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5 September 2019

ABSTRACT

Post-starburst galaxies, identified by their unusually strong Balmer absorption lines
and weaker than average emission lines, have traditionally been selected based on their
central stellar populations. Here we identify 360 galaxies with post-starburst regions
from the MaNGA integral field survey and classify these galaxies into three types:
31 galaxies with central post-starburst regions (CPSB), 37 galaxies with off-center
ring-like post-starburst regions (RPSB) and 292 galaxies with irregular post-starburst
regions (IPSB). Focussing on the CPSB and RPSB samples, and comparing their
radial gradients in Dn4000, HδA and W(Hα) to control samples, we find that while
the CPSBs have suppressed star formation throughout their bulge and disk, and clear
evidence of rapid decline of star formation in the central regions, the RPSBs only show
clear evidence of recently rapidly suppressed star formation in their outer regions and
an ongoing central starburst. The radial profiles in mass-weighted age and stellar v/σ
indicate that CPSBs and RPSBs are not simply different evolutionary stages of the
same event, rather that CPSB galaxies are caused by a significant disruptive event,
while RPSB galaxies are caused by disruption of gas fuelling to the outer regions.
Compared to the control samples, both CPSB and RPSB galaxies show a higher
fraction of interactions/mergers, misaligned gas or bars that might be the cause of the
gas inflows and subsequent quenching.
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1 INTRODUCTION

The galaxy population in the local Universe is character-
ized by a clear bimodality in the color magnitude diagram
(Baldry et al. 2004; Jin et al. 2014), with a “blue cloud”
(the gas-rich star forming galaxies) and “red sequence” (gas
poor quiescent galaxies). In between lies a minor population
of “green valley” galaxies. This bimodality has built up over

⋆ Email: chenym@nju.edu.cn

cosmic time, with galaxies migrating from the blue cloud to
the red sequence (Bell et al. 2004; Brown et al. 2007). The
low galaxy number density in the green valley has been ar-
gued to imply that the migration is relatively rapid (Martin
et al. 2007), however, the exact timescales are still under
debate (for a recent summary see Rowlands et al. 2018).

Post starburst (PSBs) galaxies, also called E+A/K+A
galaxies, show unusually prominent Balmer absorption
lines indicating an excess contribution to their light from
intermediate-age stars (A- or F-type stars). This can be
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due to a recent starburst or rapid decline in star formation.
Many such systems also show weak or absent nebular emis-
sion lines, implying an absence of the hotter, younger stars
(O and B type). This implies an abrupt termination of the
star formation (SF) process (Dressler & Gunn 1983; Pog-
gianti et al. 1999; Goto et al. 2003). Many have postulated
that PSBs are observed in a short-lived transition phase,
providing an evolutionary link between the blue cloud and
red sequence galaxies (e.g., Yang et al. 2004, 2006; Kavi-
raj et al. 2007; Wild et al. 2009; Yesuf et al. 2014; Cales
& Brotherton 2015; Alatalo et al. 016a; Wild et al. 2016;
Rowlands et al. 2018), but whether this is true for most of
PSBs remains unclear. In this paper we will use the term
“quenching to refer to a recent rapid shut-off of star forma-
tion and quenched to refer to a galaxy or region of a galaxy
with minimal current star formation, regardless of whether
this is a temporary or permanent state. A quenched galaxy
by this definition, may subsequently form stars.

Since their discovery PSB galaxies have been exten-
sively studied. Significant progress was made with the ad-
vent of high quality multi object spectroscopy, in particular
with the SDSS (York et al. 2000) surveys, which identified
PSB galaxies based on light from the central 3” diameter
(Goto et al. 2003; Goto 2005, 2007a; Yan et al. 2009). The
morphology of PSB galaxies is found to be typically bulge
dominated and sometimes with an underlying disk (Tran
et al. 2004; Quintero et al. 2004; Goto 2005; Wong et al.
2012; Maltby et al. 2018; Pawlik et al. 2018). Disturbed
morphologies or tidal features are present in many cases
(e.g., Zabludoff et al. 1996; Goto 2005; Yang et al. 2008; Ya-
mauchi et al. 2008; Lin et al. 2010; Sell et al. 2014; Pawlik
et al. 2018), although fade rapidly with starburst age (Paw-
lik et al. 2016, 2019). The disturbed, bulge-dominated mor-
phologies, as well as the elemental abundances (Goto 2007b),
are consistent with the hypothesis that many of them are
remnants of mergers or interactions, and the progenitors of
early-type galaxies.

Much attention also has been given to PSB galaxies in
dense environments, where the environment could give rise
to their sudden change in star formation activity. Studies of
large galaxy clusters indicate an enhanced fraction of PSB
galaxies compared to the field, at least in the cluster cores
(Dressler et al. 1999; Poggianti et al. 1999; Tran et al. 2003,
2004; von der Linden et al. 2010; Socolovsky et al. 2018;
Paccagnella et al. 2019), which implies environmental pro-
cesses such as ram-pressure stripping or harassment may be
at play. Mergers are not expected to be important in clusters
due to the high relative velocities of the galaxies. However,
it is important to realise that in the local Universe the vast
majority of PSB galaxies are found in the field, with little
trend with local density (Quintero et al. 2004; Balogh et al.
2005; Goto 2005; Hogg et al. 2006; Yan et al. 2009; Paw-
lik et al. 2018). This is again consistent with the majority
of PSBs originating from mergers of star-forming galaxies,
although additional processes may play a role in clusters.

While many PSB galaxies possess both morphological
and spectroscopic signatures of an evolutionary transition,
the significant reservoirs of cold gas found in recent studies
(Rowlands et al. 2015; French et al. 2015; Alatalo et al. 016b)
have raised some doubt as to this simple interpretation. Ad-
ditionally, the EAGLE cosmological hydro-dynamic simula-
tion reveals multiple evolutionary pathways for PSB galaxies

in the local (simulated) Universe (Pawlik et al. 2019). Fur-
ther studies are clearly needed to understand the origin and
fate of these intriguing galaxies.

In particular, the stellar population gradients and in-
ternal kinematics are poorly understood. In the last few
years small numbers of PSB galaxies have been studied with
long-slits or integral-field units (IFU) (Swinbank et al. 2011;
Pracy et al. 2010, 2013, 2014; Hiner & Canalizo 2015). Such
studies are crucial to answer the most important question of
active research: Do the stellar population gradients and kine-
matics of PSB galaxies support the picture of galaxy merg-
ers forming spheroids, or are they consistent with models
in which star formation is abruptly quenched in otherwise
normal disk galaxies? The small samples, limited spectral
or spatial coverage, and poorer data quality of these studies
compared to the SDSS surveys, have thus far precluded a
comprehensive answer to this question.

