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32 Abstract

33 This is the first study to generate and analyze the climate signal in Blue Intensity (BI) tree-ring 

34 chronologies from Alaskan yellow-cedar (Callitropsis nootkatensis D. Don; Oerst. ex D.P. 

35 Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring-

36 widths (RW), and thus can provide information on past climate. The well-replicated BI 

37 chronology exhibits a positive January-August average maximum temperature signal for 1900-

38 1975, after which it loses temperature sensitivity following the 1976/77 shift in northeast Pacific 

39 climate. The positive temperature response appears to recover and remains strong for the most 

40 recent decades although the coming years will continue to test this observation. This temporary 

41 loss of temperature sensitivity from about 1976 to 1999 is not evident in RW or in a change in 

42 forest health, but is consistent with prior work linking cedar decline to warming. A confounding 

43 factor is the uncertain influence of a shift in color variation from the heartwood/sapwood 

44 boundary. Future expansion of the yellow-cedar BI network and further investigation of the 

45 influence of the heartwood/sapwood transitions in the BI signal will lead to a better 

46 understanding of the utility of this species as a climate proxy. 
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53 1. Introduction:

54 Climate-driven, abiotic stresses are emerging as a major driver of forest decline in North 

55 America (Cohen et al., 2016; Buma et al., 2017). Forest decline is defined as the loss of tree 

56 vigor and eventual mortality triggered by complex biotic and abiotic factors (Manion and 

57 Lachance 1992). Abiotic forest decline is a complex disorder driven by various non-living 

58 physical stresses, including climate change, on a forest stand that results in growth decline and 

59 can lead to mortality. Affected trees may recover once the stresses are removed. Identifying the 

60 response of ecosystems to varying rates of climate change is a challenge as species may respond 

61 linearly or non-linearly to anthropogenic warming as well as to the natural internal climate 

62 dynamics of the North Pacific (Krapek et al., 2017). In the coastal northeast Pacific, of particular 

63 interest are the Pacific related decadal fluctuations (ie., the Pacific Decadal Oscillation; PDO) 

64 that dominate many aspects of the climate and ecosystems and have persisted for increasingly 

65 long intervals over the observational record since CE 1900 (Boulton and Lenton, 2015; Gaglioti 

66 et al., 2019). This decadal variability is superimposed on contemporary warming and has been 

67 observed throughout the Little Ice Age (~CE 1250-1850; Wilson et al., 2007). 

68 Decadal shifts have been recognized in climate data, climate indices and biological time 

69 series (Overland et al., 2008). Determining the causes of shifts in North Pacific climate has been 

70 an ongoing challenge, in part due to the large number of both instrumental and proxy time series 

71 available, all of which capture different aspects of climate system on various timescales (ENSO, 

72 decadal and century-scale warming). Efforts to extract the decadal signal from sea surface 

73 temperature data suggest that in addition to the positive shift in PDO in 1975/76, a negative shift 

74 occurred in 1998/99, although it may be too early to label this episode as a “regime shift” (Ding 

75 et al., 2013; McAfee, 2014, 2016; Wills et al., 2018).

Page 3 of 43



76 Here we examine the climate response of a well-replicated tree-ring chronology of 

77 yellow-cedar (Callitropsis nootkatensis D. Don; Oerst. ex D.P. Little) composited from three 

78 sites near Juneau, Alaska (Table 1, Fig. 1). Yellow-cedar is an economically and culturally 

79 important species, which grows along the northwest coast of North America (Oakes, 2018; 

80 Hennon et al., 2016). The wood is strong and resistant to decay, used for canoe paddles and in 

81 carvings, and its inner bark is utilized for fiber in weavings. The three sites composited in this 

82 study have had limited evidence of cultural modification with the exception of one of them, 

83 Cedar Lake, which shows evidence of bark stripping on a few trees that have been utilized over 

84 the past few decades to a century. Our three sites have been discussed in previous publications 

85 including analyses of ring-width data (RW) from Cedar Lake (Beier et al., 2008) and 

86 investigations of forest ecology at all three sites (Krapek et al., 2017). Krapek and Buma (2017) 

87 showed that the timing of yellow-cedar establishment in these stands occurred during cool/wet 

88 intervals of the Little Ice Age and that cedar could not colonize where other species out-

89 competed this long-lived, slow growing and slow migrating species. 

90 Yellow cedar has been the subject of intense study primarily because of the phenomenon 

91 of widespread decline of this species in southeastern Alaska, which is relatively well understood. 

