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Abstract

We present accretion disk structure measurements from continuum lags in the Sloan Digital Sky Survey
Reverberation Mapping (SDSS-RM) project. Lags are measured using the JAVELIN software from the first-year
SDSS-RM g and i photometry, resulting in well-defined lags for 95 quasars, 33 of which have lag S/N>2σ. We
also estimate lags using the ICCF software and find consistent results, though with larger uncertainties. Accretion
disk structure is fit using a Markov chain Monte Carlo approach, parameterizing the measured continuum lags as a
function of disk size normalization, wavelength, black hole mass, and luminosity. In contrast with previous
observations, our best-fit disk sizes and color profiles are consistent (within 1.5σ) with the Shakura & Sunyaev
analytic solution. We also find that more massive quasars have larger accretion disks, similarly consistent with the
analytic accretion disk model. The data are inconclusive on a correlation between disk size and continuum
luminosity, with results that are consistent with both no correlation and the Shakura & Sunyaev expectation. The
continuum lag fits have a large excess dispersion, indicating that our measured lag errors are underestimated and/
or our best-fit model may be missing the effects of orientation, spin, and/or radiative efficiency. We demonstrate
that fitting disk parameters using only the highest-S/N lag measurements biases best-fit disk sizes to be larger than
the disk sizes recovered using a Bayesian approach on the full sample of well-defined lags.
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1. Introduction

Quasars are supermassive black holes (SMBHs) that grow by
rapid mass accretion. During the accretion phase, quasars glow
with total luminosity h=L McBol

2˙ , where η is the radiative
efficiency, =M dM dt˙ is the SMBH accretion rate, and c is
the speed of light. The foundational model for black hole
accretion disks is the thin-disk model of Shakura & Sunyaev
(1973, hereafter SS73). The SS73 disk model is an optically
thick, geometrically thin disk model where the local disk
emission corresponds to a series of blackbodies at different
radii. The inner part of the accretion disk has hotter emission,
whereas at the outer edge of the disk, the emission is cooler.

Even though the SS73 model has been widely used,
mounting observational and theoretical evidence shows that
the SS73 disk model breaks down in several ways. Recent
continuum reverberation mapping (RM) observations (Shappee
et al. 2014; Fausnaugh et al. 2016, 2017; Jiang et al. 2017a;
Mudd et al. 2018) identified discrepancies in the measured disk
sizes from what is expected by the SS73 model. This

discrepancy is also reported in microlensing observations of
quasars (Morgan et al. 2010; Blackburne et al. 2011; Motta
et al. 2017).
Both theory and non-RM observations suggest that black

hole accretion structure depends on accretion rate in ways that
are not entirely predicted by the SS73 thin-disk model. Recent
advances in simulations of super-Eddington accretion disks
predict dramatically different emission and outflow properties
compared to the sub-Eddington SS73 analytic prescription
(Jiang et al. 2014, 2017b; McKinney et al. 2014; Saḑowski
et al. 2014, 2016; see also the analytic “slim” disk model of
Abramowicz et al. 1988). Observations of candidate super-
Eddington quasars in the X-ray (Desroches et al. 2009) with
broad-line kinematics (Du et al. 2015) and spectral energy
distribution (SED) fitting (Luo et al. 2015) show similar
evidence for slim accretion disks. At low accretion rates, SED
observations suggest that accretion occurs in a hot, ionized,
optically thin, radiatively inefficient accretion flow mode,
although the exact radiative efficiency is degenerate with the
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mass accretion rate (Narayan & Yi 1994; Ho 2008; Narayan &
McClintock 2008; Trump et al. 2011; Elitzur et al. 2014).
Additional theoretical work suggests that different wind
profiles can cause the disk structure and emission properties
to differ from the SS73 model (Slone & Netzer 2012; Laor &
Davis 2014; Sun et al. 2019).

Testing the connections between accretion disk size, MBH,
and Ṁ may reveal whether the ratio of observational to
theoretical disk sizes depends on MBH and/or accretion rate.
These ideas have not yet been tested by direct accretion disk
measurements, since previous RM surveys provide measure-
ments for only small samples spanning a narrow range of black
hole mass and accretion rate estimates. The SS73 thin
blackbody disk model predicts that the disk size, r=cτ, at
rest-frame wavelength λ depends on the black hole mass MBH

and accretion rate Ṁ , both with a power-law index of 1/3, as
follows:
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The bulk of underlying accretion physical processes occurs
within light-years of the central black hole, which cannot be
spatially resolved with current technology. The RM method
(Blandford & McKee 1982; Peterson 2004) is a powerful tool
for investigating regions where direct imaging cannot resolve
structure. The RM method substitutes high temporal resolution
for high spatial resolution, allowing us to probe regions that are
only light-days in extent. The RM is enabled by the fact that
quasar luminosity is variable, and we observe that physically
connected regions “reverberate” in response to the driving
continuum. The variability signatures in high-energy emission
regions are thus repeated in lower-energy emission regions,
with the signals delayed by the time required for the light to
travel between the two regions.15 The RM technique is most
frequently applied to measure the time delay between
variations in the observed-frame optical continuum emission
and the broad emission lines emitted in the eponymous broad-
line region (BLR). This time delay yields the relative sizes of
each of these regions. Broad-line RM is currently the only
method to robustly measure SMBH mass in active galaxies
beyond ∼100Mpc.

Continuum RM (Krolik et al. 1991; Fausnaugh et al. 2016)
measures the variability of the continuum emission at various
wavelengths in response to the driving UV/X-ray ionizing
continuum. Measuring the variability in the reemitted con-
tinuum emission from the accretion disk probes the accretion
disk regions that emit blackbody radiation. Continuum lags at
different wavelengths, resulting from the emission of hotter
regions closer to the black hole and cooler, more distant disk
regions, can be used to measure disk sizes. In addition, by
measuring the response of the continuum emission from
different parts of the disk, one can map the temperature and
wavelength scaling of the accretion disk structure.

Previous continuum RM campaigns have dedicated many
observations to interband optical monitoring (Sergeev et al.
2005; Cackett et al. 2007), and a few have even been extended

to UV and soft/hard X-ray (Wanders et al. 1997; Collier et al.
1998; Gehrels et al. 2004; McHardy et al. 2014, 2018; Shappee
et al. 2014; Fausnaugh et al. 2016; Edelson et al. 2017). These
previous results, based on cross-correlation lag measurements,
are consistent with the T∝r−3/4 and thus τ∝λ4/3 prediction
of the SS73 model (although see also Starkey et al. 2017).
Continuum RM observations also find a measured disk
normalization that is ≈three to four times larger than expected
(Edelson et al. 2015, 2017; Fausnaugh et al. 2016; Jiang et al.
2017a). This result is also in agreement with microlensing
observations (Morgan et al. 2010; Blackburne et al. 2011;
Motta et al. 2017). Recently, Mudd et al. (2018) reported lag
upper limits from the Dark Energy Survey consistent with
the SS73 model assuming moderate to high accretion rates.
The inhomogeneous disk models explained by Dexter &

