a certain ration of maternal 

resources, and it is this maternal input in combination with genetic recombination and epigenetic 

conditioning that provides the starting point for development (Steer et al. 2004; Jensen et al. 

2014). This encapsulated embryo is a discrete energy system, it consumes what is available in 

the yolk, but cannot intake additional energy from the environment (Villanueva et al. 2011). This 

limited energy resource must be budgeted amongst needed processes, most prominently 

development and homeostasis (Sokolova et al. 2012; Sokolova 2013). 

 What the squid embryo does consume from its environment as it develops is oxygen, and 

likewise it produces carbon dioxide. Aerobic respiration of the squid and its encapsulated 

siblings drives down available oxygen and increases acidity within the egg capsule (Long et al. 

2016). The degree to which this process makes the embryos surroundings anoxic and acidic may 

depend greatly upon not only its position within the egg capsule, but also the egg capsule’s 

position with the egg mass, and the seawater chemistry and flow conditions of the laying habitat 

by affecting the thickness of the boundary layer and the rate of chemical exchange the egg 

capsule has with its environment (Steer and Moltschaniwskyj 2007; Long et al. 2016; Navarro et 
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al. 2018). As the squid embryo develops, it constructs machinery, in the form of proton pumps in 

ion regulatory epithelia, to manage intracellular pH as its environment naturally acidifies (Hu et 

al. 2010). 

 Under acidification, we presume that the proton concentration gradient between the 

capsule and its environment is initially reversed and ultimately weakened, such that the capsule 

acidifies much more quickly, and to a greater extent, during development than it would under 

ambient conditions. The capsule potentially provides a strong barrier to initial acidification 

though, and its presence in our experiments likely confers resistance while experiments with 

embryos that have been removed from the capsule see more direct and immediate stress (Rosa et 

al. 2014a). Doryteuthis pealeii egg capsules cultured in high dose acidification (2200 ppm CO2) 

had been shown to result in delayed hatching, decreases in size of the paralarvae, and 

degradation of the statoliths (Kaplan et al. 2013). Hatching delays suggest a slowing of the 

developmental machinery, either because metabolism is being suppressed or available energy is 

being diverted from processes of development to homeostasis. Decreased size of hatched 

pararlavae on top of hatching delay, suggests that rather than dampen growth rate, energy 

contributing to somatic growth is being reduced to compensate for increased strain on 

homeostatic machinery. Although it is also possible that growth rate is dampened and the delay 

was not sufficient for size at hatching to reach what it was under control conditions. Changes in 

the size of statolith are likely driven by changes in the size of the paralarvae (Ikeda et al. 1999; 

Steer et al. 2003). Degradation of the statolith surface, however, suggests either an acidifying of 

the statocyst space or a disruption to the production and/or activity of the proteins responsible for 

constructing the statolith (Lipinski 1993; Cohen and Holcomb 2009). It is from this foundational 

conceptual model that the experiments described in this dissertation were designed.  

 

6.1b Dissertation findings 

Chapter 2: Dose‑dependence and small‑scale variability in responses to ocean acidification 

during squid, Doryteuthis pealeii, development 

The piecewise linear regressions I used in Chapter 2 reinforce the shift in response 

patterns seen in the 2013 sample at 1300 ppm CO2. This fits with observed impacts to Loligo 

vulgaris embryos at ~1650 ppm and Doryteuthis opalescens impacts at ~1440 ppm, but these are 

individual data points from experiments that are challenging to compare with this work due to 
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differences in stressor exposure and other methodology (Rosa et al. 2014a; Navarro et al. 2016). 

No other studies that we know of have examined dose response to acidification in cephalopod 

embryos, so this research serves as a foundation for further research into this stressor for this 

taxon. This potential threshold for sensitive egg clutches is still remarkably high considering the 

adults of the species do not spend time in highly pH variable waters outside of estuaries and the 

paralarvae are expected to be quite pH sensitive (Vidal et al. 2002b; Jacobson 2005). This value 

falls within predictions for open ocean pH between the years 2100 and 2250, but can observed in 

coastal systems on short, variable timescales (Caldeira and Wickett 2003; Baumann et al. 2015; 

Gledhill et al. 2015). This suggests that in the immediate scope, acidification may not be the 

highest concern for Doryteuthis pealeii egg laying habitat, compared to warming, hypoxia, and 

other more imminent, potentially more impactful stressors; although it should be kept in mind 

that OA may contribute to interactions with these more dominant stressors. 

The responses seen in these data reflect those seen in the preliminary Kaplan et al. (2013) 

study, but provide a richer picture with the addition of hatching success, yolk volume, and 

quantitative statolith analyses. In particular, the comparison of mantle length and yolk volume 

provides insight into the possible physiological and energy budget management strategies 

available to the squid embryos. I found that portfolio of possible strategies to be pretty 

diversified, as response intensities and corresponding yolk consumption vs. growth strategies 

shifted across the breeding season. I also note shifts in these dynamics over the course of 

hatching, providing insight into both a new dimension of hatching variability and trends in 

response that further inform possible physiological and metabolic strategies (e.g. a decrease in 

both yolk and size over hatching suggests a stressed system that has to sacrifice somatic growth 

and tap additional resources to reach a viable hatching state). This lends credence to the potential 

for seasonal effects or microcohorts among this population of squid (Moltschaniwskyj and Pecl 

2007; Murray et al. 2014; Rosa et al. 2014a). It also suggests that within a breeding season, a 

diversity of responses are common allowing for differential success under varying conditions, 

which likely hedges bets for population success (Pecl and Jackson 2008; Crean and Marshall 

2009; Hoving et al. 2013). 

 

Chapter 3 - Ocean acidification responses in paralarval squid swimming behavior using a novel 

3D tracking system  
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 Given the presence of statolith impacts in Kaplan et al. (2013) and in the data from 

Chapter 2, there was strong interest in seeing if these impacts translated to the swimming 

behavior of the hatchling paralarvae. In Chapter 3, I ran experiments in 2013 in a 2D, primarily 

vertical, arena with paralarvae from the sensitive system described above. I found that paralarvae 

were less able to maintain station near the surface, they sank more than they hopped, with 

increased acidification, but the system did not allow for the robust examination of orientation 

and turning I had intended. I therefore developed a 3D arena and organismal position model 

system to collect better data to address these hypotheses, and implemented this system in 2014 

and 2015, when paralarvae no longer showed the sensitivities or statolith impacts under 

acidification they had prior. Still, I found, using this system, decreases to 3D velocity and 

swimming activity of the paralarvae under acidification, even as relatively low as 1000 ppm 

CO2. This suggests that the paralarvae might indeed show greater sensitivity to chronic pH 

exposure than the encapsulated, developing embryos do (Vidal et al. 2002b, 2014; Robin et al. 

2014). Further, it is a concern for survival if paralarvae cannot maintain position, as part of 

placing themselves in desired currents and performing vertical migrations, or swim as quickly, 

both as fledgling predators and potential prey (Martins et al. 2010a; York and Bartol 2016; York 

et al. 2016). Substantive individual variability, however, suggests that paralarvae survival may 

hinge on a scattershot, somewhat luck-based approach, although even slight reductions to overall 

cohort survival could translate to population scale impacts (Robin et al. 2014; Doubleday et al. 

2016).  

 

Chapter 4 - Interannual and seasonal variability in the response of squid embryos and 

paralarvae reared under ocean acidification 

In Chapter 4 I highlight the shifts in OA sensitivity across all four years of experiments 

(and the preliminary work by Kaplan et al., 2013). Response ratios provide a discrete and 

efficient means to compare effect size across years and metrics; while they are typically used for 

meta-analyses, using them to synthesize across the common acidification exposure used across 

experiments (2200 ppm CO2) here bore a range of insights (Kroeker et al. 2013; Baumann et al. 

2018). I describe variability in acidification response between and within years, showing that, 

indeed, 2011 (the preliminary work), 2013, and 2016 showed sensitive trials while 2014 and 

2015 did not. Further, I found that response intensity shifts across the season within a sensitive 
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year, but with no consistent pattern, suggesting something unique about the tails of the season 

compared to its peak. I also highlight shifting baselines throughout the breeding season, which 

are strongly correlated to ambient temperature conditioning of the parents, although these effects 

do not appear to affect acidification response intensities. These data further support the potential 

for microcohorts, and could be explained by the model of two year old squid making up the 

breeding population at the start of the season and one year old squid making up the breeding 

population at the tail of the season (Arnold et al. 1974; Mesnil 1977; Moltschaniwskyj and Pecl 

2007). 

Using response ratios, I also uncovered previously undescribed relationships between the 

metrics I measured in the squid. Dorsal mantle length and hatching time correlated with one 

another, and these metrics varied on the interannual scale. Yolk volume and hatching success, on 

the other hand, correlated with each other, with responses in these metrics varying within years, 

across the breeding season. I found that embryos that consumed relatively more yolk during 

development were more likely to hatch, and that these were the embryos that had relatively more 

yolk at hatching under control conditions. Therefore, within a season, maternal condition and 

rationing to eggs is key to hatching success under stress (Steer et al. 2004). Impacts to growth 

and development, metabolic responses, are seemingly driven instead by environmental 

conditioning of the parental year class (Pecl et al. 2004a; Murray et al. 2014; Putnam and Gates 

2015). I hypothesize that these annual and seasonal sensitivities relate broadly to the 

overwintering temperatures of the squid year class, with anomalously warmer years resulting in 

greater sensitivity. This indicates that management of the squid population hinges on a better 

understanding of the factors of environmental history that define epigenetic transference, 

abundance, and population success in cephalopods (Yatsu et al. 2000; Pierce and Boyle 2003; 

Roberts 2005). These results also suggest that while the eggs of Doryteuthis pealeii are relatively 

robust under acidification, there may be cause for concern under a combined warming and 

acidification scenario. 

 

Chapter 5 - Antagonistic interactions and clutch-dependent sensitivity induce variable responses 

to ocean acidification and warming in squid (Doryteuthis pealeii) embryos 

In 2016, I combined acidification with warming to increase stresses upon the developing 

squid eggs. Unsurprising by this point, but still novel, in Chapter 5 I found different sensitivities 
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and response strategies to both stressors across this breeding season. Surprisingly, I found that 

warming appeared to either dominate or act antagonistically to acidification impacts rather than 

compound or amplify them as has been seen in other species (Rosa et al. 2014a). Warming has 

been shown to be a dominating stressor in larvae of other ectothermic taxa, so perhaps this result 

is not quite so shocking (Nguyen et al. 2012). Here, it appears that since warming drives 

embryonic development to occur much faster, the developing embryos reduce their exposure 

time to the acidification. This indicates that under a warming and acidification scenario, warming 

could mitigate acidification impacts, but raises concerns about the changes to the viability and 

life history strategies of the hatched squid due to the increased rearing temperatures (Keyl et al. 

2011; Pimentel et al. 2012; Hoving et al. 2013). On top of this, there is likely a sharp limit to the 

temperature at which these eggs can successfully develop, as is known in other squids, which 

would be important to determine for a viable egg habitat window (Sen 2005; Zeidberg et al. 

2011). 

The other unique factor of Chapter 5 is that each trial was run with egg capsules from a 

single female squid. While the experiments were not robust or replicated enough to discriminate 

differences between maternity and seasonality, I could examine the variability in stress response 

within a clutch of eggs. For dorsal mantle length, I found that egg capsules within a clutch under 

control conditions all respond quite similarly with tight, relatively tall bell curves around a mean 

paralarval size. Slight stress appears to simply cause this mean to shift, while severe stress causes 

this mean shift and an increase in variability, resulting in a flattening of the curve. I found that 

egg capsule under stress diverge in their responses, suggesting that while maternity may set the 

baseline state, paternity/the recombinant genetic background may play a role in response under 

stress (Buresch et al. 2001; Marshall 2015; Guillaume et al. 2016; Bonduriansky and Crean 

2018). 

 

6.1c The conceptual model after this dissertation 

 How, then, has our understanding of this system, D. pealeii egg capsules reared under 

acidification (and warming), changed as a consequence of this dissertation? Much of the 

foundation leading to the egg being laid remains the same, but we must now purposefully 

consider both the environmental history of the parents and the ambient seasonal temperature in 

assuming some combination of maternal investment, genetic predisposition, and epigenetic 
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conditioning being transmitted to the fertilized egg. If those factors are such that a year class and 

clutch will be sensitive to acidification, we expect that under doses of 1300 ppm CO2 or greater, 

the egg capsule acidifies enough in late development to cause stress. The embryos may then 

respond by either consuming more available yolk (more likely if more yolk is initially available, 

which is seasonally dependent), suppressing development and metabolism, sacrificing energy 

from somatic growth (likely both of these latter options in sensitive years), or some combination 

of any of the three. 

 If warming is co-occurring in our hypothetical system, embryos will develop faster, 

increasing metabolism and decreasing time to hatching. On its own, this can have dramatic 

effects on the viability of the embryos from the outset of development, resulting in disrupted 

growth and malformation. Warming drives increased aerobic respiration, which can expedite 

hypoxic and anoxic conditions in the egg capsules resulting in a greater hatch of premature 

paralarvae (Pimentel et al. 2012; Rosa et al. 2012). Increased temperature, however, also 

functionally reduces the exposure time of embryos under acidification, thus slightly reducing 

acidification impacts in late stage development. 

 Slight decreases and surface degradations in statoliths caused by acidification do not 

appear to disrupt their functionality enough to impair paralarval swimming. However, 

paralarvae, lacking the protections of the egg capsule, may show metabolic suppression via 

decreased swimming activity and speed at much lower doses of acidification (1000 ppm CO2 or 

above). The full range of impacts due to the transition from embryo to paralarvae under these 

conditions remains unclear. 

 

6.2 Future directions 

 Several datasets remain to be processed from this dissertation concerning topics ranging 

from statolith morphometrics and relative density analysis, to phototactic behavior, to gene 

expression. Beyond these data, there is still much to uncover in regards to squid embryo 

tolerance, epigenetic transference of resistance, and the role of encapsulation and plasticity in 

dealing with rapidly changing and variable environments (Noisette et al. 2014). The exposures 

used here were all chronic and constant whereas in a natural system they would vary on daily, 

tidal, and seasonal cycles (Baumann et al. 2015; Gledhill et al. 2015). It would be worth 

investigating if encapsulated eggs and hatchling paralarvae do better or worse in these varying 
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conditions. The model of an egg being more robust under stress, due to its developmental 

machinery and its physical protections, than the resultant larvae is one that is intuitive, but not 

robustly studied across taxa; and little is known about the physiological transitions that occur 

here in squid naturally, much less under stress (Noisette et al. 2014; Robin et al. 2014). A better 

understanding of the viability of the paralarvae and their ability to transition into juveniles under 

stress is vital to informing strong predictive models of population success for management of this 

species. Given these studies as a framework, it would be worth expanding into other, potentially 

more impactful stressors, such as hypoxia and pollutants (Lacoue-Labarthe et al. 2008; Navarro 

et al. 2016). While D. pealeii is not yet in a place where it can be viably and sustainably reared in 

aquaculture, many bobtail squids are, so transgenerational studies in cephalopods to examine the 

epigenetic mechanisms hinted at in this dissertation are becoming more and more possible.  

 

6.3 Broader implications 

Our global ocean is changing rapidly due to human activity and it is vital that science 

keep pace by assessing potential impacts across stressors and taxa (Crain et al. 2008; Pachauri 

and Meyer 2014; Kroeker et al. 2017). This drive to rapidly produce key multistressor studies 

with key organisms has led to a large number of individual, novel experiments, with results that, 

while valuable, are not always substantiated by replication. Few organismal stress studies are 

repeated in earnest, fewer still over significant time periods, but those that do can demonstrate 

large scale trends and temporal variability that is deeply relevant to predicting population 

survival under ocean change (Kroeker et al. 2017; Baumann et al. 2018). This dissertation, 

beyond its specific utility in better understanding squid development and stress physiology and 

the potential impacts of ocean acidification, serves as a representation of the importance and 

need for longer term, repeated studies and of the value in collecting and robustly analyzing 

complicated results as part of describing the natural complexity and variability of an organism. 
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Appendix A 

 
Chapter 2 Supplementary Materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter was originally published as: Zakroff C, Mooney TA, Berumen ML (2019) Dose-dependence and small-
scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Marine Biology 
166:62. doi: 10.1007/s00227-019-3510-8. 
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Table S1. One-way ANOVAs of pCO2 separated by metric and trial; significant p-values (< 0.05) in  
bold. Yolk volume measurements were log-transformed prior to statistical analysis. Compiled data  
is difference from trial mean. 
 Mantle Length Yolk Sac Volume 
Source SS Df F p Ω2 SS df F p Ω2 
Jul 3           

pCO2 0.573 2 20.98 <0.001 0.079 5.604 2 9.10 <0.001 0.038 

Residual 6.305 462    125.9 409    

Jul 11           

pCO2 1.035 2 38.27 <0.001 0.132 2.480 2 3.38 0.035 0.010 

Residual 6.598 488    180.6 492    

Aug 7           

pCO2 0.297 2 9.24 <0.001 0.032 0.703 2 2.19 0.113 0.005 

Residual 7.867 490    76.52 477    

Compiled           

pCO2 1.568 5 21.43 <0.001 0.066 4.243 5 3.02 0.010 0.007 

Residual 21.11 1443    387.6 1381    
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Table S2. One-way ANOVAs of hatching date separated by metric, trial, and pCO2 treatment; significant p-values  
(< 0.05) in bold. Yolk volume measurements were log-transformed prior to statistical analysis. 
  Mantle Length Yolk Sac Volume 
Trial Source SS df F p Ω2 SS df F p Ω2 

Jul 3  

ESL Ambient           

Date 0.071 5 1.219 0.303 0.007 1.396 5 0.788 0.560 -0.007 

Residual 1.816 156    52.772 149    

1300 ppm           

Date 0.037 5 5.771 <0.001 0.141 9.624 5 10.429 <0.001 0.280 

Residual 1.756 139    21.224 115    

2200 ppm           

Date 0.153 5 2.168 0.061 0.036 6.870 4 6.616 <0.001 0.142 

Residual 2.145 152    34.007 131    

Jul 11 

850 ppm           

Date 0.286 5 4.666 <0.001 0.096 9.343 5 6.727 <0.001 0.152 

Residual 2.038 166    42.780 154    

1300 ppm           

Date 0.351 5 6.446 <0.001 0.135 1.878 5 1.290 0.271 0.009 

Residual 1.839 169    46.606 160    

2200 ppm           

Date 0.300 4 5.843 <0.001 0.119 8.603 5 3.926 0.002 0.080 

Residual 1.784 139    71.438 163    

Aug 7 

400 ppm           

Date 0.169 5 2.202 0.057 0.036 3.813 5 5.519 <0.001 0.124 

Residual 2.382 155    21.141 153    

1900 ppm           

Date 0.426 5 5.653 <0.001 0.125 1.214 5 1.430 0.216 0.010 

Residual 2.365 157    26.310 155    

2200 ppm           

Date 0.605 5 10.267 <0.001 0.215 4.229 5 6.575 <0.001 0.148 

Residual 1.920 163    19.812 154    
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Table S3. One-way ANOVAs of culture cup separated by metric, trial, and pCO2 treatment; significant p-values  
(< 0.05) in bold. Yolk volume measurements were log-transformed prior to statistical analysis. 
  Mantle Length Yolk Sac Volume 
Trial Source SS df F p Ω2 SS df F p Ω2 

Jul 3 

ESL Ambient           

Cup 0.113 2 5.059 0.007 0.048 7.538 2 12.286 <0.001 0.127 

Residual 1.774 159    46.629 152    

1300 ppm           

Cup 0.258 2 9.851 <0.001 0.109 0.452 2 0.877 0.419 -0.002 

Residual 1.863 142    30.396 118    

2200 ppm           

Cup 0.033 2 1.113 0.331 0.001 0.323 2 0.530 0.590 -0.007 

Residual 2.265 155    40.553 133    

Jul 11 

850 ppm           

Cup 0.201 2 8.014 <0.001 0.075 0.804 2 1.231 0.295 0.003 

Residual 2.123 169    51.318 157    

1300 ppm           

Cup 0.048 2 1.937 0.147 0.011 1.323 2 2.287 0.105 0.015 

Residual 2.142 172    47.161 163    

2200 ppm           

Cup 0.148 2 5.380 0.006 0.057 6.832 2 7.745 <0.001 0.074 

Residual 1.936 141    73.210 166    

Aug 7 

400 ppm           

Cup 0.289 2 10.105 <0.001 0.102 2.038 2 6.938 0.001 0.070 

Residual 2.262 158    22.915 156    

1900 ppm           

Cup 0.437 2 14.853 <0.001 0.145 1.392 2 4.209 0.017 0.038 

Residual 2.354 160    26.131 158    

2200 ppm           

Cup 0.068 2 2.283 0.105 0.015 0.503 2 1.677 0.190 0.008 

Residual 2.458 166    23.539 157    
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Table S4. Counts of staged, failed embryos and hatchling paralarvae, compiled by treatment. Failed embryos 
were staged as early (embryonic stages 1 - 16), middle (17 - 26), and late (27 - 30). G-tests of hatching distributions  
are reported with significant p-values (p < 0.05) in bold. Since all G-tests were significant, exponents of the p-value 
are listed to compare degrees of significance. 