92 In the early 1980s, foresters (led largely by the National Forest Service in Juneau, Alaska) ruled 

93 out various pathogens and other abiotic factors (Hennon et al. 2006, 2012, 2016; Schaberg et al., 

94 2008). The current leading hypothesis for the decline has been factors related to warming 

95 temperatures. Earlier spring snowmelt, and the associated shift in the transition from snow to 

96 rain, both lead to a loss of spring snowpack, which can contribute to freezing of rootlets and to 

97 decline. Snowpack provides insulation from cold surface air temperatures, protecting vulnerable 

98 small roots from frost events especially when shallow root dehardening occurs in wet soils 
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99 (Schaberg et al., 2008, 2011; Hennon et al. 2012, 2016). Extensive work has been done testing 

100 this hypothesis and exploring the forest dynamics and ecology associated with the decline 

101 (Oakes et al., 2014, 2015; Krapek and Buma, 2017; Krapek et al., 2017) driven by concerns of 

102 species loss and determination of whether the species is endangered (Buma et al., 2017; Barrett 

103 and Pattison, 2017, Bidlack et al., 2017). 

104 Dendroclimatic studies of RW in southeast Alaska have shown that the growth response 

105 of yellow-cedar can be spatially and temporally complex (Beier et al., 2008; Wiles et al., 2012) 

106 and, in general, results have not been promising for climate reconstruction. Beier et al. (2008) 

107 analyzed RW from declining cedar sites in southeast Alaska and from the healthy stand at Cedar 

108 Lake, one of our study sites. At Cedar Lake, they noted a general decrease in RW over the past 

109 several decades, whereas at sites that were experiencing substantial decline and tree death, 

110 farther to the southeast of Juneau, a reduced-competition growth release in surviving trees was 

111 detected. Another RW study examined two healthy yellow-cedar stands in Glacier Bay National 

112 Park and Preserve (Wiles et al., 2012). This latter work showed a marked nonstationary response 

113 to climate with a notable shift in temperature sensitivity from positive (more growth with warmer 

114 temperatures) to negative (less growth with warmer temperatures) after CE 1950, presumably as 

115 warming occurred (Wiles et al. 2012). Wiles et al. (2012) also documented decreased radial 

116 growth for decades but without any visible evidence of decline in the crowns of the trees. 

117 Similarly, Hennon et al. (1990) observed a decrease in RW, sometimes for decades, prior to 

118 noticeable decline in the outward appearance of the trees. 

119 In a regional study examining yellow-cedar health across its entire range (Buma et al., 

120 2017) identified a critical threshold of mean winter temperatures above 0°C as snow turns to rain 

121 (Buma et al., 2017) and rootlets become more susceptible to frost damage. Once winter 
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122 temperatures sufficiently warm, frosts may be less frequent and snowpack will not be as crucial a 

123 factor in protecting root systems. This appears to be the case at the southern range of yellow-

124 cedar (Buma, 2018) in Washington and Oregon where healthy stands are flourishing. This 

125 previous work provides a context for the present study, as our sites are entering the zone where 

126 mean winter temperatures are between -2° and +2°C as mapped by Buma et al. (2017) and are 

127 thus susceptible to future decline as warming proceeds. 

128 Previous dendroclimatic investigations along the Gulf of Alaska (GOA) have used tree 

129 rings from coastal sites for climate reconstruction focusing primarily on mountain hemlock RW 

130 (Tsuga mertensiana (Bong.) Carr.; Barclay et al., 1999; D’Arrigo et al., 2001; Wilson et al., 

131 2007; Wiles et al. 2014). More recently BI records are showing promise for generating robust 

132 climate reconstructions along the GOA (Wilson et al., 2017) and in the Yukon (Wilson et al, in 

133 press). Thus far, BI chronologies for the GOA have only been developed for mountain hemlock 

134 (Wilson et al., 2017). Wilson et al. (2017) used the delta BI (dBi; latewood BI (LBi) subtracted 

135 from the earlywood BI (EBi) values) parameter to reconstruct climate, noting the stronger 

136 relationship between summer temperature and dBi than with LBi or EBi for mountain hemlock. 

137 Here we present the first BI tree-ring series for yellow-cedar and examine the strength 

138 and stability of its climate signal. Both RW and LBi chronologies for yellow-cedar were 

139 examined for their potential for climate reconstruction and our results are interpreted within the 

140 context of the yellow-cedar decline outlined above (Buma et al., 2017; Hennon et al., 2016). We 

141 generated ring-width (RW) and blue intensity (BI) measurements to document the climate 

142 response over the past several centuries. Latewood blue intensity (LBi) is a similar tree-ring 

143 measurement to maximum latewood density (MXD). BI measurements, in general, reflect the 

144 combined hemi-cellulose, cellulose and lignin content in the latewood which are key components 
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145 of relative density (Björklund et al., 2014; Rydval et al., 2014). The utility of LBi as a summer 

146 temperature proxy has been shown to improve climate reconstruction from multiple high 

147 elevation and high latitude sites (Björklund et al., 2014, 2015; Campbell et al., 2007; Dolgova, 

148 2016; Rydval et al., 2014, 2017; Wilson et al., 2014) and the use of dBi from the Gulf of Alaska 

149 (Wilson et al., 2017). Significantly, blue intensity is a much less expensive parameter to generate 

150 than MXD. One downside however, is that LBi chronologies generally require a larger sample 

151 size than MXD to generate a robust mean chronology (Björklund et al., 2014; Wilson et al., 

152 2014, 2017).

