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Abstract 

A series of four novel deep blue to sky blue thermally activated delayed fluorescence 

(TADF) emitters (2CzdOXDMe, 2CzdOXD4MeOPh, 2CzdOXDPh and 2CzdOXD4CF3Ph) 

have been synthesized and characterized. These oxadiazole-based emitters demonstrated bluer 

emission compared with reference emitter 2CzPN thanks to the weaker acceptor strength of 
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oxadiazole moieties. The oxadiazole compounds doped in hosts (mCP and PPT) emitted from 

435-474 nm with photoluminescence quantum yields ranging from 14%-55%. The emitters 

possess singlet-triplet excited state energy gaps (ΔEST) between 0.25 and 0.46 eV resulting in 

delayed components ranging from 4.8 to 25.8 ms. The OLED device with 2CzdOXD4CF3Ph 

shows a maximum external quantum efficiency of 11.2% with a sky-blue emission at CIE of 

(0.17, 0.25) while the device with 2CzdOXD4MeOPh shows a maximum external quantum 

efficiency of 6.6% with a deep-blue emission at CIE of (0.15, 0.11). 

 

Introduction 

In organic light-emitting diodes (OLEDs), light is produced through radiative decay of 

electrically generated excitons. As a function of spin statistics, 75% of the excitons are triplets 

and 25% of the excitons are singlets. In order to obtain efficient electroluminescent (EL) 

devices, 100% of the excitons need to be harvested within the emissive layer of the device.1-2 

The current state-of-the-art emitters for OLEDs rely on neutral iridium(III) and platinum(II) 

complexes as, (1) the emission color of these materials can be easily tuned as a function of 

ligand design, (2) these complexes possess microsecond emission lifetimes and, most 

importantly, (3) the heavy metal mediates an efficient intersystem crossing (ISC) to harness 

both singlets and triplets in OLED devices.3-7 Despite internal quantum efficiencies (IQE)5 

approaching 100%, these organometallic emissive materials are costly and toxic and, 

importantly, there exists no stable and bright deep blue emitter, a key component for both 

displays and lighting applications.8-9 

 

As a response to the drawbacks of phosphorescent organometallic emitters, thermally 

activated delayed fluorescent (TADF)10-14 materials have recently come to the fore, as they too 
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are capable of recruiting 100% of the excitons because the energy gap between the lowest 

singlet (S1) and triplet (T1) levels, (ΔEST), is small enough to permit reverse intersystem 

crossing (RISC) between the two states at ambient temperature.15 Compounds possessing small 

ΔEST possess structures wherein the highest occupied molecular orbital (HOMO) is spatially 

separated from the lowest unoccupied molecular orbital (LUMO) in order to minimize the 

exchange integral between the two.15-17 Importantly, most TADF emitters are based on either 

cheap complexes mostly derived from copper18-24 or are purely organic in nature.15,25-29  

 

One of the grand challenges remaining in emitter design for OLEDs is the development 

of stable and bright deep-blue emitters (CIE x,y coordinates each < 0.2),8,14,30-33 as only limited 

examples of deep-blue TADF emitters have been reported to date. The first organic deep-blue 

TADF emitters, reported by Zhang et al. in 2012, were based on a diphenylsulfone (DPS) 

acceptor.16 OLEDs using these emitters showed EQEmax of 10% and CIE at (0.15, 0.07). Since 

this report, other analogues based on DPS acceptors have been reported, many reaching EQEmax 

values in excess of 10%.34-38 Employing a related TADF emitter based on a dibenzo-fused 

phosphacycle acceptor produced a somewhat poorer performance in the device, with EQEmax 

of 4.9% and CIE at (0.15, 0.16).39 Hatakeyama et al.40 designed an interesting class of deep-

blue TADF emitters based on a “multiple resonance effect”, which produced narrow-band 

emission spectra with CIE at (0.13, 0.09) and an EQEmax of 13.5%. A second generation emitter 

by the same group showed improved performance with EQEmax of 18.3% and CIE at (0.13, 

0.11).41 Cui et al.42 synthesized a series of deep-blue TADF emitters based on a carbazole donor 

and a diphenyltriazine acceptor and achieved an EQEmax of 19.2% with CIE at (0.15, 0.10). 

Wada et al.43 adapted an earlier emitter design of Hirata et al.29 by the incorporation of 

adamantyl groups on the triazine acceptor to afford deep-blue TADF emitter for solution-

processed OLEDs, showing EQEmax of 11.2% and CIE at (0.15, 0.13) while Woo et al.44 have 
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modified the donor groups to both increase emission energy, as well as achieving preferential 

horizontal transition dipole orientation of the emitters in the film in order to enhance light 

outcoupling; achieving devices with EQEmax of 7.7% and CIE at (0.15, 0.08). Komatsu et al.45 

developed related pyrimidine-based emitters with EQEmax of 18% and CIE at (0.16,0.15). Seo 

et al.46 employed an indolocarbazole moiety as the acceptor in the design of their deep-blue 

TADF emitters, which achieved an EQE of 19.5% with CIE at (0.15, 0.16). Lee et al.47 

demonstrated that by placing a carbazole donor ortho to a dimesitylborane acceptor, a very 

high EQEmax of 22.6% with CIE of (0.14, 0.15) could be achieved. When both orientation in 

the film and photoluminescence quantum yield can be optimized, outstanding device 

performance can result, as demonstrated by Rajamalli et al.,48 who produced OLEDs with 

EQEmax of 31.9% and CIE of (0.14, 0.18) based on a dipyridylketone acceptor design. Recently, 

a deep-blue emitter bearing two carbazole donors ortho to the cyanobenzene acceptor was 

reported by Chan et al.,49 where OLEDs achieved EQEmax of 10.3% and CIE at (0.16, 0.06). 