Thanks to large sample of 4633 galaxies observed in
the first three years of the fibre-optic IFU survey “Mapping
Nearby Galaxies at Apache Point Observatory” (MaNGA),
for the first time, we are able to search for PSB regions
within the complete galaxy area. We can identify off-centre
PSB regions, ask what the difference is between these galax-
ies and galaxies with central PSB regions, and investigate
the implications for their formation. In this paper we focus
on galaxies with central and ring-like PSB regions. In Sec-
tion 2, we introduce the MaNGA survey, sample selection
and data analysis methods. The properties of the galaxies
with PSB regions, including the host galaxy morphology,
stellar populations and internal kinematics, are studied in
Section 3. We discuss the observational results in Section 4
and a short summary is presented in Section 5. We use the
cosmological parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3
and ΩΛ = 0.7 throughout this paper.

2 DATA

2.1 The MaNGA Survey

MaNGA is one of three major programs of the ongo-
ing fourth-generation Sloan Digital Sky Survey (SDSS-IV;
Bundy et al. 2015; Drory et al. 2015; Law et al. 2015, 2016;
Yan et al. 2016; Blanton et al. 2017; Yan et al. 2016), us-
ing 2.5m Sloan Foundation Telescope (Gunn et al. 2006) at
Apache Point Telescope (APO). MaNGA employs dithered
observations with 17 fiber-bundle IFUs with 5 sizes vary be-
tween 19 and 127 (or 12.5 ∼ 32.5′′ diameter in the sky), de-
pending on the apparent size of the target. Two dual-channel
BOSS spectrographs (Smee et al. 2013) provide simultane-
ous spectral coverage over 3622−10354Å at R ∼2000. Be-
tween 2014 and 2020, MaNGA will have obtained IFU ob-
servations of ∼10,000 galaxies (z 6 0.1) with stellar mass
M∗ > 109M⊙ and with an approximately flat M∗ distri-
bution (Wake et al. 2017). MaNGA will observe 2/3 of the
galaxy sample out to ∼1.5Re and the other 1/3 to ∼2.5Re.
As described by Yan et al. (2016), with a typical integra-
tion time of 3 hours, MaNGA reaches a signal-to-noise ratio
(S/N) of 4 ∼ 8 per fiber in the r−band at a surface bright-
ness of 23 ABmag arcsec−2, which is the typical case for the
outskirts of MaNGA targets. The 2′′ fiber diameter corre-
sponds to a ∼ 1kpc spatial resolution at the peak redshift
(z ∼ 0.03) of the MaNGA sample.
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2.2 Data Analysis

The MaNGA sample and data products used here were
drawn from the internal MaNGA Product Launch-6 (MPL-
6), which includes ∼4633 galaxies observed through July
2016 (the first three years of the survey). The MaNGA data
analysis pipeline (DAP, Westfall et al. 2018), which uses
pPXF (Cappellari & Emsellem 2004) and a subset of stellar
templates drawn from the MILES library (Sánchez-Blázquez
et al. 2006), fits the stellar continuum in each spaxel and
produces estimates of the stellar absorption lines, along-
side measurements of 21 major nebular emission lines in the
MaNGA wavelength coverage. In addition to analysing each
individual spaxel, the DAP also builds spatially Voronoi-
binned datacubes using the algorithm of Cappellari & Copin
(2003), and performs the analysis on these binned spectra.

For this study we extract from the DAP products
named “SPX-GAU-MILESHC” (analysis of each individual
pixel) the projected stellar rotation velocity (vstar), stellar
velocity dispersion (σstar), rotation velocity of ionized gas
(vgas) and velocity dispersion of ionized gas (σgas). From the
Voronoi-binned datacubes named “MAPS-VOR10-GAU-
MILESHC”, which are binned to S/N∼ 10 in r−band, we
extract the spectral indices Dn4000 and HδA, and nebular
emission line fluxes and equivalent widths. Note that emis-
sion line fluxes and equivalent width values are corrected for
underlying stellar continuum absorption. The index Dn4000
measures the strength of the 4000Å break parameterized as
the ratio of the flux density between two narrow continuum
bands 3850∼3950 and 4000∼4100Å (Bruzual A. 1983). The
Lick Index HδA is the equivalent width of Hδ absorption
feature in the bandpass 4083−4122Å with continuum band-
passes of 4041.6−4079.75Å and 4128.5−4161.0Å (Worthey
et al. 1994; Worthey & Ottaviani 1997).

The derived galaxy parameters required in this work in-
cluding total stellar mass (M∗), lighted-weighted and mass-
weighted stellar age, and Sérsic index. The total stellar mass
was taken from the MPA-JHU catalog1 . The stellar M/L
are obtained by comparing u, g, r, i, z colors of galaxies to
a large grid of model galaxy colors following the method-
ology described in Brinchmann et al. (2004) and Tremonti
et al. (2004). The light and mass-weighted stellar ages are
from MaNGA-Pipe3D value-added catalog (Sánchez et al.
2016a,b). The Sérsic index are taken from MaNGA Py-
Morph photometric catalogue (Fischer et al. 2019).

2.3 Sample Selection

There are multiple ways in which to select PSB galaxies.
As described in Section 1, traditionally PSBs are identified
based on the presence of strong Balmer absorption (an in-
termediate age stellar population) and weak or absent emis-
sion lines (e.g. Hα and/or [O ii]) indicating no ongoing star
formation. Recent studies have challenged the strict limit
placed on nebular emission lines, which biases the PSB se-
lection against galaxies hosting narrow line AGN or shocks,
and excludes galaxies that are post-starburst but not (yet)
fully quenched (Yan et al. 2006; Wild et al. 2007, 2009; Ko-
cevski et al. 2011; Yesuf et al. 2014; Alatalo et al. 2014).

1 https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/
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Figure 1. The HδA absorption line vs. Hα emission line equiv-
alent width for SDSS DR7 galaxies (greyscale) and toy model
evolutionary tracks (coloured lines). The solid lines show expo-
nentially declining star formation histories with e-folding times of
τ =0.5 Gyr (red) to τ =5 Gyr (blue). The dashed lines have an
additional burst of star formation after 6.5 Gyr, followed by trun-
cation with e-folding times given in the legend. For all models the
youngest point is marked by the magenta star, and they evolve
to the bottom left over time. The black solid line indicates the
region of our PSB selection box. Y-axis is in log-space when Hα
emission line equivalent larger than 1 and in linear space when it
is smaller than 1.

However, not selecting on emission lines means some PSBs
are missed where their Balmer lines are indistinguishable
from the star-forming population, and can lead to contami-
nation from dust-obscured starbursts (Poggianti &Wu 2000;
Wild et al. 2007).

