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Abstract  

Difficulty of growing metal oxides on intrinsic graphene due to few defects and 

functional groups on its surface was overcome by deposition of polymerized precursors 

via multiple interacting sites, followed by crystallization of metal oxides inside the 

aggregated polymer. As a typical example, Mn3O4-decorated electrochemically 

exfoliated graphene (EEG) was successfully prepared and served as an advanced anode 

material for lithium-ion batteries. Because EEG possesses higher electronic 

conductivity and stronger mechanical strength in comparison with commonly used 

reduced graphene oxide (rGO), the new composite of EEG-Mn3O4 exhibits much better 

electrochemical performance than rGO-Mn3O4, including superior reversible capacity 

and better cycling stability.  
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1. Introduction  

As a novel two dimensional carbon nanomaterial, graphene has attracted wide 

attention due to its unique properties such as large surface area, outstanding mechanical 

strength, and high electrical and thermal conductivities [1,2]. As an important 

application, graphene has been used as an ideal substrate to support various functional 

materials, in order to improve their properties for a variety of applications [3-5]. A case 

in point is graphene-Mn3O4 composite used as an electrode material for lithium-ion 

batteries (LIBs), supercapacitors and fuel cells [6-8].  

Mn3O4 has many advantages in this field such as high theoretical capacities (~936 

mA h g
−1

), high abundance and low cost [9,10]. However, some drawbacks such as 

severe volume change during cycling, and poor electrical conductivity (~10
−7
−10

−8
 S 

cm
−1

) hamper its practical applications [6]. 
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Integration of Mn3O4 with graphene can enhance the electrical conductivity, and 

restrain the volume variation of Mn3O4 particles to some extent due to the interaction of 

Mn3O4 with graphene. However, growing metal oxide nanocrystals on intrinsic 

graphene is extremely difficult, because the inert surface of graphene hardly adsorb 

precursor molecules/ions for crystal growth. In practice, to make graphene as suitable 

substrates for crystal growth, the graphene is often oxidised into graphene oxide (GO), 

that possesses many oxygen-containing functional groups on the surface (e.g., carboxyl, 

hydroxyl, carbonyl and epoxide groups) [11,12]. To restore partly the lost electrical 

conductivity, reduced graphene oxide (rGO) is normally obtained by thermal or 

chemical reduction of GO. However, even after the reduction, many defects are still 

residual on the surface of rGO, leading to a dramatic decrease of its electrical 

conductivity and mechanical strength in comparison with intrinsic graphene. 

Recently, graphene with few O-containing groups has been mass-produced, such as 

electrochemically exfoliated graphene (EEG) [13,14]. Like intrinsic graphene fabricated 

by other exfoliation methods [15], the EEG contains few defects and, therefore, has a 

higher electrical conductivity (235.9 S cm
1

) (Table 1) and stronger mechanical 

strength than rGO. It is expected that EEG-Mn3O4 would display better electrochemical 

performance as a LIB anode material than rGO-Mn3O4. However, it was found that 

metal oxide crystals tend to grow and anchor at O-containing defect sites of GO [16,17], 

and therefore, the inert surface of EEG would not be a suitable base for growing crystals. 

In addition, unlike hydrophilic GO, the hydrophobic EEG tends to aggregate in water 

via π−π interactions (Fig. S1) [18-21]. Thus using a polar aprotic solvent, such as N,N-

dimethylformamide (DMF), has to be considered in the solution synthesis of EEG-

Mn3O4 [13]. 
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Table 1. The electrical conductivity (C), intensity ratios of Raman D band and G band 

(ID/IG), SEI film resistances (Rf) and charge-transfer resistances (Rct) of EEG, GO, EEG-

Mn3O4, rGO-Mn3O4 and HrGO-Mn3O4. 

Sample C / S cm
−1

 ID/IG  Rf / Ω Rct / Ω 

EEG 235.9 0.29 N/A N/A 

GO 6.2×10
−6

 1.13 N/A N/A 

EEG-Mn3O4 24.0 0.33 17.0 32.6 

rGO-Mn3O4 6.1 1.11 24.7 143.3 

HrGO-Mn3O4 14.5 1.10 17.2 61.8 

 

Consequently, EEG is much less popular than rGO in fabrication of graphene-

nanocrystal composites. Wei, et al. tried to assemble EEG nanosheets with a series of 

functional nanoparticles by using polyaniline as a versatile dopant [22]. However, such 

a complicated noncovalent linkage is unfavorable to the enhancement of electron 

transfer and chemical stability of the EEG hybrids [17]. Direct growth of functional 

materials on EEG is still a big challenge.   