Agol (2011) incorporate temperature fluctuations in Keplerian
rotation disks that can produce larger disk sizes; in addition,
this would solve the problem of quasar variability that is not
well understood in the context of the SS73 model. However,
previous studies have not tested disk structure dependency on
MBH and accretion rate due to current data limited to low-
luminosity Seyfert galaxies. There are currently only seven
Type 1 Seyfert active galactic nuclei (AGNs) that have both
continuum and emission line RM measurements, which
together allow for both direct MBH and accretion disk size
measurements (Collier et al. 1998; Edelson et al. 2015, 2017;
Fausnaugh et al. 2016, 2018; McHardy et al. 2018).
We address this problem by performing a comprehensive

study of the physics of black hole accretion using direct accretion
disk size and structure measurements from the Sloan Digital Sky
Survey Reverberation Mapping (SDSS-RM) project (Shen et al.
2015) between the optical g and i photometry bands. We connect
the observed accretion disk structure with black hole mass and
accretion rate using our unique sample of quasars that have well-
measured black hole masses from a previous SDSS-RM black
hole’s mass study (Grier et al. 2017). This work is complemen-
tary to that of D. A. Starkey et al. (2019, in preparation), which
uses a different methodology to similarly measure continuum
lags from SDSS-RM quasars. Here we focus on measuring disk
size, color profile, and disk dependence on mass and luminosity
using the JAVELIN software, which fits reverberation lags using
a damped random walk (DRW) model for the statistical behavior
of light-curve variability. In contrast, Starkey et al. (2019, in
preparation) used the CREAM software with models for both the
driving light curve and the disk reverberation response, fitting
disk size, temperature profile, and orientation. Section 2 describes
our sample chosen from the SDSS-RM data set. Section 3
presents our procedure for lag identification, including alias
removal, outlier rejection, and lag quality analysis. In Section 4
we discuss the necessary criteria for selecting physical lags
corresponding to reverberating light curves. Section 5 describes
our use of computed lags to fit a normalization of the accretion
disk and link the observed lags to mass and accretion rate
correlations. Throughout this work, we adopt a ΛCDM
cosmology with ΩΛ=0.7, ΩM=0.3, and h=0.7.

2. Data

2.1. SDSS-RM Survey

The SDSS-RM project is a pioneering multi-object RM
campaign (Shen et al. 2015) that has been simultaneously
monitoring a sample of 849 quasars in a single 7 deg2 field

15 As is standard in RM studies, we assume a “lamppost” model where
fluctuations are driven at the speed of light (Cackett et al. 2007). Other
mechanisms for driving fluctuations with v=c, like sound waves, would
imply implausibly small disks. We also assume that the distance between
wavelength regions remains constant during luminosity fluctuations, consistent
with the relatively small (average ∼8%) rms variability of the continuum light
curves.
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since 2014. The project began with SDSS-III (Eisenstein et al.
2011). The selected RM sample is flux-limited to ipsf=21.7,
with no additional cuts on variability amplitude or redshift of
the quasars, dramatically expanding the parameter space of the
spectroscopic, variability, and multiwavelength properties of
quasars with RM data (Figure 1 of Shen et al. 2015). The main
goal of SDSS-RM is to measure black hole mass and lags for a
range of emission lines, as well as improving the established
radius–luminosity (R-L) relation (Kaspi et al. 2007; Bentz et al.
2013) that is currently well calibrated for Hβ in a biased sample
of nearby z<0.3 quasars. Due to the necessity of continuous
observations in this survey, coordinated monitoring by
different SDSS-RM photometry sites is essential to monitor
quasar light variability. Thus, the SDSS-RM program is
supported by ground-based photometry from multiple facilities,
including the Canada–France–Hawaii Telescope (CFHT) and
Steward Observatory Bok telescope. To date, SDSS-RM has
resulted in several studies of the variability and properties of
quasar emission lines (Sun et al. 2015, 2018b; Denney et al.
2016a, 2016b; Shen et al. 2016a; Li et al. 2017), broad
absorption line variability (Grier et al. 2016), the relationship
between black hole growth and host galaxy properties, and
broad emission line lags (Matsuoka et al. 2015; Shen et al.
2016b; Grier et al. 2017).

Here we select the 222 quasars in SDSS-RM (see Figures 1
and 2) with z<1.13 previously studied for broad-line RM and
black hole mass, MBH, estimates (Grier et al. 2017). Of the 222
quasars, 44 have reliable MBH estimates from Grier et al.
(2017), enabling us to study the accretion disk structure
dependence on black hole mass. The selected sample is unique,

as it has well-measured black hole masses and is suitable to
study accretion disk properties based on continuum lag
measurements.

2.2. Spectroscopy

We use the Baryon Oscillation Spectroscopic Survey
spectrograph (Dawson et al. 2013; Smee et al. 2013) covering
wavelengths of 3650–10400Å with a spectral resolution of
R∼2000 with the spectrograph mounted on the 2.5 m SDSS
telescope (Gunn et al. 2006). Our study uses the first year of
SDSS-RM spectroscopic observations, obtained during seven
dark/gray observing windows in 2014 January–July. Each
epoch has a typical depth of >S N 20g

2 (the average
extinction-corrected S/N2 per pixel in the g band evaluated at
gpsf=21.2; Shen et al. 2015), with a total of 32 spectroscopic
epochs separated by a median of 4 days with varying cadence
depending on weather conditions and scheduling constraints.
The spectroscopic data processing is initially processed

using the standard SDSS pipeline (Bolton et al. 2012) for flat-
fielding, 1D extraction, wavelength calibration, and a first pass
at sky subtraction and flux calibration. The SDSS-RM data are
also processed with a second round of sky subtraction and flux
calibration using a custom pipeline that uses position-
dependent calibration vectors (see Shen et al. 2015 for details).
Finally, a software package called PrepSpec is used to model
the spectra and remove any remaining epoch-dependent
calibration errors. This step is implemented by fitting a simple
model for quasar spectra and considering a wavelength- and
time-dependent component to the continuum and a nonvariable

Figure 1. Top:i-band magnitude and redshift of the full SDSS-RM sample of
849 quasars (gray), along with the parent sample of 222 z<1.13 quasars used
in this work (red). Bottom:bolometric luminosity and redshift of the full
SDSS-RM sample (gray) and z<1.13 sample used in this work (red).
Bolometric luminosities are computed using monochromatic bolometric
corrections of 9.26, 5.15, and 3.81 using the 5100, 3000, and 1350 Å
luminosities (Richards et al. 2006). Our SDSS-RM sample spans a broad range
of luminosity and redshift and is more representative of the general quasar
population than previous RM campaigns; see also Figure 1 of Shen
et al. (2015).

Figure 2. The MBH and redshift of our parent sample of 222 SDSS-RM
quasars. Our sample is unique for accretion disk RM, as it has a large number
of reliable black hole mass estimates: a total of 44 quasars in our sample have
masses from broad-line RM (filled circles; Shen et al. 2016b; Grier et al. 2017).
We supplement this data set with lower-precision single-epoch mass estimates
for an additional 178 quasars (open circles; from Shen et al. 2016b using the
Vestergaard & Peterson 2006 prescription). Filled squares show the limited
number of previous measurements of both RM masses and accretion disk sizes
in broad-line AGNs for NGC 7469 (Collier et al. 1998), NGC 5548 (Fausnaugh
et al. 2016), MCG +08-11-011 and NGC 2617 (Fausnaugh et al. 2018), NGC
4151 (Edelson et al. 2017; McHardy et al. 2018), and NGC 4395 and NGC
4593 (McHardy et al. 2018). Also, NGC 4395 has continuum RM
measurements and a black hole mass from broad-line RM, but its MBH of
2×105 Me falls outside the figure.
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component to the narrow emission line fluxes. See Shen et al.
(2016b) for details.

We measure synthetic photometry in the g and i bands by
integrating the SED with the SDSS filter response function
(Fukugita et al. 1996; Doi et al. 2010) and the flux errors. The
synthetic flux error is computed using the quadratic sum of
errors in the measured SED, the shape of the response function,
and PrepSpec calibration.