In this work, we adjust the traditional method to iden-
tify galaxies with lower Hα nebular emission than expected
for the strength of their Balmer absorption lines. This allows
us to include galaxies in the process of shutting down their
star formation, although may still exclude spaxels contain-
ing gas excited by shocks or a central AGN. Fig. 1 shows
the strong correlation between W(Hα) and HδA for a sam-
ple of galaxies from the SDSS Data Release 7 using central
fibre spectroscopy. The SDSS-DR7 sample includes 192,678
galaxies from the MPA-JHU catalog with zWarning = 0
and spectral median S/N> 10 per pixel, redshift in the
range of 0.01 < z < 0.08, and stellar mass in the range
of 108 < M ∗/M⊙ < 1012. Overplotted are toy model evolu-
tionary tracks created from Bruzual & Charlot (2003) spec-
tral synthesis models assuming a Chabrier (Chabrier 2003)
initial mass function (IMF), where the Hα emission is com-
puted from the model spectrum Lyman continuum flux fol-
lowing appendix B in Hunter & Elmegreen (2004). The mod-
els have an exponentially declining star formation rate with
an e-folding time of τ ∼ 5Gyr, then a second exponentially
declining starburst is added after 6.5Gyr of evolution. The
tracks for bursts with a range of decline times are shown.
We identify PSB spaxels where they lie below the starburst
track with an e-folding time of 300Myr (marked by the black
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solid line), the same decline time found by Wild et al. (2010)
for central starbursts in the SDSS DR7. For this model, the
W(Hα) falls to 10Å after ∼ 1Gyr.

In summary, we first require the spaxels to have a me-
dian spectral S/N > 10 per pixel, in order to obtain a ro-
bust measurement of HδA. We then select a spaxel to be
a PSB if it has HδA>3Å, W(Hα)<10Å and logW(Hα)<
0.23×HδA−0.46. Clearly the toy models should be taken
as indicative only, with the previous star formation history,
burst mass fraction and dust content of the galaxy playing
a role in the true evolution of these spectral measurements.
Our aim here is to select starburst regions that have recently
and rapidly truncated their star formation, but equally to
include starburst regions that have not yet fully quenched
their star formation.

We identify 406/4633 galaxies with more than 6 con-
tiguous spaxels that satisfy these selection criteria. Finally,
a careful visual check was done to remove contaminants with
foreground stars and background galaxies which affect the
continuum fit. This reduces the sample to 360 galaxies. Fig-
ure 2 shows four examples of galaxies with PSB regions. The
left panel shows the SDSS g, r, i−images, the middle panel
shows the PSB regions in red, the spectrum located at the
position of the white-solid dot is shown in the right panel,
where the observed spectrum is in black and the best-fit
continuum models output by the MaNGA DAP in red.

We visually classify these 360 galaxies into three types:
galaxies with central post-starburst regions (CPSB, top row
of Figure 2); galaxies with ring-like post-starburst regions
(RPSB, second and third rows of Figure 2); and those with
irregular outskirt PSB spaxels (IPSBs, bottom row of Fig-
ure 2). The third galaxy is classified as RPSB since it is
edge-on, and the two PSB regions in these RPSBs have sim-
ilar rotation velocity with inverse rotation direction. In sum-
mary, we find 31 CPBs, 37 RPSBs and 292 IPSBs. We note
that both the RPSBs and IPSBs are entirely new classes of
PSBs.

The 31 CPSBs corresponds to a fraction of 0.7%
(31/4633) over the whole MaNGA sample. This low frac-
tion is consistent with the results from Goto et al. (2003) and
Goto (2007b), who claim that the CPSB galaxies are a rare
population (less than 1%) in the local Universe, although
the selection criteria is not exactly the same. The incidence
of localised PSB regions is clearly a much more common
phenomenon. These could be due to individual bright star
clusters or cluster complexes with intermediate ages. We will
leave the study of these objects to future work, and here fo-
cus on the CPSBs and RPSBs.

2.4 Control samples

In order to quantify the difference between the PSB galaxies
and typical galaxies, we built a control sample of galaxies
without PSB regions. For each PSB, we select 10 control
galaxies which are closely matched in stellar mass and global
Dn4000. The global spectral indices are not produced as
part of the DAP, therefore we stack the spectra across the
full spatial extent of the MaNGA observations in order to
measure them.

Our aim is to compare the PSB galaxies to plausible
progenitors, therefore the motivation for choosing these two
matching parameters is the following: (i) constraining the

control galaxies to have similar stellar mass is extremely
important because stellar population properties are known
to vary strongly with stellar mass, (ii) constraining global
Dn4000 ensures the control samples have stellar populations
with similar light-weighted ages when averaged over the past
few Gyr i.e. prior to any event that caused the post-starburst
features. This match will not be perfect, as Dn4000 increases
following a shut down in star formation, but avoids the need
for extensive model dependent spectral fitting that is beyond
the scope of this paper.

3 RESULTS

Tables 1 & 2 list the samples of CPSB and RPSB galaxies,
together with relevant parameters used in this paper. Fig-
ures 3 and 4 show examples of the spatially resolved stellar
velocity, gas velocity, Dn4000, HδA and W(Hα) maps of an
example CPSB and RPSB galaxy that are broadly typical
of the samples. The bottom panels show the radial gradients
of the spectral indices, in units of the effective radius.

In the following sections we discuss the global proper-
ties of the CPSB and RPSB host galaxies, their kinematics
and stellar populations. We are interested in understanding
whether the new RPSB population is related to the CPSB
population, and whether the spatially resolved maps are con-
sistent with the hypothesis that (C)PSB galaxies are caused
by major mergers.

3.1 Global population properties

The left panel of Figure 5 shows the CPSB and RPSBs on
the global Dn4000- stellar mass relation as red and blue dots
respectively. Contours show the SDSS DR7 sample (as de-
scribed in Section 2.3), while the grey dots show the full
MaNGA sample. For the MaNGA galaxies, Dn4000 is mea-
sured from the global spectrum, whereas for the SDSS DR7
sample, Dn4000 is measured from the central fibre spec-
troscopy. We choose to show Dn4000 rather than SFR or
sSFR as it can be measured consistently for all galaxies.
Plotting global SFR from the MPA-JHU catalogue instead
of Dn4000 provides qualitatively the same picture, but re-
lies on extrapolation of the fibre measurements using galaxy
colours which we found to be biased for the PSB galaxies
in MaNGA. It is clear that most RPSBs are located on the
star forming main sequence while the CPSBs are primar-
ily located in the green valley, between the red and blue
sequence.