Herein we demonstrate a successful growth of Mn3O4 nanocrystals on EEG in DMF 

under gentle conditions (water bath at 80 °C for 1 h), by using a polymerizable 

precursor, Mn(II) acetylacetonate, Mn(acac)2. The new composite of EEG-Mn3O4 

exhibits excellent electrochemical performance, including superior reversible capacity 

(909 mA h g
–1

) and better cycling stability. The new growing mechanism of Mn3O4 

nanocrystals on EEG was investigated in detail. rGO-Mn3O4 was also prepared under 

the same conditions, and showed a worse electrochemical performance in comparison 
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with EEG-Mn3O4. It should be noted that although Mn3O4 has some practical issues as 

an anode material for LIBs, the research in this work focuses on the advantages of EEG 

in hybrids, which acts as a promising graphene substrate instead of rGO. Thus this 

novel strategy for the synthesis of EEG-supported metal oxides provides access to a 

wide range of EEG hybrids with high performance, which could be applied in various 

fields such as batteries and fuel cells. 

 

2. Experimental section 

2.1 Sample preparation 

EEG and GO. EEG was synthesised according to the published literature (Fig. S2) 

[13]. Natural graphite flakes were used as an anode and Pt wire was used as a cathode 

for electrochemical exfoliation of graphite. The electrolyte solution was prepared by 

dissolving 1.32 g of (NH3)2SO4 in 100 mL of distilled water (0.1 M). The distance 

between the graphite and the Pt electrode was ~2 cm. Electrochemical exfoliation was 

carried out by applying positive voltage to the graphite electrode. The electrolytic 

voltage was kept at 5 V for 10 min, and then increased to 10 V for another 10 min. After 

the exfoliation, the product was collected through a polytetrafluoroethylene (PTFE) 

membrane filter with 0.25 μm pore size and washed several times with distilled water 

by vacuum filtration. After drying in oven, the product was dispersed in N,N-

dimethylformamide (DMF) by sonication for 1 h. The suspension was then maintained 

for 12 h. The top part of suspension was collected for late use. 

GO was synthesised from natural graphite powders by a modified Hummers’ method 

[23]. In a typical synthesis, 5 g of graphite powder and 5 g of NaNO3 were added into 

230 mL of 98% H2SO4 under stirring in an ice bath. 30 g of KMnO4 was slowly added 
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to the suspension under stirring for 15 min below 5 °C. The suspension was then heated 

at 35 °C for 30 min. Subsequently, 460 mL of distilled water was slowly added into the 

above suspension, followed by stirring at 98 °C for more than 15 min. The suspension 

was further diluted with 1400 mL of distilled water and the reaction was terminated by 

adding 25 mL of 30 % H2O2. Meanwhile, the colour of the solution turned from dark 

brown to bright yellow. The resulting GO nanosheets were filtered and washed with 

distilled water several times to remove residual acids and salts. As-prepared GO was 

dispersed in water by ultrasonication for 30 min, followed by a low-speed centrifugation 

to get rid of any aggregated GO nanosheets. 

EEG-Mn3O4 and rGO-Mn3O4. In a typical synthesis, 0.02 g of EEG (or GO) was 

dispersed in 100 mL of DMF solution by sonication for 1 h. 0.20 g of Mn(acac)2 and 10 

mL of distilled water were then added into the above suspension with vigorous stirring 

for 30 min. This suspension was transferred into a round-bottomed flask and heated in a 

water bath at 80 °C for 1 h. The GO was partially reduced to rGO during this process, 

whereas EEG did not change much. After cooling down to room temperature, EEG-

Mn3O4 (or rGO-Mn3O4) was collected by centrifugation, washed with distilled water, 

and dried at 60 °C. The Mn3O4 loading for the sample is expected to be about 60 wt%. 

