
        

Citation for published version:
Potter, B & Godage, H 2018, 'A Fluorescent Probe Identifies Active Site Ligands of Inositol Pentakisphosphate
2-Kinase', Journal of Medicinal Chemistry.

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/227520156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/a-fluorescent-probe-identifies-active-site-ligands-of-inositol-pentakisphosphate-2kinase(d7b9eb2d-aefd-472b-9fe2-2cd386d3fed7).html


 1 

Supporting Information 

A Fluorescent Probe Identifies Active Site Ligands of Inositol 

Pentakisphosphate 2-Kinase 

Hayley Whitfield†, Megan Gilmartin†, Kendall Baker†, Andrew M Riley‡, Himali Y 

Godage+, Barry VL Potter‡ +, Andrew M Hemmings†, Charles A Brearley†* 

Protein purification and crystallisation methods���������������  2 

Structure determination and refinement�����������������.....  2 

Molecular docking calculations���������������������..  2 

Figure S1.  Binding of 2-FAM-IP5 to AtIP5 2-K fitted to a 1-site binding 

model with Hill slope�������������������������.  4 

Figure S2. Predicted lowest energy binding poses of 2-FAM-IP5��������  5 

Figure S3. Double difference Fourier electron density maps for ligands 

bound to AtIP5 2-K�������������������������...  6 

Figure S4. Single difference ligand omit electron density maps��������...  7 

Figure S5. AtIP5 2-K ligand interactions�����������������..  8 

Table S1. X-ray Data Collection and Refinement Statistics����������.  9 

Table S2. Pairwise comparison of conformations of PDB entries�������..  12 

Table S3. Definition of AtIP5 2-K residues involved in binding  

substrate, nucleotide or inositide��������������������.  12 

Table S4. Pairwise comparison of conformations�������������...  12 

Table S5. Ligand Validation Statistics������������������  13 

Protein Purification and Crystallization 



 2 

AtIP5 2-K was prepared according to the method of 1. Crystals were grown using the 
sitting drop method at 16 °C, equilibrated against a reservoir containing 50 µl precipitant 
(18 % (w/v) PEG 3350, 0.1 M bis-tris propane pH 6.5 and 2 mM MgCl2). Protein at a 
concentration of 5 or 7.5 mg/mL was incubated with 2 mM ligand and 2mM ADP prior 
to setting the crystallisation drops. The pre-incubated protein was subsequently mixed in 
a 1:1 ratio with the precipitant. Initially yielding only small crystals, microseeding was 
employed to provide crystals for X-ray data collection.  

Structure Determination and Refinement 

Single crystals were harvested into either 18 % (w/v) PEG 3350, 0.1 M bis-tris propane 
pH 6.5, 2 mM MgCl2 with 25 % (v/v) ethylene glycol or into 35 % (w/v) PEG 3350, 0.1 
M bis-tris propane pH 6.5, 2 mM MgCl2 and flash frozen in liquid nitrogen. X-ray 
diffraction data was collected at the Diamond Light Source (Oxford) on beamlines I04-1 
and I04. Data was indexed and processed using the automatic xia2 pipeline 2. 
Reprocessing was carried out as necessary using Aimless 3 as part of the CCP4 
programme suite 4.  Molecular replacement was performed using AutoMR in the Phenix 
suite 5 and structures refined using Phenix Refine 6. Coot 7 was used to perform manual 
adjustment to models between rounds of automatic refinement using Phenix. Jligand 8 or 
eLBOW 9 were used to construct geometry restraint definitions for ligands.  Simulated 
annealing ligand omit maps were calculated using Phenix to confirm the positioning of 
ligands 10. X-ray data collection and refinement statistics can be found in Supporting 
Information Table 1. Difference Fourier and simulated annealing omit maps for all 
ligands are available as Supporting Information Tables 3 and 4, respectively. Ligand 
contacts to active site residues were rendered with LigPlot+ 11 for all complexes and 
shown in Supporting Information Figure 5. Molecular structures were rendered in 
PyMOL 12. 

 

Structure factor amplitudes and refined atomic coordinates for the complexes with myo-
Ins(1,3,4,5,6)P5, myo-InsP6, neo-InsP6, D-chiro-InsP6 and purpurogallin have been 
deposited in the RCSB Protein Data Bank with accession codes 6FL3, 6FJK, 6GFH, 
6GFH and 6FL8, respectively. 