The device performances of the aforementioned work together with this study are summarized 

in Table 1. 

Table 1. Summary of reported deep-blue TADF device performances and this work. 

Emitter EQEmax (%) EQE @ 100 cd 

m-2 (%) 

CIE Ref. 

2CzdOXD4MeOPh 6.6 2.0 (0.15, 0.11) This work 

3 10 ~2.5 (0.15, 0.07) 16 

DMOC-DPS 14.5 9.0 (0.16, 0.16) 34 

DTC-mBPSB 5.5 --- (0.15, 0.08) 35 

DMTDAc 19.8 19.8 (0.15, 0.13) 36 

DTPPDDA 4.7 2.2 (0.15, 0.09) 37 

G2 --- (4.1 cd A-

1)a 

--- (0.15, 0.12) 38 

MFAc-OPO 4.9 ~0.6 (0.15, 0.16) 39 

DABNA-1 13.5 ~6 (0.13, 0.09) 40 

B2 18.3 12.6 (0.13, 0.11) 41 
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Cz-TRZ3 19.2 --- (0.15, 0.10) 42 

FA-TA 11.2 --- (0.15, 0.13) 43 

DTXSAF 7.7 ~5 (0.15, 0.08) 44 

Ac-3MHPM 18 10.4 (0.16, 0.15) 45 

ICzDAc 19.5 --- (0.15, 0.16) 46 

CzoB 22.6 18.4 (0.14, 0.15) 47 

3DPyM-pDTC 31.9 26.1 (0.14, 0.18) 48 

DCzBN3 10.3 5.4 (0.16, 0.06) 49 
a EQE not reported. 

 

 

In this study, a series of four deep blue to sky blue TADF emitters have been 

synthesized and characterized whose structures are shown in Chart 1. These molecules possess 

the same scaffold as the dicarbazoyldicyanobenzene (2CzPN) reported by Uoyama et al.15 but 

with the replacement of the cyano groups by the less electron-withdrawing oxadiazole units. 

The rationale for our design is three-fold. Firstly, the weaker acceptor strength of oxadiazoles50-

51 compared with cyano groups will translate into a bluer emission, presuming that the 

intramolecular charge transfer (ICT) nature of emission is conserved. Secondly, oxadiazoles 

show promising thermal stability and electron injection and transporting properties.50,52-57 

Lastly, according to theoretical calculations, the LUMO density of 2CzPN is mostly located 

on the central benzene ring15 whereas that of oxadiazole is located on the heterocyclic ring 

(vide infra).50,54 This implies that the electron density of the HOMO, which in this study is 

localized on the carbazole units, and LUMO in the oxadiazole derivatives should be more 

separated than in 2CzPN; however, the weaker strength of the oxadiazole acceptor results in 

greater delocalization of the electron density of the LUMO onto the benzene bridge thus 

resulting in comparable DEST to the reference emitter.  
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Chart 1. Left: Oxadiazole TADF emitters in this study. Right: Reference emitter 2CzPN 

Results and Discussion 

Synthesis 

 

Scheme 1. Synthesis of oxadiazole-based emitters. 

 

The synthetic route for the four oxadiazole emitters is shown in Scheme 1, starting from 

the reference emitter 2CzPN, which is itself obtained in a much improved yield of 80% 

compared to the one originally reported by Uoyama et al. (8.5%) using a similar protocol.15 

Despite the many synthetic routes available for the installation of the oxadiazole moiety,58-60 a 

two-step protocol passing through a ditetrazole intermediate (2CzdTl) 59 was found to be most 

straightforward given the presence of the cyano groups. As a result, 2CzPN was reacted with 

ammonium chloride and NaN3 in DMF at 120 ºC overnight to afford 2CzdTl in 88% yield. 

The key for the success of this reaction is the isolation of 2CzdTl, which can be precipitated 

from the reaction mixture as a white solid by pouring the reaction mixture into a 1M HCl 

solution. The ease of isolation of 2CzdTl permits facile multigram scale up of the target 

materials. Following isolation, 2CzdTl can then be reacted with the corresponding acid 
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chloride of choice to provide the desired oxadiazole emitters in good yield (38-75%). All four 

oxadiazole emitters were found to be thermally stable beyond 300 oC by TGA; 2CzdOXDMe 

and 2CzdOXDPh melt at 308 and 310 oC, respectively while 2CzdOXD4CF3Ph and 

2CzdOXD4MeOPh melt at 274 and 260 oC, respectively (For TGA, DTA and DSC traces see: 

Figures S28-S39). 

Absorption and Electrochemistry 

Table 2. Summary of absorption and electrochemistry of oxadiazole emitters and 2CzPN as 
control. 