For a low or high loading specimen, the amount of Mn(acac)2 was simply reduced to 

0.08 g or increased to 0.30 g. EEG-Mn3O4 was also prepared by using manganese 

acetate as the precursor. 0.23 g of Mn(Ac)2·4H2O was used instead of Mn(acac)2, and 

the mixture solution was treated under solvothermal conditions at 180 °C for 12 h 

instead of in water bath. 

HrGO-Mn3O4. rGO-Mn3O4 was dispersed in 70 mL of water by sonication for 1 h. 

This suspension was transferred into a 100 mL Teflon-lined stainless steel autoclave 
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and maintained at 180 °C for 10 h. The product, HrGO-Mn3O4, was collected by 

centrifugation, washed with distilled water, and dried at 60 °C.  

 

2.2 Sample characterisation 

Specimens were characterised by using the following techniques. X-ray diffraction 

(XRD) was performed on a Phillips X’pert Pro MPD diffractometer with Cu Kα 

radiation. The Fourier transform infrared (FT-IR) spectrometry was performed on a 

Nicolet-380 Fourier-transform infrared spectrometer in the range of 400-4000 cm
–1

. X-

ray photoelectron (XPS), was carried out on a Shimadzu Axis Ultra spectrometer with 

an Mg Kα (1253.6 eV) excitation source, Raman scattering spectra were recorded on a 

Jobin-Yvon Laser Confocal Micro-Raman Spectrometer with a 633 nm laser source. 

Mass spectra were obtained on an AB Sciex TripleTOF 5600™ mass spectrometer. The 

thermogravimetric analysis (TGA) was carried out on a NETZSCH STA 409 PC/PG 

thermal analyser and carried out in air at a heating rate of 5 °C min
−1

. Scanning electron 

microscopic (SEM) images were obtained on a JEOL JSM-6700F electron microscope 

at an accelerating voltage of 5 kV. Transmission electron microscopy (TEM) and high-

resolution TEM (HRTEM) images and energy-dispersive X-ray (EDX) spectra were 

recorded on a FEI Titan Themis electron microscope operated at 200 kV. 

 

2.3 Electrochemical measurement 

For electrochemical characterisation, the composite electrodes were fabricated by 

mixing the active materials, Super P carbon black and polyvinylidenedifluoride (PVDF) 

dissolved in N-methyl-2-pyrrolidine (NMP) in a weight ratio of 80:10:10. The mixed 

slurry was pressed onto a copper foil and dried at 110 °C in vacuum for 24 h. Cell 
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assembly was carried out in an Ar-filled glove box. The electrolyte was 1 M solution of 

LiPF6 dissolved in a EC:DEC:DMC solution with a 1:1:1 vol ratio. The area of the 

electrode was 2.0 cm
2
 and the mass loading of active materials was about 2.5 mg cm

−2
. 

Electrochemical performances were measured using a LR2032-type coin cell with 

lithium metal as the negative electrode. The galvanostatic charge–discharge 

performance was measured with a LAND test system at room temperature, and the 

voltage range was from 0.01 to 3.0 V (versus Li/Li
+
), with a constant current of 0.1–2 C 

(1 C equals to 936 mA g
−1

 for Mn3O4-containing samples). Cyclic voltammetry tests 

were performed between 0.01 and 3.0 V with a scan rate of 0.5 mV s
−1

, and the 

electrochemical impedance spectroscopy (EIS) was carried out in the frequency range 

from 100 kHz to 10 mHz on a Gamry Interface 1000 electrochemical station. The 

electrical conductivity of samples were measured by a four point probe set up from a 

Keithley 2400 source meter. 

 

3. Results and discussion 

3.1 Microstructures of the composites 

Fig. 1 shows TEM and HRTEM images of a typical EEG-Mn3O4 nanosheet (~30 wt% 

loading), revealing that Mn3O4 nanocrystals with diameters of 12 to 16 nm are well-

dispersed on the surface of EEG. The even dispersion is similar to that in rGO-Mn3O4 

with a similar loading level (Fig. 2). TGA shows that the actual loadings of Mn3O4 are 

32.1 wt% in EEG-Mn3O4 and 29.9 wt% in rGO-Mn3O4 (Fig. S3a). EDX spectrum of 

EEG-Mn3O4 shows three elements, C, O and Mn (Fig. S4). 