Fischer et al. (2019) fit all the MaNGA DR15 galaxies
with a single Sérsic profile, released as part of the MaNGA
PyMorph catalog. The right panel of Figure 5 shows the
distribution of Sérsic index (n) for CPSBs (red) and RPSBs
(blue). These values are reproduced in Tables 1 and 2 for the
CPSB and RPSB samples respectively. A higher fraction of
the CPSB galaxies than RPSB galaxies have n > 3, con-
sistent with disk-free elliptical galaxies. However, both sam-
ples cover a wide range of values indicating both types are
hosted by galaxies with diverse morphologies. This is con-
sistent with results found for CPSBs in SDSS DR7 (Pawlik
et al. 2018).
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Figure 2. Examples of MaNGA galaxies with PSB regions, MaNGA ID for each galaxy is shown in the right panel. The top row shows
a galaxy with central post-starburst regions (CPSB). The second and third rows show galaxies with ring-like post-starburst regions
(RPSB) and the bottom row shows a galaxy with an irregular region in the outskirts (IPSBs). For all four examples, the left panel shows
the SDSS g, r, i−image, the middle panel shows the post-starburst spaxels in red, the spectrum located at the position of the white-solid
dot is shown in the right panel, with the observed spectrum in black and the best-fit continuum model output by the MaNGA DAP in
red.
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Figure 3. The spatially resolved stellar velocity, gas velocity, Dn4000, HδAand W(Hα) of an example CPSB galaxy, MaNGA ID: 1-
134964. Top: the SDSS three-color image, stellar and gas velocity fields. The solid line over-plotted on each velocity field shows the
kinematic position angle, with the two dashed lines showing the 1σ error range. Middle: the Dn4000, HδAand W(Hα)maps. Bottom: the
radial profiles of Dn4000, HδA and W(Hα). The black dots show the parameter value of each spaxel, blue dots show the median values
in bins of 0.1 Re. The red solid line is a linear fit to the binned median values, with the value of the fitted slope given in each panel.

3.2 Stellar populations

In this section, we study the stellar population distribution
of the galaxies with PSB regions using continuum spectral
indices Dn4000 and HδA as well as the Hα emission line.
Figures 3 and 4 show maps and radial profiles of Dn4000,
HδA and W(Hα) for the example CPSB and RPSB galaxies.
These galaxies are typical of their classes, and the maps im-
mediately illustrate the primary differences between them.

The top panel of Figure 6 shows the averaged radial
profiles of Dn4000, HδA and W(Hα) for the CPSB (red

solid line) and RPSB (blue solid line) samples. The error
bars show the 30% to 70% percentile of the distributions for
the CPSBs and RPSBs. The relevant control samples are
shown as dashed lines. The bottom panel shows the distri-
butions of the radial profile gradients of Dn4000, HδA and
logW(Hα). These slopes are reproduced in Tables 1 and
2. Both the CPSB and RPSB samples have positive gra-
dients in Dn4000, indicating younger stellar populations in
the central regions, with CPSBs having older stellar popu-
lations (higher Dn4000) on average than RPSBs across the
entire galaxy. However, the CPSB and RPSB samples dif-
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Figure 4. The same as Fig. 3 for an example RPSB galaxy, MaNGA ID: 1-149557.

fer in their radial profiles of both HδA and W(Hα): while
in the CPSBs the Balmer absorption decreases with radius
and W(Hα) is weak or absent and almost flat, the RPSBs
show strong Balmer absorption over the whole galaxy, while
the W(Hα) is strong in the centre and decreases sharply
with radius. We have verified that the central Hα emission
in the RPSBs is primarily contributed by ongoing star for-
mation rather than shocks or AGN: 33 of 37 RPSBs show
star-forming/composite-like line ratios on the most com-
monly used Baldwin et al. (1981) diagram of [NII]/Hα vs.
[OIII]/Hβ flux ratios (Kewley et al. 2001; Kauffmann et al.
2003).

It is the differing radial gradients that lead to the dif-
ferent classifications of central or ring-like PSB: the CPSBs

are typically only classified as PSBs in the centre, as their
Balmer absorption weakens with radius, whereas the RPSBs
are not classified as PSBs in the centre due to their strong
central W(Hα). This shows that while the CPSBs have sup-
pressed star formation throughout their bulge and disk, and
clear evidence of rapid quenching (i.e. strong Balmer ab-
sorption) only in the central regions, the RPSBs only show
clear evidence of recently rapidly suppressed star formation
in their outer regions. This difference in central star forma-
tion also explains the different locations of the 2 populations
in the global Dn4000-stellar mass relation with the RPSBs
being located in the star-forming main sequence.

The stellar population gradients for the control samples
are also shown in Figure 6 as dashed lines and triangles. For
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Table 1. The sample of CPSB galaxies. (1) MaNGA identifier; (2) Right Ascension; (3) Declination; (4) log M∗; (5) Dn4000; (6)
inclination for galaxies with low bulge fractions (fracDEV < 0.8); (7) Sérsic index; (8) slope of Dn4000 gradient; (9) slope of HδA
gradient; (10) slope of logW(Hα) gradient; (11) kinematic misalignment between gas and stars (|PAkin,star − PAkin,gas|); (12) notes of
unusual features (EML = emission line).

MaNGAID RA DEC logM∗ Dn4000 i n ∇Dn4000 ∇HδA
∇logW(Hα) ∆PAkin Features

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1-134964 246.76069 43.476100 10.95 1.54 - 3.2 0.100 -2.963 0.286 25 ± 4 tidal tail
1-146344 120.06709 29.471437 9.97 1.49 - 2.0 0.099 -1.900 0.143 180 ± 26 misaligned
1-149589 170.72345 51.341778 9.85 1.55 53 1.2 0.055 -1.112 -0.182 0 ± 20 -
1-149709 173.41287 52.674587 10.19 1.47 - 5.1 0.104 -3.969 -0.283 137 ± 7 misaligned
1-152474 114.45795 28.652892 8.85 1.53 3 1.6 -0.054 -0.437 0.244 - no EML
1-163965 120.05960 26.698015 10.32 1.67 - 4.5 0.133 -2.114 0.037 130 ± 7 misaligned
1-178374 260.61132 28.309696 10.78 1.60 - 8.0 0.055 -0.991 -0.222 - tidal tail
1-178823 311.76380 0.43677787 9.40 1.60 53 - 0.473 -3.173 -0.447 150 ± 10 misaligned
1-179682 317.42261 0.62776940 9.45 1.57 - 7.2 0.079 -2.818 -0.191 - no projected

rotation
1-210114 242.58533 41.854895 10.74 1.57 - 8.0 0.042 -1.604 -0.529 - tidal tail
1-248389 240.65805 41.293427 10.59 1.62 - 7.0 0.088 -2.318 -0.977 50 ± 4 tidal tail
1-250969 206.29627 42.319513 10.11 1.50 61 1.9 -0.047 -1.100 0.119 0 ± 11 bar
1-295343 246.48074 25.411607 9.91 1.57 - 5.0 0.099 -2.730 0.658 180 ± 14 misaligned
1-29809 358.46882 -0.0987309 9.45 1.59 43 1.5 0.029 -1.901 -0.317 143 ± 33 misaligned
1-301834 148.42110 35.701876 9.77 1.50 - 3.3 -0.007 -0.455 -0.057 93 ± 16 misaligned
1-38062 49.228867 -0.04200700 10.07 1.48 - 4.8 0.080 -2.955 -0.220 25 ± 9 disturbed gas