Following Grier et al. (2017), we excluded epoch 7
(MJD=56,713) from the 32 available epochs because it was
taken under poor observing conditions, had significantly lower
S/N, and was frequently (?1/3 of the time) a >1σ outlier
compared to the other epochs. Furthermore, to improve the
overall quality of the obtained continuum light curves, a small
number of epochs (1%) are rejected as outliers if offset from
the median flux by more than five times the normalized median
absolute deviation. This is implemented to mostly remove data
points where the fibers were incorrectly placed, altering the flux
or dropped fibers.

2.3. Photometry

The SDSS-RM is supported by ground-based photometry
from the 3.6 m CFHT and the 2.5 m Steward Observatory Bok
telescope. Between 2014 January and June, the Bok/90 Prime
instrument (Williams et al. 2004) obtained 31 epochs in the g
band and 27 epochs in the i band during 60 observing nights in
bright time. The CFHT MegaCam (Aune et al. 2003) obtained
26 epochs in g and 20 epochs in i.

The photometric light curves are computed using image
subtraction as implemented in the ISIS package (Alard 2000).
ISIS first creates a reference image using the best seeing
exposure, then matches the astrometry of subsequent frames
with different point-spread functions (PSFs). This step uses a
least-squares fit to find the optimal kernel between the
reference image and the target image while accounting for
PSF variation in each target image. The target image is then
convolved and subtracted from the reference image to produce
the light curves. The reference image and image subtraction is
performed for each individual telescope, filter, CCD, and field
(K. Kinemuchi et al. 2019, in preparation).

2.4. Light-curve Merging

The combined monitoring from the SDSS, Bok, and CFHT
telescopes provides a total of 88 epochs of g-band photometry
and 78 epochs of i-band photometry (see Figure 3). The mean
fractional variability is 8.4% in the g band and 7.3% in the i
band, in both cases calculated as the maximum-likelihood
intrinsic variability accounting for the observational uncertain-
ties (following Almaini et al. 2000; Sun et al. 2015). However,
combining the three light curves is nontrivial, since each
observatory has different seeing conditions and calibration
issues for each filter response, telescope throughput, and any
other site-dependent calibration. We use the Continuum
REprocessing AGN Markov chain Monte Carlo (CREAM)
software (Starkey et al. 2016) to intercalibrate the light curves
obtained at different sites with the following model:

= + DnF t F F X t , 2( ) ¯ ( ) ( )

where the light-curve shape X(t) is normalized to á ñ =X 0 and
á ñ =X 12 so that lF̄ ( ) is the mean and ΔF(λ) is the rms flux of
the light curve. CREAM uses a power-law prior on the power

spectrum of X(t) (see Equations (8)–(10) of Starkey et al. 2017)
so that X(t) by default resembles the observed behavior of AGN
light curves (see Grier et al. 2017 for a step-by-step description
of the light-curve merging procedure). The fit allows F̄ and ΔF
to be different for the data from each site while applying the
same X(t) to all sites. The site-to-site differences in F̄ and ΔF
then allow the data from each site to be scaled and shifted and
thereby effectively merged into a single light-curve data set
with a common photometric calibration. This was done
independently for the i and g photometry, thus defining a
(slightly) different X(t) for each band.

3. Continuum RM Analysis

The SDSS-RM light curves are irregularly sampled due to
weather conditions and constraints on telescope allotted time;
thus, the RM analysis requires interpolation between epochs.
We use two approaches to interpolate and measure lags and
uncertainties from the merged light curves.

3.1. ICCF

Our first RM analysis methodology is the interpolated cross-
correlation function (ICCF; Gaskell & Sparke 1986; Gaskell &
Peterson 1987; White & Peterson 1994; Peterson 2004), where
observations from different epochs are linearly interpolated to
create an evenly sampled grid and calculate the Pearson
coefficient r between the two mean-subtracted light curves S1(t)
and S2(t). The first light curve is then shifted by a time lag τ, and r
is remeasured. This step is repeated across the range of allowed τ,
thus constructing the CCF. The same procedure is repeated by
shifting the other light curve by all τ values, and the final
correlation function is averaged between the two. Determining
well-measured lags using the ICCF method is challenging,
considering the correlated errors associated with the light-curve
interpolation. We estimate errors on the ICCF lags using Monte

Figure 3. Merged g- and i-band light curves for RM 267 as an example of the
cadence and quality of our photometry. Different symbols and colors indicate
data from Bok (green) and CFHT (blue) photometry and SDSS (red)
spectroscopy. Bold symbols indicate the nightly averages of the individual
observations shown by fainter symbols. Our quasars have a total of 88 epochs
in g and 78 epochs in i spanning a total of about 180 observed-frame days.
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Carlo (MC) iterations for flux resampling and random subset
selection (Peterson 2004), implemented using the publicly
available PyCCF software (Sun et al. 2018a). The flux in each
point is resampled by a Gaussian distribution determined by
its uncertainty, a random subset of epochs is chosen (with
replacement), and the lag is recomputed. Repeated MC is used to
obtain cross-correlation peak distribution. The centroid of the CCF
is restricted to the region where the CCF is above an 80% fraction
of the peak; experimentation reveals that using the centroid of the
CCF rather than the CCF peak results in less biased lags and
yields higher precision in virial masses (Peterson 2004); we
thus choose to work with cross-correlation centroid distribution
(CCCD).

We adopt a delay grid spanning ±100 days with a spacing of
half the mean of the minimum separation between observed
epochs. This search baseline is roughly half the total 180 day
range of the SDSS-RM observations and effectively prevents
matching nonoverlapping features between the light curves.
We perform 5000 MC iterations over the range of allowed τ
per light curve, returning the CCCD for the lag centroid τcent
and the cross-correlation Pearson coefficient r at each time
delay within the range.

Each of the ICCF MC realizations is tested for correlation
coefficient and significance of the lag and returns a “failed peak”
if significance criteria are not met (i.e., the CCF peak is found to
be on the upper or lower limit of the delay grid or the correlation
coefficient is less than 0.2 for data points within the centroid). Out
of the unique sample of 222 RM objects, RM 173 showed the
most failed peak detection with only 37 successfully detected
peaks out of 5000 MC realizations. We therefore exclude this
quasar, as its CCCD is not statistically significant (we will shortly
see that JAVELIN is also unable to obtain the continuum model
for RM 173). In the rest of our sample, ∼30% of the objects have
all 5000 successful MC realizations, and on average, each object
has an ∼85% success rate.

3.2. JAVELIN

We also compute lags using the JAVELIN software (Zu
et al. 2011). JAVELIN assumes a DRW model to predict the
light curves at unmeasured times. Observations confirm that the
DRW model is a reasonable first-order description of quasar
light-curve variability on timescales of 1day, with the
variability amplitude and damping timescale16 dependent on
quasar luminosity (Kelly et al. 2009; Kozłowski et al. 2010;
MacLeod et al. 2010; Sun et al. 2018c). The DRW in the
continuum is first modeled by two priors to compute the
continuum light-curve variability with the assumption of
covariance between times ti and tj:

s< > = - t- -S t S t e1 . 3i j
t t

1 1
2 i j d( ) ( ) ( ) ( )∣ ∣

Here τd is the damping timescale. This variability model can
be approximated as a double power law with a short timescale
(Δt<τd rms of s tDt2 d power spectrum power law of
α=−2) and a long timescale rms of σ (α=0).