The measured d-spacings from the nanocrystals on the HRTEM image of Fig. 1c 

confirm the tetragonal Mn3O4 structure. For example, the fringes with dA = 0.199 nm, 
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dC = 0.287 nm, and dD = 0.303 nm can be indexed to (220), ( ̅00), and (112) planes of 

Mn3O4. A SAED pattern from a large area (inset of Fig. 1c) shows a set of diffraction 

rings, indicating randomly orientated Mn3O4 nanocrystals. The d-spacings calculated 

from these rings correspond to the planes in Mn3O4, dA = 0.306 nm (112), dB = 0.274 

nm (103), dC = 0.248 nm (211), dD = 0.236 nm (004), dE = 0.179 nm (105), dF = 0.154 

nm (224), dG = 0.145 nm (400). 

More importantly, the characteristic hexagonal lattice of graphene is also visible in 

the HRTEM image, indicative of the pristine regions of EEG with few defects. The d-

spacing of ~0.21 nm (marked B in Fig. 1c) is assigned to (100) of graphite [24]. The 

corresponding SAED pattern from EEG is hexagonal as shown in the inset of Fig. 1c, 

where the marked spots H and I with d-spacings of 0.211 and 0.121 nm can be indexed 

to the (100) and (110) of the graphene structure. Another interesting feature of the 

HRTEM image in Fig. 1c is that the fringes ‘A’ of Mn3O4 are parallel and almost match 

the fringes ‘B’ of graphene, implying that a chemical interaction takes place between 

the nanocrystal and the EEG, although uniform orientation of nanocrystals on the same 

graphene sheet was not observed.  
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Fig. 1 (a) TEM image of an EEG nanosheet loaded ~30 wt% Mn3O4. (b) Enlarged TEM 

image. (c) HRTEM image of an area in (b). The inset is a SAED pattern from a large 

area. 

 

On the contrary, the HRTEM image of rGO-Mn3O4 (Fig. 2c) shows much poor 

crystallinity of graphene with many residual defects after removal of O-containing 
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groups [25].
 
Nevertheless, the HRTEM images of Mn3O4 crystals and the SAED 

patterns of rGO-Mn3O4 are very similar to that of EEG-Mn3O4. The fringes with 

measured d-spacings dA = dB = 0.490 nm can be indexed to the (101) and (10 ̅) planes 

of Mn3O4, respectively. In the SAED pattern, the diffraction rings are from randomly 

orientated Mn3O4 nanocrystals, dA = 0.307 nm (112), dB = 0.274 nm (103), dC = 0.253 

nm (211), dD = 0.235 nm (004), dE = 0.177 nm (105), dF = 0.153 nm (224), dG = 0.145 

nm (400). The diffraction spots forming a hexagonal pattern are from rGO, dH = 0.211 

nm (100) and dI = 0.121 nm (110). 

When a higher loading of Mn3O4 (~60 wt%) was applied in EEG-Mn3O4, the 

nanocrystals are more evenly distributed on EEG than on rGO (Fig. 3), although the 

average loading of Mn3O4 (58.6 wt%) is also close to that in rGO-Mn3O4 (56.8 wt%) 

(Fig. S3b). The surface functional groups of GO provide preferred nucleation sites for 

the growth of Mn3O4 nanocrystals, leading to the particle aggregation around the 

functional groups of GO [26-28]. Unlike GO, the EEG surface has much less oxygen-

containing functional groups or defects. The deposition of oxide nanocrystallites on 

EEG replies on inter-molecular interactions. Therefore, the large contact area of EEG 

with polymerised precursors ensures a homogeneous distribution of Mn3O4 nanocrystals 

on EEG (the crystal growth mechanism will be discussed later). Since the 

electrochemical performance of both EEG-Mn3O4 and rGO-Mn3O4 was improved with 

the increase of the oxide loading (discussed below), our further investigation of these 

materials focused on the high loading specimens without further noting.  
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Fig. 2 (a) TEM image of a rGO nanosheet loaded ~30 wt% Mn3O4. (b) Corresponding 

HRTEM image. (c) Enlarged HRTEM image showing lattice fringes of both Mn3O4 

nanocrystal and the rGO nanosheet. The inset is an SAED pattern from a large area. 
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Fig. 3 SEM images of (a) EEG-Mn3O4 and (b) rGO-Mn3O4. TEM images of (c) EEG-

Mn3O4 and (d) rGO-Mn3O4. The Mn3O4 loading on EEG or rGO nanosheet is ~60 wt%. 