Emitter labs
a (nm), [e (×104 M-1 cm-1)] Electrochemistryb 

(eV) 

2CzdOXDMe 281 [2.26], 290 [2.46], 321 [1.37], 335 [1.51], 353 
[1.36] 

HOMO: -5.83 
LUMO: -2.70 
ΔE: 3.13 

2CzdOXDPh 258 [5.38], 283 [4.39], 291 [4.48], 320 [2.38], 333 
[2.20], 361 [2.12] 

HOMO: -5.84 
LUMO: -2.80 
ΔE: 3.04 

2CzdOXD4CF3Ph 257 [4.81], 283 [4.36], 291 [4.45], 319 [2.00], 332 
[1.95], 367 [1.79] 

HOMO: -5.84 
LUMO: -2.86 
ΔE: 2.98 

2CzdOXD4MeOPh 256 [4.10], 290 [4.72], 334 [2.45], 353 [2.12] 
HOMO: -5.88 
LUMO: -2.74 
ΔE: 3.14 

2CzPN 280(sh) [1.72], 289 [2.14], 319 [1.02], 329 [1.17], 364 
[1.14]c 

HOMO: -5.88 
LUMO: -2.97 
ΔE: 2.91 

2CzPNd 367e 
HOMO: -5.89 
LUMO: -2.97 
ΔE: 2.92 

a in DCM at 298 K. b in MeCN with 0.1 M [nBu4N]PF6 as the supporting electrolyte and Fc/Fc+ as 
the internal reference. The HOMO and LUMO energies were calculated using the relation 
EHOMO/LUMO = −(Eox

pa,1/ Ered
pc,1+ 4.8)eV, where Eox

pa and Ered
pc  are anodic and cathodic peak potentials 

respectively. ΔE = -(EHOMO-ELUMO).61 c in MeCN at 298K. d Values from Ref 62. e Only longest 
wavelength peak reported, in MeCN. 
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Figure 1. CVs of the TADF emitters in degassed MeCN under argon with 0.1 M [nBu4N]PF6 
as the supporting electrolyte and using Fc/Fc+ as the internal standard. The CVs are reported 
vs SCE. 

 

The electrochemistry of the TADF emitters was studied by CV in degassed MeCN 

solutions under argon, Figure 1. The HOMO levels are expectedly nearly identical (Table 2, -

5.83 to -5.88 eV), the result of the very similar orbital delocalization patterns over the carbazole 

donors and the central phenyl bridge as shown by Density Functional Theory (DFT) 

calculations (vide infra). The LUMO levels of the different emitters are, however, strongly 

influenced by the acceptor strength induced by the groups attached to the oxadiazole acceptors. 

The LUMO level of 2CzdOXDPh is lower by 0.1 eV compared to 2CzdOXDMe as a result 

of increased conjugation length afforded by the phenyl group. Compound 2CzdOXD4CF3Ph 

has the most stabilized LUMO (-2.86 eV) due to the strong electron-withdrawing effect of the 

trifluoromethyl group while 2CzdOXD4MeOPh has the shallowest LUMO (-2.74 eV) due to 

the strong mesomerically electron-donating effect of methoxy group. For each emitter, the 

oxidation is irreversible, which is not unexpected as carbazole radical cations are known to be 
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electrochemically unstable and undergo dimerization.63-64 Conversely, only 

2CzdOXD4CF3Ph shows an irreversible reduction, probably due to cleavage of the C-F 

bonds.65-66 The result of the use of the oxadiazole acceptors is an increase in the electrochemical 

gap from 2.91 eV for 2CzPN to between 2.98-3.14 eV for the four TADF emitters. 

Photophysical Properties 

 

Figure 2. a) Emission spectra (lexc = 340 nm) and b) decay profiles (lexc = 378 nm) of the 
TADF emitters in degassed toluene at RT; c) Steady-state photoluminescence spectra of 
emitters embedded in a PMMA matrix at 10 wt% (lexc = 378 nm); d) Photoluminescence 
decay of emitters embedded in PMMA matrix at 10 wt% (lexc = 378 nm).
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Table 3. Summary of solution and thin film photophysical properties of the oxadiazole TADF emitters and 2CzPN as reference. 

 PhMe Thin Filmc 

 lPL
a  /nm FPL

b /% tPL /ns lPL
a /nm FPL

d /% tPL /nse 

2CzdOXDMe 453 (79) 28.7 (24.5) 14.5 439 (77) 46.4 (39.6) 
11.8, 3.0·106 (75%), 40.0·106  

(19%) 

2CzdOXDPh 466 (82) 38.3 (27.5) 15.6 453 (81) 62.0 (54.5) 
11.0, 4.9·106 (63%), 45.2·106 

(27%) 

2CzdOXD4CF3Ph 487 (90) 39.1 (25.7) 19.1 474 (94) 74.9 (57.1) 
11.6, 2.3·106 (77%), 23.2·106 

(19%) 

2CzdOXD4MeOPh 459 (78) 47 (46.7) 13.1 447 (73) 
41.1 (37.7) 

 

11.5, 1.5·106 (83%), 17.3·106 

(10%) 

2CzPN 484 (85) 28.1 (26.2) 24.4 (99.5%)/1122 (0.5%) 492 (83) 76.0 (62.6) 
18.4, 1.2·106 (90%), 4.8·106 