153

154 2. Methods

155 Trees were cored at the aforementioned three sites near Juneau: Cedar Lake, Bridget Cove and 

156 East Glacier (Fig. 1). The sites range in elevation from 110 to over 480 m (Table 1). For the 

157 Cedar Lake site, cores and ring-width data were obtained from other researchers (Beier et al., 

158 2008; Krapek et al., 2017) and combined with our collections from the summers of 2016 and 

159 2017 (Charlton et al., 2017). The tree cores were immersed in acetone for 72 hours to remove 

160 resins in the wood (Rydval et al., 2014; Fuentes et al., 2018), then glued onto wood mounts and 

161 sanded to a high polish. An Epson V850 pro scanner, using an IT8.7/2 calibration card in 

162 conjunction with SilverFast scanning software was used to scan the samples at a resolution of 

163 2400 dpi. Scanning was done with a nonreflective black box covering the scanner window. BI 

164 measurements were made using CDendro 8.1 and CooRecorder 8.1 (Larsson, 2016). Previously 

165 generated ring-width chronologies facilitated calendar dating, and COFECHA (Holmes, 1983) 

166 was used as a final quality control for the dating of the RW and LBi measurements. 
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167 Since BI measurements are color based, discoloration of the wood presents challenges. 

168 One is the  presence of a heartwood/sapwood boundary, which can cause a color shift in some 

169 species that may impose a trend bias in the BI series (Björklund et al., 2014; 2015). In most of 

170 the yellow-cedar cores we did not observe a strong color difference, although a subtle change 

171 was noted in some series that might be enough to influence the measured values. To investigate 

172 potential color change, we counted the number of rings at the transition from heartwood to 

173 sapwood where we were able to discern the transition; counts ranged from 16 to 50 years in the 

174 ~10% of samples in which we could detect the transition.  The blue intensity parameters that 

175 were evaluated included: LBi, earlywood BI (EBi) and the derived dBi (McCarroll et al., 2002; 

176 Björklund et al., 2014, 2015; Rydval et al., 2014; Wilson et al., 2017). In our yellow cedar series, 

177 EBi and LBi values are highly correlated with one another (r=0.82 for 1900-2014). The 

178 application of dBi in the case of such a strong inter-correlation can lead to a loss in climate signal 

179 (Björklund et al. 2014). The uniform density between the earlywood and latewood illustrated in 

180 this high correlation is consistent with known wood properties that make the yellow cedar 

181 desirable for its smoothly carved surfaces (Hennon et al., 2016). Given the high correlation 

182 between the early and latewood measurements, and our strong results for our climate analyses 

183 using LBi, we focused herein on only the LBi and RW signals from yellow-cedar for this paper. 

184 We combined the individual series from the three sites into a regional master chronology 

185 based on the strong correlations and coherent low frequency features among the sites. The 

186 combined final RW and LBi chronologies are well replicated and both incorporate 179 series 

187 from 113 trees. Although individual sites have trees that date back to CE 1114 (East Glacier; 

188 Table 1) we examine the combined record back to CE 1400 based on a critical Expressed 
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189 Population Signal (EPS) of >0.85 (Fig. 2a; Wigley et al, 1984). The EPS is a measure of how 

190 well a sample of tree-ring data (ie., number of tree ring series) represents an ideal population.

191 We followed the methodology of Wilson et al. (2017) in processing the ring-width and 

192 LBi records into chronologies. Tree-ring series were standardized using the signal-free (SF), age 

193 dependent spline (ADS) approach described in Melvin et al. (2007), and Melvin and Briffa 

194 (2008, 2014; Fig. 2a). We used the signal free software RCSigFree, a freeware program 

195 developed at the Tree-Ring Lab of the Lamont-Doherty Earth Observatory 

196 (http://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software) that is based on the 

197 program ARSTAN (Cook, 1985). The SF approach was used because of the complex growth 

198 trends recognized in the individual tree ring series; both Wilson et al., (2017; in press) and 

199 Buckley et al. (2018) similarly used SF standardization with favorable results.

200 The RW and LBi series were best correlated with GOA monthly maximum temperatures 

201 (Tmax, CRU TS4.01; Harris et al., 2014; Fig. 3). The temperature series was calculated by 

202 averaging gridded data from within the coordinates 56 o - 62 o N, 130 o - 140 o W (Fig. 1) for the 