 

Both XRD patterns of EEG-Mn3O4 and rGO-Mn3O4 (Fig. 4a) show the diffraction 

peaks corresponding to the tetragonal Mn3O4. It is noted that the crystallinity of Mn3O4 

on EEG is higher than that on rGO. The peak marked by an asterisk in the pattern of 

EEG-Mn3O4 is from graphene, which is too weak to be observed from rGO-Mn3O4. 

XPS survey spectra of EEG-Mn3O4 and rGO-Mn3O4 show only three elements, C, O, 

and Mn (Fig. 4b). The intensity ratio of the C 1s to O 1s peaks from EEG-Mn3O4 is 

much higher than that from rGO-Mn3O4, implying that a significant number of O-

containing functional groups in GO still remain in rGO. The C 1s peak in the high-

resolution XPS spectrum of GO (Fig. 4c) can be divided into four components, which 
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are assigned to C–C (~284.6 eV), C–O (~286.6 eV), C=O (~287.6 eV) and O–C=O 

(~288.8 eV) groups, respectively [29,30]. In contrast, there is only one distinct peak 

corresponding to C–C group from EEG, demonstrating that EEG contains few O-

containing functional groups. After water bath treatment, the peaks related to O-

containing groups were still observed in the spectrum of rGO-Mn3O4 (Fig. 4d) though 

their intensities markedly decreased, while there is not much difference between the 

peaks in the spectra of EEG and EEG-Mn3O4. Apparently, GO cannot be completely 

reduced under this gentle synthesis condition (80 °C water bath), which may highly 

influence its electrical conductivity. On the other hand, it does not need to reduce EEG, 

since it has few O-containing groups in its initial state.  

Raman spectra of GO and EEG (Fig. 4e) further confirm their notable structural 

difference. The D and G bands are related to the vibrations of nonplanar sp
3
 and the in-

plane sp
2
 carbon atoms, respectively [31,32]. The intensity ratio of these bands (ID/IG) 

of GO is 1.13, much higher than that of EEG (0.29). It is obvious that GO possesses 

more defects than EEG. The ID/IG value of rGO-Mn3O4 (1.11), after the heat treatment, 

is close to that of GO, implying that many defects remain in rGO, even many O-

containing groups having been eliminated from the surface (Fig. 4f). Mn3O4 loading on 

EEG does not change the ID/IG value much as well.  
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Fig. 4 (a) XRD patterns and (b) XPS survey spectra of rGO-Mn3O4 and EEG-Mn3O4. 

High-resolution C1s XPS (c, d) and Raman (e, f) spectra of GO, EEG, rGO-Mn3O4 and 

EEG-Mn3O4. 

 

To further remove O-containing groups in rGO in order to increase its conductivity, 

rGO-Mn3O4 was hydrothermally treated at 160 °C (designated HrGO-Mn3O4). The size 

and morphology of the Mn3O4 nanocrystals did not change (Fig. S5a), but their 



 16 

crystallinity increased as the XRD peaks became sharper (Fig. S5b). The peaks related 

to O-containing groups almost disappear in the C 1s XPS spectrum (Fig. S5c), showing 

that most O-containing groups in rGO have been removed. Raman spectrum of HrGO-

Mn3O4 (Fig. S5d) shows a similar ID/IG value (1.10) to that of rGO-Mn3O4 (1.11), 

indicating again that the structural defects cannot be repaired by removing the O-

containing groups. As it can be expected, EEG with few defects leads to a relatively 

high conductivity of EEG-Mn3O4 (24.0 S cm
−1

) in comparison with rGO-Mn3O4 (6.1 S 

cm
−1

) and HrGO-Mn3O4 (14.5 S cm
−1

) (Table 1). 