Treatment pCO2 Early Middle Late Hatched Percent  
Hatched Source G df p exp 

Jul 3           

ESL Ambient 149 9 0 948 85.71 ESL x 1300 162.857 3 <0.001 -35 

1300 ppm 13 0 2 1117 98.67 ESL x 2200 32.510 3 <0.001 -07 

2200 ppm 87 0 2 993 91.77 1300 x 2200 67.514 2 <0.001 -15 

      All 171.110 6 <0.001 -34 

Jul 11           

850 ppm 25 6 0 814 96.33 850 x 1300 19.027 2 <0.001 -05 

1300 ppm 44 33 0 940 92.43 850 x 2200 51.866 2 <0.001 -12 

2200 ppm 26 61 0 796 90.15 1300 x 2200 15.649 2 <0.001 -04 

      All 56.021 4 <0.001 -11 

Aug 7           

400 ppm 10 7 20 835 95.76 400 x 1900 13.566 3 0.003 -03 

1900 ppm 10 27 16 799 93.89 400 x 2200 13.902 3 0.003 -03 

2200 ppm 13 11 4 922 91.77 1900 x 2200 18.520 3 <0.001 -04 

      All 30.544 6 <0.001 -05 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 204 

 
Figure S1. Acidification and egg culture system. Filtered, temperature controlled water from Vineyard Sound was 
piped into a header tank (behind PVC towers depicted) and flowed into PVC towers where airstones equilibrated 
water to the desired pCO2 levels. Water exiting the chamber was split in a manifold (not depicted), which fed drip 
lines into the egg culture cups of each water bath 
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Figure S2. Comparison of average statolith surface area and average mantle length of experimental 
paralarvae. Data are compiled within each treatment and all trials are plotted together. Symbols represent means, 
with shape corresponding to trial, and color corresponding to pCO2 treatment (according to the color bar at right). 
The line depicts a linear regression, with R2, equation, and p value reported in the lower left corner of the plot 
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A1. Morphometric analysis of statoliths 

A1.1a Statolith morphometrics protocol & R code 

The following R (Version 3.3.3) code was implemented within an R Notebook 

(StatolithMorphometrics.rmd; available at github.com/czakroff/Statoliths) within RStudio 

(Version 1.0.136 for Mac OS X). It provides the method for analyzing the silhouetted statolith 

(black statolith on white background) JPEG’s produced in Adobe Photoshop (as described in the 

main text). This program requires a CSV of metadata with at least the following columns 

(presumably there will be other relevant sample data as well): 

1. Path (path in your system to folder containing the silhouetted images) 

2. PicName (image names/ID's of your samples) 

Note: The program is written to access a metadata CSV where the PicName 

column refers to the original SEM TIFF image. This is why the “#Rename Files” 

block removes the “.tif” and adds “_BW.jpg.” This step can be removed if the 

PicName column in the metadata refers directly to your silhouetted JPEG’s. 

 The program accesses the silhouetted statolith JPEG’s provided by the metadata CSV to 

build Outline objects using the Momocs package (Bonhomme et al., 2013), which are then 

analyzed for basic morphometrics as well as the additional metric of rugosity (internal angle 

variance) developed as part of this manuscript. A few notes on the operation of this code: 

• The coo_alignxax method horizontally flips the alignment of the statoliths (they 

are set with dome pointing right and toward the top of the image and wing 

pointing left during Photoshop processing). It doesn’t affect the outcome, but is 

important to note. 

• The Momocs package contains a number of additional, more complex methods 

for visualizing and analyzing the shape of objects (elliptical fourier analysis, for 

instance), which may be worth adding to your analysis depending on the 

questions of your study. 

• The 150 point resolution was determined through an assessment of a sample of 

50 test shapes (Fig. S3) and is discussed in detail following the code. 
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--- 
title: "Statolith Morphometrics" 
output: html_notebook 
--- 
 
This R notebook contains the basic methods to read in and analyze the morphometrics of squid statoliths using the 
Momocs package (Bonhomme et al., 2013). In addition, the code for calculating the rugosity of the statolith edge 
(the variance of the internal angles of the outline) is included. The program uses a metadata CSV file (you must 
supply the PATH to this file) to access the paths and filenames of your image samples (silhouetted JPEGs: black 
statolith on white background) and then processes the outlines through Momocs to get the basic morphometrics 
(area, rectangularity, circularity, length, width, and length:width) as well as the rugosity and then outputs this data to 
a CSV containing an appended version of the original metadata table (you must supply the PATH and name of this 
file). 
 
More on Momocs can be found at: 
Bonhomme, V., Picq, S., Gaucherel, C. and Claude, J. (2013). Momocs: outline analysis using R. J. Stat. Softw. 56, 
1–24. 
 
Version 1.1 written by Casey Zakroff (czakroff@whoi.edu) May 3 2018 
in R Version 3.3.3 on Mac. Code and protocols available at:  
https://github.com/czakroff/Statoliths 
 
###Step 1 
Turn on X11! (Required for running in Mac) 
 
###Process statoliths for outlines 
```{r} 
#Add Momocs to your active library 
library(Momocs) 
``` 
 
```{r} 
#Load in statolith metadata (add your own path & filename) 
data <- read.csv('path/filename.csv') #read in metadata CSV 
path <- as.character(data$Path) #read path column for statolith silhouettes 
samples <- as.numeric(length(path)) #number of samples 
``` 
 
```{r} 
#Set Pixel to Micrometer Ratio 
cf <- 6 #conversion factor = 6px/um for my data. Depends on magnification of your images (but should all be the 
same). 
``` 
 
```{r} 
#Rename Files 
x <- c() #temporary array for PicNames 
for (i in data$PicName){ 
  p <- substring(i, 1, nchar(i)-4) #put String in p, but remove ".tif" from SEM image filename 
  p <- paste(p, '_BW.jpg', sep = "") #adds silhouette JPEG file ending 
  x <- c(x, p) #add to temporary array 
} 
 
data$PicName <- x #reassign to PicName column in image metadata 
``` 
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```{r} 
#Write Statolith Outlines 
statolith <- import_jpg(paste(path,data$PicName, sep = "")) #read in all statolith images 
stato <- Out(statolith,factor(data$pCO2)) #build Outline objects 
``` 
```{r} 
#Optional: view statolith outlines 
panel(stato) 
``` 
 
```{r} 
#Reorganize Statoliths 
stato_align <- coo_alignxax(stato) #align along x-axis 
stato_align <- coo_center(stato_align) #center all outlines 
stato_align <- coo_slidedirection(stato_align, "N") #place start point of outline at top 
``` 
 
```{r} 
#Optional: view all aligned statoliths superimposed 
stack(stato_align) 
#Or view as panel 
#panel(stato_align) 
``` 
 
###Basic Morphometrics 
```{r} 
#Get basic morphometrics 
mets <- measure(stato_align, coo_area, coo_circularity, coo_rectangularity) #measure area, circularity, and 
rectangularity 
df <- data.frame(matrix(unlist(mets), nrow = samples, byrow = F)) #store in temporary dataframe 
lw <- coo_lw(stato_align) #measure length and width 
df$X4 <- NULL #remove extraneous column 
df$X1 <- (df$X1)/(cf^2) #convert area to micrometers, overwrite in dataframe 
df$Length <- lw[1,]/cf #convert length to micrometers, add to dataframe 
df$Width <- lw[2,]/cf #convert width to micrometers, add to dataframe 
df$LWRatio <- df$Length/df$Width #calculate length/width ratio, add to dataframe 
names(df) <- c("Area","Circularity","Rectangularity", "Length", "Width", "LWRatio") #rename columns 
``` 
 
```{r} 
#Add morphometric data to metadata 
len <- length(data) 
for (i in c(1:length(df))){ 
  data[len+i] <- df[i] 
} 
``` 
 
###Statolith Rugosity 
 
```{r} 
#Functions for statolith rugosity (internal angle variance) calculation 
 
#Calculate the angle between two vectors (in radians) 
angleCalc <- function(M,N){ 
  abs(atan2(N[2],N[1]) - atan2(M[2],M[1])) 
} 
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#Check the calculated angle (in degrees) is the internal angle (toward center, so less than 180 degrees) 
checkAngle <- function(cent, p1, p2, p3, theta){ 
  p4 <- c(((p1[1]+p3[1])/2),((p1[2]+p3[2])/2)) #calculate point half way between endpoints (n and n+2) 
  d1 <- sqrt((p2[1]-cent[1])^2+(p2[2]-cent[2])^2) #distance from centroid to original mid point (n+1) 
  d2 <- sqrt((p4[1]-cent[1])^2+(p4[2]-cent[2])^2) #distance from centroid to halfway point 
  if (d1 == d2){ #if distances are equal, then its a 180 degree line 
    theta <- 180.0 
  } else if(d1 > d2){ #if mid point (n+1) farther away than calculated halfway point, then angle is internal 
    theta <- theta 
  } else { #if calculated halfway point farther away than mid point (n+1), then angle is external 
    theta <- 360-theta #subtract from 360 degrees to get internal angle 
  } 
} 
``` 
 
```{r} 
#Set outline resolution 
res <- 150 #number of points 
statoSam <- coo_sample(stato_align, res) #sample outlines with new resolution 
``` 
 
```{r} 
#Get the position of the centroids of each statolith outline 
center <- coo_centpos(stato_align) 
``` 
 
```{r} 
#Get the position of the centroids of each statolith outline 
s <- statoSam[h] 
``` 
 
```{r} 
#Calculate internal angle variances 
iAngVar <- c() #empty array for results 
for(h in c(1:length(statoSam))){ 
  s <- statoSam[h] #pull statolith outline 
  s <- s[[1]] #pull list of outline points 
  angle <- c() #empty array for angles 
  for (i in c(1:res)){ 
    x1 <- s[i,1] #pull xpos of nth point 
    y1 <- s[i,2] #pull ypos of nth point 
    if (i < res-1){ #for most point along the outline  
      x2 <- s[(i+1),1] #pull xpos of n+1th point 
      x3 <- s[(i+2),1] #pull xpos of n+2th point 
      y2 <- s[(i+1),2] #pull ypos of n+1th point 
      y3 <- s[(i+2),2] #pull ypos of n+2th point 
    } else if (i == res-1) { #but for the penultimate point on the outline 
      x2 <- s[(i+1),1] #pull xpos of n+1th point 
      x3 <- s[1,1] #pull xpos of first point on the outline 
      y2 <- s[(i+1),2] #pull ypos of n+1th point 
      y3 <- s[1,2] #pull ypos of first point on the outline 
    } else { #and for the last point on the outline 
      x2 <- s[1,1] #pull xpos of first point on the outline 
      x3 <- s[2,1] #pull xpos of second point on the outline 
      y2 <- s[1,2] #pull ypos of first point on the outline 
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      y3 <- s[2,2] #pull ypos of second point on the outline 
    } 
    xdiff1 <- x2-x1 #line adjacent to first line 
    xdiff2 <- x3-x2 #line adjacent to second line 
    ydiff1 <- y2-y1 #line opposite to 
    ydiff2 <- y3-y2 
    a <- c(xdiff1,ydiff1) #adjacent and opposite of first line 
    b <- c(xdiff2,ydiff2) #adjacent and opposite of second line 
    tempAngle <- abs(180-(angleCalc(a,b)*180/pi)) #get angle and convert to degrees 
    tempAngle <- checkAngle(center[h,],c(x1,y1),c(x2,y2),c(x3,y3),tempAngle) #check/convert to internal angle 
    angle <- c(angle, tempAngle) #store angle 
  } 
  iAngVar <- c(iAngVar, var(angle)) #calculate variance of internal angles and add to array 
} 
``` 
 