(10%) 
a. Emission maxima and full-width at half maximum (FWHM) are reported from degassed solutions. FWHM in parentheses. b. 0.5M quinine sulfate in H2SO4 (aq) was used 
as reference (PLQY: 54.6%).67 Values quoted are in degassed solutions. Values in parentheses are for aerated solutions. c. Thin films were prepared by spin-coating doped 
samples in PMMA (10 wt%). d. Values determined using an integrating sphere under an N2 atmosphere as described above in the main text. Values in parentheses are for 
samples measured in air. e. Prompt lifetimes determined from the monoexponential fit of the initial decay by TCSPC; delayed lifetimes determined from the bi-exponential 
decay by MCS, weighting corresponding to the pre-exponential factors are indicated in parentheses. 
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The solution-state photophysical properties of the four oxadiazole emitters were studied in 

toluene (Figure 2a), DCM and MeCN. The photophysical data for PhMe are reported in Table 

3. All four emitters show positive solvatochromism and broad and unstructured emission 

profiles,59,68-69 which are characteristic of emission from an ICT state. The broadness of 

emission also increases with increasing polarity of the solvent. Regardless of solvent, the 

wavelength at emission maximum increases in the order: 2CzdOXDMe < 2CzdOXD4MeOPh 

< 2CzdOXDPh < 2CzdOXD4CF3Ph (Figure S41), which is consistent with the 

correspondingly decreasing bandgaps obtained from electrochemistry. 

 

We envisioned that the weaker acceptor strength of the oxadiazole compared to the cyano 

group would cause a desired blue-shift in the emission in our emitters with respect to 2CzPN. 

Indeed, the LUMO levels of the four oxadiazole compounds range from -2.70 eV to -2.86 eV 

while the LUMO of 2CzPN was determined to be -2.97 eV (Table 2), and their emission was 

blue-shifted as a consequence. For example, 2CzdOXDMe has an emission maximum at 453 

nm in toluene, blue-shifted by 31 nm (1414 cm-1) compared with 2CzPN (484 nm) in the same 

solvent.  

 

The photoluminescence quantum yields (FPL) in degassed solutions range from 28 to 47% 

and do not significantly change with solvent choice. The FPL values in degassed solutions are 

always higher than those in aerated solutions. This finding provides direct evidence for 

transient population of the triplet excited state, which is sensitive to triplet oxygen quenching 

and is diagnostic of TADF materials.69-72 The emission lifetime of 2CzPN in toluene consists 

of a prompt (24.4 ns) and a weak delayed component (1.12 µs, 0.5% amplitude in multi-

exponential fit). The prompt component in the oxadiazole-containing compounds in toluene is 
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faster (13-19 ns); however, the delayed component is too weak to be resolved as it coincides 

with the instrument response function (Figure 2b, grey line). Thus, the delayed fluorescence in 

all of the studied compounds in toluene is smaller than we can reliably detect. 

 

To assess the viability of these oxadiazole emitters in OLED devices, their photophysical 

properties were investigated in the solid state. Thin films were prepared by spin-coating 10 wt % 

DCM solution of emitter in PMMA (Figure 2c). All emission maxima are blue-shifted by ~15 

nm and the profiles generally slightly sharper compared with those measured in toluene 

solution. The thin film FPL (40-75%) are significantly higher than in solution as a result of the 

more rigid environment that constrains the torsional motion thereby reducing the non-radiative 

decay rate.73 In particular, 2CzdOXDPh (lPL = 453 nm) and 2CzdOXD4CF3Ph (lPL = 474 

nm) exhibit remarkable FPL values of 62% and 75% in the deep-blue region under nitrogen, 

making them very promising blue TADF materials for OLEDs. Similar to their behavior in 

solution, the FPL of the thin films are higher under a nitrogen atmosphere than when exposed 

to air, confirming the presence of TADF in solid state. Similar to the solution-state emission 

spectra, the thin film emission spectra of the four oxadiazole emitters were blue-shifted 

compared to that of 2CzPN. Figure 2d shows the corresponding PL decay curves. For each of 

the emitters, there is a fast prompt decay (τp ≈ 10 ns) and several very long delayed emission 

components. The dominant delayed components, τd, were estimated to be τd1 = 3.0 ms (75%, 

amplitude in multi-exponential fit to data) and τd2 = 40 ms (19%) for compounds 2CzdOXDMe, 

τd1 = 4.9 ms (63%) and τd2 = 45.2 ms (27%) for 2CzdOXDPh, τd1 = 2.3 ms (77%) and τd2 = 23.2 

ms (19%) for 2CzdOXD4CF3Ph, and τd1 = 1.5 ms (83%) and τd2 = 17 ms (10%) for 

2CzdOXD4MeOPh.  
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For device applications, 1,3-bis(carbazol-9-yl)benzene (mCP) and 2,8-

bis(diphenylphosphoryl) dibenzo[b,d] thiophene (PPT) hosts were selected, due to their hole 

or electron transporting ability, respectively, in combination with the high triplet energy (ET = 

2.9 eV and 3.0 eV for mCP74 and PPT75, respectively). Figure 3 and Table 4 summarize the 

photophysical properties of the emitters embedded in vacuum-deposited mCP or PPT matrices. 