 

3.2 Electrochemical performance 

The electrochemical performance of EEG-Mn3O4 was firstly studied by cyclic 

voltammetry. The CV curve (Fig. 5a) shows three reduction peaks between ~0.8 and 

~1.7 V in the first scan, which is assigned to the formation of solid-electrolyte interface 

(SEI) films and a concomitant initial reduction of Mn3O4 to MnO. Another sharp peak 

at ~0.08 V corresponds to the reduction of MnO to metallic Mn, which is consistent 

with the reports for Mn3O4-based electrodes [33,34]. The peaks in the reverse sweep are 

from the oxidation of metallic Mn to the oxide. In the subsequent cycles, the reduction 

peaks shift to ~0.2 and ~0.9 V due to the polarization of the electrode. Moreover, the 6
th

 

cycle almost overlaps with the 3
rd

 cycle, indicating a good electrochemical reversibility 

of EEG-Mn3O4. 

The electrochemical performance of rGO-Mn3O4, HrGO-Mn3O4 and EEG-Mn3O4 

was subsequently evaluated by galvanostatic measurements. As shown in Fig. 5b, the 

initial capacities of EEG-Mn3O4, HrGO-Mn3O4 and rGO-Mn3O4 are ~1438, ~1277 and 

1168 mA h g
–1

 at 0.1 C respectively, higher than the theoretical capacity of Mn3O4 
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(~936 mA h g
−1

).  The excess capacities could be attributed to the formation of SEI film 

on the surface of the composite, which is commonly observed for other graphene-based 

metal oxides [5,6]. Besides, the formed SEI film also results in large irreversible 

capacity losses and poor coulombic efficiencies in the initial cycles. Coating graphene 

hybrids with ultrathin TiO2 nanofilms could effectively reduce their irreversible 

capacities and improve their initial coulombic efficiencies [35,36]. The capacities of 

rGO-Mn3O4 and HrGO-Mn3O4 decreases dramatically in the initial cycles and do not 

change much after 100 cycles. HrGO-Mn3O4 shows a higher capacity than rGO-Mn3O4 

after 200 cycles (~596 mA h g
–1

 vs. ~349 mA h g
–1

) because the GO substrate in HrGO-

Mn3O4 is highly reduced. As expected, EEG-Mn3O4 exhibits the best cycle and rate 

performance among these graphene hybrids. The capacity of EEG-Mn3O4 maintains at 

~914 mA h g
–1

 after 200 cycles at 0.1 C, which is comparable to the theoretical capacity 

of Mn3O4 (~936 mA h g
−1

). The cycling stability of EEG-Mn3O4 is also impressive in 

the light of a capacity retention of 97% versus the second cycle (~944 mA h g
–1

). When 

the current density increases to 2 C (Fig. 5c), EEG-Mn3O4 exhibits a remarkable 

capacity of ~497 mA h g
–1

 after 30 cycles, much higher than those of rGO-Mn3O4 (~135 

mA h g
–1

) and HrGO-Mn3O4 (~315 mA h g
–1

). EEG-Mn3O4 (~30 wt% loading) also 

exhibits better electrochemical performance than HrGO-Mn3O4 obtained by 

hydrothermal treatment of rGO-Mn3O4 (~30 wt% loading) (Fig. S6), indicating that 

EEG is a better carbon substrate than rGO or HrGO no matter when the oxide loading is 

low or high.  

Higher loadings of Mn3O4 on EEG and HrGO were also prepared (Fig. S7). 

Compared to EEG-Mn3O4 (~60 wt%), EEG-Mn3O4 (~75 wt%) shows slightly worse 
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electrochemical performance due to the aggregation of Mn3O4 nanocrystals and 

increased resistance at high loading. 

 

Fig. 5 (a) CV curve of EEG-Mn3O4 at a scan rate of 0.5 mV s
−1

. (b) Cycle performance 

at 0.1 C, (c) rate performances at 0.1–2 C and (d) electrochemical impedance spectra 

after 3 cycles of rGO-Mn3O4, HrGO-Mn3O4 and EEG-Mn3O4. 

