
A Modelling Language to Support the Evolution of
Multi-Tenant Cloud Data Architectures

Assylbek Jumagaliyev, Yehia Elkhatib∗
School of Computing and Communications, Lancaster University, United Kingdom

{i.lastname}@lancaster.ac.uk, ∗ORCID 0000-0003-4639-436X

Abstract—Multi-tenant data architectures enable efficient re-
source utilization in cloud applications, but are currently being
implemented in industry and research using manual coding
techniques that tend to be time consuming and error prone.
We propose a novel domain-specific modeling language, CadaML,
to automatically manage the development and evolution of
cloud data architectures that (a) adopt multi-tenancy and/or (b)
comprise of a combination of different storage solutions such
as relational and non-relational databases, and blob storage.
CadaML provides concepts and notations to support abstract
modelling of a multi-tenant data architecture, and also provides
tools to validate the data architecture and automatically produce
application code. We rigorously evaluate CadaML through a user
experiment where developers of various capabilities are asked
to re-architect the data layer of an industrial business process
analysis application. We observe that CadaML users required
3.5x less development time than manual coders. In addition to
improved productivity, CadaML users highlighted other benefits
gained in terms of reliability of generated code and usability.

Index Terms—Domain-Specific modeling, Model-Driven Engi-
neering, Cloud Computing, Multi-tenancy, Software Evolution,
Code Generation

I. INTRODUCTION

Multi-tenancy is an architectural pattern where a single
instance of an application serves multiple tenants [1]. In this
context, a tenant is a group of users that belongs to an
organization who has access with specific privileges [2]. For
example, a multi-shop e-commerce platform would store data
from different shops (i.e., tenants) on the same data store.
Multi-tenancy is commonly adopted in cloud environments
as it enables efficient resource utilization, and leads to lower
operation and maintenance costs through consolidation [3].

Introducing multi-tenancy affects development and evolu-
tion overheads at all layers of the application structure, and
the data layer is no exception. Multi-tenancy at the data
layer requires a data architecture to ensure isolation of tenant
data and requests, on top of the ability to scale. The data
architecture typically also needs to be extensible to support
tenant-specific customizations.

A further complication in the case of multi-tenant cloud
applications is the tendency to store data in different storage
types [4], i.e., relational and non-relational databases, and blob
storage. These are conceptually diverse, with each having its
own partitioning and extensibility approaches to support multi-
tenancy. Thus, building a data architecture that maximizes

This work was partially supported by the Adaptive Brokerage for the Cloud
(ABC) project, UK EPSRC grant reference EP/R010889/1.

resource sharing with the optimal degree of isolation requires
developers to address multi-tenancy challenges and to find a
balance between several architectural trade-offs.

Domain-Specific Languages (DSLs) have been long pro-
posed to address multi-tenancy concerns, specifically to gener-
ate and/or maintain cloud implementations. DSLs are concise,
simple and expressive languages that aim to address prob-
lems of a specific domain through high level and abstract
notions [5]. There have been some successful approaches to
describe deployment configurations, provisioning and man-
agement of cloud services (e.g., [6]–[9]), but multi-tenancy
at the data layer has not been appropriately addressed. For
example, CloudDSL [8] allows the specification of deployment
information for a data layer on different cloud storages, but
the actual data architecture and multi-tenancy management
patterns are not supported. Other model-based techniques [10],
[11] capture multi-tenancy patterns in the data layer as a
part of the application structure, but offer no support for
implementation of the expressed multi-tenancy model.

In this paper, we present CadaML: a modeling language
for the design and implementation of cloud application data
architectures. CadaML is specifically designed to support multi-
tenant data architectures on different cloud storage types. It
provides graphical and automated support to build a data
architecture as a model, validate the model, and generate the
appropriate source code including various ways of managing
multi-tenancy. While a preliminary design of CadaML was
presented in [12], here we refine it and empirically evaluate it
using experimentation with developers. We show how CadaML
allows general developers to easily re-architect the data layer
of an industrial business process analyzing web application
to support multi-tenancy. Compared to the traditional manual
approach, using CadaML significantly increases productivity:
developers are able to complete 3.5x or more the amount of
tasks in the same amount of time. It also noticeably improves
reliability of data layer implementation. As a result, CadaML
enables developers to focus on the application business logic
instead of the minutiae of multi-tenant data layer management.

Our contributions in this paper are:

1) CadaML, a novel domain-specific modeling language for
building multi-tenant polyglot data architectures of cloud
applications. CadaML is graphical and does not require
any syntax to be learned.

2) A set of deterministic validation rules to ensure reliable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/227519661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-4639-436X
https://abc.cs.st-andrews.ac.uk
https://abc.cs.st-andrews.ac.uk

model-to-code transformation.

3) The design and implementation of a code generation
engine that uses a validated model to synthesize a data
layer implementation with multi-tenancy management
logic that corresponds to the specific data storage types
and policies selected by the developer.