 

Molecular docking calculations  

Molecular docking experiments using torsionally-flexible 2-FAM-InsP5 as ligand and the 
crystal structures of the three known conformers of AtIP5 2-K: open (PDB 4AXC), half-
closed (PDB 4AXE) and closed (PDB 2XAM) as receptor were carried out using 
AutoDock Vina 13.  As the purified enzyme samples used in binding assays were treated 
to remove cofactor, the coordinates for ADP were removed from the receptor models 
prior to docking simulations. A D-2 axial model for InsP5 (D-2 axial and five equatorial 
phosphates) was used as representative of the presumed predominant conformation of the 
ligand at the pH used in our assays. Atomic coordinates for the ligand were by merging 
ligand entries for InsP6 and FAM taken from the PDB. The structures of ligand and 
receptor were formatted with AutoDockTools 14. The chemical bonds involving the 
phosphate and FAM groups of 2-FAM-InsP5 were defined as rotatable giving a total of 
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12 degrees of torsional freedom. Fixed (i.e. inflexible) enzyme models were used. A 
search space of 34 x 24 x 24 Å3, centred on and encompassing the various enzyme active 
sites, was used. Productive binding modes were assigned as those poses found with 
binding energies within 0.5 kcal.mol-1 of the global energy minimum pose for each 
docking calculation.  
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Figure S1.  Binding of 2-FAM-IP5 to AtIP5 2-K fitted to a 1-site binding model with Hill slope. 
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Figure S2. Predicted lowest energy binding poses of 2-FAM-IP5 (yellow) to (a) the closed form 

(PDB 2XAM), (b) the half-closed form (PDB 4AXE) and (C) the open (apo) form (PDB 4AXC) of 

AtIPK5 2-K. Myo-InsP6 is shown (grey). 
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Figure S3. Double difference Fourier electron density maps for ligands. 2m|Fo| − D|Fc| electron 

densities (contoured at 1σ) for (a) myo-InsP6, (b) myo-Ins(1,3,4,5,6)P5, (c) neo-Ins(1,3,4,5,6)P5, 

(d) D-chiro-InsP6 and (e) purpurogallin ligands bound to AtIP5 2-K. 
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Figure S4. m|Fo| − D|Fc| single difference ligand omit electron density maps for (a) myo-InsP6  

(3�); (b) myo-Ins(1,3,4,5,6)P5 (3�); (c) neo-Ins(1,3,4,5,6)P5 (3�); (d) D-chiro-InsP6 (2.5�) and 

(e )purpurogallin (2.5�) ligands of AtIP5 2-K. Contour levels are indicated in brackets. 
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Figure S5. AtIP5 2-K ligand interactions. (a) myo-InsP6:ADP; (b) myo-Ins(1,3,4,5,6)P5:ATP; (c) 

neo-Ins(1,3,4,5,6)P5:ADP; (d) D-chiro-InsP6:ADP and (e) purpurogallin:ADP. Plots generated  
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SI Tables 1 

Table S1 X-ray Data Collection and Refinement Statistics 2 

PDB ID 6JFK 

 

6FL3 6GFH 6GFG 6FL8 

Ligands 

 

myo-IP6:ADP myo-IP5:ADP neo-IP5:ATP D-chiro-IP6:ADP Purpurogallin: 
ADP 

DATA COLLECTION 

Wavelength 0.9173 0.9173 0.9173 0.9795 0.9282 

Space group P 1 P 1 P 1 P 1 P 1 

Unit cell 

a,b,c (Å) 

α,β,χ (˚) 

 

59.8,60.3,84.0 

88.5,89.2,63.4 

59.0,59.0,83.4 

88.0,89.6,63.7 

59.6,60.6,84.5 

87.8,88.4,63.0 

59.6,60.8,82.4 

89.5,88.3, 62.5 

60.0,61.5,83.4                
89.6,88.0,62.1 

Resolution (Å): 83.95-2.03 

(2.08-2.03) 

52.87-2.36 

(2.42-2.36) 

29.34  - 2.65 
(2.78  - 2.65) 

 

29.02  - 3.00 
(3.18  - 3.00) 

 

54.29-2.10 

(2.15-2.10) 

Number of 
unique 

reflections: 

61224 (4591) 37982 (2806) 27766 (3658) 

 

19896 (3147) 

 

55908 (4199) 

Completeness 
(%): 

90 (90) 92 (94) 91 (90) 97 (94) 91 (92) 

Multiplicity: 1.9 (2.0) 2.1 (2.2) 2.1 (2.1) 2.3 (2.1) 2.3  (2.3) 

Rmerge 0.068 (0.219) 0.074 (0.408) 0.169 (0.705) 0.149 (0.569) 0.079 (0.675) 

Rpim 0.070 (0.413) 0.069 (0.360) 0.110 (0.625) 0.131 (0.501) 0.066 (0.565) 



 10

Rmeas 0.099 (0.584) 0.103 (0.535) 0.169 (0.945) 0.199 (0.761) 0.104 (0.884) 

<I/sigma(I)> 6.9 (3.5) 8.2 (1.9) 3.5 (1.2) 7.1 (1.8) 6.3 (1.4) 

Wilson B factor 
(Å2) 

28.57 32.59 47.33 

 

55.76 38.53 

REFINEMENT 

Resolution range 83.95-2.03  

(2.10-2.03) 

52.83-2.36  

(2.44-2.36) 

29.34  - 2.65 
(2.74  - 2.65) 

29.02  - 3.00 
(3.14  - 3.00) 

54.29-2.10 (2.18-
2.10) 

Completeness 
(%) 

90 (90) 92 (93) 91 (89) 97 (93) 91 (92) 