203 CE 1900-2014 interval. We used the Tmax for analyses because of its stronger correlation with 

204 the tree-ring record than with mean or minimum monthly temperatures. Wilson et al. (2017), in 

205 their investigation of BI and RW series for mountain hemlock (using dBi), used mean monthly 

206 temperatures from stations within 57 o - 61o N, 134o - 153o W, a broader region than our study, as 

207 they analyzed multiple sites across a larger swath of the GOA. Although we obtained marginally 

208 better results with maximum temperatures from this larger area, we chose to use a more 

209 restricted area to better represent the region surrounding our sampling sites (Fig. 1). It is difficult 

210 to assess the temperatures at the tree-ring sites relative to the meteorological stations and we 

211 have no records of frost frequency at the individual sites. January (coldest month) Tmax values 
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212 correlated at 0.95 (N=96 years) with temperatures at the Juneau station, near sea level south of 

213 the study sites. However, the Tmax series is about 6˚C colder than Juneau values, which may be 

214 closer to the actual temperatures at the sites up to 480 meters in elevation. 

215 To assess the temporal stability of the tree-ring series and Tmax we performed running 

216 correlations between series using 15-year and 31-year windows. To account for autocorrelation 

217 in the series we examined correlations between the first differenced data. We also compared 

218 running correlations between the yellow-cedar latewood BI series (YCLBi) and a published tree- 

219 ring based temperature reconstructions for the Gulf of Alaska (Wiles et al., 2014).

220

221 3. Results

222 The RW series at the three sites span a common period of CE 1400-1975 (prior to a divergence 

223 of the LBi and RW series; Fig. 2a) and correlate between 0.65 and 0.81 with one another, 

224 whereas the three sites for LBi, correlations ranged from 0.39 to 0.53 (Table 2). The lower 

225 correlation among the LBi series is consistent with our observations of mountain hemlock BI 

226 along the GOA (Wilson et al, 2017), white spruce (Picea glauca (Moench) Voss) in the Yukon 

227 (Wilson et al., in press), and scots pine (Pinus sylevestris L.) in Scotland (Ryvdal et al., 2014). 

228 As is found here, these cited studies found a weaker common signal among BI series relative to 

229 the RW, but a stronger climate signal in the BI than the RW. This paradox is not well understood 

230 at the present time.

231 The final chronologies were created by combining the three individual sites into one RW 

232 and one YCLBi regional series (Fig.2). The two series correlate with one another at 0.49 for the 

233 period of overlap between 1400 and 1975 CE (Fig. 2a) after which they diverge. The RW and 

234 YCLBi series match well with the exception of intervals in the mid 1500s, early to mid 1600s 
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235 and after about CE 1970 (Fig. 2a). About 1975, the YCLBi record strongly decreases and the 

236 RW series declines marginally and then generally increases through recent decades (Fig. 2; Table 

237 3). Comparisons of RW and YCLBi series with Tmax from the CRU gridded dataset were made 

238 for the “dendroclimatic year” that consists of March through December of the previous year of 

239 growth and January through October of the year of growth (Fig. 3). For the YCLBi, the strongest 

240 correlations (Pearson two-tailed) were with mean January through August (J-A) maximum 

241 temperatures at 0.64 for 1901-1975 (p<0.00001), with a 1st differenced correlation of 0.71 (1902-

242 1975; p<0.00001; Fig. 3a). After 1975, there is a marked decrease in correlation and loss of 

243 significance (r=0.21 p>0.34) for the non-transformed series with a 1st differenced correlation of 

244 0.33 (p=0.14, also not significant) for the 1976-1999 interval (Figs. 3b, 4a). For the 2000-2014 

245 interval, the correlation increases to 0.71 (p=0.004) with an increase in the 1st differenced data 

246 correlation to 0.64 (p=0.01) (Fig. 4b) comparable to the pre-1975 relationship (Fig. 3c). RW was 

247 positively correlated with temperature (J-A) prior to 1976 (r=0.30, p<0.01) and after that time 

248 correlations with maximum temperatures are not significant (Fig. 3a). 

249 A principal result of our analyses is that the YCLBi is more sensitive to, and thus 

250 provides a much stronger proxy for maximum temperatures (January-August average) than RW. 