JAVELIN models the reverberation response Ψ(τ) as a top-hat
function centered at t̄ with full width Δτ. The reverberating light

curve is then the “lagged” version of the driving light curve
smoothed and scaled by the parameters of the top-hat function.
JAVELIN uses a two-step Markov chain MC (MCMC)

simulation (Zu et al. 2011). The first step analyzes the driving
light curve by itself and obtains uncertainties and posterior
distributions for the DRW parameters τd and σ. The second
MCMC analysis determines the best-fit transfer function
centroid t̄ and Δτ based on the posterior distribution from
the isolated continuum in the first MCMC, where each DRW
parameter is the median value with the Gaussian width chosen
to match the upper and lower 1σ confidence regions. This
approach results in three new posteriors: the mean lag
t t t= + 2i j¯ ( ) , the width of the top-hat Δτ=τj−τi, and a
scaling coefficient A. The second MCMC process also updates
the posterior distribution for the DRW parameters τd and σ.
JAVELIN is able to allow for all of the parameters of the DRW
model and transfer function to vary in the MCMC; however,
we fix the damping timescale τd=200 days. The assumed
damping timescale does not affect the model light curves so
long as it is longer than our 180 day monitoring duration. We
similarly fix the transfer function to have a width of
Δτ=0.5 day, after testing values between 0.25 and 1 day
and finding no significant differences in the measured lags. The
top-hat function used by JAVELIN is a simplification of the
more complicated transfer function likely to describe accretion
disk reprocessing (see Starkey et al. 2016), but it is a
reasonable approximation so long as the disk response is short
compared to the lag, and it has been the common assumption of
previous work to which we make comparisons. The uncertainty
of the DRW parameters is obtained based on the statistical
confidence limits from the posterior distribution. JAVELIN
fails to compute the continuum model for RM 173 just as the
ICCF failed, and it also fails to compute the continuum model
for RM 187 and RM 846. In the end, we have 219 quasars that
have computed JAVELIN lags.
We demonstrate the continuum lag analysis results in

Figure 4 for RM 267 for the g- and i-band continuum model
using JAVELIN and ICCF. Similar figures for our full sample
are provided as a figure set.

3.3. Lag Identification Method

Identifying a well-measured lag from the methods described
in Sections 3.1 and 3.2 requires additional checks to eliminate
cases that appear to be unreliable or ambiguous. Additionally,
in many cases, the CCCDs obtained from our methods have
multiple peaks that correspond to aliases in the lags due to
semi-repeating features in the light curves. Also, it is not
always clear if the initial reported lag corresponds to genuine
reverberation. We devise a set of criteria to identify
unambiguous lags likely to correspond to real reverberation
while rejecting less reliable lags.

3.3.1. Alias Removal

As mentioned above, many of our quasars have CCCDs with
multiple peaks corresponding to competing alternatives for the
CCF lag. Some of these peaks occur at the bounds of the time
window (±100 days) and are caused by numerical issues.
We assume a prior that lags are most likely to be detected

when the two light curves have maximal overlap. Conversely,
if shifting epochs by a time delay results in zero overlapping
data points between common epochs, then the probability of

16 The typical damping timescale of a quasar in the observed frame is ∼1500
days (Kelly et al. 2009; MacLeod et al. 2012). Since our monitoring duration is
shorter than the DRW damping timescale, our light curves are essentially
modeled as a red-noise random walk with no damping. We explicitly tested
damping timescales of 200–2000days and found no significant differences in
the best-fit JAVELIN lags.
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finding a lag will be zero. We adopt the same weighting and
alias removal scheme as in Grier et al. (2017). The weight is
defined as P(τ)=(N(τ)/N0)

2, with N(τ) corresponding to the
number of overlapping epochs between the g and i light curves
shifted by lag τ and N0 corresponding to the maximum number
of overlapping epochs from the g and i light curves at zero time
delay τ=0.

Our general framework for finding lags is based on the
JAVELIN posterior distribution as the CCCD. The CCCD is
weighted by P(τ) to avoid alias lag solutions and smoothed
using a Gaussian filter with a width of 5 days. The smoothing is
used to identify peaks in the weighted CCCD, as well as the
local minima around each peak. The weighted, smoothed
CCCD may contain multiple peaks, with a high-significance
peak accompanied by multiple low-significance peaks. We
compute the area between consecutive local minima and
identify the local minima that contain the peak with the most
area and adopt the lag as the median of the unsmoothed CCCD
within the identified local minima. Furthermore, this technique
is helpful in identifying more plausible lags for those CCCDs
that show peaks on either end of the lag interval.

The lag uncertainty is computed as the mean absolute
deviation relative to the median, computed between the local
minima on either side of the peak.

3.3.2. BLR Impact on Continuum Light Curves

The g and i photometric bands in our light curves may
include substantial flux from broad emission lines in addition to
the continuum emission. Considering that BLR lags typically
have longer timescales and show smaller-amplitude variability
compared to continuum lags (MacLeod et al. 2012), BLR
contamination may potentially affect the observed time lag

derived from the continuum. We consider emission lines that
could fall in the range of SDSS filters depending on the redshift
of our quasar sample: C IV, C III, Mg II, Hβ, and Hα at,
respectively, 1550, 1909, 2799, 4861, and 6563Åin the rest
frame. We determined the broad-line contribution, fBLR, in each
as the ratio of emission line equivalent width (Shen et al. 2019)
to SDSS filter effective width (Fukugita et al. 1996). The
contamination result for all of the objects in our sample is
illustrated in Figure 5.

Figure 4. Continuum g- (blue) and i-band (red) light curves and errors for quasar RM 267 computed with JAVELIN. For clarity, black points indicate the averages of data
taken within a single night, although all lag analyses were performed on the individual, nonaveraged observations displayed by small gray points. The best-fit JAVELIN
DRW models are shown by the shaded lines in each panel. Bottom left: cross-correlation coefficient computed at each lag with its maximum identified by a red horizontal
line. Bottom middle: lag probability distribution computed by ICCF, with the local minima of the primary peak indicated by gray shading and the identified lag and±1σ error
indicated by the green dotted line and shading. Bottom right: lag probability distribution computed by JAVELIN. The main lag and its ±1σ error are represented by the red
dotted line and shading. In both plots, the Gaussian-smoothed curve represents the smoothed peak with a 5 day standard deviation.

(The complete figure set (219 images) is available.)

Figure 5. Contamination by different broad emission lines in the g-band (top) and
i-band (bottom) photometry of our 222 quasars obtained from Shen et al. (2019).
Broad-line contamination, fBLR, is calculated as EW(line)/FWHM(band). We
require <12.5% broad-line contamination for a well-defined photometric accretion
disk lag. As shown in the bottom panel of Figure 6, few of the quasars have more
than 12.5% maximum contamination in the g and i bands.
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3.4. Criteria

We require additional tests to identify if our computed lag is
statistically significant. One of the tools on which we rely is the
maximum cross-correlation coefficient, rmax, as a measure
of the correlation between the g and i light curves. Visual
inspection of the g and i light curves and computed lag
probability distributions revealed that a threshold of rmax>0.4
can eliminate noncorrelated light curves. Another tool used to
identify the significance of the main peak is the fraction of the
probability distribution that lies within the primary peak,
hereafter referred to as “fpeak.”We define fpeak as the ratio of the
weighted CCCD between the local minima used in the lag
calculation to the prior-weighted CCCD across the full
±100 day delay range. We accept only peaks that carry more
than 75% of the total posterior probability ( fpeak>0.75) to
obtain a sample of well-measured lags from our quasar sample.
We also want to avoid lags that are contaminated by BLR
emission lines, as discussed above in Section 3.3.2. We thus
exclude any objects with emission line contamination greater
than 12.5%.