```{r} 
#Add Internal Angle Variance column to data 
data$iAngVar <- iAngVar  
``` 
 
###Output Data 
```{r} 
#Write results CSV (add your own path and filename) 
write.table(data, file = 'path/filename_results.csv') 
``` 
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A1.1b Internal angle variance: Resolution assessment 

 Two metrics were developed as a potential quantification of statolith edge rugosity: 

• Variance of the internal angle of the outline 

• Variance of the angle of lines tangent to the outline 

A sample set of 50 shapes (Fig. S3), drawn by CZ, was assessed with both metrics at a 

range of outline resolutions (50, 100, 150, 250, 350, and 450 points). The five highest and five 

lowest ranking shapes were assessed for each metric at each resolution. Produced outlines of 

shapes were also visually compared to their originals to determine maintenance of shape 

integrity in the resulting outline. Three series of shapes were also assessed separately for their 

progression within each metric and resolution. These were (shapes within series are listed from 

most rugose to least): 

• Circle-studded squares  (CSS) 

o Size 1 [Fig. S3 #39] 

o Flattened Size 1 [Fig. S3 #40] 

o Size 2 [Fig. S3 #38] 

o Size 3 [Fig. S3 #37] 

• Triangle-studded rectangles  (TSR) 

o Size 1 [Fig. S3 #33] 

o Size 2 [Fig. S3 #34] 

o Size 3 [Fig. S3 #35] 

o Flattened Size 3 [Fig. S3 36] 

• Corals  

o Coral 4 [Fig. S3 #47] 

o Coral 3 [Fig. S3 #46] 

o Coral 2 [Fig. S3 #45] 

o Coral 1 [Fig. S3 #44] 

A subset of the results of these analyses is presented in Tables S5 and S6. The data 

demonstrated that internal angle variance better represented rugosity (complexity/variability of 

the outline) while tangent angles represented the “sharpness” or “pointiness” of a shape (e.g. 

shapes #12 and #15 ranked very highly in tangent angle variance despite not being particularly 
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rugose; Fig. S3). The 150-point outline resolution maintained shape integrity and produced the 

best results in both metrics, and the internal angle variance results best fit the concept of rugosity 

at this resolution, so these were used for the statolith analysis described in the main text. 
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Figure S3. Sample set of shapes for assessment of rugosity metrics and resolution (outlined here at 150 
points). Shape outlines presented here were produced using the panel() method of the Momocs R Package. CZ 
superimposed the numbers for reference 
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Table S5. Subset of shape testing data at three of six point resolutions, showing the top 5 and bottom 5 shapes determined 
by each metric. The datasets were assessed to determine which metric at which resolution best captured and quantified edge 
variability of the shapes. 
  Internal Angle Variance Tangent Angle Variance 

Resolution Rank Shape Name # Value Shape Name # Value 

50 pt 

1 Coral 4 47 11040.1 Circle-studded square, Size 1 39 0.043 

2 Coral 3 46 9976.5 Circle-studded square, Flat Size 1 40 0.020 

3 Circle-studded square, Size 4 38 7915.6 Coral 4 47 0.013 

4 8-pointed star 26 6244.1 Circle-studded square, Size 2 38 0.010 

5 Circle-studded square, Size 1 39 6117.3 Coral 3 46 0.008 

46 Cut circle / Brain coral 41 107.3 Oval 13 1.4E-4 

47 Rounded square 06 94.3 Rounded Square 06 1.3E-4 

48 Flat rounded triangle 04 83.9 Flat rounded triangle 04 1.3E-4 

49 Oval 13 66.1 Rounded rectangle 10 7.5E-5 

50 Circle 11 7.1 Circle 11 3.6E-6 

        

150 pt 

1 Circle-studded square, Size 1 39 7636.1 Circle-studded square, Size 1 39 0.013 

2 Triangle-studded rectangle, Size 1 33 6991.3 Coral 4 47 0.007 

3 Coral 4 47 6748.1 Circle-studded square, Flat Size 1 40 0.006 

4 Circle-studded square, Flat Size 1 40 5581.5 Coral 3 46 0.005 

5 Spiky circle 50 4517.3 8-pointed star 26 0.005 

46 Octagon 30 67.5 Flat rounded triangle 04 1.1E-4 

47 Cut circle / Brain coral 41 65.6 Rounded square 06 1.1E-4 

48 Flat rounded triangle 04 27.5 Cut circle / Brain coral 41 1.0E-4 

49 Rounded square 06 25.9 Rounded rectangle 10 6.7E-5 

50 Rounded rectangle 10 22.4 Circle 11 9.3E-7 

        

350 pt 

1 Triangle-studded rectangle, Size 1 33 3397.7 Circle-studded square, Size 1 39 0.006 

2 Circle-studded square, Size 1 39 3126.6 8-pointed star 26 0.004 

3 Coral 4 47 2879.2 6-pointed star 19 0.004 

4 Circle-studded square, Flat Size 1 40 2270.5 Coral 3 46 0.004 

5 Spiky circle 50 2159.9 Coral 4 47 0.003 

46 Tall rectangle 9 64.4 Octagon 30 7.6E-5 

47 Square 5 48.5 Cut circle / Brain coral 41 6.6E-5 

48 Long rectangle 8 48.3 Rounded rectangle 10 5.9E-5 

49 Octagon 30 39.8 Spiky circle 50 5.5E-5 

50 Rounded rectangle 10 34.8 Circle 11 4.5E-7 
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Table S6. Subset of shape series data showing results for circle-studded squares (CSS), triangle-studded rectangles 
(TSR) and coral sets at three outline resolutions. Both metrics produced the correct progression in all three series at 150 
points.  
  Internal Angle Variance Tangent Angle Variance 

Resolution Rank CSS TSR Coral CSS TSR Coral 

50 pt 

1 Size 2, #38 Size 3, #35 4 Size 1, #39 Size 1, #33 4 

2 Size 1, #39 Size 2, #34 3 Flat Size 1, #40 Size 2, #34 3 

3 Flat Size 1, #40 Flat Size 3, #36 2 Size 2, #38 Size 3, #35 2 

4 Size 3, #37 Size 1, #33 1 Size 3, #37 Flat Size 3, #36 1 

        

150 pt 

1 Size 1, #39 Size 1, #33 4 Size 1, #39 Size 1, #33 4 

2 Flat Size 1, #40 Size 2, #34 3 Flat Size 1, #40 Size 2, #34 3 

3 Size 2, #38 Size 3, #35 2 Size 2, #38 Size 3, #35 2 

4 Size 3, #37 Flat Size 3, #36 1 Size 3, #37 Flat Size 3, #36 1 

        

350 pt 

1 Size 1, #39 Size 1, #33 4 Size 1, #39 Size 2, #34 3 

2 Flat Size 1, #40 Size 2, #34 3 Size 2, #38 Size 3, #35 4 

3 Size 2, #38 Size 3, #35 2 Flat Size 1, #40 Size 1, #33 2 

4 Size 3, #37 Flat Size 3, #36 1 Size 3, #37 Flat Size 3, #36 1 
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A1.2 Average pixel intensity variance protocol & MATLAB code 

The following MATLAB code provides the method for analyzing statolith surface 

variance (StatoSurfVar) by calculating the average pixel intensity variance across five user-

placed analysis boxes. This code uses the cut PNG statolith images created in Adobe Photoshop 

(as described in the main text). The path to and the filenames of those images must be saved in a 

text file in the MATLAB folder entitled ‘ssvFiles.txt’, with the path as the first line and each 

individual image filename on its own subsequent line. 

The code is run with a String that acts to label the analysis run (e.g. dataset or date of 

analysis) and uses this to name the output tables. Once the code is running, it will present the 

first image in the provided list as a MATLAB figure, which you can then click on five times in 

order to place the pixel variance analysis boxes. The boxes will then appear on the image and 

you will be prompted to accept them (by clicking ‘Yes’ or ‘No’ in the pop-up box) before the 

program will move on to the next image. The intent is that these boxes are placed haphazardly, 

but this can result in overlap or capturing surface contaminants within the boxes, so this interface 

allows you to iteratively place the boxes as desired to fit the sample. 

Once you have accepted the squares on the last image in your dataset, the program will 

output the centroids of all squares of all images to a CSV file entitled with your ‘runName’ and 

the variance data to a CSV file entitled ‘runName_results’. The final MATLAB Figure will not 

automatically close, but the program will still have completed. JPEG’s of all images with the 

analysis squares superimposed are output during the program’s operation. It is recommended to 

move all of these to a subfolder named with your ‘runName’ because they can get substantive 

with high sample sizes and if a sample is rerun the original JPEG will be overwritten. 

The ‘runName_results.csv’ file has proxy titles of “Variance_#_#’ (if you can fix this, 

please do). Otherwise manually rename “Variance_1_1’ as ‘Statolith ID’, ‘Variance_2_1 - 5’ as 

‘Box 1 - 5 Variance’, and ‘Variance_3_1’ as ‘Average Variance’. 
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function StatoSurfVar(runName) 
%{StatoSurfVar(String) analyzes average pixel variance among five  
%user-defined boxes on a statolith image. Per run (named by the input  
%String runName), StatoSurfVar takes a file path (line 1) and list of image 
%file names (remaining lines [separated by \n]) stored in ssvFiles.txt and 
%prompts the user to define the centroids of the 100 px x 100 px analysis  
%boxes by clicking the image five times. The program will then display the 
%analysis boxes and prompt the user to confirm them before continuing with 
%the analysis. StatoSurfVar outputs .jpg images of the input images with  
%the boxes drawn on top, a .csv containing the centroid positions of the  
%five boxes for all input images, and a .csv with the resultant average  
%variances. Note: sID assumes the creator's naming convention and should be 
%redefined based on how you ID/how you want to ID your statolith images. 
% 
%Version 1.1 written by Casey Zakroff (czakroff@whoi.edu) May 2 2018 
%in MATLAB version 2016b on Mac. Code and protocols available at:  
%https://github.com/czakroff/Statoliths 
%} 
%% Read file list 
fileID = fopen('ssvFiles.txt','r'); %open your path/data list 
formatSpec = '%s'; 
files = textscan(fileID,formatSpec,'Delimiter',{'\n'}); %read it 
fclose(fileID); %close it 
path = files{1}{1}; %file path is the first line of ssvFiles.txt 
results = cell(length(files{1})-1,1); %array for the results 
%% Image processing loop 
for i = 2:(length(files{1})) %from the line after the path to the end 
%% Read and display image 
    filename = files{1}{i}; %read in filename of an individual .png 
    if isempty(filename) %deals with multiple empty lines at end of list 
        results(length(results)) = []; 
        break; 
    end 
    sID = filename(1:length(filename)-8); %Alter this based on your ID's 
    im = imread(strcat(path,filename)); %read in image 
    imshow(im); %display image 
%% Build squares on image 
    while(1) 
        sqrCents = int32(ginput(5)); %reads 5 user clicks for centroids 
        sqrPos = []; 
        for j = 1:5 %draw 5 100px squares with input centroids 
            pos = [sqrCents(j,:)-50,100,100]; 
            sqrPos = cat(1, sqrPos, pos); 
        end 
        sqIm = insertShape(im, 'Rectangle', sqrPos); %draw squares on image 
        imshow(sqIm); %show image with squares 
        %prompt user 
        choice = menu('Accept Analysis Squares?','Yes','No'); 
        if choice == 1 %end loop if user chooses 'Yes' 
            break; 
        end  
    end 
    imwrite(sqIm, strcat(sID,'_gradSqr.jpg')); %output image with squares 
%% Build centroid table 
    if i == 2 %build initial table for centroids of 5 squares 
       T = table([string(sID);string(sID);string(sID);string(sID);... 
           string(sID)],[1;2;3;4;5],sqrCents); 
    else %expand table for each additional image processed 
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       for j = 1:5 
            T(height(T)+1,:) = {string(sID),j,sqrCents(j)}; 
       end 
    end 
%% Calculate variance of individual boxes 
    v = zeros(1,5); %array to store variance values 
    for j = 1:5 
        sqr = im((sqrCents(j,2)-50):(sqrCents(j,2)+49),... 
            (sqrCents(j,1)-50):(sqrCents(j,1)+49)); %subset image 
        x = reshape(sqr, [1,10000]); %reshape pixel values as array 
        v(j) = var(double(x)); %get variance of pixel value array 
    end 
    avgVar = mean(v); %calculate mean variance across boxes 
    results{i-1} = {sID,v,avgVar}; %add variances and mean to results table 
%% Write square centroid table 
    T.Properties.VariableNames = {'StatolithID' 'BoxNumber' 'SqrCentPos'}; 
    writetable(T,strcat(runName,'.csv')); 
end 
%% Write results table 
res = cell2table(results); %convert 2D array to table 
res.Properties.VariableNames = {'Variance'}; %label (needs improvement) 
writetable(res,strcat(runName,'_results.csv')); 
end 
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A2. Egg number covariate analyses 

Dorsal Mantle Length 

As stated in the manuscript, egg number shows a weak correlation as a continuous 

covariate with dorsal mantle length (Fig. S4). Assessing all data, there is only a weak, non-

significant (LR, P = 0.34) trend in the baseline, low pCO2 treatments, but a significant trend 

across treatments (LR, P < 0.05). These trends are skewed in the data by what appears to be an 

outlier point (although data is very limited related to the population). When this point (Jul 

11/~100 eggs) is removed, the linear relationship between dorsal mantle length and egg number 

is consistently strong, even when normalized for the shifting baseline state between 

clutches/trials (Fig. S4).  

The slope of the relationship between DML and egg number appears relatively consistent 

across CO2 treatment bins, suggesting what may be a broadly independent covariate given more 

data. However, an ANOVA on our data demonstrated significant interactions between egg 

number and pCO2 in all cases, indicating significantly different slopes (Tables S7, S8). Across 

trials, egg number was a consistently significant factor in determining paralarvae mantle length 

and significantly interacted with pCO2 treatment, date, and cup (the last, unsurprising as it 

functionally is a categorical representation of the same factor in our experimental system; Table 

S7). In the data compiled across trials, egg number and trial showed the strongest impact on 

differences in paralarvae mantle length across pCO2 treatments, demonstrating the major 

influence of season, parentage, and clutch on the state of the paralarvae, although pCO2 was still 

a significant influence as well (Table S7).  

 

Yolk Volume 

A cursory examination of yolk volume and egg number also suggests a potential 

relationship, however it is clear in the raw data that this trend is strongly driven by trial 

differences (Fig. S4). When the data is normalized for shifting baselines between trials, there is 

still a trend of increasing yolk volume with increasing egg number, but it is non-significant (LR, 

P > 0.05) and highly variable (Fig. S4). More data would be needed to see if this relationship 

holds for the population, but would be worthwhile to collect, as it suggests egg capsules with 

more eggs are broadly more invested in by mothers and may fare better. 
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Despite the relative weakness in the correlation between yolk volume and egg number in 

the regression plots, the statistical models indicate that egg number and pCO2 significantly 

interact to impact paralarval yolk volume (Table S8). Within trials, the interactions of egg 

number and pCO2 with both hatching date and cup consistently showed significant impacts on 

yolk volume (Table S7). When compiled across trials, egg number and pCO2 (as a factor of trial) 

show independent effects on yolk volume (Table S7).  

 

Embryonic Survival and Hatching Time 

 Neither embryonic survival (measured as percent hatched) nor hatching time (measured 

as time in days to 50% hatching) showed consistent or significant correlations with egg number. 

Embryonic survival broadly shows decreases with increasing egg number, but these wash out 

when differences are normalized for trial differences (Fig. S4). The data across treatments 

suggests that if a capsule is not entirely successful (< 95% hatched) then increasing egg number 

may exacerbate losses (Fig. S4). As increasing egg number increases the number of oxygen 

consumers, it may be that embryonic survival is more driven by oxygenation state in our system. 

Our data may then represent the result of variability in oxygenation due to both the experimental 

system and the egg capsule.  

 Hatching time shows decreases in the raw data, with a significant trend across all 

treatments (LR, P = 0.01), but this again is clearly driven by trial differences (Fig. S4). When 

normalized for shifting baselines between trials, no effect of egg number on hatching time is 

seen, although the slope of response appears to vary between low (slight increase) and high 

(decrease) pCO2 treatment bins (Fig. S4).   
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Table S7. Type II nested ANOVAs for individual trials and compiled data (normalized by difference from trial mean) of both mantle 
length and (log-transformed) yolk volume. Egg number is included as an independent continuous covariate. Significant p values (α = 
0.05) in bold; ‘<<’ indicates a negative exponent of 50 or greater. 
 Mantle Length Yolk Sac Volume 
Source SS df F p SS df F p 
Jul 3         
pCO2 -8.686*10-13 2 -3.687*10-11 1.000 8.260*10-15 2 2.765*10-12 1.000 
pCO2 : Date 3.298 15 18.663 <0.001 0.097 15 4.336 <0.001 
pCO2 : Cup 5.899 6 83.462 <<0.001 0.016 6 1.731 0.112 
Egg Number 507.5 1 43,082 <<0.001 1.481 1 991.4 <<0.001 
Egg Number : pCO2 0.368 2 15.634 <0.001 3.453*10-6 2 1.156*10-3 0.999 
Egg Number : pCO2 : 
Date 0.286 15 1.616 0.062 0.103 15 4.589 <0.001 

Egg Number : pCO2 : 
Cup 4.450 6 62.960 <<0.001 0.035 6 3.951 <0.001 

Residual 5.030 427   0.563 377   
Jul 11         
pCO2 -9.320*10-12 2 -4.175*10-10 1.000 -1.169*10-14 2 -8.596*10-12 1.000 
pCO2 : Date 9.271 15 55.373 <<0.001 0.023 15 2.287 <0.001 
pCO2 : Cup 0.152 6 2.267 0.036 -2.268*10-4 6 -0.056 1.000 

Egg Number 482.6 1 43,223 <<0.001 0.127 1 187.4 <0.001 

Egg Number : pCO2 0.011 2 0.515 0.598 6.778*10-3 2 4.984 <0.001 
Egg Number : pCO2 : 
Date 9.572 15 5.717 <<0.001 0.017 15 1.661 0.056 

Egg Number : pCO2 : 
Cup 

4.812 6 7.185 <<0.001 0.026 6 6.463 <0.001 

Residual 5.068 454   0.310 456   

Aug 7         

pCO2 -4.320*10-11 2 -1.802*10-9 1.000 2.316*10-15 2 7.880*10-12 1.000 

pCO2 : Date 1.284 15 7.143 <0.001 8.847*10-3 15 4.013 <0.001 

pCO2 : Cup 0.388 6 -5.393 1.000 -1.135*10-3 6 -1.287 1.000 

Egg Number 158.8 1 13,254 <<0.001 0.050 1 342.5 <<0.001 

Egg Number : pCO2 0.314 2 13.108 <0.001 2.179*10-4 2 0.741 0.477 
Egg Number : pCO2 : 
Date 0.348 15 1.934 0.019 3.761*10-3 15 1.706 0.047 
Egg Number : pCO2 : 
Cup 

3.838 6 53.376 <0.001 4.667*10-3 6 5.292 <0.001 

Residual 5.441 454   0.065 441   

Compiled Data         

Trial 0.002 2 0.065 0.937 328.1 2 2.227*105 <<0.001 

Trial : pCO2 21.08 15 120.8 <<0.001 1373 15 1.243*105 <<0.001 

Trial : pCO2 : Date 425.0 306 119.3 <<0.001 -0.433 306 -1.920 1.000 

Trial : pCO2 : Cup 0.033 36 0.078 0.999 6*10-6 36 2.345*10-4 1.000 

Egg Number 0.209 1 17.98 <0.001 32.22 1 43,739 <<0.001 

Egg Number : Trial 302.3 2 12,987 <<0.001 -0.026 2 -17.74 1.000 
Egg Number : Trial : 
pCO2 

67.91 15 389.0 <<0.001 -34,307 15 -3.105*106 1.000 

Egg Number : Trial : 
pCO2 : Date 590.7 306 165.9 <<0.001 0.218 306 0.969 0.325 

Egg Number : Trial : 
pCO2 : Cup 92.10 36 219.8 <<0.001 0.026 36 0.969 0.325 

Residual 15.54 1335   0.939 1274   
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Table S8. Type II ANOVAs of pCO2, with egg number as an independent covariate, separated by metric and trial. Significant  
p-values (< 0.05) in bold. Yolk volume measurements were log-transformed prior to statistical analysis. 
 Mantle Length Yolk Sac Volume 
Source SS df F p Ω2 SS df F p Ω2 
Jul 3           

pCO2 0.501 2 19.008 <0.001 0.070 0.027 2 7.466 <0.001 0.070 

Egg Number 0.060 1 4.558 0.033 0.007 0.040 1 22.087 <0.001 0.007 

Egg Number : pCO2 0.199 2 7.540 <0.001 0.025 0.019 2 5.101 <0.01 0.025 

Residual 6.047 459    0.743 406    

Jul 11           

pCO2 1.108 2 41.903 <0.001 0.140 0.008 2 5.014 <0.01 0.016 

Egg Number 0.074 1 5.563 0.019 0.008 0.001 1 1.747 0.187 0.001 

Egg Number : pCO2 0.115 2 4.351 0.013 0.011 0.006 2 3.798 0.023 0.011 

Residual 6.409 485    0.367 489    

Aug 7           

pCO2 0.390 2 13.368 <0.001 0.044 3.27*10-4 2 0.983 0.375 0.000 

Egg Number 0.591 1 40.523 <0.001 0.070 6.12*10-4 1 3.676 0.056 0.005 

Egg Number : pCO2 0.169 2 5.774 <0.01 0.017 0.002 2 7.345 <0.001 0.026 

Residual 7.107 490    0.079 474    

Compiled           

pCO2 2.060 5 29.702 <0.001 0.086 0.186 5 39.483 <0.001 0.111 

Egg Number 0.245 1 17.677 <0.001 0.010 0.055 1 58.470 <0.001 0.033 

Egg Number : pCO2 0.772 5 11.125 <0.001 0.031 0.099 5 21.045 <0.001 0.058 

Residual 19.93 1437    1.296 1375    
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Figure S4. Relationships between metrics and number of eggs per capsule (next page). Data 
are presented as raw data (left two columns) and normalized (right two columns: “Lowest pCO2” 
[550, 850, 400 ppm] by treatment mean, “All Treatments” by trial mean). Hatching time is 
presented here as the time (in days) to 50% hatching calculated from the cumulative hatching 
curves presented in Fig. 7 of the manuscript. Symbols represent means, shape represent egg 
clutch lay date/trial (circle = Jul 3, square = Jul 11, triangle = Aug 7), color represents binned 
pCO2 treatments (light gray = low [550, 850, 400 ppm], medium gray = mid [1300, 1300, 1900 
ppm], dark gray = high [2200 ppm]; bins were used instead of a gradient for simplicity). Yolk 
volume means are back calculated from logarithmic scale in the raw data, but not for the 