251 Furthermore, decadal variations in climate along the GOA as inferred from the YCLBi record 

252 appear nonstationary, especially during the climatic shift in the mid to late 1970s. This noted so-

253 called 1976/77 regime shift in the North Pacific is well-documented in terms of the physical and 

254 biological changes that occurred in the region (Ebbesmeyer et al., 1991; Mantua et al., 1997; 

255 Trenberth and Hurrell, 1994; Newman et al., 2016). In southeast Alaska, this shift brought 

256 warmer temperatures with less snow but higher precipitation as rain (Wendler et al., 2017). The 

257 loss of sensitivity in YCLBi to maximum temperature after this shift is consistent with the 
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258 hypothesis that warming decreases snowpack, thus potentially exposing the shallow roots to frost 

259 (the decline hypothesis). This dropoff in correlation also corresponds with a peak of cedar 

260 mortality in the late 1970s to the early 1980s elsewhere in southeast Alaska (Hennon et al., 2016; 

261 Hennon and Shaw, 1994). The apparent recovery in climate signal after the 1999 negative shift 

262 in climate discussed in Ding et al. (2013), analyzed in McAfee (2016) and reported by Wills et 

263 al. (2018) is marked here by a strengthening in correlation with Tmax and is also consistent with 

264 the decline hypothesis. A recovery of climate sensitivity with respect to Tmax after 1999 appears 

265 to be strongest in the year-to-year, high frequency response (differenced data; Fig. 4b). It also 

266 appears that the lower frequency (decadal) response is also in recovery, although this finding is 

267 preliminary (Fig. 4). 

268

269 4. Discussion

270 To explore these changes in climate response further we compared our new YCLBi series 

271 with a published climate reconstructions based on ring widths (GOARW; Wiles et al., 2014). 

272 This record is derived from coastal mountain hemlock sites along the Gulf of Alaska. The 

273 GOARW record sustains a strong positive relationship with mean temperature throughout the 

274 post 1976/77 regime shift (a so-called “divergence-free” reconstruction; Wiles et al., 2014). This 

275 “divergence-free” series was constructed to minimize the effect of the changing climate response 

276 of mountain hemlock RW recognized at some elevations along the southern Alaskan coast 

277 (Jarvis et al., 2013; Wiles et al., 2014). As discussed above, the YCLBi record correlates best 

278 with maximum average (January-August) temperatures, which is similar to the response of the 

279 GOARW series that has been used to reconstruct mean February-August temperatures (Wiles et 

280 al., 2014). Thus, the two compare favorably (Fig. 5a), with the YCLBi record correlating with 
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281 the GOARW (Wiles et al., 2014; Fig. 5a) series at 0.43 (p<0.00001) for the interval 1400-1975 

282 (Fig. 5a). The 31-year running correlations of these two series show generally good agreement 

283 except for the 1976-1999 interval (Fig. 5b). Correlations are strongest for the 1670-1930 period 

284 (Fig. 5b). Subsequently, there is a dramatic drop after 1975 (not significant (r = -0.19) for the 

285 1976-1999 interval) and then a marked recovery in correlation between the two series after 1999 

286 (r = 0.70 (p< 0.05); Table 3; Fig. 5b), which persists to the present (2014). First differenced 

287 transformations (detrended) agree better for that interval (1976-1999); however, they also do not 

288 match well in the mid 1600s (Fig. 5b). 

289 A similar comparison was made with the YCLBi and the Gulf of Alaska dBi (GOAdBi) 

290 series of Wilson et al. (2017; Table 3). Similar to the GOARW the GOAdBi series shows no 

291 signs of divergence. Many of the same tree-ring sites included in the GOAdBi series are also 

292 incorporated into the GOARW reconstruction, however GOAdBi also include dBi series that 

293 responded strongly to June-September mean temperatures. The comparison of the pre-1976, 

294 1976/99 and 2000/14 intervals yielded consistent but somewhat stronger correlations (Table 3) as 

295 those of the YCLBi and GOARW comparisons. The two series agree especially well for the 

296 2000/14 interval with a correlation of 0.80 for the non-transformed series and 0.82 for the first 

297 differenced series, both highly significant (p<0.01; Table 3).

298 Taken together, the changing climate response and comparison of the YCLBi series with 

299 the Tmax series (Fig.4), and the GOARW (Fig.5) and GOAdBi (Table 3) reconstructions suggest 

300 that yellow-cedar may have crossed a temperature threshold about 1976 (Fig. 3), which then 

301 altered the interannual climate response of the species for about 20 years. The negative trend in 

302 the YCLBi series for this interval may now be in recovery as suggested by the strong positive 

303 response to Tmax in recent decades. As noted, the late 1970s and early 1980s also represent a 
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304 peak wave of recent yellow-cedar mortality in southeast Alaska (Hennon et al., 2016). The 1976 

305 threshold shift may have led to multiple years of successive injury altering climate sensitivity, 

306 although mortality has not been observed at our sites. Furthermore, in the course of the analyses 

307 we did not observe any evidence of injury in the wood such as traumatic resin ducts. Importantly, 

308 yellow-cedar freezing injury is classified as a “forest decline” because it often takes multiple 

309 freezing events and years of injury before eventual mortality. 

310 The correspondence of YCLBi change with the mid-1970s regime shift from a 

311 dominantly negative to dominantly positive PDO caused strong warming in coastal regions in 

312 southeastern Alaska and thus a reduction in snowpack is consistent with the decline hypothesis. 