In summary, our criteria for accepting a lag as a “well-
defined” lag are as follows.

1. rmax>0.4: minimum cross-correlation to consider that
corresponds to physical reverberation.

2. fpeak>75%: threshold to reject ambiguous lags with
significant support for competing aliases.

3. fBLR<12.5%: minimum broad-line contribution in both
g and i photometric light curves.

Our final lag sample is reported in Table 1 for the first 10 of
the 95 quasars that satisfy the above criteria. We also report
redshifts (Shen et al. 2015), RM MBH and single-epoch MBH

from Grier et al. (2017), λLλ3000 (Shen et al. 2015), and the
observed-frame lag and uncertainties using both ICCF and
JAVELIN.

4. Lag Reliability

The JAVELINmethod produces a total of 95 well-defined
lags that satisfy the reliability criteria defined in Section 3.4.
From the well-defined sample of 95 continuum lags, we also

construct a subsample of 33 “high-S/N” lags that are 2σ
different from zero: S/N(τJAV)�2, in addition to meeting the
criteria listed in Section 3.4. Summarizing, we use the
following definitions for our main sample of well-defined lags
and the subsample of high-S/N lags:

1. well-defined lags: rmax>0.4, fpeak>75%, and fBLR<
12.5%;

2. high-S/N lags: rmax>0.4, fpeak>75%, fBLR<12.5%,
and S/N(τJAV)�2.

Due to the limits in the SDSS-RM survey, our measured lags
could impose selection bias. For example, the high-S/N lag
sample includes only larger lags, while the well-defined lag
sample may be more representative of the broader quasar
population. We will discuss this point in more detail in
Appendix A.
One of the difficulties in RM, particularly for monitoring

surveys such as SDSS-RM with relatively sparse cadence and
nonnegligible flux uncertainties, is knowing if there is genuine
reverberation rather than a false detection caused by a chance
similarity between light curves. Chance similarities would
create an equal number of positive and negative lags, while
reverberation would produce only positive lags, with some
negative lags due to the noise or sampling properties of light
curves. We investigate this issue with the set of plots presented
in Figure 6. Our lag-finding analysis and well-defined lag
criteria include no explicit or implicit preference for a positive
lag from the g to i bands. The high-S/N sample has 33 positive
lags and only five negative JAVELIN lags, indicating that most
objects have genuine reverberation with a false-positive rate
(i.e., ratio of negative to positive lag) of only 15%. The well-
defined lag sample has 68 positive lags and 27 negative lags,
similarly showing a significant excess of positive lags. The
larger number of negative lags in the well-defined sample is
expected from the broad lag CCCDs of many of the quasars.
We compare our two lag methodologies, ICCF and

JAVELIN, in Figure 7. Most sources have differences between
their ICCF and JAVELIN lags indicating that the ICCF
uncertainties are overestimated: t t s< - >jav iccf jav∣( ) ∣ =1.29
and t t s< - >jav iccf iccf∣( ) ∣ =0.41. When comparing the two
methodologies, we note that JAVELIN presents an empirically

Table 1
Well-defined Quasar Sample Information

RMID R.A. Decl. z log MBH log λLλ3000 τICCF τJAV S/N(τJAV)
(deg) (deg) (Me)

a (erg s−1) (days) (days) b

016 214.0290 53.1583 0.848 -
+9.07 0.26

0.22 44.85 - -
+3.76 6.26

8.74 - -
+4.01 7.82

1.31 −3.07

017 213.3511 53.0908 0.456 -
+8.92 0.19

0.24 44.16 -
+2.93 3.21

2.24
-
+5.52 1.68

1.62 3.30

029 213.2946 52.9640 0.816 7.72å 44.12 - -
+1.00 3.70

5.30
-
+0.33 1.29

1.79 0.26

061 214.0000 52.7378 0.983 8.18å 44.44 - -
+2.54 2.82

6.76
-
+10.01 2.60

5.67 3.86

062 213.5737 53.4697 0.808 8.64å 44.25 -
+1.18 2.85

4.18
-
+0.46 1.67

1.58 0.27

078 212.9757 53.1887 0.581 8.88å 44.57 - -
+0.11 1.98

2.49
-
+3.57 3.79

0.79 0.94

088 212.9657 52.8956 0.516 8.51å 44.25 - -
+0.47 1.72

2.94 - -
+0.25 0.34

0.74 −0.34

101 213.0592 53.4296 0.458 -
+7.26 0.19

0.17 44.64 -
+1.54 2.06

3.08 - -
+3.87 0.56

5.17 −0.75

102 213.4708 52.5790 0.860 8.23å 45.01 -
+0.91 1.94

3.00
-
+2.51 1.03

0.73 2.44

118 213.5533 52.5358 0.714 8.48å 45.12 -
+0.90 2.64

2.92 - -
+0.48 0.28

0.49 −0.99

Notes.
a Single-epoch masses are identified by å and assumed to have an error of 0.4 dex.
b The S/N is calculated accounting for the JAVELIN lag sign; if the lag is positive, the S/N is positive, and if the lag is negative, the S/N is negative.

(This table is available in its entirety in machine-readable form.)
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motivated model for interpolating the light curve by explicitly
assuming that the power spectral density is a DRW model,
while implicitly assuming a prior that the two light curves are
reverberating. The ICCF does not make this assumption and
instead linearly interpolates between measurements to describe
the light curve. The broad agreement between JAVELIN and
ICCF lags is expected, given our relatively short 4 day
cadence and low quasar variability observed on short time-
scales (e.g., Mushotzky et al. 2011; MacLeod et al. 2012).
Simulations also indicate that JAVELIN and ICCF find similar
and consistently reliable lags (Zu et al. 2011; Li et al. 2019).
Appendix B additionally tests the effects of unmeasured
variability between the observational cadence and finds that
both JAVELIN and ICCF return statistically consistent lags,
even if we assume an implausibly large short-timescale
variability.

Visually inspecting the ICCF and JAVELIN results shows
that the two methods generally identify consistent lags,
although the computed uncertainties in the ICCF method are
larger than those in JAVELIN. Figure 7 illustrates the general
consistency in lag measurements between the two methods,
suggesting that JAVELINʼs model is not introducing any

unknown biases into our measurements that are not also
inherent to the ICCF method.
There is one additional object, RM 769, that has a >3σ

difference between lags from ICCF and JAVELIN. It is the
only object with an ICCF lag that has a well-defined peak that
differs by >3σ. While inspecting the RM 769 light curve, we
found that the DRW models from JAVELIN are heavily
influenced by a few flux measurements that have significantly
lower observational uncertainties than the rest of the light
curve. We experimented and found that if we increase all the
uncertainties in the light curve by 3%, the JAVELIN results
change dramatically and become consistent with the ICCF lag.
Due to this object’s small error and the more than 3σ difference
from the JAVELIN lag estimate, we reject this object from our
sample.
Table 2 presents a comparison of our SDSS-RM study with

other multi-object continuum lag surveys. Our study’s largest
advantage is the availability of spectroscopic RM observations
and resulting MBH measurements, enabling a comparison of
disk size with black hole mass. Further comparison of our
measured accretion disk properties with previous work is
presented in Section 5.1.