differences used in the normalized data. Lines represent linear regressions; significant p values 
(α = 0.05) are marked by an asterisk. Black regression line and statistics represent all data points. 
The gray dashed regression line and statistics in the “Dorsal Mantle Length” row have removed 
the ‘Jul 11/~100 egg’ data point as an outlier 
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Appendix B 
 
Chapter 3 Supplementary Materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter was originally published as: Zakroff C, Mooney TA, Wirth C (2018) Ocean acidification responses in 
paralarval squid swimming behavior using a novel 3D tracking system. Hydrobiologia 808:83–106. doi: 
10.1007/s10750-017-3342-9. 
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Figure S1 The proportion of individual paralarval (n = 9) time spent active in one-minute bins 
over a 10-minute period in the 3D experimental arena. Paralarvae from all 4 CO2 treatments were 
used and no consistent pattern with CO2 exposure was seen, so all data is compiled here. Dotted 
circles denote medians and plus signs denote outliers 
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Figure S2 (A) Dimensions and axes of the 2D arena, constructed from a tissue culture flask. 400 
mL of treatment-appropriate seawater was used. (B) Dimensions and axes of the 3D arena 
constructed from a plastic box. Seawater was added to fill to an internal cube of 9.6 cm. For both 
schematics, solid lines indicate the seawater space used in the experiments, while dotted lines 
indicate the additional makeup of the container. Measurements are provided for both external (E) 
and internal (I) dimensions of the containers, and seawater volume (SW) utilized. The z axis is 
oriented as it was for tracking, in the bottom, front, left (0,0,0) corner. Note that this was 
transformed, so that 0 was at the water surface, for manuscript figures depicting depth. Figures 
are not drawn to scale 
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B1. Ocean Acidification and Squid Egg Capsule Culture System 

Experiments took place at the WHOI Environmental Systems Laboratory (ESL), Woods 

Hole, MA from May - October of 2013, 2014, and 2015. A flow-through ocean acidification 

(OA) system was equilibrated to different CO2 levels for each trial. Ambient ocean water was 

pumped in from the ESL intake, passed through the facility’s sand-filtration system, and was 

heated to 20°C. This temperature reflected peak values reached during the breeding season and 

resulted in a consistent two-week development period for the ambient paralarvae. The seawater 

was then passed through a 10µm filter (Hayward FLV Series industrial filter equipped with 

10µm felt bag) to remove major particulates and a UV sterilizer (Emperor Aquatics Smart HO 

UV Sterilizer, Model 025150) to eliminate potentially harmful protozoans. The cleaned water 

subsequently flowed into the experimental system’s header tank and was bubbled with 

compressed air. Water flowed in a gravity-based system from the header tank and was split 

among four treatment lines into H-shaped PVC equilibration (EQ) chambers. Each leg of an EQ 

chamber contained two air stones, which bubbled in the appropriate CO2 mixture. Due to the 

elevated CO2 concentration of ESL seawater (550 ppm in facility compared to 400 ppm at the 

pump intake in Vineyard Sound) the ambient treatment line was comprised of three EQ 

chambers, the first degassing with N2 and the following two reintroducing O2 and CO2 at 

ambient concentrations. Measurements of dissolved oxygen downstream of the nitrogen system 

were all above 95%. Due to a facility malfunction, Trial 3 of 2013 lost oxygenation downstream 

of the nitrogen degassing and was not used. To reduce the growth of brown algae, which was 

encouraged by the nitrogen enrichment, lines were cleaned between each trial and a 1µm filter 

was placed downstream of the EQ chambers on the ambient line. 

Compressed air, delivered at 30 psi from an indoor air compressor, was delivered using a 

six-way manifold to the header tank aeration, ambient EQ chambers’ air stones, and three mass 

flow controllers (Aalborg GFC17, Orangeburg, NY, USA) with a flow rate of 4.5 l min-1. Pure 

CO2 was delivered from a cylinder at 30 psi to three further mass flow controllers (Aalborg 

GFC17), which were set at various flow rates to produce the desired CO2 concentrations in the 

gas mixtures. Air and CO2 lines were connected downstream of the mass flow controllers and 

allowed to mix before being split among the EQ chambers’ air stones and experimental aquaria 

bubbling lines. CO2 mixtures covered a range of values between ambient (400 ppm) and 2200 

ppm (Main Text, Table 1). CO2 concentrations for each level were measured before the start of 
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each trial on a Qubit Systems CO2 Analyzer (model s151) calibrated with three commercial 

reference standards (0, 362, and 1036 ppm). 

Equilibrated water in each treatment line outflowed into a PVC manifold and entered drip 

lines connected to the experimental aquaria, consisting of individual 1-liter PET food service 

containers (Solo Foodservice, Lake Forest, IL). The containers had been seawater soaked for 24 

hours and DI-water rinsed in advance to remove any potential chemical residues or toxins. Cups 

were sealed with fitted lids pierced with two holes for the gas and equilibrated water lines. Each 

cup had a small (2x4 cm), screened (5 µm mesh) hole to permit water outflow while retaining 

paralarvae. The bubbler of the gas line was placed under the screen to create flow and prevent 

paralarvae from sticking to the screening. Water outflowed from the cups into a common water 

bath maintained at a temperature of 20°C via aquarium heaters (JÄGER 3603, EHEIM GmbH 

and Co., Deizisau, DE) and chillers (Oceanic Aquarium Chiller 1/10hp, Oceanic Systems, 

Walnut Creek, CA, USA). 

In 2013, each trial consisted of three CO2 treatments, each with three experimental cups 

and one organism-free control cup, totaling twelve cups per water bath. In 2014 and 2015, each 

trial consisted of four CO2 treatments, totaling sixteen cups per water bath. The system was run 

for several days prior to a trial to ensure stable water and gas levels. Flow rates to the cups were 

set at a slow drip, approximately 20 liters day-1, which prevented waste accumulation. The flow 

rate also allowed sufficient time for bubbled gas to equilibrate with water in the EQ chambers. 

The ESL room containing the experimental set up was kept on a 14:10 hour light:dark 

photoperiod, reflecting the average photoperiod of the region, using ceiling mounted fluorescent 

lighting. Water bath temperature and ambient light levels were monitored using an Onset HOBO 

data logger (pendant model UA-004-64), one in each water bath, with recordings taken every 15 

minutes. Temperatures were 20.49 ± 0.69 °C, 20.36 ± 1.80 °C, and 20.01 ± 1.00 °C (mean ± SE) 

in water bath 1 and 20.26 ± 0.49 °C, 20.18  ± 1.74 °C, and 20.51 ± 1.91 °C in water bath 2 in 

2013, 2014, and 2015, respectively. 

Once squid were brought to the ESL holding tanks, females began laying eggs within two 

to three days, producing small egg mats typically found at the bottom of the tank or attached to 

the air hose. The morning an egg cluster was found, it was removed to a holding container and 

examined for quality. Individual egg capsules, each containing between 50-200 eggs, were then 
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randomly selected and randomly assigned to each experimental cup, with two egg capsules per 

cup (18 egg capsules per trial for 2013, 24 for 2014 and 2015), marking the start of a trial.  

 During a trial, pH measurements were taken for samples from each cup every three days 

using a pH meter (Orion Star™ A329, Thermo Fisher Scientific Inc., Waltham, MA, USA) in 

order to monitor CO2 level stability. The fourth cup from each CO2 level contained no eggs sacs 

and was used as a control for water quality and carbonate chemistry measurements. 

Spectrometric pH measurements were taken with a spectrophotometer using methods adapted 

from Clayton and Byrne (1993) and Dickson et al. (2007) Salinity was measured using a salinity 

probe (Orion Star™ A329, Thermo Fisher Scientific Inc., Waltham, MA, USA) in parallel to 

spectrophotometric pH readings. Total alkalinity (AT) samples were taken in 20mL acid-washed, 

glass scintillation vials and poisoned with 10µL saturated mercuric chloride (HgCl2). Alkalinity 

samples were analyzed post-trial using an automated small volume titrator (Titrando 808, 

Metrohm AG, Herisau, CH) programmed to run Gran titrations of 1mL subsamples. Samples 

were run in duplicate and calibrated against standards of ESL water of known alkalinity. For 

duplicates with a difference of 4 µmol kg-1 seawater (SW) or greater, samples were rerun and an 

average of the four values was taken. Carbonate chemistry metrics (temperature, salinity, pH, 

and alkalinity) were input into CO2SYS, using dissociation constants from Mehrbach (1973) and 

sulfate constants from Dickson (1990), to calculate pCO2 and aragonite saturation state (Ωarag) 

for each treatment of each trial. A baseline measurement of all cups was taken prior to the 

initiation of a trial, followed by weekly readings of only the control cups once a trial had begun. 

Measured seawater CO2 concentrations fell within reasonable range of the equilibrations desired 

from the gas concentrations (Main Text, Table 1). 

 

B2. Recording 3D Swimming Behavior Videos 

B2.1 3D Swimming Behavior Recording Protocol 

1. Before sampling your organism, make sure the setup is complete as follows (Note: all 

cameras and the organism aquaria/chamber were placed within a covered photography 

light box to block ambient light): 

a) Fill the chamber with seawater appropriate to the treatment you are testing. The 

water level needed to make a perfect cube (9.6 cm for this chamber) is marked 

with a small black line. Remove any bubbles by scraping with a ruler. 
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b) Secure the top camera to a sturdy frame above where your chamber will be 

placed. 

c) Place the chamber beneath the top camera. Adjust the top camera zoom so the 

entire chamber is clearly visible within the image frame.  

d) Center the chamber in the camera view. This can be done by measuring the 

distance between the sides of the chamber and the edge of the image frame for 

each side and making this distance on both sides equal.  

e) Ensure the camera is viewing the center of the chamber straight on and is not 

skewed to any angle. This can be done by measuring the length (in the camera 

image) from the top (front) edge of each side of the chamber to its bottom (back) 

edge and adjusting the position of the camera and chamber to make these 

distances equal. 

f) Place the side camera on a raised block in front of the chamber, such that the 

camera points to the center of the chamber. Adjust the zoom so the entire chamber 

is clearly visible. Center the camera on the chamber and adjust skew, as above. 

Connect the cameras to viewing monitors outside your light box.  

g) Place one light on either side of the chamber (perpendicular, non-biased lighting 

is necessary for photopositive organisms only). Set lighting so your organism is 

clearly visible in both camera images and reflections from your chamber are 

reduced as much as possible. 

2. Select one individual and place it into the center of the chamber.  

3. Close the cover of the light box. Allow organism to acclimate to chamber (one minute 

was suitable for squid paralarvae). 

4. Start timer and record for desired length (two minutes was suitable for squid paralarvae). 

5. Before stopping the recording, use a light, laser, or other visual cue so that both videos 

can easily by synced for 3D analysis. 

6. Stop the recording. Remove organism. Repeat steps 3-7 for as many individuals as you 

have per treatment. 

7. Record file number for top and side camera and relevant experimental data/individual 

identification on a data sheet, along with any notes on video quality (good swimming, 

corner, etc). 
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8. Note: Remember to change water in filming chamber as needed as you progress through 

your treatments. The camera adjustments outlined in step 1 must be repeated/checked 

each time the organism chamber is removed or replaced. 

9. Upload video files to an external hard drive (recommended due to size and number of 

videos). Save files in a dated folder, and within that, either a “top” or “side” subfolder. 

10. Double check to ensure your recordings are saved and backed up before reformatting the 

memory cards for the next recording session. 

B3. Analysis of 3D Swimming Behavior Data 

B3.1 Organism Tracking Protocol 

1. Drag your video into Tracker (available at OpenSourcePhysics.org). It is best to analyze 

videos one minute at a time because Tracker can slow down and can run out of memory 

(amount of memory available to Tracker can be adjusted by clicking memory in use → 

Set memory size…). Save as you go. If the memory allotment gets overloaded the 

program can crash. At a higher memory allotment, a full two-minute video can be 

analyzed in one Tracker run. In order to clear the memory cache, it is easiest to close and 

reopen Tracker for each video analyzed. 

2. In the top right corner, click the “refresh” button then deselect Auto-refresh. This 

prevents available memory from filling up as you track, which slows down the process. 

3. You may need to correct for stretching due to Tracker’s pixel size, which may differ from 

those used your camera. Click Video → Filters → New → Resize, then adjust. For the 

Sony HD Handycams used in the squid experiment the adjustment was: 

 Width Height 

Input 1440 1080 

Output 1440 800 

 

4. Adjust the axis to the desired position by clicking the magenta axis button (show or hide 

the coordinate axes) on the tool bar. From the side view, the origin (0,0) point should be 

in the top left corner of the chamber with the y-axis aligned with the inside of the left 

edge of the chamber and the x-axis aligned with the water level. You can tilt the axes, if 

needed, by clicking and dragging them. The axes for the top view depend on how your 

camera is oriented in relation to chamber. The origin for all the data should be the top, 
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left, front corner of the chamber. Our top camera was placed such that it viewed the 

chamber with the front edge at the top of the image. Thus, we placed the origin for 

tracking top videos at the top right corner of the chamber with the y-axis aligned with the 

inside right edge of the chamber and the x-axis aligned with the inside top edge. This 

produced negative values for both x and y data that had to be later reoriented (multiply by 

-1) to the correct reference frame.  

5. Adjust the scale by pressing the blue Show, hide, or create calibration tools on the 

toolbar. Click on new → calibration tape. A blue, double-headed arrow will appear on 

screen. Drag the ends of the calibration tape across a known distance, typically the length 

of your chamber (9.6 cm between the inside edges of the chamber). You can zoom in to 

be as accurate as possible placing the ends of the tape. Make sure the angle of the tape to 

the x-axis is 0. Double click on the box with the blue number and change it to your 

known length (9.6 in our case) once adjusted perfectly. 

6. Frame selection:  

a. Calculate the total number of frames analyzed for 1 minute of video. For our 

cameras this was 1799, since the camera filmed at 29.97 frames per second. 

b. To calculate the frames you would like to analyze, find the frame where the laser 

pointer first appears signaling the end of the recording and use the frame before as 

the last. Subtract your desired number of frames -1 (1798, in our case) from the 

last frame to get the first frame (the frame range is inclusive, hence we subtracted 

1798 not 1799).  

7. To apply the desired frame range, click on the Clip Settings button on the toolbar. Enter 

the frame numbers in the window that appears. You can tell the range has been applied 

because the small black arrows beneath the video scanning bar at the bottom of the screen 

will have moved to enclose the desired range.  

8. To start a new track, click Create a new track →  Point Mass. Click on the mass a 

button in the Track Control window and click the Autotracker… button, which will 

open the Autotracker window. 

9. Autotracker: (refer to Help →  Tracker Help →  Autotracker for further explanation) 

a. Autotracker works best when the organism is a well-lit white dot and against a 

black background. 
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b. To start, shift + control + click on the animal to be tracked. The numbered point 

is the target; its position is what will be marked in the data column. The circle 

selects the template image autotracker will search for, it will appear in the 

autotracker window. It can be manually resized and moved in relation to the 

target, but the target will stay wherever you have placed it in relation to the 

template image while tracking (should be inside the circle).  

c. The dashed rectangle is the search area, in which autotracker will search for the 

template image in the next frame. Depending on how fast/far per frame the 

animal is moving, make this as small as possible. 

d. Press the search button for autotracker to automatically check each frame for the 

image.  

e. Watch Autotracker for the entire time! If it is no longer following the animal, 

push the stop button and backtrack to the frame where the target lost the animal.  

f. To create a new template image, delete the current point and shift +  control + 

click on the animal again to create a new key frame. If you do this without 

deleting the current point you will just create a new template image, the target 

will not be moved and will place data points incorrectly. Always make sure the 

target is not placing data points outside the template image.  

g. You can also try dragging the search area box back over the organism and then 

clicking search. 

h. If tracker is having a hard time, you can manually track by repeatedly using shift 

+ click to place the target on the animal frame-by-frame until autotracker can be 

used again.  

i. Use the evolution rate to tell autotracker how much the template image will 

change frame-to-frame; usually it can be lower than default. Use the automark to 

set the minimum match score needed to mark points. Lower numbers result in 

more false-matches but fewer stoppages. 

10. Autotracker data:  

a. Adjust the frame range in Clip Settings to include the entire tracked time, 

including first and last frames. Select your point mass (usually mass A) from the 
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Plot or Table dropdown menu, and then click the Refresh data and views button 

on the right side of the toolbar. 

b. Copy and paste the table data into an Excel document.  

c. Autotracker occasionally skips frames, so it is necessary to check for missing data 

points. In Excel, select all the data and then use the Go To function (Fn+F5 on 

PC), then click Special and check Blanks. This highlights all blank cells. You can 

then change fill color to red to be more visible, and then scroll through to find 

missing data. Then, go back into the Tracker file and find the skipped frame, 

shift-click to manually mark the position of the organism and copy the needed 

data back into Excel. 

11. Save the tracker file and the Excel file of your data. 

12. In Tracker, use a calibration tape (Show, hide, or create calibration tools → new → 

calibration tape) to measure the length of the back of the chamber for qbs or qbt (See list 

of model variables below). These values are the same throughout a certain placement and 

orientation of the cameras and chamber, so only need to be measured once for each block 

of recording (i.e. if the cameras or chamber get moved/readjusted, then measure these 

values again). 

B3.2 3D Data Analysis Protocol 

1. Compile the side and top data for each individual into a single Excel file with the 

columns: time (s), xs, zs, xt, yt (time can be converted to seconds from frame number, xs 

and zs are the x and y data from the side view while xt an yt are the x and y data from the 

top view, respectively). Ensure that your data is oriented to an origin (0,0,0) at the top, 

left, front corner of the chamber (particularly your top view data). 

2. Open Matlab and run the Behavior3DCorrection code (below). Enter your Excel file 

name, sheet name, data range, qbs and qbt for the video you are analyzing. The code 

usually takes several minutes (5 - 10) to run for two minutes of data. This code outputs 

your corrected time, x, y, z position data in a new .xls or .csv file and automatically calls 

Behavior3DAnalysis to calculate metrics of movement. 

3. Behavior3DAnalysis calculates a number of 3D movement metrics and prints the 

summary results of this data to a results text file as well as full data to individual .xls or 