313 This possible threshold crossing is likely associated with the physiological limits of yellow-

314 cedar, wherein its sensitivity to temperature becomes decoupled (D’Arrigo et al. 2004; Ohse et 

315 al. 2012). Wang et al. (2014) documented an analogous divergence between temperature and RW 

316 in five species from southeastern China, also in response to the 1976-77 regime shift. To our 

317 knowledge, the Juneau YCLBi results presented here are the first tree ring studies to suggest the 

318 effects of this relatively recent phenomenon on yellow-cedar populations in southeastern Alaska.

319 The favorable comparisons of the YCLBi series with the GOARW tree-ring series (Fig. 

320 5a) prior to 1976 and then again after 1999 also suggest that the changes documented in yellow-

321 cedar in recent decades are unprecedented at least since CE 1400 (Fig. 5a; Table 3). Our results 

322 indicate, therefore, that decadal shifts in addition to century-scale warming should be considered 

323 when assessing the climate response of yellow-cedar. The strong coherence between the series 

324 additionally, suggests that the conditions forcing the divergence after 1976 were likely not 

325 experienced since at least 1400 CE.  Furthermore, with the caveat that in some of our samples we 

326 detected a change in color in the heartwood-sapwood transition, the temporary loss of climate 
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327 signal (between 1976-1998) suggests that the divergence here at least to some degree has 

328 recovered. 

329 Previous work has focused on the secular warming since the Little Ice Age as a dominant 

330 driver in cedar decline and this is clearly consistent with the data. However, decadal shifts 

331 superimposed on this warming can also be instrumental in changing growing conditions and 

332 subsequent stresses. For southeast Alaska, a ~1.1oC warming during the period 1976-1999 

333 relative to the previous 1951-1975 interval (Hartmann and Wendler, 2005) occurred. At the time 

334 of this shift, the amount of annual snowfall decreased by 36% while overall total precipitation 

335 increased by 7% with an approximately 7% increase in rain during the late summer to early fall 

336 months (JAS) (Hartmann and Wendler 2005). This higher percentage of precipitation falling as 

337 rain after the mid-1970s shift, forced by the increased warming, may also have influenced the 

338 simultaneous marked shift in YCLBi. 

339 Sullivan et al. (2017) noted a summer temperature driven response to a more moisture-

340 limited signal in Alaskan white spruce (Picea glauca) and, similar to our work, did not detect a 

341 widespread decrease in radial growth (RW). These results from interior Alaska are in contrast to 

342 earlier work at some interior sites, (ie., Barber et al., 2000; Juday et al., 2003; Juday and Alix, 

343 2012; D’Arrigo et al., 2008) which identified a recent reduction in radial growth likely due to 

344 moisture stress. Additionally, for white spruce in the interior of Alaska, Ohse et al. (2012) point 

345 out that growth is further complicated by regional gradients in climate and site-specific 

346 attributes, as well as Pacific decadal climate shifts, which also have been implicated for these 

347 transitions. Finally, Wright et al. (2018) identified the role of stand dynamics in southwestern 

348 Alaska can drive varying degrees of temperature stress responses.
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349 Blue-intensity parameters measured in yellow-cedar could complement such studies of 

350 divergent tree growth and warming temperatures in northern forests, which have been primarily 

351 based on ring-widths (D’Arrigo et al., 2008). Here the YCLBi measurements show a change, 

352 whereas the RW do not, suggesting that blue intensity, at least for yellow cedar, may experience 

353 divergent phenomena. Thus, when the limiting factors on growth at a location change, it may 

354 result in distinct challenges for using blue intensity from yellow-cedar in dendroclimatology. It is 

355 possible that a band-pass approach could be performed with RW providing the low frequency 

356 signal with the BI record providing the higher frequency signal (Wilson et al., 2014). However, 

357 the challenge remains that the climate sensitivity of the RW is not as strong as the YCLBi record, 

358 although the multi-decadal to century scale variability appears to be relatively coherent (Fig. 2).

359  Requiring further investigation is the divergence in the BI record that may be influenced 

360 by heartwood-sapwood color differences even though we did not observe a strong visual color 

361 change in many of the cores. Such factors warrant more detailed evaluation to ensure that BI data 

362 are able to adequately capture climatic variability through the last several decades. Whereas this 

363 needs to be investigated more fully for yellow-cedar, the coincidence of loss of signal (non-

364 significant correlations) at times of known shifts in climate (1976/77 and 1999) supports a 

365 climate-driven response of the tree growth. Further work could include investigating other 

366 chemical treatments of the wood prior to analysis (Rydval et al., 2014).  Delta BI (dBi) proposed 

367 to ameliorate the heartwood/sapwood transition also shows a strong divergence (not shown) but 

368 dBi is much less sensitive to temperature variability in this study perhaps because of the strong 