Due to the high singlet energies of these matrices, Förster energy back-transfer cannot occur 

and the emission of the doped films originates solely from the dopant (Figure S42). The FPL 

values of the emitters embedded in mCP or PPT remain relatively high, ranging from 14 to 

55%. They are, however, lower compared to the FPL recorded in PMMA films. The singlet-

triplet gap, ∆EST, of each of the emitters was estimated from the difference in the onset of the 

fluorescence and phosphorescence spectra recorded at 77K (Figure 3a). Overall, the 

compounds exhibit experimentally determined ∆EST that are comparable to 2CzPN,76 and 

range from 0.30 to 0.46 eV (Figure 3b), which are in line with the theoretical calculations (vide 

infra). All of the compounds showed prompt and delayed emission in the vacuum-deposited 

films (Figure 3c). The spectroscopic evidence signifies that the four oxadiazole compounds are 

indeed TADF emitters.  
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Figure 3. a) Prompt and delayed spectra of emitters embedded in mCP (2CzdOXDMe and 2CzdOXDMeOPh) or PPT 

(2CzdOXDPh and 2CzdOXD4CF3PH) hosts at 6 wt%. Measurements are performed at 77 K. b) Summary of the ∆EST 

values estimated from the onset of fluorescence and phosphorescence spectra and compared to the DFT calculations. 

c) Corresponding PL decay curves at room temperature (lexc = 378 nm). 

 

 

Table 4. Summary of thin film photophysical properties of studied compounds embedded in 
mCP or PPT hosts. 

Film lPL 

/ 

nm 

FWHM 

/ nm 

FPLa/ % tPL / ns Prompt:delayed 

/ % 

∆EST / eV 

mCP:2CzdOXDMe 435 73 29.3 

(27.0) 

5.7, 1·106 

(86%), 

92.0:8.0  

0.30±0.05 
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4.8·106 

(13%) 

PPT:2CzdOXDPh 454 85 43.9 

(38.7) 

9.5, 

2.4·106 

(62%), 

17.8·106 

(27%) 

88.2:11.8  

0.25±0.05 

PPT: 2CzdOXD4CF3Ph 474 83 54.9 

(41.0) 

6.0, 

4.5·106 

(67%), 

25.8·106 

(28%),  

74.6:25.4  

0.32±0.05 

mCP:2CzdOXD4MeOPh 449 77 14.9 

(14.1) 

8.1, 

1.7·106 

(69%), 

10.1·106 

(23%),  

95.1:4.9 0.46±0.04 

a Values in parentheses are for aerated samples. 

Theoretical Calculations  

Further characterization of the optoelectronic properties of these compounds has been 

carried on with the help of DFT calculations. To do so, we used the methodology developed 

by Moral et al. offering a particularly accurate description of the electronic structure of 

materials for OLED applications.77 Not surprisingly, the HOMO energies of the different 

compounds remain almost constant as in each case the HOMO is localized on the carbazole 

moiety (Figure 4). These are ca. 0.1 eV more stabilized than the HOMO for 2CzPN, indicating 
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that the nature of the acceptor moiety modestly modulates the HOMO. The LUMO energies 

on the other hand decrease significantly, showing that the synthetic approach allows for near-

independent tuning of the frontier orbital energies upon replacing cyano groups in 2CzPN with 

oxadiazole acceptors. Not surprisingly, the replacement of cyano groups with oxadiazoles 

results in a more delocalized LUMO for the four oxadiazole derivatives while the HOMO 

remains mainly localized on the carbazole groups and the central phenyl ring (Figure 4).  

 

Expectedly, because of the lower electron-withdrawing character of methyl-substituted 

oxadiazole, 2CzdOXDMe possesses the highest energy LUMO in the series, more than 0.4 eV 

destabilized compared to 2CzPN, resulting in a significantly bluer emission (see S1 energy in 

Table 5). Replacing the methyl group with phenyl as is the case in 2CzdOXDPh results in a 

more modest 0.24 eV destabilization of the LUMO compared to 2CzPN. Interestingly, by 

grafting CF3-substituted phenyl groups to the oxadiazole units, the LUMO energy of 

2CzdOXD4CF3Ph is stabilized with respect to 2CzdOXDPh and in fact is close to that of 

2CzPN; conversely the LUMO energy of 2CzdOXD4MeOPh is destabilized relative to 

2CzdOXDPh.  

 



 17 

 

Figure 4. Frontier orbitals contour plots and energies of the different derivatives as well as 

2CzPN considering acetonitrile as a solvent. 

The calculations are able to predict the emission colors of both 2CzPN and the four 

oxadiazole derivatives. Specifically, the S1 energies of 2CzdOXDMe appears as the bluest 

while 2CzdOXD4CF3Ph is slightly red-shifted compared to 2CzPN. All molecules exhibit 

similar electronic structure with T2 lying in between T1 and S1.  

 

We note that an additional T3 excited state lies below S1 in 2CzdOXD4MeOPh. 

Considering the electronic structure, the up-conversion to S1 could potentially arise either 

directly from T1 or from an intermediate triplet excited state after reverse internal conversion. 