 

The high electrical conductivity of EEG-Mn3O4 is further confirmed by 

electrochemical impedance spectroscopy (EIS) measurements. Nyquist plots (Fig. 5d) 

show two overlapping semicircles in the high and medium frequency ranges, 

corresponding to the SEI film resistance (Rf) and the charge transfer resistance (Rct), 

respectively [37,38]. The Rf and Rct values of the samples were simulated via a Randles 

equivalent circuit model (Fig. S8, Table 1). Apparently, EEG-Mn3O4 has remarkably 
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lower Rf (17.0 Ω) and Rct (32.6 Ω) than rGO-Mn3O4 (24.7 and 143.3 Ω) and HrGO-

Mn3O4 (17.2 and 61.8 Ω), confirming the fast electron transfer in EEG-Mn3O4.  

The stability of the composites after 100 cycles was verified by TEM. As seen in Fig. 

S9, Mn3O4 nanocrystals aggregate on the HrGO substrate, whereas the nanocrystals are 

still well separated on EEG. The superior structural stability of EEG-Mn3O4 can be 

attributed to the excellent mechanical properties of EEG [39,40], which effectively 

withstand the stress caused by the volume change of Mn3O4. 

 

3.3 Growth mechanism of Mn3O4 on EEG  

To explore the nucleation and growth mechanism of Mn3O4 nanocrystals on EEG, 

some comparative experiments were carried out. The Mn-containing molecules in DMF 

with and without addition of water were identified by mass spectroscopy. It is indicated 

that water addition facilitates the hydrolysis of Mn(acac)2 to form larger polymerized 

molecules (Fig. S10a), e.g. dimer [HMn2O(H2O)6(acac)2]
+
, trimer 

[HMn3O2(H2O)10(acac)2]
+
, tetramer [HMn4O3(H2O)14(acac)2]

+
, and pentamer 

[HMn5O4(H2O)18(acac)2]
+
 , etc (Fig. S11). We anticipate that these polymer molecules 

can be adsorbed on the surface of EEG via multiple connecting sites, and then aggregate 

into larger clusters due to strong inter-molecular interactions.  

The adsorption of molecules on an inert surface is actually a balance of adsorption 

and desorption. When a small molecule is adsorbed on the surface via a single 

interaction site, its life time on the surface would be very short. In other words, the 

molecule may leave the surface before forming a larger cluster with other molecules. 

For a polymer molecule with multiple interaction sites, when dissociation takes place at 

some sites, the linkage at other sites can still hold the polymer molecule on the surface, 
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making it easier to form a cluster. Therefore polymer precursor molecules may 

overcome the inert property of the EEG surface, allowing surface adsorption, formation 

of clusters, nucleation in the clusters and finally, forming crystallites. 

Indeed, polymer like particles were often observed from TEM images of EEG 

nanosheets (Fig. S12) collected from this sample before the water bath treatment. These 

loose and irregular particles were basically amorphous, as the SAED pattern shows no 

diffraction rings corresponding to Mn3O4 crystals. The XRD pattern shows only a 

strong peak corresponding to the stacking of graphene nanosheets (Fig. 6b). On the 

other hand, existence of Mn in the polymer (Fig. 6a) indicates that the deposited 

particles are likely polymerized Mn(acac)2. The low ratio of Mn : C detected from EDX 

indicates a lower density of Mn than that in the specimen after forming Mn3O4 

nanocrystals. Fig. 6c is a HRTEM image of such an EEG nanosheet. The area marked 

by A has a thin layer of the polymer and the area marked B is a thick layer of the 

polymer. The area marked by C is EEG with deposition of very few molecules. The 

image also shows that crystallization of the polymer particles occurs already, an 

example area with partial crystallization being indicated by an arrow.  

After the water bath treatment, the polymer particles gradually decomposed and 

Mn3O4 nanocrystals firmly deposit on the EEG surface (Fig. 1). The process of 

aggregation of precursor molecules, followed by nucleation and crystal growth in the 

aggregates was often observed in the so-called reversed crystal growth mechanism 

[41,42].  
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Fig. 6 (a) EDX spectrum, (b) XRD pattern and (c) HRTEM image of an EEG nanosheet 

collected from a suspension of DMF with addition of Mn(acac)2 and H2O. 