Reflections used 
in refinement 

61202 (6182) 37978 (3861) 27753 (2623) 19872 (1896) 55881 (5647) 

Reflections used 
for R-free 

3100 (319) 1898 (188) 1425 (97) 1062 (100) 2765 (297) 

R-work (%) 17.8 (23.3) 15.5 (21.2) 19.9 (25.3) 19.7 (28.0) 18.2 (28.5) 

R-free (%) 22.5 (29.2) 21.8 (28.2) 26.8 (29.1) 26.5 (38.3) 23.5 (34.3) 

Number of non-
hydrogen atoms 

7266 7291 6890 6838 

 

7108 

Protein residues 840 845 830 840 845 

RMS(bonds) 0.007 0.007 0.009 0.010 0.008 

RMS(angles) 0.83 0.93 1.08 1.15 0.88 

Ramachandran 
favoured (%) 

97 96 89 85 96 

Ramachandran 
outliers (%) 

0.6 0.6 2.0 3.2 0.7 
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 3 Rotamer outliers 
(%) 

4 5.1 9.6 11 4.6 

Average B-factor 40.56 38.42 52.50 

 

52.44 51.00 
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Table S2  Pairwise comparison of conformations of PDB entries discussed in the text 

 
 RMSD with number of residues in parentheses compared to myo-IP6 

ADP (6JFK) 
 ‘lid’ residues 6-42 (N-

lobe)+103-148 (B4 and 
N-II) 

63-102 (N-I) +161-
435 (C- lobe) 

6-435 

myo-IP5 ADP (6FL3) 0.21 (83) 0.48 (299) 0.46 (400) 
neo-IP5 ATP (6GFH) 0.36 (83) 0.53 (298) 0.56 (399) 
D-chiro-IP6 ADP 
(6GFG) 

0.50 (83) 0.42 (298) 0.48 (391) 

Purpurogallin ADP 
(6FL8) 

0.48 (83) 0.43 (299) 0.60 (397) 

closed (PDB ID 4AQK)  0.35(83) 0.48 (296) 0.77 (398) 
half-closed (PDB ID 
4AXE)  

1.14 (83) 0.86 (296) 1.29 (398) 

4AXE vs 4AQK 1.11 (83) 0.78 (296) 2.81 (398) 
 

Table S3 Definition of AtIP5 2-K residues involved in binding substrate, nucleotide or 

inositide 

 

Binding site  Number 
residues 

Residues 

Substrate 28 R16, G19, G20, A21, N22, V24, V38, R40, R45, R130, L146, 
H149, E166, K168, K170, R192, H196, K200, N238, R241, 
D368, M372, I406, D407, S409, K411, R415, Y419  

Nucleotide 18 R16, G19, G20, A21, N22, V24, V38, R40, L146, H149, E166, 
K168*, R241, M372, D368*, I406, D407, S409 

Inositide 12 R45, R130, K168*, K170, R192, H196, K200, N238, D368*, 
K411, R415, Y419 

 
‘Substrate’ residues cover both ‘inositide’ and ‘nucleotide’ binding sites.  
*Residues that appear in both ‘inositide’ and ‘nucleotide’ sites. 
 
Table S4  Pairwise comparison of conformations of PDB entries listed vs the myo-IP6 ADP-

liganded closed conformation of PDB 6FJK  

 
 RMSD of listed PDB entries vs myo-IP6 ADP-liganded  protein 

(PDB 6JFK) monomer A 
 active site (28 

residues) 
Inositide site  
(12 residues) 

Nucleotide site (18 
residues) 

myo-IP5 ADP (6FL3) 0.26 0.23 0.16 
neo-IP5 ATP (6GFH) 0.43 0.41 0.31  
D-chiro-IP6 ADP (6GFG) 0.36 0.42 0.25 
Purpurogallin ADP (6FL8) 0.50 0.52 0.35 

 

Table S5 Ligand Validation Statistics 
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Structure  Ligand Resolution/Å Molecule Occupancy RSCC1 RSR1 B-factor2 
6FJK myo-IP6 2.02 

 
A 0.97 0.98 0.12 27 (22) 
B 0.98 0.97 0.13 29 (30) 

6FL3 myo-IP5 2.36 
 

A 1.00 0.98 0.13 
28 (26) 

B 1.00 0.99 0.12 
26 (27) 

6GFH neo-IP5 2.65 
 

A 0.91 0.95 0.14 
54 (41) 

B 1.00 0.97 0.12 
48 (38) 

6GFG D-chiro-IP6 3.00 
 

A 0.86 0.91 0.20 70 (52) 

B 0.90 0.88 0.20 78 (49) 
6FL8 Purpurogallin 2.10 A 0.90 0.75 0.21 57 (45) 

B 0.90 0.62 0.35 58 (45) 
1 Real Space Correlation Coefficient (RSCC) and Real Space R-factor (RSR) calculated 
using the wwPDB validation server at https://validate.wwpdb.org.  
2The average B-factor calculated for non-hydrogen ligand atoms is followed in brackets 
by the average B-factor of protein atoms forming direct interactions with that ligand. 
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