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.csv files. It also produces several preliminary plots of the individual organism’s 

movement to aid in visualization and further analysis. 
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B3.3 List of Model Variables 
 

List of Model Variables 

qbs length of back plane of chamber in side video image 

qbt length of back plane of chamber in top video image 

qis hypotenuse formed between front plane and side view image plane  

qit hypotenuse formed between front plane and top view image plane  

Q length of cubic chamber side 

Qs length of image plane of organism in side view 

Qt length of image plane of organism in top view 

x true x position of organism 

xis x position in side view image plane 

xit x position in top view image plane 

xs measured x position in side view tracking 

xt measured x position in top view tracking 

y true y position of organism 

yit y position in organism’s top view image plane  

yt measured y position in top view tracking 

z true z position of organism 

zis z position in side view image plane 

zs measured z position in side view tracking 
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B3.4 3D Behavior Data Correction MATLAB code 
 
function Behavior3DCorrection 
%{Behavior3DCorrection is designed to merge and correct x,z (side view) and 
%x,y (top view) tracking data derived from video of an organism (a squid  
%paralarvae) swimming in a cubic arena taken with two perpendicular cameras. 
%This code assumes the data is stored in a single Excel spreadsheet where  
%the columns are: time (s), xs, zs, xt, yt. These known data are input into  
%an overconstrained system of equations and assessed using least sum of  
%squares to approximate the true x, y, and z values with the most minimal  
%error. This code accompanies the publication: Zakroff, C. Mooney, TA,  
%Wirth, C. Ocean Acidification Responses in Paralarval Squid Swimming 
%Behavior Using a Novel 3D Tracking System. (2017). Hydrobiologia Vol: Pages. 
%DOI: 
% 
%Version 1.5 written by Casey Zakroff (czakroff@whoi.edu) May 11 2017 
%in MATLAB version 2016b on Mac. Code and protocols available at:  
%https://github.com/czakroff/3D-Swimming-Behavior 
%} 
  
%User Input of Excel Data Sheet 
filename = input('\nEnter the name of the Excel file: ', 's'); 
sheet = input('Enter the name of the Excel sheet: ', 's'); 
dataRange = input('Enter the range of the data cells, i.e. "A5:E3602":', 
's'); %This data range works for 2 minute videos (3598 frames) 
pLcode = strcat(filename,'_',sheet); %ID code for each individual squid 
paralarvae (pL) 
  
%Read in t, xs, zs, xt, yt 
rawData = xlsread(filename, sheet, dataRange);  
  
%Establish known values of from your arena 
Q = 9.6; %Q is the length of the side of your cubic arena (in cm) 
%Read in Qbs - the length of the back of the arena in the side video image 
Qbs = input('Enter Qbs value: '); 
%Read in Qbt - the length of the back of the arena in the top video image 
Qbt = input('Enter Qbt value: ');  
  
%Calculate the hypoteneuse of the right triangle between Q and Q back for 
both the side and top. 
qbs = (Q-Qbs)/2*sqrt(2); 
qbt = (Q-Qbt)/2*sqrt(2); 
  
%Set up output data array and assign time to first column 
correctedData = zeros(size(rawData,1),4); 
correctedData(:,1) = rawData(:,1); 
  
%Assign xs, zs, xt, and yt 
xs = rawData(1:size(rawData,1),2); 
zs = rawData(1:size(rawData,1),3); 
xt = rawData(1:size(rawData,1),4); 
yt = rawData(1:size(rawData,1),5); 
  
%Assign limits and options for fmincon 
A = ones(1,11)*0.001; 
B = ones(1,11)*Q; 
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options = optimoptions('fmincon','Display','final'); 
  
for i = 1:size(rawData,1) 
    %Assign guesses for fmincon 
    % x0 = [x, y, z, xis, zis, xit, yit, qis, qit, Qs, Qt] 
    x0 = [xs(i), yt(i), zs(i), xs(i), zs(i), xt(i), yt(i), 0, 0, Q, Q]; 
     
    %Run least sum of squares using fmincon 
    [p,fval,exitflag,output] = 
fmincon(@leastSumSqr,x0,[],[],[],[],A,B,[],options); 
    correctedData(i,2:4) = p(1:3); %store corrected t,x,y,z data 
end 
  
%Output corrected data. Creates CSV on Macs 
xlswrite(pLcode, correctedData); 
  
%Call analysis code to get 3D metrics and basic plots 
Behavior3DAnalysis(correctedData,pLcode); 
  
%System of equations assessed by fmincon 
    function fVal = leastSumSqr(x0) 
     
        F = zeros(1,12); 
         
        F(1) = x0(1)*x0(10)/x0(4)-Q; 
        F(2) = x0(3)*x0(10)/x0(5)-Q; 
        F(3) = x0(1)*x0(11)/x0(6)-Q; 
        F(4) = x0(2)*x0(11)/x0(7)-Q; 
        F(5) = (x0(4)+x0(8)/sqrt(2))-xs(i); 
        F(6) = (x0(5)+x0(8)/sqrt(2))-zs(i); 
        F(7) = (x0(6)+x0(9)/sqrt(2))-xt(i); 
        F(8) = (x0(7)+x0(9)/sqrt(2))-yt(i); 
        F(9) = (x0(10)+2*x0(8)/sqrt(2))-Q; 
        F(10) = (x0(11)+2*x0(9)/sqrt(2))-Q; 
        F(11) = x0(8)/x0(2)-qbs/Q; 
        F(12) = x0(9)/x0(3)-qbt/Q; 
         
        fVal = sum(F.^2); 
    end 
  
end 
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B3.5 3D Behavior Analysis MATLAB code 
 
function Behavior3DAnalysis(data, filename) 
%{Behavior3DAnalysis takes the corrected x, y, z positional data from  
%Behavior3DCorrection and calculates total distance traveled, average, 
%peak, min, max, and median of 3D, horizontal, and vertical velocity, 3D 
%volume covered, 2D turning angles, and path tortuosity (a ratio of the  
%distance transitited between two points and the true distance between those 
%points) of an individual swimming organism. These data are output to a  
%'results' text file and to an Excel file named with the individual  
%organism ID code. A 3D plot of the organism's swimming track, a plot of  
%the tortuosity of that path, and a 3D polygon of the volume covered by the 
%organism are produced and output as tiff files. A histogram of the 
%organism's turning angles over the entire track is output as a png. 
%This code accompanies the publication: Zakroff, C. Mooney, TA,  
%Wirth, C. Ocean Acidification Responses in Paralarval Squid Swimming 
%Behavior Using a Novel 3D Tracking System. (2017). Hydrobiologia. Vol: 
Pages. 
%DOI: 
% 
%Version 1.5 written by Casey Zakroff (czakroff@whoi.edu) May 11 2017 
%in MATLAB version 2016b on Mac. Code and protocols available at:  
%https://github.com/czakroff/3D-Swimming-Behavior 
%} 
  
%Set variables to set sampling resolution for tortuosity and turning angle 
res = 30; %Sampling resolution (value is in frames; 30 fps = 1 s segments) 
numPts = floor(size(data,1)/res); %Number of points sampled from the data 
  
%Create arrays to store 3D metrics 
distance = zeros(size(data,1)-1,1);  
vel = zeros(size(data,1)-1,1); %3D velocity 
vertVel = zeros(size(data,1)-1,1); %vertical velocity 
horVel = zeros(size(data,1)-1,1); %horizontal velocity 
angles = zeros(numPts-1,1); %turning angles 
tort = zeros(size(data,1)-res-1,1); %tortuosity 
  
%Calculate total distance traveled (cm) and velocities (cm/s) 
%by looping through all data and recording values between successive  
%positions. 
for i = 1:(size(data,1)-1) 
    tDiff = data(i+1,1)-data((i),1); %difference in time (s) 
    xDiff = data(i+1,2)-data((i),2); %difference in x (cm) 
    yDiff = data(i+1,3)-data((i),3); %difference in y (cm) 
    zDiff = data(i+1,4)-data((i),4); %difference in z (cm) 
    distance(i) = sqrt(xDiff^2+yDiff^2+zDiff^2); 
    vel(i) = distance(i)/tDiff; 
    vertVel(i) = zDiff/tDiff; 
    horVel(i) = sqrt(xDiff^2+yDiff^2)/tDiff; 
end 
  
%Store distance and speed data 
totDist = sum(distance); 
avgVel = mean(vel); 
peakVel = max(vel); 
minVel = min(vel); 
medVel = median(vel); 
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avgVVel = mean(vertVel); 
peakVVel = max(vertVel); 
minVVel = min(vertVel); 
medVVel = median(vertVel); 
avgHVel = mean(horVel); 
peakHVel = max(horVel); 
minHVel = min(horVel); 
medHVel = median(horVel); 
  
%Calculate hull (for polygon) and 3D volume covered 
[K,vol3D] = convhull(data(:,2),data(:,3),data(:,4)); 
  
%Calculate 2D turning angles between successive 1-second steps (res) 
j = 1; 
for i = 1:(numPts-1) 
    xdiff1 = data((j+res),2)-data(j,2); 
    ydiff1 = data((j+res),3)-data(j,3); 
    xdiff2 = data((j+2*res),2)-data((j+res),2); 
    ydiff2 = data((j+2*res),3)-data((j+res),3); 
    a = [xdiff1,ydiff1]; 
    b = [xdiff2,ydiff2]; 
    angle = atan2(abs(det([a;b])),dot(a,b)); 
    angles(i) = angle*180/pi;    
    j = j+res; 
end 
  
%Store turning angle data 
avgAngl = mean(angles); 
maxAngl = max(angles); 
minAngl = min(angles); 
medAngl = median(angles); 
  
%Tortuosity 
%Loop for calculating tortuosity over 1-second steps (res) 
for i = 1:(size(data,1)-res-1) 
    xDiffT = data((i+res),2)-data((i),2); 
    yDiffT = data((i+res),3)-data((i),3); 
    zDiffT = data((i+res),4)-data((i),4); 
    distPts = sqrt(xDiffT^2+yDiffT^2+zDiffT^2); %distance between points 
    distTort = sum(distance(i:(i+res))); %distance covered by organism 
    tort(i) = distTort/distPts; 
end 
  
%Store tortuosity data 
avgTort = mean(tort); 
peakTort = max(tort); 
minTort = min(tort); 
medTort = median(tort); 
  
figure 
fig = gcf; 
fig.PaperUnits = 'centimeters'; 
fig.PaperPositionMode = 'manual'; 
fig.PaperSize = [33.8 33.8]; 
  
%Plot 3D track and output tiff 
plot3(data(:,2),data(:,3),data(:,4)-9.6); 
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ax = gca; 
ax.FontUnits = 'centimeters'; 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 0.35; 
ax.XTickMode = 'manual'; 
ax.YTickMode = 'manual'; 
ax.XLimMode = 'manual'; 
ax.YLimMode = 'manual'; 
ax.XLim = [0,9.600]; 
ax.YLim = [0,9.600]; 
ax.ZLim = [-9.600,0]; 
ax.XTick = [0,1,2,3,4,5,6,7,8,9]; 
ax.XTickLabel = {' ', '1', ' ', '3', ' ', '5', ' ', '7', ' ', '9'}; 
ax.YTick = [0,1,2,3,4,5,6,7,8,9]; 
ax.YTickLabel = {' ', '1', ' ', '3', ' ', '5', ' ', '7', ' ', '9'}; 
ax.ZTick = [-9,-8,-7,-6,-5,-4,-3,-2,-1,0]; 
ax.ZTickLabel = {'-9', '', '-7', '', '-5', '', '-3', '', '-1', ''}; 
ax.XGrid = 'on'; 
ax.YGrid = 'on'; 
ax.ZGrid = 'on'; 
ax.XLabel.String = 'Length (cm)'; 
ax.YLabel.String = 'Length (cm)'; 
ax.ZLabel.String = 'Depth (cm)'; 
print('-dtiff','-r600',filename); 
  
%Calculate colormap for tortuosity plot 
[t1,t2] = size(tort); 
[d1,d2] = size(data(:,2)); 
col = tort; 
for i = t1:d1-1 
    col = [col; tort(t1)]; 
end 
  
%Plot tortuosity as thin 3D surface and output tiff 
h = surface([data(:,2), data(:,2)], [data(:,3), data(:,3)],... 
    [data(:,4)-9.6, data(:,4)-9.6],[col,col],... 
    'FaceColor','none','EdgeColor','interp','LineWidth',2); 
colormap(jet); 
caxis([1 5]); 
c = colorbar; 
text('String','Tortuosity', 'Rotation', 90,... 
    'Position', [242.25 302.5 -227.2],... 
    'FontUnits', 'centimeters', 'FontSize', 0.35,... 
    'FontName', 'Times New Roman', 'color','k'); 
print('-dtiff','-r400',strcat(filename,'_tortuosity')); 
  
%Create 3D volume polygon and output tiff 
colormap(parula); 
trisurf(K,data(:,2),data(:,3),data(:,4)-9.6); 
ax = gca; 
ax.FontUnits = 'centimeters'; 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 0.35; 
ax.XTickMode = 'manual'; 
ax.YTickMode = 'manual'; 
ax.XLimMode = 'manual'; 
ax.YLimMode = 'manual'; 
ax.XLim = [0,9.600]; 
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ax.YLim = [0,9.600]; 
ax.ZLim = [-9.600,0]; 
ax.XTick = [0,1,2,3,4,5,6,7,8,9]; 
ax.XTickLabel = {' ', '1', ' ', '3', ' ', '5', ' ', '7', ' ', '9'}; 
ax.YTick = [0,1,2,3,4,5,6,7,8,9]; 
ax.YTickLabel = {' ', '1', ' ', '3', ' ', '5', ' ', '7', ' ', '9'}; 
ax.ZTick = [-9,-8,-7,-6,-5,-4,-3,-2,-1,0]; 
ax.ZTickLabel = {'-9', '', '-7', '', '-5', '', '-3', '', '-1', ''}; 
ax.XGrid = 'on'; 
ax.YGrid = 'on'; 
ax.ZGrid = 'on'; 
ax.XLabel.String = 'Length (cm)'; 
ax.YLabel.String = 'Length (cm)'; 
ax.ZLabel.String = 'Depth (cm)'; 
print('-dtiff','-r600',strcat(filename,'_volume')); 
  
%Plot histogram of turning angles and output png 
angBins = 18; %Number of bins for angle histogram 
histogram(angles,angBins,'BinWidth', 10,'Normalization','probability'); 
ax = gca; 
ax.XTickMode = 'manual'; 
ax.XLimMode = 'manual'; 
ax.FontUnits = 'centimeters'; 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 0.35; 
ax.Box = 'Off'; 
ax.XLabel.String = 'Turning Angle (degrees)'; 
ax.XLim = [0 180]; 
ax.YLim = [0 0.5]; 
ax.XTick = [0,20,40,60,80,100,120,140,160,180]; 
ax.YTick = [0,0.1,0.2,0.3,0.4,0.5]; 
ax.YLabel.String = 'Frequency'; 
print(strcat(filename,'_turningAngles'), '-dpng'); 
     
%Compile results 
results = [totDist; avgVel; peakVel; minVel; medVel; avgVVel;  
    peakVVel; minVVel; medVVel; avgHVel; peakHVel; minHVel; medHVel; 
    vol3D; avgAngl; maxAngl; minAngl; medAngl; avgTort; peakTort; minTort 
    medTort]; 
  
%Output data to results textfile 
fid = fopen('results.txt', 'a'); 
spec = 
'\n\n%s%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f
%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f%123.4f
%123.4f'; 
fprintf(fid, spec, filename, results); 
fclose(fid); 
  
%{ 
%Output data on PC (output as one Excel file) 
xlswrite(filename,results,'results'); 
xlswrite(filename,distance, 'distance'); 
xlswrite(filename,vel,'3Dvelocity'); 
xlswrite(filename,vertVel,'verticalVelocity'); 
xlswrite(filename,horVel,'horizontalVelocity'); 
xlswrite(filename,angles, 'angles'); 
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xlswrite(filename,tort, 'tortuosity'); 
%} 
  
%Output data on Mac (output as individual CSVs) 
xlswrite(strcat(filename,'_results'),results); 
xlswrite(strcat(filename,'_distance'),distance); 
xlswrite(strcat(filename,'_3Dvelocity'),vel); 
xlswrite(strcat(filename,'_verticalVelocity'),vertVel); 
xlswrite(strcat(filename,'_horizontalVelocity'),horVel); 
xlswrite(strcat(filename,'_angles'),angles); 
xlswrite(strcat(filename,'_tortuosity'),tort); 
  
end 
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Appendix C 
 
Chapter 4 Supplementary Materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In preparation for submission to Global Change Biology. 
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Figure S1. Log-transformed response ratios, compiled by year, for each metric plotted against 
the winter temperature anomaly (average anomaly for Dec-Feb) averaged for the previous two 
winters in Vineyard Sound. Symbols represent mean response ratios for each year; error is not 
shown for visual clarity. Shape corresponds to year. Lines represent linear regressions, with R2 
and p value reported at the bottom right of each graph 
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Figure S2. Log-transformed response ratios for each trial and metric plotted against the winter 
temperature anomaly (average anomaly for Dec-Feb) in Vineyard Sound experienced by adults 
(Apr - Jul: 2 year previous winter average; Aug - Oct: 1 year previous winter average) for the 
hypothesized population succession outlined in Mesnil (1977). Symbols represent mean response 
ratios for each year. Shape corresponds to year. Lines represent linear regressions, with R2 and p 
value reported at the bottom right of each graph. Significant p values (α = 0.05) are marked with 
an asterisk 
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Appendix D 
 
Chapter 5 Supplementary Materials 
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Table S1. Hatching success distributions and G-tests. Counts of staged, failed embryos and paralarvae, presented by trial and 
treatment. Staged embryos were categorized using Arnold et al. (1974) as Early (embryonic stages 1 - 16), Middle (17 - 26), or Late 
(27 - 30). G-tests are reported with significant p-values (p < 0.05) in bold. Exponents of the p-value are listed to compare degrees of 
significance among comparisons with p-values less than 0.001. 
Temperature 
(ºC) pCO2

 (ppm) Early Middle Late Hatched Percent  
Hatched Source G df p exp 

Jun 19           

20 

400 1 1 1 273 98.9 400 X 2200 22.01 3 <0.001 -05 

2200 5 0 20 310 92.7 400 X 3500 90.45 3 <0.001 -19 

3500 2 2 48 132 73.2 2200 X 3500 45.16 3 <0.001 -10 

      All 20 ºC 100.6 6 <0.001 -19 

27 

400 5 4 4 314 96.1 400 X 2200 158.4 3 <0.001 -34 

2200 9 105 18 190 59.2 400 X 3500 27.45 3 <0.001 -06 

3500 7 6 22 183 84.1 2200 X 3500 87.82 3 <0.001 -19 

      All 27 ºC 205.0 6 <0.001 -41 

20 X 27 

      400 X 400 5.313 3 0.150 -01 

      2200 X 2200 175.7 3 <0.001 -38 

      3500 X 3500 20.34 3 <0.001 -04 

Jul 28           

20 

400 3 1 19 473 95.4 400 X 2200 20.21 3 <0.001 -04 

2200 3 0 2 562 99.1 400 X 3500 10.77 3 0.013 -02 

3500 0 0 28 323 92.1 2200 X 3500 45.10 3 <0.001 -10 

      All 20 ºC 48.08 6 <0.001 -08 

27 

400 135 45 59 144 34.0 400 X 2200 317.5 3 <0.001 -86 

2200 1 3 18 330 93.2 400 X 3500 134.4 3 <0.001 -68 

3500 10 19 93 165 54.7 2200 X 3500 126.4 3 <0.001 -29 

      All 27 ºC 414.1 6 <0.001 -27 

20 X 27 

      400 X 400 408.4 3 <0.001 -88 

      2200 X 2200 30.20 3 <0.001 -06 

      3500 X 3500 122.7 3 <0.001 -26 

Sep 14           

20 

400 71 0 0 385 85.1 400 X 2200 257.6 3 <0.001 -55 

2200 21 7 119 181 57.8 400 X 3500 179.0 3 <0.001 -39 

3500 10 0 85 275 74.2 2200 X 3500 36.37 3 <0.001 -08 

      All 20 ºC 299.9 6 <0.001 -62 

27 

400 15 2 4 346 94.0 400 X 2200 3.524 3 0.318 -01 

2200 21 0 4 375 93.8 400 X 3500 172.3 3 <0.001 -37 

3500 165 4 13 231 56.8 2200 X 3500 171.6 3 <0.001 -37 

      All 27 ºC 252.0 6 <0.001 -51 

20 X 27 

      400 X 400 40.37 3 <0.001 -09 

      2200 X 2200 206.9 3 <0.001 -44 

      3500 X 3500 232.1 3 <0.001 -50 
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Table S2. Malformation distributions and G-tests. Counts of normal and malformed paralarvae, presented by trial and 
treatment. Malformed paralarvae were categorized as Premature (external yolk remaining), Eye Bulge (inflated eye membrane), 
or Malformed Head (malformations/growths on head and mantle). G-tests are reported with significant p-values (p < 0.05) in bold. 
Exponents of the p-value are listed to compare degrees of significance among comparisons with p-values less than 0.001. 
Temperature 
(ºC) pCO2

 (ppm) Normal Premature Eye 
Bulge 

Malformed 
Head Source G df p exp 

Jun 19          

20 

400 168 6 2 2 400 X 2200 12.51 3 0.006 -03 

2200 190 20 12 1 400 X 3500 139.7 3 <0.001 -30 

3500 27 43 21 5 2200 X 3500 99.8 3 <0.001 -21 

     All 20 ºC 155.7 6 <0.001 -31 

27 

400 179 4 3 18 400 X 2200 25.15 3 <0.001 -05 

2200 61 7 8 21 400 X 3500 101.7 3 <0.001 -22 

3500 77 34 39 16 2200 X 3500 25.85 3 <0.001 -05 

     All 27 ºC 112.4 6 <0.001 -22 

20 X 27 

     400 X 400 13.90 3 0.003 -03 

     2200 X 2200 48.29 3 <0.001 -10 

     3500 X 3500 18.73 3 <0.001 -04 

Jul 28          

20 

400 202 13 8 3 400 X 2200 22.77 3 <0.001 -05 

2200 260 28 48 9 400 X 3500 137.2 3 <0.001 -29 

3500 46 63 21 14 2200 X 3500 105.8 3 <0.001 -23 

     All 20 ºC 166.8 6 <0.001 -33 

27 

400 121 25 6 1 400 X 2200 15.49 3 0.001 -03 

2200 148 20 31 1 400 X 3500 61.25 3 <0.001 -13 

3500 45 54 17 12 2200 X 3500 73.33 3 <0.001 -16 

     All 27 ºC 99.58 6 <0.001 -19 

20 X 27 

     400 X 400 11.57 3 0.009 -03 

     2200 X 2200 4.485 3 0.214 -01 

     3500 X 3500 0.338 3 0.953 -01 

Sep 14          

20 

400 234 8 10 3 400 X 2200 30.94 3 <0.001 -07 

2200 125 14 31 1 400 X 3500 241.1 3 <0.001 -52 

3500 48 98 44 7 2200 X 3500 111.9 3 <0.001 -24 

     All 20 ºC 266.6 6 <0.001 -54 

27 

400 210 7 0 0 400 X 2200 44.30 3 <0.001 -09 

2200 161 18 20 4 400 X 3500 216.0 3 <0.001 -46 

3500 55 64 41 11 2200 X 3500 89.74 3 <0.001 -19 

     All 27 ºC 227.3 6 <0.001 -46 

20 X 27 

     400 X 400 16.32 3 <0.001 -04 

     2200 X 2200 6.622 3 0.085 -02 

     3500 X 3500 6.829 3 0.078 -02 
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Figure S1. Distributions of mantle length from individual egg capsules of the June 19 trial. 
Fitted normal distributions of dorsal mantle length frequency histograms from individual egg 
capsules in each treatment of the June 19 trial. Histograms are not shown for clarity of curves, 
but DML data were segmented in 0.05 mm bins. Each plot is a treatment combination, with 
column determining acidification (titles) and row determining temperature treatment (also 
differentiated by color: top/blue = 20 ºC, bottom/red = 27 ºC). Each line represents the curve 
from the sampling of an individual egg capsule for dorsal mantle length (x-axis). Lines are 
shaded and patterned to help differentiate individual egg capsules within a plot, but this carries 
no relationship or meaning across the plots. The filled triangle on the x-axis marks the mean 
value for the compiled sample of that treatment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jun 19
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Figure S2. Distributions of mantle length from individual egg capsules of the July 28 trial. 
Fitted normal distributions of dorsal mantle length frequency histograms from individual egg 
capsules in each treatment of the July 28 trial. Histograms are not shown for clarity of curves, 
but DML data were segmented in 0.05 mm bins. Each plot is a treatment combination, with 
column determining acidification (titles) and row determining temperature treatment (also 
differentiated by color: top/blue = 20 ºC, bottom/red = 27 ºC). Each line represents the curve 
from the sampling of an individual egg capsule for dorsal mantle length (x-axis). Lines are 
shaded and patterned to help differentiate individual egg capsules within a plot, but this carries 
no relationship or meaning across the plots. The filled triangle on the x-axis marks the mean 