velocity field
1-38166 49.946854 0.62382219 9.28 1.42 - 4.5 0.298 -2.349 -0.300 - no projected

rotation
1-38374 50.888599 -0.43853564 9.88 1.59 69 1.5 -0.012 -1.018 0.228 93 ± 7 misaligned
1-384400 126.75586 21.706752 9.99 1.48 78 1.8 0.074 -2.367 -0.688 90± 4 misaligned
1-384486 127.31796 23.809021 9.28 1.52 - 6.5 0.153 -6.250 0.699 - no EML
1-385499 129.99929 23.413400 8.97 1.32 70 0.7 -0.025 0.487 0.136 0±11 -
1-404249 194.52342 29.017353 9.37 1.50 82 1.8 -0.048 -0.256 0.147 - no EML
1-43584 117.06113 39.045731 8.91 1.26 81 0.7 -0.099 1.137 0.545 12±62 -
1-44447 120.63984 42.392705 10.04 1.56 - 3.5 0.096 -2.585 -0.365 18±63 disturbed gas

velocity field
1-456744 194.33162 27.613856 9.16 1.54 74 1.7 0.114 -0.447 0.460 - no EML
1-456850 194.63449 28.377961 8.62 1.42 44 1.3 0.204 2.281 0.885 - no EML
1-457004 196.26374 27.537037 9.17 1.49 64 1.7 -0.045 0.507 0.797 - no EML
1-457130 195.33050 27.860463 9.02 1.35 3 2.0 0.174 -1.345 -0.842 - no projected

gas rotation
1-560826 236.16573 38.425357 11.03 1.61 32 5.2 0.192 -3.816 -0.448 - tidal tail
1-72913 127.48937 44.940158 10.79 1.62 - 4.4 0.045 -1.892 -0.318 124±37 misaligned
12-98126 230.50740 43.534632 9.69 1.59 43 5.7 -0.075 2.678 0.140 - no EML

the CPSBs, we find that their Dn4000 profiles are slightly
more positive on average than the control sample, consistent
with a recent centrally concentrated star-formation episode
occuring in the past several Gyr. However, the weak W(Hα)
compared to the controls indicates that ongoing star for-
mation has been strongly suppressed across the whole disk.
The excess of Balmer absorption in the central regions of
the CPSBs further indicates a rapid shut down in star for-
mation has occurred in the last Gyr, which is not seen in
the controls. The RPSBs differ from their controls in all
three indices, with the controls having a negative gradient
in Dn4000 and strong positive gradient in HδA, indicating
older stellar populations in the centre, as expected for or-
dinary bulge-dominated star-forming galaxies. The controls
also show a constant W(Hα) with radius, indicating ongoing
star formation throughout the galaxy, significantly different
from the sharp decline with radius seen in the RPSBs. We
can see that HδA∼ 5Å is not unusual in the outer regions of

ordinary star-forming galaxies; it is only the combination of
strong Balmer absorption and weak emission line strength
that makes the outer regions of the RPSBs stand out. The
HδA∼ 5Å in the central region of the RPSBs is consistent
with ongoing star formation rather than a quenched popu-
lation (see Figure 2). Compared to the control samples, this
ongoing star formation is significantly stronger, perhaps in-
dicating a time limited starburst rather than more ordinary
long-term star formation.

There are several possible scenarios that could cause
the observed radial gradients in stellar populations of the
two samples. It is possible that either the outer regions
of the CPSBs never underwent a starburst, or that the
post-starburst is fading more quickly with increasing ra-
dius, which in turn could imply either that the burst was
weaker in the outer regions, or that it occurred earlier. For
the RPSBs, the starburst nature of the central regions com-
bined with the quenching of the outer regions suggests that
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Table 2. The sample of RPSB galaxies. (1) MaNGA identifier; (2) Right Ascension; (3) Declination; (4) log M∗; (5) Dn4000; (6)
inclination for galaxies with low bulge fractions (fracDEV < 0.8); (7) Sérsic index; (8) slope of Dn4000 gradient; (9) slope of HδA
gradient; (10) slope of logW(Hα) gradient; (11) kinematic misalignment between gas and stars (|PAkin,star − PAkin,gas|); (12) notes of
unusual features (EML = emission line).

MaNGAID RA DEC logM∗ Dn4000 i n ∇Dn4000 ∇HδA
∇logW(Hα) ∆PAkin Features

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1-134004 238.44858 47.404958 9.38 1.48 57 1.4 0.136 -0.978 -0.548 149 ± 22 misaligned
1-149557 171.77902 51.131645 9.15 1.42 38 1.4 0.102 -1.137 -0.703 156 ± 87 migalign
1-153247 119.36531 33.257935 8.94 1.44 59 1.7 0.088 -2.071 -0.703 149 ± 90 misaligned
1-167582 154.48083 46.603286 9.94 1.37 69 1.5 0.122 -1.391 -0.994 43 ± 18 misaligned
1-201355 117.05387 28.225092 10.14 1.30 3 - 0.073 0.789 -0.441 6 ± 8 interacting/

pre-merger
1-211002 247.14945 39.719740 9.70 1.49 37 0.7 0.090 0.044 -0.544 32 ± 16 misaligned
1-216976 135.75897 40.433985 10.60 1.45 6 4.5 0.257 -3.853 -1.487 - tidal tail
1-217015 136.11419 41.486207 9.18 1.36 51 1.8 0.053 -0.065 -0.249 6 ± 17 tidal tail

1-217221 138.75315 42.024390 10.27 1.23 64 1.0 0.104 0.874 -0.572 0 ± 4 disturbed gas
velocity field

1-258306 183.57898 43.535279 9.54 1.24 72 2.1 0.150 0.552 -0.960 12 ± 11 disturbed gas
velocity field