The T1 and S1 excited states are mainly characterized by HOMO to LUMO transitions with a 

pronounced intramolecular charge-transfer (ICT) character. Interestingly, the singlet-triplet 

splitting, DEST, moderately decreases when going from 2CzdOXDMe to 2CzdOXD4CF3Ph, 

in line with a slight decrease of the oscillator strength. We further characterize the degree of 
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spatial separation between occupied (fi) and virtual (fa) molecular orbitals, Dr, relative to a 

particular excited state by evaluating the averaged hole-electron distance based on the 

computation of the detachment and attachment centroids radius vectors and the calculation of 

the distance between them using the NANCY_EX package.78-80 We mention that this approach 

appears to be perfectly equivalent78 to the one we used previously and which is based on the 

corresponding centroid of the Natural Transition Orbitals involved in the studied excited-state 

transition.77  

 

A cutoff Dr > 1.5−2.0 Å has been proposed previously to both distinguish, and characterize, 

a charge-transfer excitation,81 and it was shown that the magnitude of the DEST is inversely 

proportional to Dr.77 Recently, it has been demonstrated that in order to obtain TADF emitters 

with very small DEST, both Dr relative to the excitation from S0 to T1 [Dr(T1)] and S1 [Dr(S1)] 

should be large, and in particular the triplet component was found to play a dominant role in 

determining DEST of the different compounds studied.82 When examining Dr in Table 5, all Dr 

reported confirm the expected ICT character that could be inferred from the orbital localization 

(Figure 4). Among all the compounds, 2CzPN and 2CzdOXD4CF3Ph show the largest Dr(T1) 

and exhibit the smallest DEST while 2CzdOXD4MeOPh shows the largest DEST and smallest 

Dr(T1), in agreement with what was proposed by Huang and co-workers .82  

 

Table 5. Excitation energies, DEST, oscillator strengths and compositions of the excited states 

in terms of monoelectronic transitions (molecular orbitals) for 2CzPN and its derivatives.  

Compound  States 
Energy 
(eV) 

O.S. 
(a.u.)  

Main MO component of the 
transitions from S0 (%) 

Dr 
(Å) 

2CzdOXDMe T1 2.88 - HOMO à  LUMO (80.9%) 2.40 



 19 

       
  S1 3.24 0.13 HOMO à  LUMO (97.9%) 3.82 
  DE(S1-T1) 0.36     - 

2CzdOXDPh T1 2.75 - HOMO à  LUMO (75.7%) 2.43 
       
  S1 3.10 0.12 HOMO à  LUMO (97%) 4.37 
  DE(S1-T1) 0.35     - 

2CzdOXD4CF3Ph T1 2.68 - HOMO à  LUMO (76.9%) 3.12 
       
  S1 2.97 0.10 HOMO à  LUMO (95.8%) 4.91 
  DE(S1-T1) 0.29     - 
2CzdOXD4MeOPh 
 

T1 2.76 - HOMO à  LUMO (71.4%) 1.24 
S1 3.17 0.13 HOMO à  LUMO (97.2%) 3.73 

 DE(S1-T1) 0.41    
2CzPN T1 2.67 - HOMO à  LUMO (87.7%) 2.80 

      
  S1 2.98 0.11 HOMO à  LUMO (96.5%) 3.70 
  DE(S1-T1) 0.31     - 

 

Crystal structures 

     Suitable crystals for X-ray analysis were obtained for all of 2CzdOXDMe, 2CzdOXDPh, 

2CzdOXD4CF3Ph and 2CzdOXD4MeOPh, as well as for the reference compound 2CzPN 

(Figure 5). Crystals of 2CzdOXDMe and 2CzPN were grown by the slow evaporation of 

mixed solutions of toluene/hexane, crystals of 2CzdOXD4CF3Ph by the slow evaporation of 

mixed solutions of toluene/MeCN, while crystals of 2CzdOXDPh and 2CzdOXD4MeOPh 

were grown by the vapour diffusion of Et2O into concentrated solutions of 1,2-dichloroethane 

(2CzdOXDPh) or dichloromethane (2CzdOXD4MeOPh). All four new compounds exhibit 

similar conformations, with both carbazole rings disposed in a highly twisted arrangement with 

respect to the plane of the central benzene [dihedral angles of 58.51(3)–67.64(7)°]. In 

comparison to the structure of 2CzPN,83 the carbazole units in 2CzdOXDMe, 2CzdOXDPh, 

2CzdOXD4CF3Ph and 2CzdOXD4MeOPh are closer to orthogonal to the central benzene 

[2CzPN dihedral angles of 50.60(4)–60.83(4)°]. The oxadiazole heterocycles in the four 

emitters are less restrained in the orientations they can occupy due to their smaller size, and 
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show a much wider range of dihedral angles relative to the central benzene than the carbazole 

fragments, with a general pattern of having one oxadiazole ring close to coplanar with the 

benzene, and one close to orthogonal [dihedral angles 6.18(8)–21.77(10) for more coplanar 

rings, and 49.32(5)–78.11(11)° for more orthogonal]. In 2CzdOXDPh, 2CzdOXD4CF3Ph 

and 2CzdOXD4MeOPh, the oxadiazole moiety and its aryl substituent are approximately 

coplanar [dihedral angles of 4.04(9)–28.27(6)°], indicative of a degree of conjugation between 

these ring systems in the solid-state structures. Additionally, one further distinction is seen in 

the structures. For 2CzdOXDMe and 2CzdOXDPh, the oxadiazoles are oriented such that 

they are aligned closer to parallel than antiparallel, whereas for 2CzdOXD4CF3Ph and 

2CzdOXD4MeOPh, the converse is the case. 
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Figure 5. Structures of 2CzdOXDMe, 2CzdOXDPh, 2CzdOXD4CF3Ph, 2CzdOXD4MeOPh, 

and 2CzPN (50% probability ellipsoids; co-crystallized solvent molecules omitted). Heteroatoms: N, 

light blue; F, green; and O, red. 