5. Discussion

The photometric lags measured from SDSS-RM can be
employed to measure accretion disk sizes across a wide range
of quasar properties. We use the SS73 model as expressed in
Equation (1) as a starting framework, comparing our measured
lags to the expectations of the analytic thin-disk model.
We follow a Bayesian approach and fit accretion disk

parameters using the full set of well-defined lags. Although
many of these lags have large error bars and are consistent with
zero, their distribution still carries valuable information.
Appendix A also represents results from fitting only the high-

Figure 7. The ICCF vs. JAVELIN lags from our sample of well-defined
JAVELIN lags that meet the criteria outlined in Section 3.4 (rmax>0.4,
fpeak>0.75, fBL<0.125). Lags that additionally have t >S N 2∣ ( )∣ are
illustrated by red filled circles. The ICCF and JAVELIN methods find
consistent lags, although the ICCF method generally has larger error bars due
to its (simplistic and unrealistic) assumption of linear interpolation between
measured fluxes.

Figure 6. Our three criteria for well-defined lags vs. the computed JAVELIN
lags for our sample of 222 quasars (gray symbols). Quasars with well-defined
lags meeting our criteria are shown with open blue symbols, and the high-S/N
lags that are 2σ significant are shown with filled red symbols. Top: maximum
cross-correlation coefficient rmax from the g- and i-band light curves. The
horizontal red dotted line indicates the minimum rmax>0.4 criterion required
for a “well-measured” lag. Middle:fraction fpeak of the probability distribution
that lies within the primary peak, where the horizontal red dotted line represents
the minimum fpeak>75% well-defined lag criterion. Bottom:maximum
broad-line contamination in each of the g and i bands. The dotted red
horizontal line indicates the maximum allowed broad-line contamination for a
well-defined lag, fBLR<12.5%.
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S/N lags, demonstrating that restricting to positive lags results
in biased accretion disk fits.

We use the Bayesian framework implemented in the software
package PyMC3 (Salvatier et al. 2016)17 to fit the accretion disk
parameters. To sample the posterior, we provide disk parameter
priors as a normal distribution centered at the expectation from
the SS73 model. We sample our MCMC fit with 40,000 steps,
discard the first 20,000 steps as a burn-in phase, and explicitly
check the Gelman–Rubin statistics (Gelman & Rubin 1992) for
a convergence diagnostic. All of the lags are reported in the
observed frame (i.e., τobs) as we account for the effects of
wavelength redshift and time dilation in our analysis.

5.1. Disk Normalization

We start with the SS73 model presented in Equation (1) and
compute each object’s individual accretion disk size τ0
following the equation for the SS73 model observed-frame
lag τ:
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l l
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We normalize the wavelength by λ0=λ/9000Å because it
was found to minimize the correlation between the best-fit τ0
and wavelength scaling β in Section 5.2.

For simplicity, we refer to each of the measured cτ and
model-predicted cτSS73 as a “disk size.” More precisely, these
quantities are the relative distances corresponding to the
differences between the characteristic lags from each
waveband.

The analytic disk normalization τ0 is equal to
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Here MBH represents the black hole mass from RM (Grier
et al. 2017) and single-epoch measurements (Shen et al.
2016a). When both RM and single-epoch masses are available
for a quasar, we use the RM mass. We compute the Lbol using a
bolometric luminosity correction Cbol=5.15 from Richards
et al. (2006) for λLλ3000 as Lbol=Cbol λLλ3000. The quantity X
accounts for the relatively broad width of blackbody radiation
causing the response at a given wavelength to arise from a
range of radii in the disk, including smaller radii, where the

blackbody radiation is proportional to T on the Rayleigh–Jeans
tail of the blackbody emission, and larger radii, where the
increasing disk surface area is offset by the exponential Wien
cutoff. Given a T(r) profile and a wavelength λ, the observed
mean delay is τ=r(λ)/c, where λ=hc/XkT(r(λ)). We follow
previous work (Fausnaugh et al. 2016; Mudd et al. 2018) and
calculate X by assuming that r(λ) is the flux-weighted mean
radius for emission at λ from a face-on disk of pure blackbody
emission with T(r)∝r−3/4, which yields X=2.49. Comp-
tonization and other radiative transfer effects may also affect
the disk emission profile (e.g., Davis et al. 2005; Slone &
Netzer 2012), potentially making X a function of radius (or
wavelength). We adopt the global blackbody assumption of
X=2.49 as a point of comparison for comparing to the SS73
model, noting that larger or smaller continuum lags may result
from non-blackbody radiative transfer effects in addition to
structural changes in the SS73 model.
In the following analysis, we adopt η=0.1, Cbol=5.15,

and X=2.49 when we plot the SS73 model in Figures 9, 12,
13, and 14.
Figure 8 shows a comparison of the observed lags τJAV with

the analytic model lags τSS73 calculated from Equations (4) and
(5). On average, the observed disk sizes are consistent with

Table 2
Comparison with Other Multi-object Continuum Lag Surveys

Survey Lagsa Epochsb Cadence Duration Bands RM MBH
c

Pan-STARRS 39 373 3day 3.3 yr g, r, i, z No
OzDES 15 30 7days 1season(180 days) g, r, i, z No
SDSS-RM 95 83 4days 1season(180 days) g, i Yes

Notes.
a The number of reported lags for the main sample in Jiang et al. (2017a) and Mudd et al. (2018).
b Median number of total epochs per band.
c Time-domain spectroscopic coverage available for RM MBH measurements.

Figure 8. Residual of τobs and SS73 lags. Here the observed lags for the well-
defined lag sample computed from JAVELIN and model lags are obtained
using Equation (4) based on each object’s MBH and MBH˙ . On average, the
observed lags are consistent with the SS73 model lags. But there is
considerable scatter, with only 36% of the observed lags lying within 1σ of
the model lags.

17 Probabilistic programming in Python using PyMC3https://doi.org/10.
7717/peerj-cs.55.
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the SS73 model expectation (including errors on MBH and Ṁ).
However, there is large scatter, with only 36% of the observed
well-defined lags lying within 1σ of the model lags. The large
scatter might indicate that the JAVELIN lag uncertainties are
underestimated or that there are additional important para-
meters missing from Equations (4) and (5), such as nonuniform
efficiency or orientation. We discuss this issue further in
Section 5.3.

We perform an initial fit to the disk size by first allowing the
normalization τ0 to be the only free parameter and fixing
β=4/3. Then, MCMC samples the posterior distribution of
τ0. Fitting only the disk normalization based on all of the
observed quasar lags in the well-defined sample results in a
best-fit disk normalization t =b= -

+5.210 4 3 0.29
0.29 days. This is

consistent within 1.5σ with the SS73 disk normalization,
tá ñ = 4.780 days, computed using Equation (5) for the mean
á ñMBH =8.19 Me and lá ñlL 3000 =44.47 of our sample. We
compare our results to those from microlensing (Morgan et al.
2010) and find that our lags are three to four times larger than
theirs, but this can be attributed to the fact that they use X=1
in Equation (5), so inflating the SS73 disks of Morgan et al.
(2010) by X=2.49 will give consistent results with the SS73
expectation (see also Tie & Kochanek et al. 2018). In contrast,
Jiang et al. (2017a) found lags that are about two to three times
larger than SS73. However, the Jiang et al. (2017a) lag sample,
by including only significant lags, is biased toward larger lags
and thus larger disk sizes. The implication of the bias is less
apparent in the recent work by Mudd et al. (2018), where they
reported consistent lags with SS73. Our measured accretion
disk sizes are similar to those found by Mudd et al. (2018), in
that both of our results are broadly consistent with the SS73
model. However, our study has the additional advantage of
MBH estimates from spectroscopic RM, which we use in
Section 5.3 to model accretion disk size as a function of black
hole mass and luminosity. In Appendix A, we discuss the
effects of observational bias on lag measurements of multi-
object quasar samples. Mixed results are reported for more

local quasars; e.g., some report lags that are too big (Edelson
et al. 2015, 2017; Fausnaugh et al. 2016, 2018), and some
report lags that are close to the SS73 expectation (McHardy
et al. 2018). These results may be due to local objects from the
NGC sample probing the biased tail of the quasar distribution.