1-258380 181.54597 45.149206 10.96 1.43 - 4.0 0.031 -0.464 -0.477 0 ± 4 -
1-277246 166.18780 45.156430 9.37 1.52 20 1.6 0.246 -2.150 -0.937 - face-on, no pro-

jected rotation
1-277691 164.58519 40.788234 9.63 1.34 76 0.7 0.002 -0.005 -0.031 0 ± 9 edge-on
1-29512 356.75183 -0.4473874 11.13 1.34 - 4.2 0.163 1.470 -0.471 0 ± 7 bar
1-321354 218.94756 47.007467 9.59 1.31 66 1.6 0.134 -1.272 -0.264 6 ± 15 edge-on
1-373878 228.41485 28.244461 9.94 1.28 87 1.1 0.083 0.403 -0.814 0 ± 13 interacting/

pre-merger
1-37862 47.029452 0.4562083 10.96 1.41 - 6.0 0.066 -0.250 -0.399 12 ± 4 tidal tail
1-38041 49.457454 -0.5546585 9.94 1.52 66 1.4 0.187 -3.188 -1.609 124 ± 10 misaligned
1-38168 49.929339 0.5654778 10.06 1.28 - 5.6 0.182 0.765 -1.115 0 ± 11 interacting/

pre-merger
1-38470 51.708914 0.19858883 9.74 1.34 - 5.3 0.115 -0.722 -0.032 12 ± 18 tidal tail
1-386695 137.98351 27.899270 10.11 1.31 76 1.3 0.152 1.440 -0.686 7 ± 11 bar
1-387081 139.17787 28.054233 10.27 1.41 86 1.0 0.095 -0.594 -0.877 18 ± 16 edge-on
1-392007 154.97835 36.325739 10.20 1.49 72 2.4 -0.021 -0.003 -0.202 6 ± 4 edge-on
1-405760 196.10272 36.479950 10.30 1.48 87 1.0 -0.048 -0.394 -0.751 178 ± 4 misaligned
1-419380 183.00790 35.404399 9.89 1.41 57 3.6 0.290 -3.467 -1.290 172 ± 6 misaligned
1-456309 194.76938 26.958192 9.42 1.47 73 4.1 0.013 2.594 0.262 - no EML
1-456915 194.73314 27.833445 10.54 1.51 87 0.8 -0.164 1.821 -0.043 18 ± 4 disturbed gas

velocity field
1-457200 196.47287 28.112434 10.29 1.43 71 1.7 0.036 -0.200 -1.348 18 ± 12 bar
1-548626 120.55787 37.150076 10.66 1.40 87 1.4 -0.152 2.877 -0.627 0 ± 4 interacting/

pre-merger
1-558926 140.41142 43.726152 10.38 1.41 66 1.2 0.057 -0.942 -0.409 0 ± 4 tidal tail
1-574504 123.82033 46.075253 10.50 1.26 62 - 0.415 4.120 -1.183 12 ± 4 bar
1-585632 143.51035 50.027486 10.45 1.54 23 2.4 -0.007 0.835 -0.946 - interacting/

pre-merger
1-606105 147.66431 44.331163 9.48 1.47 60 1.9 0.114 -2.462 -1.336 31 ± 40 misaligned
1-625070 198.78425 30.403775 10.35 1.37 43 1.0 0.149 1.232 -0.984 12 ± 4 bar
1-626502 203.05706 26.949981 10.52 1.48 74 1.2 0.058 0.163 -1.133 0 ± 4 bar
1-630590 218.97634 53.391637 10.36 1.53 75 1.0 0.075 -0.129 -1.061 0 ± 6 bar
1-633000 233.23196 42.438257 10.10 1.46 64 2.0 0.118 -1.098 -0.999 156± 18 misaligned

either a starburst has migrated from the outside inwards, or
that the process that caused a central starburst has similarly
led to the depletion of gas in the outer regions, potentially
through strong gas flows from the outside-in.

Figure 7 shows the radial gradients in lighted-weighted
and mass-weighted stellar age for the PSB samples and their
controls, from the Pipe3D Value Added Catalog (Sánchez
et al. 2016a,b). Since Dn4000 is a good indicator of light-
weighted age of a stellar population, the radial gradients of

light-weighted age and Dn4000 are similar. Light-weighted
age enhances the differences between the central regions of
the PSBs and the control samples, due to the large frac-
tion of very young stars which dominate the light-weighted
age more than they contribute to Dn4000. Interestingly, the
mass-weighted ages of the RPSB galaxies indicates a sub-
stantial old stellar population in their centres (8Gyr), con-
sistent with the control sample. This suggests the current
central star formation is simply a “frosting” on top of a dom-
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inant old central population. The mass-weighted age profiles
of the CPSBs indicates a very different history, with a higher
fraction of stellar mass formed more recently throughout
the whole galaxy compared to both control samples and the
RPSBs. The very different behaviors in the mass-weighted

age of CPSBs and RPSBs indicates that they have very
different star formation histories, thus it is impossible for
the RPSBs to evolve into CPSBs through secular process.
Equally, the similarity in mass-weighted age between the
two control samples, contrasted with the difference in the
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CPSBs supports significant disruption of the stellar com-
ponent during the event that triggered the post-starburst
features. Such a disruption event is not as evident in the
RPSB sample.

Finally, we investigate the distribution of PSB spaxels
in the HδA vs. W(Hα) plane for the RPSB galaxies with data
points color-coded by R/Re. Figure 8 shows examples of
two seemingly different classes of RPSB galaxies. At the top
(type I) the entire galaxy lies below the star-forming main
sequence, with spaxels falling diagonally along the constant-
burst-strength model track. At the bottom (type II), the
spaxels fall vertically, with the central region still lieing on
the star-forming main sequence, while the outer spaxels have
lower W(Hα).

The type I RPSBs appear to be undergoing a global
shut down in star formation, similar to that seen in
the CPSBs but less complete, and is consistent with our
constant-burst-strength models with the starburst occurring
first in the outer regions of the galaxy and moving inwards
over time. Alternatively, the outer regions could be quenched
first, for example due to strangulation processes where the
infall of fresh gas is shut off.

The type II RPSBs are consistent with having a range
of quenching timescales, with the outer regions quenching
more quickly than the inner regions. It is possible that the
inner regions will continue to form stars following the event
that caused the outer regions to quench. Alternatively these
galaxies are undergoing a rapid quenching following a star-
burst that occured earlier in the outer regions than the in-
ner regions, similar to the Tpye I RPSBs, but at a later time
than the 6.5Gyr assumed by our toy models (moving the red
dashed line to the left). This type could be caused by ram
pressure stripping - the outer regions are most vulnerable to
being stripped and quench the quickest. Or they might be
linked to mergers or interactions that cause the gas in the
galaxies’ outskirts to flow inward causing a central starburst
and rapid outer quenching.

Again, the question is whether these two types are evo-
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Figure 9. Averaged Vstar/σstar versus the radius for CPSB (red-
solid line) and RPSB (blue-solid line) samples, as well as their
control samples (red-dashed and blue dashed lines). The error
bars indicate the 30th and 70th percentiles of the distribution.

lutionarily linked, with Type II being younger than Type I,
or whether they are caused by distinct processes. With more
extensive modelling, the current PSB samples may provide
a way to disentangle various suggested quenching mecha-
nisms.

3.3 Kinematics and morphological features

In the present-day Universe, the majority of galaxies (>85%)
are consistent with being axisymmetric rotating oblate
spheroids and only a minor fraction of galaxies have com-
plex dynamics (for a review, see Cappellari 2016). The ratio
of ordered to random stellar motion in galaxies has a strong
dependence on luminosity or stellar mass (Illingworth 1977;
Davies et al. 1983; Emsellem et al. 2011; Brough et al. 2017;
van de Sande et al. 2017a; Veale et al. 2017a; Green et al.
2018), which suggests a link between the build-up of stel-
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lar mass and angular momentum over time. Major mergers
are key candidates leading to a dramatic change in the mor-
phology and spin of galaxies, but ultimately mergers are
only one of many physical processes at play, and continuing
gas accretion and star formation can reshape the remnant
morphology and kinematics (Naab et al. 2014, and citations
therein).