369 intercorrelation between the LWBi and EWBi series, and so is not helpful here. In contrast, for 

370 the GOA mountain hemlock dBi seems to be a more climatically sensitive parameter than LWBi 

371 (Wilson et al., 2017).
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372 Our YCLBi series is climatically sensitive to January through August maximum average 

373 temperatures a broader climate window than the June-September sensitive GOAdBi study by 

374 Wilson et al. (2019). We hypothesize that the broader climate window for the YCLBi record 

375 compared with the more restricted summer signal found in Wilson et al (2017) may be due to the 

376 ecophysiological tendency of yellow-cedar to deharden earlier in the spring, thus responding 

377 favorably to winter/spring temperatures. This early dehardening may allow yellow cedar to gain 

378 a competitive advantage with respect to nutrient uptake (D’Amore et al., 2009) relative to other 

379 conifer species and thus yellow-cedar respond to late winter/spring temperatures as well as 

380 summer. 

381 Finally, although the three sites in this investigation have not shown indications of 

382 decline at the stand level or a marked decrease in radial growth (RW), they appear to have been 

383 impacted by changes in climate in the mid to late 1970s, behaving similarly to stands that have 

384 experienced extensive mortality (Beier et al., 2008). Since about 1999, these populations 

385 recovered their climate sensitivity suggesting some level of resilience. This is consistent with the 

386 concept that this population is “on the edge” of climatic vulnerability (Buma, 2018). Thus, it may 

387 be that at some of the locations in the Juneau area, yellow-cedar sites remain healthy forests. 

388 However, since they are near the leading edge of the decline and outside of the “historical 

389 decline,” a slight warming in the region could push these trees closer toward conditions of 

390 potential mortality as recognized farther south in coastal Alaska. 

391 As Buma (2018) points out, across the range of yellow-cedar, if the rate of warming is 

392 great enough to ameliorate the occurrence of frost, then the warming and loss of snowpack may 

393 not influence cedar growth. Although the roots are vulnerable, frosts are less likely to occur in a 

394 rapidly warming climate. A drop toward nonsignificant correlations in both the non-transformed 
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395 and first differenced series between 1976 and 1999 is consistent with stress-related changes, 

396 perhaps related to warming temperatures and its interactions with snowpack and frost. 

397 Furthermore, the secular increase as well as the decadal changes in the North Pacific emphasized 

398 here will drive and modulate the tree response to climate.

399 Clearly, decadal-scale variability needs to be considered in the context of forest health. It 

400 is difficult to separate the effect of secular warming and the decadal shifts from one another and 

401 it is likely that they have worked synergistically to cause the decoupling of tree growth and 

402 maximum temperature. Hennon et al. (2016) point out that although the yellow-cedar competes 

403 well on saturated soils relative to other species, trees rooted in saturated soils tend to have more 

404 shallow rootlets making them more vulnerable to freezing damage. The species’ preference and 

405 its ability to out-compete other tree species on wetter soils can increase their vulnerability to 

406 freezing if the insulating layer of snow disappears so that shallow roots can freeze. Even though 

407 the primary driver in the decline remains temperature, increased precipitation may also 

408 exacerbate the tree stress related to warmer temperatures, loss of snow pack, and the detrimental 

409 impact of frosts on root systems. These factors need to be explored more fully.

410 Our results suggest that with further work YCLBi records could be used to reconstruct 

411 past climate. Melting glaciers across the GOA continue to reveal ancient forests, and in at least 

412 one case, have exposed sub-fossil wood that includes yellow-cedar (Gaglioti et al., unpublished 

413 data). This presents the emerging possibility of extending these cedar series further back in time. 

414 As in the case for mountain hemlock (Wilson et al., 2017), blue intensity tree-ring series in 

415 yellow-cedar show promise to improve temperature reconstructions for the GOA and perhaps in 

416 the future entering into multi-species climate reconstructions. 

417
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418 5. Conclusions

419 This analysis of yellow-cedar response to climate is the first to examine the latewood 

420 blue intensity parameter. Previous work with ring-widths from yellow cedar of southeast Alaska, 

421 although valuable in examining changing climate response, have been limited with respect to 

422 reconstructing past climate. Our well-replicated YCLBi series has a strong temperature response 

423 until the mid-1970s equal to or greater than many published ring-width series from the 

424 traditionally used mountain hemlock from the region. 

425 The trends in the observational climate records and in the YCLBi data suggest changes in 

426 tree physiology around the mid-1970s shift in the PDO that may have been detrimental to tree 

427 growth but do not necessarily appear to be affecting bioproductivity as inferred from ring-widths. 

428 The presumed recovery in temperature sensitivity in YCLBi after a shift to a cooler regime in 

429 1998/99 (Wills et al., 2018) is further evidence of a response to decadal climate change, although 

430 additional years for comparison in the coming decades may strengthen or refute this observation. 