value for the compiled sample of that treatment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jul 28



 256 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 257 

BIBLIOGRAPHY 
 
Aiken B, Man JPH (1978) Positive phototaxis of the brine shrimp Artemia salina to 

monochromatic light.  
Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR, Di Cristo C, Dilkes 

BP, Edsinger-Gonzales E, Freeman RM, Hanlon RT, Koenig KM, Lindgren AR, Martindale 
MQ, Minx P, Moroz LL, Nödl M-T, Nyholm S V., Ogura A, Pungor JR, Rosenthal JJC, 
Schwarz EM, Shigeno S, Strugnell JM, Wollesen T, Zhang G, Ragsdale CW (2012) 
Cephalopod genomics: A plan of strategies and organization. Stand Genomic Sci 7:175–
188. doi: 10.4056/sigs.3136559 

Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, Brenner S, 
Ragsdale CW, Rokhsar DS (2015) The octopus genome and the evolution of cephalopod 
neural and morphological novelties. Nature 524:220–224. doi: 10.1038/nature14668 

Alon S, Garrett SC, Levanon EY, Olson S, Graveley BR, Rosenthal JJC, Eisenberg E (2015) The 
majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA 
editing. Elife. doi: 10.7554/eLife.05198 

Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification 
causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 
105:17442–17446. doi: 10.1073/pnas.0804478105 

Appelhans Y, Thomsen J, Pansch C, Melzner F, Wahl M (2012) Sour times: seawater 
acidification effects on growth, feeding behaviour and acid–base status of Asterias rubens 
and Carcinus maenas. Mar Ecol Prog Ser 459:85–98. doi: 10.3354/meps09697 

Arkhipkin AI (2003) Towards identification of the ecological lifestyle in nektonic squid using 
statolith morphometry. J Molluscan Stud 69:171–178. doi: 10.1093/mollus/69.3.171 

Arkhipkin AI, Bizikov VA (1997) Statolith shape and microstructure in studies of systematics, 
age and growth in planktonic paralarvae of gonatid squids (Cephalopoda, Oegopsida) from 
the western Bering Sea. J Plankton Res 19:1993–2030. doi: 10.1093/plankt/19.12.1993 

Arkhipkin AI, Bizikov VA (2000) Role of the statolith in functioning of the acceleration receptor 
system in squids and sepioids. J Zool 250:31–55. doi: 10.1111/j.1469-7998.2000.tb00575.x 

Arnold JM, Summers WC, Gilbert DL, Manalis RS, Daw NW, Lasek RJ (1974) A guide to 
laboratory use of the squid Loligo pealei. Marine Biological Laboratory, Woods Hole, MA 

Atkinson D (1994) Temperature and organism size - a biological law for ectotherms? Adv Ecol 
Res 25:1–58. 

Auster PJ, Shackell NL (2000) Marine protected areas for the temperate and boreal northwest 
atlantic: The potential for sustainable fisheries and conservation of biodiversity. Northeast 
Nat 7:419–434. 

Barón PJ (2003) The paralarvae of two South American sympatric squid: Loligo gahi and Loligo 
sanpaulensis. J Plankton Res 25:1347–1358. doi: 10.1093/plankt/fbg093 

Bartol IK, Krueger PS, Thompson JT, Stewart WJ (2008) Swimming dynamics and propulsive 
efficiency of squids throughout ontogeny. Integr Comp Biol 48:720–733. doi: 
10.1093/icb/icn043 



 258 

Bartol IK, Krueger PS, Stewart WJ, Thompson JT (2009a) Hydrodynamics of pulsed jetting in 
juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet “modes” and 
their implications for propulsive efficiency. J Exp Biol 212:1889–1903. doi: 
10.1242/jeb.027771 

Bartol IK, Krueger PS, Stewart WJ, Thompson JT (2009b) Pulsed jet dynamics of squid 
hatchlings at intermediate Reynolds numbers. J Exp Biol 212:1506–1518. doi: 
10.1242/jeb.033241 

Baumann H, Wallace RB, Tagliaferri T, Gobler CJ (2015) Large Natural pH, CO2 and O2 
Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time 
Scales. Estuaries and Coasts 38:220–231. doi: 10.1007/s12237-014-9800-y 

Baumann H, Cross EL, Murray CS (2018) Robust quantification of fish early life CO2 
sensitivities via serial experimentation.  

Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays 
CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The 
identification, conservation, and management of estuarine and marine nurseries for fish and 
invertebrates. Bioscience 51:633–641. doi: 10.1641/0006-
3568(2001)051[0633:TICAMO]2.0.CO;2 

Benoit-Bird KJ, Gilly WF (2012) Coordinated nocturnal behavior of foraging jumbo squid 
Dosidicus gigas. Mar Ecol Prog Ser 455:211–228. doi: 10.3354/meps09664 

Birk MA, McLean EL, Seibel BA (2018) Ocean acidification does not limit squid metabolism 
via blood oxygen supply. J Exp Biol jeb.187443. doi: 10.1242/jeb.187443 

Boisclair D (1992) An Evaluation of the Stereocinematographic Method to Estimate Fish 
Swimming Speed. Can J Fish Aquat Sci 49:523–531. 

Bonduriansky R, Crean AJ (2018) What are parental condition-transfer effects and how can they 
be detected? Methods Ecol Evol 9:450–456. doi: 10.1111/2041-210X.12848 

Bonhomme V, Picq S, Gaucherel C, Claude J (2013) Momocs: outline analysis using R. J Stat 
Softw 56:1–24. doi: 10.18637/jss.v056.i13 

Boyle PR, Pierce GJ, Hastie LC (1995) Flexible reproductive strategies in the squid Loligo 
forbesi. Mar Biol 121:501–508. 

Breitburg DL, Salisbury J, Bernhard JM, Cai W-J, Dupont S, Doney SC, Kroeker KJ, Levin LA, 
Long WC, Milke LM, Miller SH, Phelan B, Passow U, Seibel BA, Todgham AE, Tarrant 
AM (2015) And on top of all that… Coping with ocean acidification in the midst of many 
stressors. Oceanography 28:48–61. doi: http://dx.doi.org/10.5670/oceanog.2015.31 

Brodziak J, Hendrickson L (1999) An analysis of environmental effects on survey catches of 
squids Loligo pealei and Illex illecebrosus in the northwest Atlantic. Fish Bull 97:9–24. 

Browman HI (2016) Applying organized scepticism to ocean acidification research. ICES J Mar 
Sci 73:529–536. doi: 10.1126/science.158.3803.950 

Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, 
turning and prey capture. J Exp Biol 203:2565–2579. 

Buresch KC, Gerlach G, Hanlon RT (2006) Multiple genetic stocks of longfin squid Loligo 
pealeii in the NW Atlantic: stocks segregate inshore in summer, but aggregate offshore in 



 259 

winter. Mar Ecol Prog Ser 310:263–270. doi: 10.3354/meps310263 
Buresch KC, Maxwell MR, Cox MR, Hanlon RT (2009) Temporal dynamics of mating and 

paternity in the squid Loligo pealeii. Mar Ecol Prog Ser 387:197–203. doi: 
10.3354/meps08052 

Buresch KM, Hanlon RT, Maxwell MR, Ring S (2001) Microsatellite DNA markers indicate a 
high frequency of multiple paternity within individual field-collected egg capsules of the 
squid Loligo pealeii. Mar Ecol Prog Ser 210:161–165. 

Burgess SC, Marshall DJ (2011) Temperature-induced maternal effects and environmental 
predictability. 2329–2336. doi: 10.1242/jeb.054718 

Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life 
history stages: Vulnerabilities and potential for persistence in a changing ocean. Ocean Mar 
Biol Annu Rev 49:1–42. doi: doi:10.1016/j.marenvres.2011.10.00 

Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, Kyzar E, Wu N, Kalueff A V. 
(2011a) Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One. doi: 
10.1371/journal.pone.0017597 

Cachat JM, Canavello PR, Elkhayat SI, Bartels BK, Hart PC, Elegante MF, Esther C, Laffoon 
AL, Haymore WAM, Tien DH, Tien AK, Mohnot S, Kalueff A V (2011b) Chapter 16: 
Deconstructing Adult Zebrafish Behavior with Swim Trace Visualizations. In: Kalueff A 
V., Cachat JM (eds) Zebrafish Neurobehavioral Protocols. pp 191–201 

Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 
425:365. doi: 10.1038/425365a 

Campus P (1999) Response of Squids to Different Colours and Intensities of Artificial Light. 
22:19–24. 

Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate 
influence on trace element concentrations in aragonitic bivalve shells: Evidences and 
mechanisms. Geochim Cosmochim Acta 70:4906–4920. doi: 10.1016/j.gca.2006.07.019 

Cattano C, Claudet J, Domenici P, Milazzo M (2018) Living in a high CO2 world: a global meta-
analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol Monogr 
88:320–335. doi: 10.1002/ecm.1297 

Chan KYK, Grünbaum D, Arnberg M, Thorndyke M, Dupont ST (2013) Ocean acidification 
induces budding in larval sea urchins. Mar Biol 160:2129–2135. doi: 10.1007/s00227-012-
2103-6 

Chan KYK, García E, Dupont S (2015) Acidification reduced growth rate but not swimming 
speed of larval sea urchins. Sci Rep 5:9764. doi: 10.1038/srep09764 

Checkley DM, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated 
CO2 enhances otolith growth in young fish. Science 324:1683. doi: 
10.1126/science.1169806 

Cheung WWL, Lam VWY, Pauly D (2008) Dynamic bioclimate envelope model to predict 
climate-induced changes in distribution of marine fishes and invertebrates. Fish Cent Res 
Rep 16 16:5–50. 

Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting 



 260 

global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251. 
doi: 10.1111/j.1467-2979.2008.00315.x 

Chung W, Marshall NJ, Watson S, Munday PL, Nilsson GE (2014) Ocean acidification slows 
retinal function in a damselfish through interference with GABAA receptors. J Exp Biol 
217:323–6. doi: 10.1242/jeb.092478 

Cinti A, Barón PJ, Rivas AL (2004) The effects of environmental factors on the embryonic 
survival of the Patagonian squid Loligo gahi. J Exp Mar Bio Ecol 313:225–240. doi: 
10.1016/j.jembe.2004.05.017 

Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen 
results. Deep Res 40:2115–2129. 

Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: Uncovering the 
mechanism. Oceanography 22:118–127. doi: 10.5670/oceanog.2009.102 

Coll M, Navarro J, Olson RJ, Christensen V (2013) Assessing the trophic position and ecological 
role of squids in marine ecosystems by means of food-web models. Deep Res Part II Top 
Stud Oceanogr 95:21–36. doi: 10.1016/j.dsr2.2012.08.020 

Collins MA, Burnell GM, Rodhouse PG (1995) Reproductive strategies of male and female 
Loligo forbesi (Cephalopoda: Loliginidae). J Mar Biol Assoc UK 75:621–634. 

Colmers WF, Hixon RF, Hanlon RT, Forsythe JW, Ackerson M V., Wiederhold ML, Hulet WH 
(1984) Spinner cephalopods: defects of statocyst suprastructures in an invertebrate analogue 
of the vestibular apparatus. Cell Tissue Res. doi: 10.1007/BF00217217 

Comeau S, Carpenter RC, Lantz C a., Edmunds PJ (2015) Ocean acidification accelerates 
dissolution of experimental coral reef communities. Biogeosciences 12:365–372. doi: 
10.5194/bg-12-365-2015 

Connolly TP, Lentz SJ (2014) Interannual variability of wintertime temperature on the inner 
continental shelf of the Middle Atlantic Bight. J Geophys Res Ocean 119:6269–6285. doi: 
10.1002/2014JC010153 

Coughlin DJ, Strickler JR, Sanderson B (1992) Swimming and Search Behavior in Clownfish, 
Amphiprion-Perideraion, Larvae. Anim Behav 44:427–440. 

Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev 
Mar Sci 1:443–466. doi: 10.1146/annurev.marine.010908.163757 

Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human 
stressors in marine systems. Ecol Lett 11:1304–1315. doi: 10.1111/j.1461-
0248.2008.01253.x 

Crean AJ, Marshall DJ (2009) Coping with environmental uncertainty: Dynamic bet hedging as a 
maternal effect. Philos Trans R Soc B Biol Sci 364:1087–1096. doi: 10.1098/rstb.2008.0237 

DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, 
Golbuu Y (2015a) Coral macrobioerosion is accelerated by ocean acidification and 
nutrients. Geology 43:7–10. doi: 10.1130/G36147.1 

DeCarlo TM, Gaetani GA, Holcomb M, Cohen AL (2015b) Experimental determination of 
factors controlling U/Ca of aragonite precipitated from seawater: Implications for 
interpreting coral skeleton. Geochim Cosmochim Acta 162:151–165. doi: 



 261 

10.1016/j.gca.2015.04.016 
Dickson AG (1990) Standard potential of the reaction: AgCl(s) + (1/2)H2(g) = Ag(s) + HCl(aq), 

and and the standard acidity constant of the ion HSO4
- in synthetic sea water from 273.15 to 

318.15 K. J Chem Thermodyn 22:113–127. doi: 10.1016/0021-9614(90)90074-Z 
Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 

measurements. PICES Spec Publ 3:p191. doi: 10.1159/000331784 
Dissard D, Nehrke G, Reichart GJ (2009) Impact of seawater pCO2 changes on calcification and 

on mG/cA and sR/cA in benthic foraminifera calcite ( Ammonia tepida ): results from 
culturing experiments. 3771–3802. 

Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish 
to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-
0248.2009.01400.x 

Dixson DL, Jennings AR, Atema J, Munday PL (2015) Odor tracking in sharks is reduced under 
future ocean acidification conditions. Glob Chang Biol 21:1454–1462. doi: 
10.1111/gcb.12678 

Donelson JM, McCormick MI, Munday PL (2008) Parental condition affects early life-history of 
a coral reef fish. J Exp Mar Bio Ecol 360:109–116. doi: 10.1016/j.jembe.2008.04.007 

Donelson JM, Munday PL, Mccormick MI (2009) Parental effects on offspring life histories : 
when are they important ? 262–265. doi: 10.1098/rsbl.2008.0642 

Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. 
Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 

Dorey N, Melzner F, Martin S, Oberhänsli F, Teyssié JL, Bustamante P, Gattuso JP, Lacoue-
Labarthe T (2013) Ocean acidification and temperature rise: Effects on calcification during 
early development of the cuttlefish Sepia officinalis. Mar Biol 160:2007–2022. doi: 
10.1007/s00227-012-2059-6 

Doubleday ZA, Prowse TAA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, 
Lourenço S, Quetglas A, Sauer W, Gillanders BM (2016) Global proliferation of 
cephalopods. Curr Biol 26:R406–R407. doi: 10.1016/j.cub.2016.04.002 

Drenkard EJ, Cohen AL, McCorkle DC, de Putron SJ, Starczak VR, Zicht AE (2013) 
Calcification by juvenile corals under heterotrophy and elevated CO2. Coral Reefs 32:727–
735. doi: 10.1007/s00338-013-1021-5 

Dupont S, Ortega-Martínez O, Thorndyke M (2010) Impact of near-future ocean acidification on 
echinoderms. Ecotoxicology 19:449–62. doi: 10.1007/s10646-010-0463-6 

Emery AM, Wilson IJ, Craig S, Boyle PR, Noble LR (2001) Assignment of paternity groups 
without access to parental genotypes: multiple mating and developmental plasticity in squid. 
Mol Ecol 10:1265–78. doi: 10.1046/j.1365-294X.2001.01258.x 

Fabioux C, Huvet A, Lelong C, Robert R, Pouvreau S, Daniel JY, Minguant C, Le Pennec M 
(2004a) Oyster vasa-like gene as a marker of the germline cell development in Crassostrea 
gigas. Biochem Biophys Res Commun 320:592–598. doi: 10.1016/j.bbrc.2004.06.009 

Fabioux C, Pouvreau S, Le Roux F, Huvet A (2004b) The oyster vasa-like gene: A specific 
marker of the germline in Crassostrea gigas. Biochem Biophys Res Commun 315:897–904. 



 262 

doi: 10.1016/j.bbrc.2004.01.145 
Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna 

and ecosystem processes. ICES J Mar Sci 65:414. doi: 10.1093/icesjms/fsn048 
Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The 

combined effects of ocean acidification, mixing, and respiration on pH and carbonate 
saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi: 
10.1016/j.ecss.2010.05.004 

Fernández-Reiriz M, Range P, Álvarez-Salgado X, Espinosa J, Labarta U (2012) Tolerance of 
juvenile Mytilus galloprovincialis to experimental seawater acidification. Mar Ecol Prog 
Ser 454:65–74. doi: 10.3354/meps09660 

Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt Ö, Chivers DP 
(2011) Putting prey and predator into the CO2 equation - qualitative and quantitative effects 
of ocean acidification on predator-prey interactions. Ecol Lett 14:1143–1148. doi: 
10.1111/j.1461-0248.2011.01683.x 

Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010) Relative influences of ocean 
acidification and temperature on intertidal barnacle post-larvae at the northern edge of their 
geographic distribution. Estuar Coast Shelf Sci 86:675–682. doi: 
10.1016/j.ecss.2009.11.036 

Flickinger AL, Bruins RJF, Winner RW, Skillings JH (1982) Filtration and phototactic behavior 
as indices of chronic copper stress in Daphnia magna Straus. Arch Environ Contam Toxicol 
11:457–463. doi: 10.1007/BF01056072 

Franco-Santos RM, Perales-Raya C, Almansa E, De Troch M, Garrido D (2016) Beak 
microstructure analysis as a tool to identify potential rearing stress for Octopus vulgaris 
paralarvae. Aquac Res 47:3001–3015. doi: 10.1111/are.12753 

Freitas PS, Clarke LJ, Kennedy H, Richardson CA, Abrantes F (2006) Environmental and 
biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king 
scallop Pecten maximus. Geochim Cosmochim Acta 70:5119–5133. doi: 
10.1016/j.gca.2006.07.029 

Fuchs HL, Mullineaux LS, Solow AR (2004) Sinking behavior of gastropod larvae (Ilyanassa 
obsoleta) in turbulence. Limnol Oceanogr 49:1937–1948. doi: 10.4319/lo.2004.49.6.1937 

Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from 
seawater: A framework for understanding paleoproxies. Geochim Cosmochim Acta 
70:4617–4634. doi: 10.1016/j.gca.2006.07.008 

Gallager SM, Mann R, Sasaki GC (1986) Lipid as an index of growth and viability in three 
species of bivalve larvae. Aquaculture 56:81–103. doi: 10.1016/0044-8486(86)90020-7 

García-Fernández P, García-Souto D, Almansa E, Morán P, Gestal C (2017) Epigenetic DNA 
methylation mediating Octopus vulgaris early development: Effect of essential fatty acids 
enriched diet. Front Physiol. doi: 10.3389/fphys.2017.00292 

Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of 
elevated CO2 on shellfish calcification. Geophys Res Lett. doi: 10.1029/2006GL028554 

Gazeau F, Gattuso JP, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ 



 263 

(2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus 
edulis. Biogeosciences 7:2051–2060. doi: 10.5194/bg-7-2051-2010 

Gazeau F, Parker LM, Comeau S, Gattuso J-PP, O’Connor WA, Martin S, Pörtner H-O, Ross 
PM (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–
2245. doi: 10.1007/s00227-013-2219-3 

Gledhill DK, White MM, Salisbury J, Thomas H, Misna I, Liebman M, Mook B, Grear J, 
Candelmo AC, Chambers RC, Gobler CJ, Hunt CW, King AL, Price NN, Signorini SR, 
Stancioff E, Stymiest C, Wahle RA, Waller JD, Rebuck ND, Wang ZA, Capson TL, 
Morrison JR, Cooley SR, Doney SC (2015) Ocean and coastal acidification off New 
England and Nova Scotia. Oceanography 28:182–197. doi: 
http://dx.doi.org/10.5670/oceanog.2015.41 

González AF, Otero J, Guerra A, Prego R, Rocha FJ, Dale AW (2005) Distribution of common 
octopus and common squid paralarvae in a wind-driven upwelling area (Ria of Vigo, 
northwestern Spain). J Plankton Res 27:271–277. doi: 10.1093/plankt/fbi001 

Gray CL (1992) Long-finned squid (Loligo pealei) species profile. In: Current Report: The 
Narragansett Bay Project NBP-92-106. Rhode Island Department of Environmental 
Management, Division of Fish & Wildlife, Marine Fisheries Section, pp 1–54 

Guerra Á, Allcock L, Pereira J (2010) Cephalopod life history, ecology and fisheries: An 
introduction. Fish Res 106:117–124. doi: 10.1016/j.fishres.2010.09.002 

Guillaume AS, Monro K, Marshall DJ (2016) Transgenerational plasticity and environmental 
stress: do paternal effects act as a conduit or a buffer? Funct Ecol 30:1175–1184. doi: 
10.1111/1365-2435.12604 

Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and 
biochemical generalizations. Biol Rev Camb Philos Soc 74:1–40. doi: 
10.1017/s0006323198005258 

Gutowska MA, Melzner F (2009) Abiotic conditions in cephalopod (Sepia officinalis) eggs: 
Embryonic development at low pH and high pCO2. Mar Biol 156:515–519. doi: 
10.1007/s00227-008-1096-7 

Gutowska MA, Pörtner HO, Melzner F (2008) Growth and calcification in the cephalopod Sepia 
officinalis under elevated seawater pCO2. Mar Ecol Prog Ser 373:303–309. doi: 
10.3354/meps07782 

Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner HO (2010a) Acid–base 
regulatory ability of the cephalopod (Sepia officinalis) in response to environmental 
hypercapnia. J Comp Physiol B 180:323–335. doi: 10.1007/s00360-009-0412-y 

Gutowska MA, Melzner F, Pörtner HO, Meier S (2010b) Cuttlebone calcification increases 
during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 
157:1653–1663. doi: 10.1007/s00227-010-1438-0 

Haigh R, Ianson D, Holt CA, Neate HE, Edwards AM (2015) Effects of ocean acidification on 
temperate coastal marine ecosystems and fisheries in the northeast Pacific. PLoS One 
10:e0117533. doi: 10.1371/journal.pone.0117533 

Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. 
Proc Natl Acad Sci 104:1745–1750. doi: 10.1073/pnas.0610108104 



 264 

Hanlon R, Bidwell J, Tait R (1989) Strontium is required for statolith development and thus 
normal swimming behaviour of hatchling cephalopods. J Exp Biol 141:187–195. 

Hanlon RT, Messenger JB (1998) Cephalopod Behaviour. Cambridge University Press, 
Cambridge, UK 

Hanlon RT, Hixon RF, Hulet WH (1983) Survival, growth, and behavior of the loliginid squids 
Lologi plei, Loligo pealei, and Lolliguncula brevis (Mollusca: Cephalopoda) in closed sea 
water systems. Biol Bull 637–685. doi: 10.2307/1541470 

Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological 
responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–
1030. doi: 10.1002/ece3.516 

Hastie LC, Pierce GJ, Wang J, Bruno I, Moreno A (2009) Cephalopods in the North-Eastern 
Atlantic: Species, Biogeography, Ecology, Exploitation and Conservation. Oceanogr Mar 
Biol An Annu Rev 47:111–190. doi: 10.1201/9781420094220.ch3 

Hatfield EMC, Cadrin SX (2002) Geographic and temporal patterns in size and maturity of the 
longfin inshore squid (Loligo pealeii) off the northeastern United States. Fish Bull 100:200–