Figure 9 shows the average stellar velocity to dispersion
ratio, vstar/σstar, vs. radius for the CPSB (red solid) and
RPSB (blue solid) galaxies, as well as their control samples
(red and blue dashed lines). The error bars indicate the 30th
and 70th percentiles of the distribution. vstar and σstar are
calculated from the spectral fitting described in Section 2.2.
A higher (lower) value of vstar/σstar corresponds to more
(less) rotational support, and therefore this plot can help us
to discern any difference in the formation/interaction his-
tory of the PSB samples. Comparing Figure 9 with Figure
2 of Emsellem et al. (2007), we find that the averaged v/σ
radial profiles are consistent with fast rotators for all four
samples, which is not surprising given the high mass and
rareness of slow rotators. However, the CPSBs have notice-
ably lower v/σ than the other three samples, while the RPSB
galaxies are much more consistent with their control sample.
This indicates that the CPSBs have suffered from more fre-
quent and/or violent interactions, mergers or gas accretion
processes (Lagos 2018).

Such processes can also lead to the inflows of gas re-
quired to induce both the excess central star-formation in

the RPSB galaxies compared to their controls, and the cen-
tral post-starbursts in the CPSB galaxies. For example, ac-
cretion of counter-rotating gas from a gas-rich dwarf or the
cosmic web onto a star-forming galaxy will lead to the redis-
tribution of angular momentum from gas-gas collisions be-
tween the pre-existing and the accreted gas, which greatly
accelerates gas inflow (Chen et al. 2016). However, addi-
tional processes such as bars may play a role (Hawarden
et al. 1986; Lin et al. 2017; Chown et al. 2019).

In order to understand the possible prevalence of such
mechanisms in the PSB samples, we investigate the kine-
matic misalignment between stars and ionized gas, mea-
sured as the difference in the kinematic position angle,
∆PAkin = |PA∗ − PAgas|, where PA∗ is the kinematic po-
sition angle of the stars and PAgas is the kinematic position
angle of the ionized gas. The kinematic PA is measured us-
ing FIT KINEMATIC PA2 (Krajnović et al. 2006), and is
defined as the counter-clockwise angle between north and a
line that bisects the velocity field of gas or stars, measured
on the receding side. The solid lines in the top row of Fig-
ures 3 and 4 show the best fit position angle to our example
galaxies, while the two dashed lines show the ±1σ error. The
example CPSB galaxy is a star-gas misaligned galaxy with
∆PAkin = 25deg, while the example RPSB shows no regu-
lar rotation in ionised gas. The values are listed in Tables 1

2 https://www-astro.physics.ox.ac.uk/~mxc/software/
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Figure 10. The distribution of ∆PAkin (= |PA∗ − PAgas|) for
CPSB (red) and RPSB (blue) samples in the top panel and the
relevant control samples in the bottom panel. The vertical black
lines mark the place where ∆PAkin = 30deg, typically used to
delineate ‘normal’ from ‘misaligned’ rotation.

and 2 for the CPSBs and RPSBs respectively. There are 13
CPSBs and 4 RPSBs without ∆PAkin measurements either
due to no emission lines or no obvious rotation, we do not
consider them in the analysis of misaligned kinematics.

Additionally we use deep images to identify bars, tidal
tails and other interaction features in our samples. We use
the Legacy Surveys3, which combines imaging projects on
different telescopes, including the Beijing-Arizona Sky Sur-
vey (BASS), the DECam Legacy Survey (DECaLS) and the
Mayall z-band Legacy Survey (MzLS). The images are 1–2
magnitudes deeper than SDSS. Our visual classifications are
given in the final column of Tables 1 and 2.

The top panel of Figure 10 shows the distribution of
∆PAkin for CPSB (red) and RPSB (blue) samples, while
the ∆PAkin distribution of the control samples are shown
in the bottom panel. Of the 17 CPSB galaxies for which we
have both stellar and emission line kinematic measurements,
10 are misaligned (defined as ∆PAkin >30 deg). A further
7 show other signs of disturbance such as tidal tails or dis-
turbed gas velocity fields. For the 33 RPSBs with both stel-
lar and emission line kinematic measurements, 10 of them
have misaligned gas and stellar kinematics, and a further
13 show other interaction features. Therefore, we conclude
that& 50% of both CPSB and RPSB galaxies have evidence
for kinematic or morphological disturbance. For the CPSB
control samples, on average we find 1/31 galaxies with in-
teraction evidence, and 3/31 galaxies with misaligned gas
and stellar kinematics. For the RPSB control samples, on
average we find 1/37 misaligned galaxy and no interaction
evidence. The obvious difference between PSB galaxies and

3 http://legacysurvey.org

their control samples suggests that mergers, interaction or
recent gas accretion may plausibly cause the formation of
PSB regions.

4 DISCUSSION

The optical spectral features of post-starburst galaxies have
been interpreted as a signature of an abrupt decrease in
the star-formation activity, likely following a recent star-
burst. This means that PSB regions have rapidly quenched
their star formation in the recent past and we can extrap-
olate to hypothesise that they are in transition from the
blue cloud to the red sequence. Thus, they provide a unique
insight into galaxy evolution and may offer a means of con-
straining the origin of the bimodal colour distribution of
galaxies. However, the most direct and important problems
regarding PSBs include: (1) what triggers the starburst at
the beginning? (2) what mechanism quenches the starburst
on the short timescales (of order a single dynamical period)
required to produce the PSB features?

To address these two questions, much work has been
done in the past decade. Based on hydrodynamic simula-
tions, a popular galaxy evolutionary picture has emerged in
which two gas-rich disks merge, tidal torques channel gas
to the galaxy centers and progress to heavily dust-obscured,
central starbursts, which is coupled with SMBH fueling and
subsequent expulsion of gas, leading to the development of
quiescent spheroids (e.g. Hopkins et al. 2006). The PSB
phase can be fit into this picture as feedback clears out the
leftover gas, both star formation and black hole growth are
ceased, the galaxies pass through the post-starburst phase
before they become “red and dead”.