431 The climate sensitivity of this economically, ecologically and culturally important species should 

432 be coupled with the existing knowledge of past migrations and the mechanisms of decline when 

433 anticipating its future range (Krapek et al., 2017), especially in the face of unprecedented 

434 warming. 

435 Further study of the impact of decadal shifts and secular warming in yellow-cedar across 

436 its range, together with monitoring could help anticipate the risks that these sites may experience 

437 in the future. This work emphasizes the findings of previous studies on the ecology of yellow-

438 cedar (Krapek and Buma, 2017), supporting the observation that this species has not responded 

439 linearly to secular warming. 

440
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Table 1. Parameters of tree-ring sites shown in Figure 1. 

Site* Lat./Long.
Elev. 
(m) # series/trees Interval (CE)

RBAR  
LBi/RW

BC  58.6301, 
-134.9304  

140 49/29 1644-2014 0.41/0.50

CL 58.6655, 
-134.9688  

110 70/41 1611-2014 0.41/0.46

EG 58.4077, 
-134.5243  

480 60/43 1114-2014 0.42/0.56

*BC – Bridget Cove; CL – Cedar Lake; EG – East Glacier (see Figure 1 for locations). RBAR is 
the mean correlation coefficient among tree-ring series.

Table 2. Correlations among ring-width (RW) and latewood blue intensity (LBi) chronologies 
for the interval CE1750-1975 at individual tree-ring sites for non-transformed and first difference 
series (parens.). 
Chron CL (RW) CL (LBi) BC (RW) BC (LBi) EG (RW) EG (LBi)
CL (RW) ---- 0.43(-0.03) 0.81 (0.78) 0.36(-0.04) 0.65 (0.63) 0.57 (0.32)
CL (LBi) ---- 0.37 (0.05) 0.53 (0.47) 0.34(-0.02) 0.39 (0.28)
BC (RW) ---- 0.44(-0.02) 0.76 (0.53) 0.54 (0.31)
BC (LBi) ---- 0.42(-0.05) 0.41 (0.57)
EG (RW) ---- 0.51 (0.19)

* BC – Bridget Cove; CL – Cedar Lake; EG – East Glacier (see Figure 1 for locations). Bold are 
comparisons between RW series and underlined are comparisons between LBi. 

Table 3. Correlations among key tree-ring series relative to YCLBi and those used in climate 
reconstruction along the GOA. The first value is the non-transformed correlation and those in 
parentheses are 1st differenced.

YCLBi_Cedar* 1600-1975 1976/99 2000/14

RW_Cedar 0.53 (0.34) 0.07 (-0.41) 0.42 (0.15)

GOAdBi 0.50 (0.04) 0.18 (0.56) 0.80 (0.82)

GOARW 0.48 (0.29) -0.19 (0.16) 0.70 (0.72)

*Bold correlations are significant <0.01 level.
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Fig. 1. Location of the three yellow-cedar sites used in the composite ring-width and latewood 

blue intensity (YCLBi) chronology (CL = Cedar Lake, BC = Bridget Cove, EG = East Glacier). 

The inset map shows the location of the Juneau area and the box includes the region over which 

the maximum temperature (Tmax) series were averaged. 
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Fig. 2. (a) Z-scores (relative to the 1400-1900 interval) of the ring—width (red) and latewood 

blue intensity (YCLBi, blue) both chronologies are built from the composite of the three cedar 

sites (Figure 1). (b) Shows the sample size (green) and the EPS for each of the chronologies 

(black (RW) and blue (YCLBi). Note that the EPS statistic for both sites exceeds the critical 0.85 

value about CE 1400. 
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Fig. 3. (a) The temperature response (monthly correlations) for the ring-width (white) and blue 

intensity(black) cedar records for the dendroclimatic year. Note that for the 1901-1975 interval 

the YCLBi record correlates much more strongly with monthly temperatures than the RW. For 

the 1976-1999 interval, there is a significant loss of temperature sensitivity for YCLBi (b) and 

for the 2000-2014 interval correlations recover. The 95% confidence level is shown for each data 

set. 
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Fig. 4. Plots of (a) January through August average maximum temperatures (broken line) 

compared with YCLBI. Note how after 1975 the relationship diverges. (b) 15-year running 

correlations of the YCLBi series with maximum temperature (January-August average), with the 

non-transformed series (solid line) and with the first differenced data (broken line) showing the 

decadal loss of climate signal and then recovery.
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        B. 

Fig. 5. YCLBi (blue) and GOARW (red) records compared. (a) Note the divergence of the two 

series in the last few decades. (b) 31-year running correlations between the two series (not 

transformed (blue) and the first differences (black). These running correlations show the 

dramatic drop in correlation after the 1976/77 regime shift in the North Pacific and a recovery in 

correlation after ~1999. 
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