213. 

Haury L, Weihs D (1976) Energetically efficient swimming behavior of negatively buoyant 
zooplankton. Limnol Oceanogr 21:797–803. doi: 10.4319/lo.1976.21.6.0797 

Hendriks IE, Duarte CM, Olsen YS, Steckbauer A, Ramajo L, Moore TS, Trotter J a., 
McCulloch M (2015) Biological mechanisms supporting adaptation to ocean acidification in 
coastal ecosystems. Estuar Coast Shelf Sci 152:A1–A8. doi: 10.1016/j.ecss.2014.07.019 

Herke SW, Foltz DW (2002) Phylogeography of two squid (Loligo pealei and L. plei) in the Gulf 
of Mexico and northwestern Atlantic Ocean. Mar Biol 140:103–115. doi: 
10.1007/s002270100680 

Hidu H, Haskin HH (1978) Swimming speeds of oyster larvae Crassostrea virginica in different 
salinities and temperatures. Estuaries 1:252–255. doi: 10.1007/BF02762480 

Hobday AJ, Pecl GT (2014) Identification of global marine hotspots: Sentinels for change and 
vanguards for adaptation action. Rev Fish Biol Fish 24:415–425. doi: 10.1007/s11160-013-
9326-6 

Hobday AJ, Cochrane K, Downey-Breedt N, Howard J, Aswani S, Byfield V, Duggan G, Duna 
E, Dutra LXC, Frusher SD, Fulton EA, Gammage L, Gasalla MA, Griffiths C, Guissamulo 
A, Haward M, Jarre A, Jennings SM, Jordan T, Joyner J, Ramani NK, Shanmugasundaram 
SLP, Malherbe W, Cisneros KO, Paytan A, Pecl GT, Plagányi ÉE, Popova EE, 
Razafindrainibe H, Roberts M, Rohit P, Sainulabdeen SS, Sauer W, Valappil ST, Zacharia 
PU, van Putten EI (2016) Planning adaptation to climate change in fast-warming marine 
regions with seafood-dependent coastal communities. Rev Fish Biol Fish 26:249–264. doi: 
10.1007/s11160-016-9419-0 

Hofmann GE, Todgham AE (2010) Living in the now: Physiological mechanisms to tolerate a 
rapidly changing environment. Annu Rev Physiol 72:127–145. doi: 10.1146/annurev-
physiol-021909-135900 

Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological 
features of aragonite precipitated experimentally from seawater and biogenically by corals. 



 265 

Geochim Cosmochim Acta 73:4166–4179. doi: 10.1016/j.gca.2009.04.015 
Holcomb M, Mccorkle DC, Cohen AL (2010) Journal of Experimental Marine Biology and 

Ecology Long-term effects of nutrient and CO 2 enrichment on the temperate coral 
Astrangia. J Exp Mar Bio Ecol 386:27–33. doi: 10.1016/j.jembe.2010.02.007 

Holcomb M, Venn AA, Tambutté E, Tambutté S, Allemand D, Trotter J, McCulloch M (2014) 
Coral calcifying fluid pH dictates response to ocean acidification. Sci Rep 4:1–4. doi: 
10.1038/srep05207 

Hong X, Martin PJ, Wang S, Rowley C (2009) High SST variability south of Martha’s Vineyard: 
Observation and modeling study. J Mar Syst 78:59–76. doi: 10.1016/j.jmarsys.2009.03.001 

Honisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, 
Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto 
TM, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The Geological Record 
of Ocean Acidification. Science (80- ) 335:1058–1063. doi: 10.1126/science.1208277 

Hoving HJT, Gilly WF, Markaida U, Benoit-Bird KJ, Brown ZW, Daniel P, Field JC, Parassenti 
L, Liu B, Campos B (2013) Extreme plasticity in life-history strategy allows a migratory 
predator (jumbo squid) to cope with a changing climate. Glob Chang Biol 19:2089–2103. 
doi: 10.1111/gcb.12198 

Hu M, Tseng Y-C (2017) Acid--Base Regulation and Ammonia Excretion in Cephalopods: An 
Ontogenetic Overview. In: Weihrauch D, O’Donnell M (eds) Acid-Base Balance and 
Nitrogen Excretion in Invertebrates: Mechanisms and Strategies in Various Invertebrate 
Groups with Considerations of Challenges Caused by Ocean Acidification. Springer 
International Publishing, Cham, pp 275–298 

Hu MY, Sucre E, Charmantier-Daures M, Charmantier G, Lucassen M, Himmerkus N, Melzner 
F (2010) Localization of ion-regulatory epithelia in embryos and hatchlings of two 
cephalopods. Cell Tissue Res 339:571–583. 

Hu MY, Tseng Y-C, Stumpp M, Gutowska MA, Kiko R, Lucassen M, Melzner F (2011a) 
Elevated seawater pCO2 differentially affects branchial acid-base transporters over the 
course of development in the cephalopod Sepia officinalis. Am J Physiol Regul Integr 
Comp Physiol 300:R1100–R1114. doi: 10.1152/ajpregu.00653.2010 

Hu MY, Tseng Y-C, Lin L-Y, Chen P-Y, Charmantier-Daures M, Hwang P-P, Melzner F 
(2011b) New insights into ion regulation of cephalopod molluscs: a role of epidermal 
ionocytes in acid-base regulation during embryogenesis. AJP Regul Integr Comp Physiol 
301:R1700–R1709. doi: 10.1152/ajpregu.00107.2011 

Hu MY, Lee J-R, Lin L-Y, Shih T-H, Stumpp M, Lee M-F, Hwang P-P, Tseng Y-C (2013) 
Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton 
secretion leads to CO2 tolerance in cephalopod embryos. Front Zool 10:51. doi: 
10.1186/1742-9994-10-51 

Hu MY, Guh Y-J, Stumpp M, Lee J-R, Chen R-D, Sung P-H, Chen Y-C, Hwang P-P, Tseng Y-C 
(2014) Branchial NH4

+-dependent acid–base transport mechanisms and energy metabolism 
of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front Zool 11:55. doi: 
10.1186/s12983-014-0055-z 

Hunsicker ME, Essington TE (2006) Size-structured patterns of piscivory of the longfin inshore 



 266 

squid (Loligo pealeii ) in the mid-Atlantic continental shelf ecosystem. Can J Fish Aquat 
Sci 63:754–765. doi: 10.1139/f05-258 

Hunsicker ME, Essington TE (2008) Evaluating the potential for trophodynamic control of fish 
by the longfin inshore squid (Loligo pealeii) in the Northwest Atlantic Ocean. Can J Fish 
Aquat Sci 65:2524–2535. doi: 10.1139/F08-154 

Ikeda Y, Wada Y, Arai N, Sakamoto W (1999) Note on size variation of body and statoliths in 
the oval squid Sepioteuthis lessoniana hatchlings. J Mar Biol Assoc UK 79:757–759. doi: 
10.1017/S0025315498000939 

Jacobson LD (2005) Longfin inshore squid, Loligo pealeii, life history and habitat 
characteristics. In: NOAA Technical Memorandum NMFS-NE-193. U.S. Department of 
Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries 
Service, Northeast Fisheries Science Center, Woods Hole, MA, pp 1–42 

Jensen N, Allen RM, Marshall DJ (2014) Adaptive maternal and paternal effects: Gamete 
plasticity in response to parental stress. Funct Ecol 28:724–733. doi: 10.1111/1365-
2435.12195 

Jin Y, Lin F, Chen X, Liu B, Li J (2019) Microstructure comparison of hard tissues (statoliths, 
beaks, and eye lenses) of Uroteuthis chinensis in the South China Sea. Bull Mar Sci 95:13–
26. 

Juárez OE, Galindo-Sánchez CE, Díaz F, Re D, Sánchez-García AM, Camaal-Monsreal C, Rosas 
C (2015) Is temperature conditioning Octopus maya fitness? J Exp Mar Bio Ecol 467:71–
76. doi: 10.1016/j.jembe.2015.02.020 

Kaplan MB, Mooney TA, McCorkle DC, Cohen AL (2013) Adverse effects of ocean 
acidification on early development of squid (Doryteuthis pealeii). PLoS One 8:e63714. doi: 
10.1371/journal.pone.0063714 

Keyl F, Argüelles J, Tafur R (2011) Interannual variability in size structure, age, and growth of 
jumbo squid (Dosidicus gigas) assessed by modal progression analysis. ICES J Mar Sci 
68:507–518. doi: 10.1093/icesjms/fsq167 

Kingston ACN, Wardill TJ, Hanlon RT, Cronin TW (2015) An Unexpected Diversity of 
Photoreceptor Classes in the Longfin Squid, Doryteuthis pealeii. PLoS One 10:e0135381. 
doi: 10.1371/journal.pone.0135381 

Klimley AP, Brown ST (1983) Stereophotography for the field biologist: measurement of 
lengths and three-dimensional positions of free-swimming sharks. Mar Biol 74:175–185. 
doi: 10.1007/BF00413921 

Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable 
effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi: 
10.1111/j.1461-0248.2010.01518.x 

Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP 
(2013) Impacts of ocean acidification on marine organisms: Quantifying sensitivities and 
interaction with warming. Glob Chang Biol 19:1884–1896. doi: 10.1111/gcb.12179 

Kroeker KJ, Sanford E, Jellison BM, Gaylord B (2014) Predicting the effects of ocean 
acidification on predator-prey interactions: a conceptual framework based on coastal 
molluscs. Biol Bull 226:211–222. 



 267 

Kroeker KJ, Kordas RL, Harley CDG (2017) Embracing interactions in ocean acidification 
research: confronting multiple stressor scenarios and context dependence. Biol Lett 
13:20160802. doi: 10.1098/rsbl.2016.0802 

Lacoue-Labarthe T, Warnau M, Oberhänsli F, Teyssié JL, Koueta N, Bustamante P (2008) 
Differential bioaccumulation behaviour of Ag and Cd during the early development of the 
cuttlefish Sepia officinalis. Aquat Toxicol 86:437–446. doi: 10.1016/j.aquatox.2007.12.005 

Lacoue-Labarthe T, Réveillac E, Oberhänsli F, Teyssié JL, Jeffree R, Gattuso JP (2011) Effects 
of ocean acidification on trace element accumulation in the early-life stages of squid Loligo 
vulgaris. Aquat Toxicol 105:166–176. doi: 10.1016/j.aquatox.2011.05.021 

Lacoue-Labarthe T, Martin S, Oberhänsli F, Teyssié JL, Jeffree R, Gattuso JP, Bustamante P 
(2012) Temperature and pCO2 effect on the bioaccumulation of radionuclides and trace 
elements in the eggs of the common cuttlefish, Sepia officinalis. J Exp Mar Bio Ecol 
413:45–49. doi: 10.1016/j.jembe.2011.11.025 

Langenbuch M, Pörtner HO (2002) Changes in metabolic rate and N excretion in the marine 
invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying 
effective acid-base variables. J Exp Biol 205:1153–1160. 

Langsrud Ø (2003) ANOVA for unbalanced data: Use Type II instead of Type III sums of 
squares. Stat Comput 13:163–167. doi: 10.1023/A:1023260610025 

Laptikhovsky V V., Rogov MA, Nikolaeva S V., Arkhipkin AI (2013) Environmental impact on 
ectocochleate cephalopod reproductive strategies and the evolutionary significance of 
cephalopod egg size. Bull Geosci 88:83–93. doi: 10.3140/bull.geosci.1351 

Laptikhovsky V, Nikolaeva S, Rogov M (2018) Cephalopod embryonic shells as a tool to 
reconstruct reproductive strategies in extinct taxa. Biol Rev 93:270–283. doi: 
10.1111/brv.12341 

Lee PN, McFall-Ngai MJ, Callaerts P, de Couet HG (2009) The hawaiian bobtail squid 
(Euprymna scolopes): A model to study the molecular basis of eukaryote-prokaryote 
mutualism and the development and evolution of morphological novelties in cephalopods. 
Cold Spring Harb Protoc 4:1–10. doi: 10.1101/pdb.emo135 

Leporati SC, Pecl GT, Semmens JM (2007) Cephalopod hatchling growth: The effects of initial 
size and seasonal temperatures. Mar Biol 151:1375–1383. doi: 10.1007/s00227-006-0575-y 

Levin L, Honisch B, Frieder C (2015) Geochemical proxies for estimating faunal exposure to 
ocean acidification. Oceanography 28:62–73. doi: 10.5670/oceanog.2015.32 

Lipinski MR (1993) The deposition of statoliths: a working hypothesis. In: Okutani T, O’Dor 
RK, Kubodera T (eds) Recent Advances in Cephalopods Fisheries Biology. Tokai 
University Press, Tokyo, Japan, pp 241–262 

Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and 
elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: 
Mortality, shell degradation, and shell growth. Biogeosciences 8:919–932. doi: 10.5194/bg-
8-919-2011 

Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon EY, 
Rosenthal JJC, Eisenberg E (2017) Trade-off between transcriptome plasticity and genome 
evolution in cephalopods. Cell 169:191-202.e11. doi: 10.1016/j.cell.2017.03.025 



 268 

Long MH, Mooney TA, Zakroff C (2016) Extreme low oxygen and decreased pH conditions 
naturally occur within developing squid egg capsules. Mar Ecol Prog Ser 550:111–119. doi: 
10.3354/meps11737 

Lunden JJ, McNicholl CG, Sears CR, Morrison CL, Cordes E (2014) Acute survivorship of the 
deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and 
deoxygenation. Front Mar Sci 1:74. doi: 10.3389/fmars.2014.00078 

Maas AE, Wishner KF, Seibel BA (2012) The metabolic response of pteropods to acidification 
reflects natural CO2-exposure in oxygen minimum zones. Biogeosciences 9:747–757. doi: 
DOI 10.5194/bg-9-747-2012 

Macy III WK (1982) Feeding patterns of the long-finned squid, Loligo pealei, in New England 
waters. Biol Bull 162:28–38. doi: 10.2307/1540967 

Macy III WK, Brodziak JKT (2001) Seasonal maturity and size at age of Loligo pealeii in waters 
of southern New England. ICES J Mar Sci 58:852–864. doi: 10.1006/jmsc.2001.1076 

Maneja RH, Frommel AY, Geffen AJ, Folkvord A, Piatkowski U, Chang MY, Clemmesen C 
(2013) Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod 
Gadus morhua. Mar Ecol Prog Ser 477:251–258. doi: 10.3354/meps10146 

Markow TA (1979) Phototactic behavior of Drosophila species at different temperatures. Am 
Nat 114:884–892. 

Marshall DJ (2015) Environmentally induced (co)variance in sperm and offspring phenotypes as 
a source of epigenetic effects. J Exp Biol 218:107–113. doi: 10.1242/jeb.106427 

Marshall DJ, Bonduriansky R, Bussière LF (2008) Offspring size variation within broods as a 
bet-hedging strategy in unpredictable environments. Ecology 89:2506–2517. 

Martin S, Richier S, Pedrotti M-L, Dupont S, Castejon C, Gerakis Y, Kerros M-E, Oberhänsli F, 
Teyssié J-L, Jeffree R, Gattuso J-P (2011) Early development and molecular plasticity in 
the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J 
Exp Biol 214:1357–1368. doi: 10.1242/jeb.051169 

Martins RS, Roberts MJ, Chang N, Verley P, Moloney CL, Vidal EAG (2010a) Effect of yolk 
utilization on the specific gravity of chokka squid (Loligo reynaudii) paralarvae: 
Implications for dispersal on the Agulhas Bank, South Africa. ICES J Mar Sci 67:1323–
1335. doi: 10.1093/icesjms/fsq098 

Martins RS, Roberts MJ, Vidal ÉAG, Moloney CL (2010b) Effects of temperature on yolk 
utilization by chokka squid (Loligo reynaudii d’Orbigny, 1839) paralarvae. J Exp Mar Bio 
Ecol 386:19–26. doi: 10.1016/j.jembe.2010.02.014 

Maxwell MR, Hanlon RT (2000) Female reproductive output in the squid Loligo pealeii: 
Multiple egg clutches and implications for a spawning strategy. Mar Ecol Prog Ser 
199:159–170. doi: 10.3354/meps199159 

McCorkle DC, Weidman C, Cohen AL (2012) Time series of pCO2, pH, and aragonite 
saturation state in Waquoit Bay National Estuarine Research Reserve: “estaurine 
acidification” and shellfish. In: Ocean Sciences Meeting. Salt Lake City, UT,  

McMahon JJ, Summers WC (1971) Temperature effects on the developmental rate of squid 
(Loligo pealei) embryos. Biol Bull 141:561–567. 



 269 

Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent 
dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol 
Oceanogr 18:897–907. doi: 10.4319/lo.1973.18.6.0897 

Mesnil B (1977) Growth and Life Cycle of Squid, Loligo pealei and Illex illecebrosus, from the 
Northwest Atlantic. In: Selected Papers Number 2. International Commission for the 
Northwest Atlantic Fisheries, Dartmouth, Canada, pp 55–69 

Messenger JB (1970) Optomotor responses and nystagmus in intact, blinded and statocystless 
cuttlefish (Sepia officinalis L.). J Exp Biol 53:789–796. 

Michaelidis B, Ouzounis C, Paleras A, Pörtner H-O (2005) Effects of long-term moderate 
hypercapnia on acid-base balance and growth rate in marine mussels Mytilus 
galloprovincialis. Mar Ecol Prog Ser 293:109–118. doi: 10.3354/meps293109 

Miller GM, Watson S-A, Donelson JM, McCormick MI, Munday PL (2012) Parental 
environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim 
Chang 2:858–861. doi: 10.1038/nclimate1599 

Moltschaniwskyj NA, Pecl GT (2007) Spawning aggregations of squid (Sepioteuthis australis) 
populations: a continuum of ‘microcohorts.’ Rev Fish Biol Fish 17:183–195. doi: 
10.1007/s11160-006-9025-7 

Moreno A, Dos Santos A, Piatkowski U, Santos AMP, Cabral H (2008) Distribution of 
cephalopod paralarvae in relation to the regional oceanography of the western Iberia. J 
Plankton Res 31:73–91. doi: 10.1093/plankt/fbn103 

Moreno A, Pierce GJ, Azevedo M, Pereira J, Santos AMP (2012) The effect of temperature on 
growth of early life stages of the common squid Loligo vulgaris. J Mar Biol Assoc United 
Kingdom 92:1619–1628. doi: 10.1017/S0025315411002141 

Munday PL (2014) Transgenerational acclimation of fishes to climate change and ocean 
acidification. F1000Prime Rep 6:1–7. doi: 10.12703/P6-99 

Munday PL, Leis JM, Lough JM, Paris CB, Kingsford MJ, Berumen ML, Lambrechts J (2009a) 
Climate change and coral reef connectivity. Coral Reefs 28:379–395. doi: 10.1007/s00338-
008-0461-9 

Munday PL, Donelson JM, Dixson DL, Endo GGK (2009b) Effects of ocean acidification on the 
early life history of a tropical marine fish. Proc R Soc B Biol Sci 276:3275–3283. doi: 
10.1098/rspb.2009.0784 

Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina G V, Døving KB 
(2009c) Ocean acidification impairs olfactory discrimination and homing ability of a marine 
fish. Proc Natl Acad Sci U S A 106:1848–52. doi: 10.1073/pnas.0809996106 

Munday PL, Hernaman V, Dixson DL, Thorrold SR (2011) Effect of ocean acidification on 
otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641. doi: 
10.5194/bg-8-1631-2011 

Munday PL, Pratchett MS, Dixson DL, Donelson JM, Endo GGK, Reynolds AD, Knuckey R 
(2013) Elevated CO2 affects the behavior of an ecologically and economically important 
coral reef fish. Mar Biol 160:2137–2144. doi: 10.1007/s00227-012-2111-6 

Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in 



 270 

reef fishes caused by ocean acidification at CO 2 seeps. Nat Clim Chang 4:1–6. doi: 
10.1038/NCLIMATE2195 

Murray CS, Malvezzi A, Gobler CJ, Baumann H (2014) Offspring sensitivity to ocean 
acidification changes seasonally in a coastal marine fish. Mar Ecol Prog Ser 504:1–11. doi: 
10.3354/meps10791 

Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: 
Survival, metabolism, and metamorphosis. PLoS One 6:1–7. doi: 
10.1371/journal.pone.0014521 

Navarro J, Coll M, Somes CJ, Olson RJ (2013) Trophic niche of squids: Insights from isotopic 
data in marine systems worldwide. Deep Res Part II Top Stud Oceanogr 95:93–102. doi: 
10.1016/j.dsr2.2013.01.031 

Navarro MO, Bockmon EE, Frieder CA, Gonzalez JP, Levin LA (2014) Environmental pH, O2 
and capsular effects on the geochemical composition of statoliths of embryonic squid 
Doryteuthis opalescens. Water 2233–2254. doi: 10.3390/w6082233 

Navarro MO, Kwan GT, Batalov O, Choi CY, Pierce NT, Levin LA (2016) Development of 
embryonic market squid, Doryteuthis opalescens, under chronic exposure to low 
environmental pH and [O2]. PLoS One 11:e0167461. doi: 10.1371/journal.pone.0167461 

Navarro MO, Parnell PE, Levin LA (2018) Essential market squid (Doryteuthis opalescens) 
Embryo Habitat: A Baseline for Anticipated Ocean Climate Change. J Shellfish Res 
37:601–614. doi: 10.2983/035.037.0313 

Nguyen HD, Doo SS, Soars NA, Byrne M (2012) Noncalcifying larvae in a changing ocean: 
Warming, not acidification/hypercapnia, is the dominant stressor on development of the sea 
star Meridiastra calcar. Glob Chang Biol 18:2466–2476. doi: 10.1111/j.1365-
2486.2012.02714.x 

Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S, Munday PL 
(2012) Near-future carbon dioxide levels alter fish behaviour by interfering with 
neurotransmitter function. Nat Clim Chang 2:201–204. doi: 10.1038/nclimate1352 

NOAA (2019) Squid, Mackerel, and Butterfish Quota Monitoring Page. In: NOAA Fish. - Gt. 
Atl. Reg. https://www.greateratlantic.fisheries.noaa.gov/aps/monitoring/longfinsquid.html. 
Accessed 16 Mar 2019 

Noisette F, Comtet T, Legrand E, Bordeyne F, Davoult D, Martin S (2014) Does encapsulation 
protect embryos from the effects of ocean acidification? The example of Crepidula 
fornicata. PLoS One 9:e93021. doi: 10.1371/journal.pone.0093021 

O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J 
Zool 64:1591–1605. doi: 10.1139/z86-241 

Oyarzun FX, Strathmann RR (2011) Plasticity of hatching and the duration of planktonic 
development in marine invertebrates. Integr Comp Biol 51:81–90. doi: 10.1093/icb/icr009 

Pachauri RK, Meyer L a. (2014) Climate Change 2014 Synthesis Report. Contribution of 
Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change.  

Pansch C, Nasrolahi A, Appelhans YS, Wahl M (2012) Impacts of ocean warming and 



 271 

acidification on the larval development of the barnacle Amphibalanus improvisus. J Exp 
Mar Bio Ecol 420–421:48–55. doi: 10.1016/j.jembe.2012.03.023 

Parker LM, Ross PM, O’Connor WA, Pörtner HO, Scanes E, Wright JM (2013) Predicting the 
response of molluscs to the impact of ocean acidification. Biology (Basel) 2:651–92. doi: 
10.3390/biology2020651 

Parmesan C (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annu 
Rev Ecol Evol Syst 37:637–669. doi: 10.2307/annurev.ecolsys.37.091305.30000024 

Pecl GT (2004) The in situ relationships between season of hatching, growth and condition in the 
southern calamary, Sepioteuthis australis. Mar Freshw Res 55:429–438. doi: 
10.1071/MF03150 

Pecl GT, Jackson GD (2008) The potential impacts of climate change on inshore squid: Biology, 
ecology and fisheries. Rev Fish Biol Fish 18:373–385. doi: 10.1007/s11160-007-9077-3 

Pecl GT, Moltschaniwskyj NA (2006) Life history of a short-lived squid (Sepioteuthis australis): 
resource allocation as a function of size, growth, maturation, and hatching season. ICES J 
Mar Sci 63:995–1004. doi: 10.1016/j.icesjms.2006.04.007 

Pecl GT, Moltschaniwskyj NA, Tracey SR, Jordan AR (2004a) Inter-annual plasticity of squid 
life history and population structure: Ecological and management implications. Oecologia 
139:515–524. doi: 10.1007/s00442-004-1537-z 

Pecl GT, Steer MA, Hodgson KE (2004b) The role of hatchling size in generating the intrinsic 
size-at-age variability of cephalopods: Extending the Forsythe Hypothesis. Mar Freshw Res 