 

Organic Light-Emitting Diodes 

 The four oxadiazole emitters were then integrated into OLED devices. Figure 6 shows 

the architecture employed to build sky-blue to deep-blue OLEDs. The general device structure 

consisted of indium tin oxide ITO (90 nm)/NPB (35 nm)/mCP (10 nm)/EML (15 nm)/PPT (10 

nm)/TmPyPB (30 nm)/LiF (1 nm)/Al (100 nm). NPB is N,N'-bis(naphthalen-1-yl)-N,N'-

bis(phenyl)-benzidine and acts as the hole transport layer. TmPyPB is 1,3,5-tri(m-pyrid-3-yl-

phenyl)benzene and acts as the electron transporting layer (ETL). Devices 1-5 comprising 

different emission layers (EMLs) incorporating the oxadiazole emitters were built, and these 

were compared to a reference Device R1, based on 2CzPN. The Device R1 was based on the 

device stack reported by Adachi and co-workers:76 ITO (90 nm)/NPB (35 nm)/mCP (10 nm)/ 

2CzPN:mCP (6 wt%, 15nm)/PPT (10 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm). Here, the 

ETL used was TPBi, which is 1,3,5-tris(1-phenyl-1H-benzimidazol- 2-yl) benzene. The thin 

layer of 10 nm mCP (PPT) before (after) the EML in all of the devices acts as the electron 

(hole) blocking layer. 

 

The EML of Device 1 consisted of 2CzdOXDMe:mCP (6 wt%). Devices 2 and 3 

comprised 2CzdOXDPh:PPT (6 wt%) and 2CzdOXD4CF3Ph:PPT (6 wt%) as their EMLs. For 

2CzdOXD4MeOPh, devices employing both mCP (Device 4) and PPT (Device 5) as hosts were 

fabricated. The reason for using mCP for 2CzdOXDMe is that the LUMO level of 2CzdOXDMe 

(-2.7 eV) matches the LUMO of PPT,76 and thus efficient electron trapping by the dopant would 
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not be achieved in a PPT matrix. On the other hand, mCP is predominantly hole conductive74,84 

and hole injection and conduction is more efficient compared to electron transport in the mCP 

device. Therefore, better charge balance within the EML was expected when using PPT as a 

host and thus PPT was used as a matrix material for emitters 2CzdOXDPh and 

2CzdOXD4CF3Ph. Due to the intermediate LUMO value of 2CzdOXD4MeOPh (-2.74 eV), it 

was tested in both mCP and PPT.  

 

 

 

Figure 6. Functional layer sequence of the devices 1-5 comprising oxadiazole emitters.  Figure 7. Functional layer sequence of the devices 1-5 comprising oxadiazole emitters.  
 

Figure 7 and Table 6 summarise the OLED performance. The electroluminescence (EL) 

spectra shift systematically from sky-blue emission exhibited by Device R1 and Device 3 (lEL 

= 480 nm and 474 nm, respectively) to deep-blue emission exhibited by Devices 1, 2, 4 and 5, 
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with corresponding peak emission at lEL = 446 nm, 455 nm, 446 nm and 448 nm, respectively 

(Figure 7a). In agreement with photophysical data (Tables 3 and 4), devices fabricated with 

2CzdOXD4CF3Ph (Device 3) demonstrated the most red-shifted electroluminescence 

compared with the other three oxadiazole emitters due to the presence of the electron-

withdrawing CF3 groups, which result in 2CzdOXD4CF3Ph possessing the deepest LUMO (-

2.86 eV, Table 2) among all oxadiazole emitters. In general, the electroluminescence spectra 

of the oxadiazole emitters agree very well with photoluminescence spectra obtained from their 

thin films doped in mCP or PPT hosts (Table 4) and the trend of their emission energies can be 

correlated to their corresponding LUMO levels (Table 2). Devices 2 and 3 show the highest 

turn-on voltages Von of 4.30 V and 4.60 V, respectively, and flat current-voltage characteristic 

(Figure 7b). This could be indicative of high series resistance due to poor charge injection and 

transport when using 2CzdOXDPh and 2CzdOXD4CF3Ph doped PPT system as the EMLs. 

On the other hand, Devices 1, 4 and 5, show steep current-voltage characteristics (Figure 7b) 

and Von of 3.85 V, 4.15 V and 4.05 V, respectively. 

 

Figure 7c shows the external quantum efficiency (EQE) versus the current density of 

the OLEDs. Device 3 reaches a maximum EQEmax of 11.2% at low brightness, indicating the 

presence of an efficient triplet harvesting via the TADF mechanism (Figure 7c). However, the 

EQE of 3 drops by almost a factor of five to 2.5% at 100 cd m-2. Similar trends of relatively 

high EQE at low brightness (4.7%, 6.8%, 6.6% and 4.2% for Devices 1, 2, 4, and 5, respectively) 

and a strong efficiency roll-off are also observed for the other devices. Such efficiency roll-off 

might be caused by the bimolecular annihilation reactions due to the presence of the long-lived 

triplet states (tPL ranging from 1.0 to 25.8 ms), as evidenced from the photophysical studies of 

the thin films of oxadiazole emitters doped in mCP or PPT hosts (Table 4). The most severe 

efficiency roll-off was observed for Devices 2 and 3, comprising emitters 2CzdOXDPh and 
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2CzdOXD4CF3Ph, respectively, with the corresponding critical current densities jcrit in the 

range of 0.05 mA cm-2. Here, jcrit denotes the current density at which the EQE drops to half of 

its maximum value. In comparison, the lowest roll-off was observed for the device with 