5.2. Color Profile

The SS73 accretion disk model predicts a disk structure of
T(R)∝R3/4. We measure this temperature profile using the
wavelength in Equation (6) with a disk size that is characterized
by a disk normalization τ0, wavelength scaling β, and quasar
redshift z. In this context, the observed continuum lags are
described by
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Although we are only limited to the g and i bands in this work,
the redshift range of our quasars (0.116<z<1.128) provides
a broad range of rest-frame wavelengths to test β, with the best-
fit disk size and color profile shown in Figure 9. The best-fit
parameters and errors are determined from the posterior
distributions of the MCMC nonlinear regression. We assume
the likelihood as a normal distribution,  , centered at the
observed lags and lag errors as a standard deviation

q t t s= tP x , . 7model obs obs( ∣ ) ( ∣ ) ( )

Posterior distributions are shown in Figure 10; we find
t = -

+5.380 0.34
0.43 days and b = -

+1.28 0.39
0.41.

Comparing the best-fit τ0 and color profile β to the SS73
model indicates that the best-fit values are consistent with
the SS73 expectation for our sample of mean MBH and Lbol.

Figure 9. Observed lags vs. (1 + z), fitting a simple accretion disk model with
disk normalization τ0 and wavelength scaling β for our sample of well-defined
lags. The red line indicates the best-fit disk, and the shaded gray region is the
propagated error in the best-fit model. The blue line and blue-shaded region
show the SS73 disk model from Equation (4) and its propagated error with both
disk size and wavelength scaling as free parameters. We find a best-fit
t = -

+5.380 0.34
0.43 and b = -

+1.28 0.39
0.41 consistent with the SS73 expectation.

Figure 10. Posterior distribution for disk normalization τ0 and wavelength
scaling β. The shaded gray regions represent the 1σ uncertainty of each best-fit
parameter, and the red dotted line indicates the SS73 expectation using the
mean MBH and λLλ3000 of our quasar sample.
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Our best-fit color profile β is also consistent within 1σ with
previous results by Fausnaugh et al. (2016) and Mudd et al.
(2018); further comparison with Fausnaugh et al. (2016)
requires multiband observations, as we are only comparing the
g and i bands here. For the remaining portion of this work, we
will fix β to 4/3 in order to focus on the accretion disk
connections to MBH and accretion rate.

5.3. Connection to MBH and λLλ3000

Here we examine if our measured continuum lags depend on
MBH

1 3 and M1 3˙ as indicated by the SS73 model. Our 95 quasars
in the well-defined lag sample have reliable MBH estimates
using the RM technique for 30 of the quasars and single-epoch
mass measurements for the remaining 65 quasars; see Table 1.
To test for connections to Ṁ , we use the observable
monochromatic luminosity λLλ3000 as a proxy for Ṁ , related

as h=M L cbol
2˙ , with Lbol=5.15λLλ3000. In this context, the

observed continuum lags are described by
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We perform a new nonlinear MCMC regression fit for τ0′, γ,
and δ. Here τ0′ has a slightly different form from the previous disk
normalization due to different powers in mass and luminosity (i.e.,
t t l¢ = g

l
dM L0 0 BH 3000). We fix β=4/3 in Equation (8) and

incorporate the measurement uncertainties in MBH reported by
Grier et al. (2017). The uncertainties in RM MBH include a
0.16 dex intrinsic scatter, while for single-epoch MBH estimates,

Figure 11. Posterior distribution of disk normalization and best-fit γ (connection to MBH) and δ (connection to λLλ3000) parameters in the disk model presented in
Equation (8) with β=4/3 for our sample of well-defined lags.
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we assume a 0.4 dex intrinsic scatter (Vestergaard & Peterson
2006; Shen et al. 2016b). We also incorporate the measurement
uncertainties while fitting to the observed λLλ3000. However,
the SS73 model predicts disk size as a function of Ṁ rather than
λLλ3000, and there is a large scatter between the observed
luminosity and accretion rate due to uncertainties in bolometric
correction and radiative efficiency. This might effectively lead to a
larger scatter in the fit, which we measure in the regression fit
using an excess dispersion parameter σ.

The result of our three-parameter disk model to the well-
defined sample is illustrated in Figures 11 and 12.

With the disk size parameterized as τ0′,
gMBH, and l l

dL 3000

(Equation (8)), we find the best-fit t ¢ = -
+4.160 1.37

1.37 days,
g = -

+0.31 0.20
0.21, and d = -

+0.09 0.16
0.16. Both the γ and δ parameters

are poorly constrained, although the mass dependence is >1σ
different from zero and fully consistent with the SS73
expectation γ=1/3. Our fit indicates that luminosity
λLλ3000, on the other hand, is less necessary for the fit,
differing from the SS73 expectation by 1.5σ. A more accurate
measurement of MBH˙ could improve the consistency (i.e., in
Equation (1)).

Our best-fit parameters include an intrinsic excess dispersion
of 2.8 days. This could indicate that the JAVELIN lag errors
are underestimated, although the good agreement with ICCF
lags in Figure 7 suggests that this is unlikely. Alternatively,
individual quasars may have diverse disk emission profiles,
with a range of orientation and/or radiative transfer effects that
change the X factor in our parameterization (Hall et al. 2018).
Some quasars may also have significant continuum emission
from a diffuse BLR component, making the measured
interband lags differ from pure accretion disk continuum
emission (Cackett et al. 2018; Edelson et al. 2019). A
nonuniform bolometric correction or radiative efficiency might
also lead to scatter in our best-fit disk size as a function of
monochromatic luminosity (Equation (6)), although this would
have to be as large as 1.8 dex to explain the entirety of the

excess scatter measured of t t =d 1.35 in our regression fit.
Finally, it is possible that the SS73 model is a good average
description for quasar disks, even as individual objects have
large variations in their disk structure not captured by the
model.

6. Summary

We have used continuum RM to study the accretion disks of
222 quasars from the SDSS-RM survey. The selected sample
has the advantage of reliable black hole mass measurements
from the first year of the SDSS-RM monitoring program (Grier
et al. 2017). In this work, we used photometric continuum light
curves in the g and i bands to study the accretion disk size and
structure of quasars.
We used JAVELIN to compute lags between g- and i-band

light curves for our 222 quasars. We applied several different
significance criteria to obtain a subset of 95 well-defined
continuum lags.
Purely comparing our observed lags to those expected from

the SS73 model, we find a mean deviation of 0.9 days larger
than the SS73 expectation, with 36% of the well-defined lags
consistent within ±1σ of the SS73 model expectation. We
perform nonlinear MCMC regression to fit our observed lags
and compare them to the standard SS73 model. Our findings
are as follows.

1. Disk size. Our best-fit disk normalization is consistent
with the theoretical value from SS73 within 1.5σ. This is
in contrast to previous works, possibly due to observa-
tional bias (as discussed in Appendix A).

2. Color profile. We find a wavelength scaling b =
-
+1.28 0.39

0.41, consistent with the SS73 expectation (i.e.,
β=4/3).