 

On the contrary, polymerization did not happen in the DMF suspension of EEG and 

Mn(acac)2 without addition of water and only one peak of Mn(acac)2 was observed 

from the mass spectrum (Fig. S10b). SEM images of the EEG nanosheets collected 
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from the synthetic suspension of DMF with Mn(acac)2, but without addition of water, 

designated EEG-Mn(acac)2, show scarcely any polymers on the EEG surface. A typical 

example is shown in Fig. S13a. On the other hand, many particles can be seen on the 

EEG nanosheets collected from the suspension with water, designated EEG-Mn(acac)2-

H2O, as shown in Fig. S13b. In addition, Mn element was not detected in EDX 

spectrum of EEG-Mn(acac)2. After water bath treatment, the surface of EEG nanosheets 

from the suspension without water addition is also clean (Fig. S13c) without Mn peak 

detected by EDX, while many Mn3O4 nanocrystals were observed on the EEG surface 

of EEG-Mn(acac)2-H2O (Fig. S13d). Consequently, the water enhanced formation of 

large polymer clusters in DMF is essential to the growth of Mn3O4 nanocrystals on EEG. 

The effects of the amount of water and the temperature of water bath on the growth of 

M3O4 nanocrystals on EEG were also studied. EEG-Mn3O4 prepared by decreasing the 

amount of water to 0.5 mL and the temperature of water bath to 40 °C are denoted as 

EEG-Mn3O4-SW and EEG-Mn3O4-LT, respectively. SEM images of EEG-Mn3O4-SW 

and EEG-Mn3O4-LT (Fig. S14a,b) show that small numbers of Mn3O4 nanoparticles are 

formed on the surface of EEG. Furthermore, the XRD peaks corresponding to the 

structure of Mn3O4 are very weak (Fig. S14c), implying that these samples contain low 

loading and low crystallinity of Mn3O4. TGA curves (Fig. S14d) indicate that the 

contents of Mn3O4 in EEG-Mn3O4-SW and EEG-Mn3O4-LT are only 25.8 and 17.7 

wt%, respectively, much lower than that in EEG-Mn3O4 (58.6 wt%). Accordingly, the 

factors that affect the hydrolysis and condensation of Mn(acac)2 in DMF such as added 

water and heating temperature play important roles in the growth of Mn3O4 nanocrystals 

on EEG. 
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Consequently, the growth of Mn3O4 nanocrystals on EEG in the present work does 

not follow the classical route, i.e. nucleation on the EEG surface followed by layer-by-

layer deposition of the building units. The newly observed crystal growth includes three 

steps as shown in Scheme 1. Step (i), Mn(acac)2 molecules are hydrolyzed with an 

assistance of a small amount of water in DMF, and then polymerized into large 

molecules. Step (ii), the polymer molecules further aggregate into large clusters with a 

strong inter-molecular interaction and are adsorbed on the EEG surface via multiple 

interaction sites. Step (iii), during the water bath treatment, the polymer molecules 

undergo further hydrolysis, dehydration, leading to the formation of Mn3O4 

nanocrystals on the EEG surface.  

 

Scheme 1 Schematic illustration of the growth mechanism of Mn3O4 nanocrystals on 

the EEG surface.  

 

To prove the universality of this method, other Mn-containing precursors such as 

manganese acetate was used to prepare Mn3O4 nanoparticles on the surface of EEG. 

XRD pattern and SEM image (Fig. S15) indicate that Mn3O4 nanoparticles successfully 

form on the surface of EEG. This kind of EEG-Mn3O4 was prepared under solvothermal 
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conditions rather than in water bath, implying that the anions have an impact on the 

growth of Mn3O4 nanocrystals on EEG. 

 

4. Conclusions 

In summary, a facile method for the preparation of EEG-Mn3O4 under gentle conditions 

has been developed. The long standing difficulty of growing metal oxide nanocrystals 

on intrinsic graphene due to the inert nature of the graphene surface has been overcome 

by deposition of polymerized precursor. The produced composites show much better 

electrochemical properties than the composites using rGO. The new method is 

environmentally friendly because the pre-treatment of graphene can be avoided and the 

temperature of crystal growth can be reduced. The method can be used for crystal 

growth of many other metal oxides on intrinsic graphene surface, in order to make new 

energy materials for a wide range of applications. 
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