2CzdOXDMe as the emitter, device 1 (jcrit = 13 mA cm-2). The average delayed lifetime (τavg) of 

emitters 2CzdOXDPh and 2CzdOXD4CF3Ph and 2CzdOXDMe is indicative of the triplet 

state lifetime in these compounds and is estimated to be 6.3 ms, 10.2 ms and 1.5 ms, respectively 

(Table 4). The shorter τavg leads to the less pronounced efficiency roll-off, in line with the 

bimolecular annihilation pathway being the limiting factor for efficient OLED operation at high 

current density and brightness. Thus, further work on optimising exciton dynamics in the EML 

and minimizing bimolecular annihilation reactions is needed. Additionally, it is important to 

note that the reference device R1 used in this work does not represent the optimal device 

structure for the sky-blue emitter 2CzPN. Indeed, the selection of the functional layer sequence 

is crucial to minimize the electrical losses in blue TADF OLEDs. For example, Zhang et al.85 

showed that replacing TPBi with diphenylphosphine oxide-based ETLs that exhibit high 

electron mobility and high ET can enhance the 2CzPN-based OLED performance up to EQEmax 

= 17.4%. Replacement of mCP as the EBL with a higher hole mobility and thermal stability 

material 3,5-di(9H-carbazol-9-yl)-N,N-diphenylaniline (DCDPA)86 has been shown to increase 

the efficiency further to EQEmax = 19.2%.87 Finally, Sun et al.88 fabricated OLEDs comprising 

a mixed host layer for the TADF dopant to boost the performance further to 21.8%, which was 

also shown to be the efficiency limit for 2CzPN-based devices. Similar improvements are thus 

expected to enhance device performance when oxadiazole emitters are used. Nevertheless, this 

work demonstrates that a systematic shift toward deep-blue electroluminescence is possible by 

replacing the CN accepting groups in 2CzPN by oxadiazole unit containing moieties. Figure 

7d shows the corresponding color coordinates of Devices 1-5 in comparison to the reference 
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Device R1. Devices 1, 2, 4, and 5 all exhibit CIE x,y coordinates < 0.2 and, thus, are well suited 

as deep blue emitters. 

  
Figure 7. OLED performance of devices based on sky-blue to deep-blue emitters. a) Electroluminescence 
spectra; b) current density-voltage-luminance characteristics; c) external quantum efficiency dependence 
on current density; d) CIE color coordinates of devices 1-5 and Device R1 based on 2CzPN for comparison. 
Inset shows photographs of Device 1 and Device R1. 

 

 
Table 6. Summary of OLED performances. 

Emitter Host Von / 
V a 

 lEL/ 
nm 

FWHM / 
nm 

CIE (x, y) EQEmax/EQE100/EQE1000 
/ % b 

PEmax  
/ lm W-1 

CEmax  
/ cd A-1  

2CzdOX
DMe 

mCP 3.85 446 78 (0.156, 0.118) 4.7 / 2.6 / 1.8 3.7 4.2 

2CzdO
XDPh 

PPT 4.30 455 75 (0.161, 0.150) 6.8 / 2.0 / 1.4 5.9 7.5 

2CzdO
XD4CF
3Ph 

PPT 4.60 474 78 (0.165, 0.254) 11.2 / 2.5 / - c  14.5 18.9 
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2CzdO
XD4Me
OPh 

mCP 4.15 446 73 (0.147, 0.108) 6.6 / 2.0 / 0.8 5.0 5.7 

2CzdO
XD4Me
OPh 

PPT 4.05 448 73 (0.153, 0.118) 4.2 / 2.4 / 1.5 3.2 3.8 

2CzPN mCP 3.95 480 71 (0.160, 0.300) 14.0 / 10.3 / 4.0 18.4 25.9 
a. Defined as the lowest operating voltage at the luminance of >1 cd m-2; b. Max = Maximum value, 100 = measured 
at 100 cd m-2, 1000 = measured at 1000 cd m-2; c. 1000 cd m-2 not reached. 

 

Conclusions  

This study shows the viability of using oxadiazole acceptor units to blue-shift the 

emission while conserving the TADF properties of the emitters in the solid-state. Compared to 

2CzPN, the replacement of the nitrile acceptors for oxadiazole units destabilized the LUMO 

level while keeping the HOMO essentially unchanged, which was observed both 

experimentally and corroborated by DFT calculations, causing an increase in the emission 

energy. The TADF nature of the compounds was confirmed by a combination of oxgygen-

dependence measurements on the photoluminescence quantum yield, time-resolved 

measurements clearly showing prompt and delayed components in the film. The 

experimentally measured and calculated DEST are in strong agreement. OLED devices using 

2CzdOXD4MeOPh produced deep blue light with CIE coordinates of (0.147, 0.108) and 

maximum external quantum efficiency of 6.6% while a more efficient (EQEmax of 11.2%) sky-

blue device was fabricated (0.165, 0.254) with 2CzdOXD4CF3Ph. The efficiencies obtained 

are demonstrative of TADF being operational in the OLED devices. In future, the observed 

strong roll-off of the devices needs to be addressed using improved device design.  
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