3. Mass and luminosity dependence. We assume a disk size
t lµ g

l
dM L 3000 and find a best-fit mass dependence g =

-
+0.31 0.20

0.21, consistent with expectations from SS73 (i.e., 1/3).

Figure 12. Left:observed well-defined lags vs. MBH. The best-fit model is shown with a solid red line assuming t t lµ ¢ g
l
dM L0 3000 for our sample’s MBH. Here

τ0SS73′ is computed from the SS73 theory for our sample’s mean redshift and λLλ3000. Right:observed well-defined sample lags vs. λLλ3000. The best-fit model is
shown with a solid red line assuming t t lµ ¢ g

l
dM L0 3000 for our sample’s λLλ3000. Here t¢0SS73 is computed from the SS73 theory for our sample’s mean redshift and

MBH. In both panels, following our previous consistency check in Section 5.2 to SS73, we have assumed β=4/3. The red shading illustrates the propagated error
associated with the best-fit parameters, τ0, γ, and δ, and the average error in MBH for the plot on the left and λLλ3000 for the plot on the right. The gray shading
additionally includes the scatter contribution from the excess dispersion, σ=2.8 days. The blue dashed line illustrates the SS73 disk model as it is presented in
Equation (8) with γ=δ=1/3, with blue shading indicating the error contribution from the average MBH uncertainty at left and the average MBH˙ at right (including
0.5 dex scatter for converting from λLλ3000 to MBH˙ ).
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The best-fit λLλ3000 dependence is d = -
+0.09 0.16

0.16, 1.4σ
consistent with the SS73 expectation but also <1σ consistent
with no correlation between disk size and luminosity. Our
fits have a large excess dispersion of 2.8 days, indicating a
diversity of radiative efficiency, disk emission profiles, and/
or disk structure in individual quasars.

Our new measurements represent a large advance over
previous work. The 95 SDSS-RM quasars with our new
continuum lags and previous broad-line lags (Grier et al. 2017)
represent a factor of ∼5 increase over previous samples and
also expand the sample of accretion disk size and black hole
mass measurements by an order of magnitude in redshift, mass,
and luminosity. Our measured disk sizes are, on average,
consistent with the SS73 analytic thin-disk model. But we also
find a large range of smaller and larger disk sizes in excess of
the measurement uncertainties. This motivates future work to
better measure bolometric luminosity and radiative efficiency
(i.e., black hole spin) alongside accretion disk sizes.

Our work also advances the methodology for accretion disk
size measurements from similar “industrial-scale” multi-object
reverberation projects beyond SDSS-RM. In particular, we
advocate a Bayesian approach to the full sample of well-
defined lag measurements, rather than restricting the analysis to
a set of high-S/N lags that are biased by limitations in survey
cadence. The SDSS-RM is planned to continue in the 2020s
with a factor of 5 increase in survey area as part of the SDSS-V
black hole mapper project (Ivezić et al. 2017; Kollmeier et al.
2017). The Large Synoptic Survey Telescope will usher in an
entirely new era of time-domain quasar studies, making
continuum RM possible for thousands of quasars in its deep
drilling fields.
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Appendix A
Selection Bias

We take a Bayesian approach in Section 5 and fit all 95
quasars with well-defined lags (see Section 3.4), including
those that are consistent with zero lag. However, if we instead
fit only the high-S/N lags (well defined and lag S/N > 2σ), we
find disks that are ∼3.2 times larger than SS73 and a nearly flat
color profile, β=0.4, shown in Figure 13. Additionally, we
test for well-defined and positive lags and find disks that are
∼2.5 times larger than expected by SS73; see Figure 14.
The high-S/N sample is biased to large lags, as the SDSS-

RM cadence (averaging 4 days) sets a minimum detectable lag.
This biases the disk fits to large values. A similar bias is likely
to affect the main sample in Jiang et al. (2017a), as they used
only positive lags in their fits. We reproduce the same
qualitative effects if we limit our sample to only positive lags;
see Figure 14.
Our larger well-defined lag sample, on the other hand, is

not biased to large lags. Although the sample includes many
lags that are formally consistent with zero, the lags are more
likely to be positive than negative, as shown in Figure 6. This
indicates that the lags are likely the result of genuine
reverberation but are just smaller than detectable by the
SDSS-RM cadence (average of 4 days). In other words, the
well-defined sample includes many lags that have poor S/N
but are constrained to be small. It is important to include such
lags in the accretion disk fits to avoid a bias to large disk
sizes.
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Appendix B
Increased Short-timescale Variability

The SDSS-RM time-monitoring observations (see Section 2)
are limited by somewhat sparsely sampled data with a median
cadence of 4 days. Although the expected quasar variability on
such short timescales is relatively low (Mushotzky et al. 2011;
MacLeod et al. 2012), our measured lags are fundamentally
limited by the observational cadence. Here we validate that
quasar fluctuations on timescales shorter than our observation

cadence do not affect our lag measurements by constructing
synthetic light curves that have extreme variability in between
each measured point.
To construct our new synthetic light curves, we take each

consecutive measured flux pair f (ti), f (ti+1) and randomly
select an interpoint expectation flux f (ti+1/2), where ti+1/2=
ti+(ti+1−ti)/2, from the JAVELIN DRW model normal
distribution. We then increase (or decrease) each randomly
selected flux to a new flux f (ti+1/2)+δf, where δf≡1/2

Figure 14. Left:prior distribution for disk normalization τ0 and wavelength scaling β using only the positive well-defined lag sample. The shaded gray region shows
the 1σ uncertainty of each best-fit parameter, and the dotted red line indicates the SS73 expectation using the meanMBH and λLλ3000 of our positive, high-S/N sample.
Right:observed positive, well-defined JAVELIN lags vs. (1 + z). The best-fit model using only β and τ0 is shown with a solid red line, and the shading illustrates the
1σ propagated errors on τmodel from the MCMC parameter errors. The blue dashed line shows the SS73 model from Equation (4).

Figure 13. Left:prior distribution for disk normalization τ0 and wavelength scaling β using only the high-S/N lag sample. The shaded gray region shows the 1σ
uncertainty of each best-fit parameter, and the dotted red line indicates the SS73 expectation using the mean MBH and λLλ3000 of our high-S/N sample.
Right:observed high-S/N JAVELIN lags vs. (1 + z). The best-fit model using β and τ0 is shown with a solid red line, and the shading illustrates the 1σ propagated
errors on τmodel from the MCMC parameter errors. The blue dashed line shows the SS73 model from Equation (4).

14

The Astrophysical Journal, 880:126 (16pp), 2019 August 1 Homayouni et al.



( f (ti+1)−f (ti)), i.e., varying by half the difference between
consecutive pairs of measured fluxes. This is equivalent to a
short-timescale variability PSD of α=−1: an extreme
variability case compared to a DRW (α=−2) and to the
low measured short-timescale variability of α;−3 (Mush-
otzky et al. 2011). We also perturbed the new interpoint flux by
the average flux uncertainty of the measured surrounding flux
pair. The final synthetic light curve is then the combination of
both the measured light curve and the new interpoint fluxes.

We build synthetic light curves for all of our targets in the well-
defined sample and use JAVELIN to measure lags as described in
Section 3.3. We find that the synthetic light curves have lags that
are statistically consistent with the original lags measured from
the observed light curves. Figure 15 illustrates the synthetic light
curve with extreme short-timescale variability for RM 267 (the
same target as Figure 4) and the measured JAVELIN and ICCF
lag probability distributions.
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