55:387–394. doi: 10.1071/MF03153 

Perales-Raya C, Jurado-Ruzafa A, Bartolomé A, Duque V, Carrasco MN, Fraile-Nuez E (2014) 
Age of spent Octopus vulgaris and stress mark analysis using beaks of wild individuals. 
Hydrobiologia 725:105–114. doi: 10.1007/s10750-013-1602-x 

Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Bris A Le, Mills KE, Nye JA, Record 
NR, Scannell HA, Scott JD, Sherwood GD, Thomas AC (2015) Slow adaptation in the face 
of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science (80- ). doi: 
10.1126/science.aac9819 

Pierce GJ, Boyle PR (2003) Empirical modelling of interannual trends in abundance of squid 
(Loligo forbesi) in Scottish waters. Fish Res 59:305–326. doi: 10.1016/S0165-
7836(02)00028-0 

Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system 
calculations. In: ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak 
Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, pp 1–17 

Pimentel M, Pegado M, Repolho T, Rosa R (2014a) Impact of ocean acidification in the 
metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. 
Mar Biol 161:725–729. doi: 10.1007/s00227-013-2365-7 

Pimentel MS, Trübenbach K, Faleiro F, Boavida-Portugal J, Repolho T, Rosa R, Trubenbach K, 
Faleiro F, Boavida-Portugal J, Repolho T, Rosa R (2012) Impact of ocean warming on the 
early ontogeny of cephalopods: A metabolic approach. Mar Biol 159:2051–2059. doi: 
10.1007/s00227-012-1991-9 



 272 

Pimentel MS, Faleiro F, Dionísio G, Repolho T, Pousão-Ferreira P, Machado J, Rosa R (2014b) 
Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J 
Exp Biol 217:2062–70. doi: 10.1242/jeb.092635 

Pörtner H-O (1990) An analysis of the effects of pH on oxygen binding by squid (Illex 
illecebrosus, Loligo pealei) hemocyanin. J Exp Biol 424:407–424. 

Pörtner H-O, Webber DM, Boutilier RG, O’Dor RK (1991) Acid-Base Regulation in Exercising 
Squid. Am. J. Physiol. 261:R239–R246. 

Pörtner H-O, Reipschlager A, Heisler N (1998) Acid-base regulation, metabolism and energetics 
in Sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201:43–55. 

Pörtner HO (1994) Coordination of metabolism, acid-base regulation and haemocyanin function 
in cephalopods. Mar Freshw Behav Physiol 25:131–148. 

Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis 
and the potential for trans-generational acclimatization in coral larvae under future climate 
change conditions. J Exp Biol 218:2365–2372. doi: 10.1242/jeb.123018 

Radtke RL (1983) Chemical and structural characteristics of statoliths from the short-finned 
squid Illex illecebrosus. Mar Biol 76:47–54. doi: 10.1007/BF00393054 

Redfield AC, Goodkind R (1929) The significance of the Bohr Effect in the respiration and 
asphyxiation of the squid, Loligo pealei. J Exp Biol 6:340–349. 

Réveillac E, Lacoue-Labarthe T, Oberhänsli F, Teyssié J-L, Jeffree R, Gattuso J-P, Martin S 
(2015) Ocean acidification reshapes the otolith-body allometry of growth in juvenile sea 
bream. J Exp Mar Bio Ecol 463:87–94. doi: 10.1016/j.jembe.2014.11.007 

Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-
induced ocean acidification. Geology 37:1131–1134. doi: 10.1130/G30210A.1 

Rivest EB, Hofmann GE (2014) Responses of the metabolism of the larvae of Pocillopora 
damicornis to ocean acidification and warming. PLoS One 9:e96172. doi: 
10.1371/journal.pone.0096172 

Roberts MJ (2005) Chokka squid (Loligo vulgaris reynaudii) abundance linked to changes in 
South Africa’s Agulhas Bank ecosystem during spawning and the early life cycle. ICES J 
Mar Sci 62:33–55. doi: 10.1016/j.icesjms.2004.10.002 

Robin JP, Roberts M, Zeidberg L, Bloor I, Rodriguez A, Briceño F, Downey N, Mascaró M, 
Navarro M, Guerra A, Hofmeister J, Barcellos DD, Lourenço SAP, Roper CFE, 
Moltschaniwskyj NA, Green CP, Mather J (2014) Transitions during cephalopod life 
history: The role of habitat, environment, functional morphology and behaviour. In: Vidal 
EAG (ed) Advances in Cephalopod Science: Biology, Ecology, Cultivation and Fisheries. 
Academic Press, Cambridge, MA, pp 361–437 

Rodhouse PGK, Pierce GJ, Nichols OC, Sauer WHH, Arkhipkin AI, Laptikhovsky V V., 
Lipiński MR, Ramos JE, Gras M, Kidokoro H, Sadayasu K, Pereira J, Lefkaditou E, Pita C, 
Gasalla M, Haimovici M, Sakai M, Downey N (2014) Environmental effects on cephalopod 
population dynamics: Implications for management of fisheries. Adv Mar Biol 67:99–233. 
doi: 10.1016/B978-0-12-800287-2.00002-0 

Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine 



 273 

M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean 
acidification adversely affected by warming. Nat Clim Chang 1:308–312. doi: 
10.1038/nclimate1200 

Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future 
physiological impairment in a top oceanic predator. Proc Natl Acad Sci 105:20776–20780. 
doi: 10.1073/pnas.0806886105 

Rosa R, Seibel BA (2010) Metabolic physiology of the Humboldt squid, Dosidicus gigas: 
Implications for vertical migration in a pronounced oxygen minimum zone. Prog Oceanogr 
86:72–80. doi: 10.1016/j.pocean.2010.04.004 

Rosa R, Pimentel MS, Boavida-Portugal J, Teixeira T, Trübenbach K, Diniz M (2012) Ocean 
warming enhances malformations, premature hatching, metabolic suppression and oxidative 
stress in the early life stages of a keystone squid. PLoS One. doi: 
10.1371/journal.pone.0038282 

Rosa R, Trübenbach K, Repolho T, Pimentel M, Faleiro F, Boavida-Portugal J, Baptista M, 
Lopes VM, Dionísio G, Leal MC, Calado R, Pörtner HO (2013) Lower hypoxia thresholds 
of cuttlefish early life stages living in a warm acidified ocean. Proc R Soc B Biol Sci 
280:20131695. doi: 10.1098/rspb.2013.1695 

Rosa R, Trübenbach K, Pimentel MS, Boavida-Portugal J, Faleiro F, Baptista M, Dionísio G, 
Calado R, Pörtner HO, Repolho T (2014a) Differential impacts of ocean acidification and 
warming on winter and summer progeny of a coastal squid (Loligo vulgaris). J Exp Biol 
217:518–25. doi: 10.1242/jeb.096081 

Rosa R, O’Dor R, Pierce G (2014b) Myopsid Squids. Nova Science Publishers, Inc, New York, 
NY 

Rosenthal JJC (2015) The emerging role of RNA editing in plasticity. J Exp Biol 218:1812–
1821. doi: 10.1242/jeb.119065 

Ross PM, Parker L, O’Connor W a., Bailey E a. (2011) The Impact of Ocean Acidification on 
Reproduction, Early Development and Settlement of Marine Organisms. Water 3:1005–
1030. doi: 10.3390/w3041005 

Ross PM, Parker L, Byrne M (2012) Transgenerational responses of molluscs and echinoderms 
to changing ocean conditions. 69:380–388. doi: 10.1093/icesjms/fst048 

Ruby EG, McFall-Ngai MJ (1992) A squid that glows in the night: Development of an animal-
bacterial mutualism. J Bacteriol 174:4865–4870. 

Saba VS, Griffies SM, Anderson WG, Winton M, Alexander MA, Delworth TL, Hare JA, 
Harrison MJ, Rosati A, Vecchi GA, Zhang R (2016) Enhanced warming of the Northwest 
Atlantic Ocean under climate change. J Geophys Res Ocean 121:118–132. doi: 
10.1002/2015JC011346 

Sabine CL, Feely R a, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, 
Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The 
oceanic sink for anthropogenic CO2. Science 305:367–371. doi: 10.1126/science.1097403 

Schunter C, Welch MJ, Ryu T, Zhang H, Berumen ML, Nilsson GE, Munday PL, Ravasi T 
(2016) Molecular signatures of transgenerational response to ocean acidification in a 
species of reef fish. Nat Clim Chang 6:1014–1018. doi: 10.1038/nclimate3087 



 274 

Schunter C, Welch MJ, Nilsson GE, Rummer JL, Munday PL, Ravasi T (2018) An interplay 
between plasticity and parental phenotype determines impacts of ocean acidification on a 
reef fish. Nat Ecol Evol 2:334–342. doi: 10.1038/s41559-017-0428-8 

Seibel BA (2013) The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen 
minimum zones II: Blood-oxygen binding. Deep Res Part II Top Stud Oceanogr 95:139–
144. doi: 10.1016/j.dsr2.2012.10.003 

Seibel BA (2015) Environmental physiology of the jumbo squid, Dosidicus gigas (d ’Orbigny, 
1835) (Cephalopoda : Ommastrephidae): Implications for changing climate. Am Malacol 
Bull 33:1–13. 

Seibel BA (2016) Cephalopod susceptibility to asphyxiation via ocean incalescence, 
deoxygenation, and acidification. Physiology 31:418–429. doi: 10.1152/physiol.00061.2015 

Seibel BA, Hochberg FG, Carlini DB (2000) Life history of Gonatus onyx (Cephalopoda: 
Teuthoidea): deep-sea spawning and post-spawning egg care. Mar Biol 137:519–526. doi: 
10.1007/s002270000359 

Seibel BA, Maas AE, Dierssen HM (2012) Energetic plasticity underlies a variable response to 
ocean acidification in the pteropod, Limacina helicina antarctica. PLoS One 7:e30464. doi: 
10.1371/journal.pone.0030464 

Seibel BA, Hafker NS, Trubenbach K, Zhang J, Tessier SN, Portner H-O, Rosa R, Storey KB 
(2014) Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, 
Dosidicus gigas, living in an oxygen minimum zone. J Exp Biol 217:2555–2568. doi: 
10.1242/jeb.100487 

Semmens JM, Pecl GT, Gillanders BM, Waluda CM, Shea EK, Jouffre D, Ichii T, Zumholz K, 
Katugin ON, Leporati SC, Shaw PW (2007) Approaches to resolving cephalopod 
movement and migration patterns. Rev Fish Biol Fish 17:401–423. doi: 10.1007/s11160-
007-9048-8 

Sen H (2005) Temperature tolerance of loliginid squid (Loligo vulgaris Lamarck, 1798) eggs in 
controlled conditions. Turkish J Fish Aquat Sci 5:53–56. 

Shadwick RE, O’Dor RK, Gosline JM (1990) Respiratory and cardiac function during exercise 
in squid. Can J Zool 68:792–798. doi: 10.1139/z90-114 

Shashar N, Hanlon RT (2013) Spawning behavior dynamics at communal egg beds in the squid 
Doryteuthis (Loligo) pealeii. J Exp Mar Bio Ecol 447:65–74. doi: 
10.1016/j.jembe.2013.02.011 

Shaw EC, Munday PL, McNeil BI (2013) The role of CO2 variability and exposure time for 
biological impacts of ocean acidification. Geophys Res Lett 40:4685–4688. doi: 
10.1002/grl.50883 

Shea EK, Vecchione M (2010) Ontogenic changes in diel vertical migration patterns compared 
with known allometric changes in three mesopelagic squid species suggest an expanded 
definition of a paralarva. ICES J Mar Sci 67:1436–1443. doi: 10.1093/icesjms/fsq104 

Sigwart JD, Lyons G, Fink A, Gutowska M a, Murray D, Melzner F, Houghton JDR, Hu MY 
(2016) Elevated pCO2 drives lower growth and yet increased calcification in the early life 
history of the cuttlefish Sepia officinalis. ICES J Mar Sci 73:970–980. doi: 
10.1093/icesjms/fst176 



 275 

Smith AM, Wolfe K, Byrne M (2012) Argonauta at risk: dissolution and carbonate mineralogy 
of egg cases. 1:2010–2013. 

Sokolova IM (2013) Energy-limited tolerance to stress as a conceptual framework to integrate 
the effects of multiple stressors. Integr Comp Biol 53:597–608. doi: 10.1093/icb/ict028 

Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA (2012) Energy homeostasis as an 
integrative tool for assessing limits of environmental stress tolerance in aquatic 
invertebrates. Mar Environ Res 79:1–15. doi: 10.1016/j.marenvres.2012.04.003 

Spady BL, Watson S, Chase TJ, Munday PL (2014) Projected near-future CO2 levels increase 
activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biol Open 
3:1063–70. doi: 10.1242/bio.20149894 

Spady BL, Nay TJ, Rummer JL, Munday PL, Watson S-A (2019) Aerobic performance of two 
tropical cephalopod species unaltered by prolonged exposure to projected future carbon 
dioxide levels. Conserv Physiol 7:1–11. doi: 10.1093/conphys/coz024 

Staaf DJ, Zeidberg LD, Gilly WF (2011) Effects of temperature on embryonic development of 
the Humboldt squid Dosidicus gigas. Mar Ecol Prog Ser 441:165–175. doi: 
10.3354/meps09389 

Staaf DJ, Gilly WF, Denny MW (2014) Aperture effects in squid jet propulsion. J Exp Biol 
217:1588–600. doi: 10.1242/jeb.082271 

Stamhuis E, Videler J (1995) Quantitative flow analysis around aquatic animals using laser sheet 
particle image velocimetry. J Exp Biol 198:283–94. 

Steer M, Moltschaniwskyj N, Nichols D, Miller M (2004) The role of temperature and maternal 
ration in embryo survival: Using the dumpling squid Euprymna tasmanica as a model. J 
Exp Mar Bio Ecol 307:73–89. doi: 10.1016/j.jembe.2004.01.017 

Steer MA, Moltschaniwskyj NA (2007) The effects of egg position, egg mass size, substrate and 
biofouling on embryo mortality in the squid Sepioteuthis australis. Rev Fish Biol Fish 
17:173–182. doi: 10.1007/s11160-006-9023-9 

Steer MA, Pecl GT, Moltschaniwskyj NA (2003) Are bigger calamary Sepioteuthis australis 
hatchlings more likely to survive? A study based on statolith dimensions. Mar Ecol Prog 
Ser 261:175–182. doi: 10.3354/meps261175 

Strobel A, Hu MYA, Gutowska MA, Lieb B, Lucassen M, Melzner F, Pörtner HO, Mark FC 
(2012) Influence of Temperature, Hypercapnia, and Development on the Relative 
Expression of Different Hemocyanin Isoforms in the Common Cuttlefish Sepia officinalis. J 
Exp Zool Part A Ecol Genet Physiol 317:511–523. doi: 10.1002/jez.1743 

Stumpp M, Dupont S, Thorndyke MC, Melzner F (2011) CO2 induced seawater acidification 
impacts sea urchin larval development II: Gene expression patterns in pluteus larvae. Comp 
Biochem Physiol Part A Mol Integr Physiol 160:320–330. doi: 10.1016/j.cbpa.2011.06.023 

Summers WC (1971) Age and growth of Loligo pealei, a population study of the common 
Atlantic coast squid. Biol Bull 141:189–201. 

Summers WC, McMahon JJ, Ruppert GNPA (1974) Studies on the maintenance of adult squid 
(Loligo peali). II. Empirical Extensions. Biol Bull 146:291–301. 

Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH (2014) Evolution in an 



 276 

acidifying ocean. Trends Ecol Evol 29:117–125. doi: 10.1016/j.tree.2013.11.001 
Takesue RK, Bacon CR, Thompson JK (2008) Influences of organic matter and calcification rate 

on trace elements in aragonitic estuarine bivalve shells. Geochim Cosmochim Acta 
72:5431–5445. doi: 10.1016/j.gca.2008.09.003 

Tambutté E, Venn AA, Holcomb M, Segonds N, Techer N, Zoccola D, Allemand D, Tambutté S 
(2015) Morphological plasticity of the coral skeleton under CO2-driven seawater 
acidification. Nat Commun 6:7368. doi: 10.1038/ncomms8368 

Thompson JT, Bartol IK, Baksi AE, Li KY, Krueger PS (2010) The ontogeny of muscle 
structure and locomotory function in the long-finned squid Doryteuthis pealeii. J Exp Biol 
213:1079–1091. doi: 10.1242/jeb.034553 

Tian Y (2009) Interannual-interdecadal variations of spear squid Loligo bleekeri abundance in 
the southwestern Japan Sea during 1975-2006: Impact of the trawl fishing and 
recommendations for management under the different climate regimes. Fish Res 100:78–85. 
doi: 10.1016/j.fishres.2009.06.005 

Trueblood LA, Seibel BA (2013) The jumbo squid, Dosidicus gigas (Ommastrephidae), living in 
oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures. 
Deep Res Part II Top Stud Oceanogr 95:218–224. doi: 10.1016/j.dsr2.2012.10.004 

van der Sman J, Phillips NE, Pfister CA (2009) Relative effects of maternal and juvenile food 
availability for a marine snail. Ecology 90:3119–3125. 

Vargas CA, Lagos NA, Lardies MA, Duarte C, Manríquez PH, Aguilera VM, Broitman B, 
Widdicombe S, Dupont S (2017) Species-specific responses to ocean acidification should 
account for local adaptation and adaptive plasticity. Nat Ecol Evol 1:1–7. doi: 
10.1038/s41559-017-0084 

Vecchione M (1981) Aspects of the early life history of Loligo pealeii (Cephalopoda; 
Myopsida). J Shellfish Res 1:171–180. 

Vecchione M, Roper CFE, Sweeney MJ, Lu CC (2001) Distribution, relative abundance and 
developmental morphology of paralarval cephalopods in the western North Atlantic Ocean. 
In: NOAA Technical Report NMFS 152.  

Vézina A, Hoegh-Guldberg O (2008) Effects of ocean acidification on marine ecosystems. Mar 
Ecol Prog Ser 373:199–201. doi: 10.3354/meps07868 

Vidal EAG, Haimovici M (1998) Feeding and the possible role of the proboscis and mucus cover 
in the ingestion of microorganism by rhynchoteuthion paralarvae (Cephalopoda: 
Ommastrephidae). Bull Mar Sci 63:305–316. 

Vidal EAG, DiMarco FP, Wormuth JH, Lee PG (2002a) Influence of temperature and food 
availability on survival, growth and yolk utilization in hatchling squid. Bull Mar Sci 
71:915–931. 

Vidal EAG, DiMarco FP, Wormuth JH, Lee PG (2002b) Optimizing rearing conditions of 
hatchling loliginid squid. Mar Biol 140:117–127. doi: 10.1007/s002270100683 

Vidal EAG, Villanueva R, Andrade JP, Gleadall IG, Iglesias J, Koueta N, Rosas C, Segawa S, 
Grasse B, Franco-Santos RM, Albertin CB, Caamal-Monsreal C, Chimal ME, Edsinger-
Gonzales E, Gallardo P, Le Pabic C, Pascual C, Roumbedakis K, Wood J (2014) 



 277 

Cephalopod culture: Current status of main biological models and research priorities. Adv 
Mar Biol 67:1–98. doi: 10.1016/B978-0-12-800287-2.00001-9 

Villanueva R, Nozais CC, Boletzky S v. (1997) Swimming behaviour and food searching in 
planktonic Octopus vulgaris Cuvier from hatching to settlement. J Exp Mar Bio Ecol 
208:169–184. doi: 10.1016/S0022-0981(96)02670-6 

Villanueva R, Arkhipkin A, Jereb P, Lefkaditou E, Lipinski MR, Perales-Raya C, Riba J, Rocha 
F (2003) Embryonic life of the loliginid squid Loligo vulgaris: Comparison between 
statoliths of Atlantic and Mediterranean populations. Mar Ecol Prog Ser 253:197–208. doi: 
10.3354/meps253197 

Villanueva R, Quintana D, Petroni G, Bozzano A (2011) Factors influencing the embryonic 
development and hatchling size of the oceanic squid Illex coindetii following in vitro 
fertilization. J Exp Mar Bio Ecol 407:54–62. doi: 10.1016/j.jembe.2011.07.012 

Vogel S (1981) Life in Moving Fluids: The Physical Biology of Flow, 2nd Editio. Princeton 
University Press, Princeton, New Jersey 

Wang ZA, Wanninkhof R, Cai W-J, Byrne RH, Hu X, Peng T-H, Huang W-J (2013) The marine 
inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States : 
Insights from a transregional coastal carbon study. Limnol Oceanogr 58:325–342. doi: 
10.4319/lo.2013.58.1.0325 

Wannamaker CM, Rice JA (2000) Effects of hypoxia on movements and behavior of selected 
estuarine organisms from the southeastern United States. J Exp Mar Bio Ecol 249:145–163. 
doi: 10.1016/S0022-0981(00)00160-X 

Wassersug R, von Seckendorf Hoff K (1985) The kinematics of swimming in anuran larvae. J 
Exp Biol 119:1–30. 

Webber DM, O’Dor RK (1986) Monitoring the metabolic rate and activity of free-swimming 
squid with telemetered jet pressure. J Exp Biol 224:205–224. 

Webber DM, Aitken JP, O’Dor RK (2010) Costs of locomotion and vertic dynamics of 
cephalopods and fish. Physiol Biochem Zool 73:651–62. doi: 10.1086/318100 

Wheeler JD, Helfrich KR, Anderson EJ, McGann B, Staats P, Wargula AE, Wilt K, Mullineaux 
LS (2013) Upward swimming of competent oyster larvae Crassostrea virginica persists in 
highly turbulent flow as detected by PIV flow subtraction. Mar Ecol Prog Ser 488:171–185. 
doi: 10.3354/meps10382 

Wheeler JD, Helfrich KR, Anderson EJ, Mullineaux LS (2015) Isolating the hydrodynamic 
triggers of the dive response in eastern oyster larvae. Limnol Oceanogr. doi: 
10.1002/lno.10098 

White MM, McCorkle DC, Mullineaux LS, Cohen AL (2013) Early exposure of bay scallops 
(Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS One 8:2–
9. doi: 10.1371/journal.pone.0061065 

Winans AK, Purcell JE (2010) Effects of pH on asexual reproduction and statolith formation of 
the scyphozoan, Aurelia labiata. Hydrobiologia 645:39–52. doi: 10.1007/s10750-010-0224-
9 

Xavier JC, Allcock AL, Cherel Y, Lipinski MR, Pierce GJ, Rodhouse PGK, Rosa R, Shea EK, 



 278 

Strugnell JM, Vidal EAG, Villanueva R, Ziegler A (2015) Future challenges in cephalopod 
research. J Mar Biol Assoc United Kingdom 95:999–1015. doi: 
10.1017/S0025315414000782 

Yamaoka K, Nanbu T, Miyagawa M, Isshiki T, Kusaka  a. (2000) Water surface tension-related 
deaths in prelarval red-spotted grouper. Aquaculture 189:165–176. doi: 10.1016/S0044-
8486(00)00354-9 

Yatsu A, Watanabe T, Mori J, Nagasawa K, Ishida Y, Meguro T, Kamei Y, Sakurai Y (2000) 
Interannual variability in stock abundance of the neon flying squid, Ommastrephes 
bartramii, in the North Pacific Ocean during 1979-1998: impact of driftnet fishing and 
oceanographic conditions. Fish Oceanogr 9:163–170. 

York CA, Bartol IK (2016) Anti-predator behavior of squid throughout ontogeny. J Exp Mar Bio 
Ecol 480:26–35. doi: 10.1016/j.jembe.2016.03.011 

York CA, Bartol IK, Krueger PS (2016) Multiple sensory modalities used by squid in successful 
predator evasion throughout ontogeny. J Exp Biol jeb.140780. doi: 10.1242/jeb.140780 

Zakroff C, Mooney TA, Wirth C (2018) Ocean acidification responses in paralarval squid 
swimming behavior using a novel 3D tracking system. Hydrobiologia 808:83–106. doi: 
10.1007/s10750-017-3342-9 

Zakroff C, Mooney TA, Berumen ML (2019) Dose-dependence and small-scale variability in 
responses to ocean acidification during squid, Doryteuthis pealeii, development. Mar Biol 
166:62. doi: 10.1007/s00227-019-3510-8 

Zakroff CJ (2013) CO2-level dependent effects of ocean acidification on squid, Doryteuthis 
pealeii, early life history. Master's thesis. King Abdullah University of Science and 
Technology 

Zeidberg LD, Isaac G, Widmer CL, Neumeister H, Gilly WF (2011) Egg capsule hatch rate and 
incubation duration of the California market squid, Doryteuthis (=Loligo) opalescens: 
Insights from laboratory manipulations. Mar Ecol 32:468–479. doi: 10.1111/j.1439-
0485.2011.00445.x 

Zielinski S, Sartoris FJ, Portner HO (2001) Temperature effects on hemocyanin oxygen binding 
in an Antartic cephalopod. Biol Bull 200:67–76. 

 
 