Observational evidence supporting this picture includes
the high level of morphological disturbance in local PSB
galaxies (Section 3.3 and Zabludoff et al. 1996; Yang et al.
2004, 2008; Pawlik et al. 2018), and fast outflowing gas de-
tected in the Mg ii 2796, 2803 absorption lines of z > 0.5
PSBs (Tremonti et al. 2007, Maltby et al. subm), which
may be a fossil galactic wind launched at the QSO stage.
However, the low stellar mass of local PSBs, as well as the
absence of powerful AGN in the local Universe makes this
scenario less plausible for our sample. Additionally, the pres-
ence of cold gas in many PSBs shows that the gas has not
been effectively expelled (Rowlands et al. 2015; French et al.
2015). The limited resolution of the simulations, and neces-
sary implementation of sub-grid star formation and feedback
recipes, means we are still not sure whether a violent ma-
jor merger/interaction is absolutely necessary to produce a
starburst or the strong Balmer absorption lines seen in post-
starburst galaxies, or whether an AGN is necessary or able
to halt the starburst rapidly enough to produce galaxy wide
post-starburst features. Our catalogue of PSB regions in the
galaxy-wide MaNGA survey allows us to address these ques-
tions from a new angle, compared to the single fibre surveys
carried out in the past. With this new large and uniform
IFU sample, we can get some new clues for understanding
the origins of the PSB features.

For the CPSBs, the strong radial gradients in Dn4000
and HδA certainly support a scenario in which gas has flowed
rapidly into the centre of the galaxy, leading to a strong cen-
tral starburst. The high fraction (& 50%) of objects with
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misaligned gas-star kinematics or tidal features supports the
idea that a merger has triggered the gas inflow in the ma-
jority of cases. The globally young mass-weighted age indi-
cates a violent process has mixed the stars throughout the
galaxy, and the significant decrease in stellar v/σ compared
to the control sample again implies a violent interaction or
merger has occurred. It seems unlikely that less violent pro-
cesses, such as misaligned gas accretion from a neighbour-
ing dwarf or the cosmic web could contribute significantly
to the population. The weak W(Hα) throughout the disk
implies subsequent galaxy-wide quenching of the star forma-
tion, which could be caused by complete gas exhaustion, ex-
pulsion or some additional heating mechanism. While AGN
feedback has been postulated as a plausible mechanism for
global quenching, it is unclear whether it can cause such
galaxy wide quenching in the relatively low mass PSB galax-
ies present in our local Universe sample.

For the entirely new class of RPSBs, the strong radial
gradient in W(Hα) compared to the control galaxies again
suggests a recent strong inflow of gas to the central regions.
27% of RPSBs show misaligned gas and star kinematics, 19%
have obvious bars, 30% show interaction evidence like tidal
tails, while the remainder are either face or edge-on making
it difficult to identify bars or kinematic misalignment. All
these mechanisms can lead to gas inflows (Lin et al. 2017;
Chown et al. 2019), indicating that gas inflow is also key
in the formation of the RPSBs. In contrast to the CPSBs,
however, the RPSB galaxies have not (yet) suffered global
quenching of the star formation. The outer regions are iden-
tified as PSBs due to their weak W(Hα), however, typically
the residual W(Hα) is still stronger than in the CPSBs. The
presence of both RPSBs and IPSBs provides direct evidence
that an AGN is not a necessary ingredient to rapidly quench
a starburst and cause post-starburst features in galaxies.

The question that naturally arises is whether the RPSBs
are simply younger relatives of the CPSBs, probing different
evolutionary phases of the same event. This would be consis-
tent with the ongoing star formation in the central regions of
RPSBs, and higher fraction with clear evidence for tidal tails
and interaction which fades rapidly with time since the star-
burst (Pawlik et al. 2018). If this were true it would also be
tempting to suggest a scenario in which either the starburst
or the quenching progresses from the outer regions inwards,
the latter option presumably ruling out AGN feedback as
the quenching mechanism. However, two lines of evidence
suggest against this hypothesis. Firstly, the two populations
have very different star formation histories at all radii (as
indicated by their mass-weighted ages), and secondly the
CPSBs have lower stellar v/σ at all radii. Neither of these
observational features are alterable on timescales of a few
100Myr needed to shut down the central starburst in the
RPSBs whilst retaining the strong Balmer absorption lines
leading to the CPSB classification. We therefore conclude
that the CPSB and RPSB galaxies are likely the product of
different physical mechanisms.

In the Hα emission vs. HδA absorption plane, the
RPSBs can be separated into two types: type I appear to
be undergoing a global shut down in star formation which
could plausibly be caused by strangulation processes where
the infall of fresh gas is shut off; type 2 appears to require
a more complex process with the outer regions quenching
first while the inner regions remain star forming, perhaps

caused by ram pressure stripping or interactions/mergers.
Why these mechanisms would coincide with the requisite
gas inflows to cause the central starburst remains unclear.
In order to pin down the quenching mechanisms in different
types of PSB galaxies, comparisons with detailed hydrody-
namic simulations are clearly required.

5 SUMMARY

We identify galaxies with PSB regions in the MaNGA sur-
vey, generating a sample of 31 central (CPSBs), 37 ring
(RPSBs) and 292 irregular (IPSBs) post-starburst galax-
ies. This is the first time that we are able to search for
PSB regions across the full galaxy area, rather than focus on
the central PSB regions. With this large IFU post-starburst
sample, there are several important results that can be sum-
marized as:

(i) Based on the global properties of the galaxies, we find
that RPSBs are primarily located on the star forming main
sequence while CPSBs are primarily located in the green
valley. While a higher fraction of CPSBs have Sérsic index
n > 3 indicating pure spheroidal morphologies, CPSBs and
RPSBs cover a wide range in n, showing that both types are
hosted by galaxies with diverse morphologies.

(ii) Both CPSBs and RPSBs have positive gradients in
Dn4000, indicating younger stellar populations in the central
regions. This is different to control samples, which have flat
or negative gradients.

(iii) While the CPSBs have suppressed star formation
throughout their bulge and disk, and clear evidence of rapid
quenching in the central regions, the RPSBs only show
clear evidence of recently rapidly suppressed star forma-
tion in their outer regions and ongoing central star forma-
tion/starburst.

(iv) The different radial profiles in mass-weighted age and
stellar v/σ indicate that CPSBs and RPSBs are not simply
different evolutionary stages of the same event, rather that
CPSB galaxies are caused by a significant disruptive event,
while RPSB galaxies are more likely caused by disruption of
gas fuelling to the outer regions.

(v) Compared to the control samples, both CPSB
and RPSB galaxies show a higher fraction of interac-
tions/mergers, misaligned gas or bars that might be the
cause of the gas inflows.

(vi) The presence of both RPSBs and IPSBs provide di-
rect evidence that an AGN is not a necessary ingredient to
cease starburst.

(vii) The wide range in observed radial profiles of Hα
emission vs. HδA absorption in the RPSBs indicate that mul-
tiple processes may be responsible for their shut off in star
formation, such as strangulation processes where the infall
of fresh gas is shut off leading to a global shut down in star
formation, or ram pressure stripping or interactions/mergers
leading to the rapid quenching of the outer regions while the
inner regions remain star forming.
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