4) An empirical evaluation of CadaML through an experi-
mental case study of an industrial application. We specif-
ically observe the productivity of developers of vary-
ing abilities, the reliability of the generated code, and
CadaML’s usability.

II. PROBLEM SPACE

When developing a multi-tenant application, a high priority
is to design a configurable and scalable data architecture that
maximizes resource sharing across tenants, and one that is also
efficient and cost-effective to implement and maintain [13].
However, cloud applications usually have a variety of data
storage requirements and are often served best by a combina-
tion of storage options [4], [14], [15]. These options differ in
storing and organizing data, each having its own partitioning
and extensibility approaches to support multi-tenancy.

A. Data store types

We focus on the Platform-as-a-Service (PaaS) provisioning
level of cloud computing as the one most popular with
developers [16], [17]. We describe PaaS storage, and illustrate
the differences in storing and organizing data with each type.
• Relational databases are appropriate for structured data

with a well-defined schema. Data is organized in tables
of rows and columns, with a primary key identifying each
row. Relationships are strongly defined in the data model.

• Non-relational databases (also called NoSQL) mainly
support key-value stores, and are suitable for flexible
data schemas. A partition key determines the partition in
which data will be stored, and a row key identifies data
within each partition.

• Blob/Object storage is ideal for completely unstructured
data such as documents, media files, or binary data. Data
is stored in buckets as a blob, where a key uniquely
identifies each blob (i.e., object or item) within a bucket.

B. Data architecture partitioning schemes

A partitioning scheme is crucial to ensure isolation of tenant
data, and scalability of the solution when sharing application
code and data across all tenants. Each cloud storage type
has its own partitioning techniques. In this subsection, we
summarize these techniques after analyzing academic and
industrial literature, as well as cloud provider guidance.

In general, relational databases can be partitioned using:
(i) Separate databases: each tenant is served by a dedicated
database; (ii) Shared database, separate tables: all tenants are
hosted by a single database with separate tables per tenant
(with a tenant identifier in the table name, or a separate schema
can be used for each tenant); or (iii) Shared database, shared

tables: all tenants share tables in a single database, with a
tenant identifier is used to associate their records in each table.

Non-relational databases can be partitioned in one of two
ways: separate tables or shared tables. In the former, each
tenant’s data is stored in tenant-specific tables with a tenant
identifier as part of table names. In the latter, all tenant data
is stored in shared tables and a tenant identifier is included in
partition keys to associate rows with a tenant.

Separate and shared buckets are the main partitioning
techniques for blob storage. In separate buckets, all blobs
belonging to a specific tenant are stored in a single bucket
where a tenant identifier is included in the bucket name. In
contrast, shared buckets stores all tenant data in the same
buckets, but includes tenant identifiers in the blob names.

Given these varying partitioning schemes, manually imple-
menting a multi-tenant data architecture can be highly time-
consuming and error-prone especially for architectures utiliz-
ing more than one storage type. Recent research has aimed
to generate multi-tenant cloud applications from high-level
models in order to hide cloud-specific implementation details,
cf. [6], [7], [10], [11], [18]. However, existing approaches tend
to focus less on managing multi-tenancy in the data layer, and
instead focus on other aspects such as enabling configurable
application functionality, capturing different functional and
quality-of-service tenant requirements, etc.

C. Research objectives

To address the limitations of previous work, we present
CadaML to design a multi-tenant data architecture, and generate
source code that is suitable for different cloud storage types
that are required. Specifically, through this work we aim to
achieve the following objectives:
RO1: Provide a means for developers to describe a multi-

tenant cloud data architecture at an abstract level.

RO2: Reduce the development effort during the implemen-
tation of a multi-tenant cloud data architecture.

RO3: Improve reliability of the application code (specifically
at the data layer).

RO4: Offer developers with a reasonable level of usability.

III. CadaML: CONCEPTS AND IMPLEMENTATION

A multi-tenant data architecture design varies depending on
the type of storage, and it even differs from its implementation.
Typically, the data architecture is implemented manually by
following guidance and patterns from cloud providers. A tra-
ditional manual implementation process covers the following
steps: (i) data layer requirements are gathered and captured in
a requirement specification document; (ii) the requirements are
analyzed into models, schemes and business rules; (iii) a data
architecture is designed using database modeling tools, e.g.,
Database Deployment Manager, Database Workbench, and
ER/Studio; (iv) developers implement a data access layer from
the data architecture model; and (v) developers systematically
discover and debug errors in the code. In this manual approach,
whenever the data layer requirements change, developers have

2

Figure 1. The meta-model of CadaML

to go through all these steps and modify the existing code. This
process is usually time-consuming and error prone.

To ease the development process of multi-tenant data ar-
chitectures, we propose CadaML that allows developers to
describe a data architecture in an abstract level by hiding
the implementation details of different cloud storage types
(i.e., polyglot data stores). A data layer implementation work-
flow using CadaML involves the four steps: (i) First, as in
the manual approach, data layer requirements are captured;
(ii) The requirements are analyzed and a data architecture
model is designed using the graphical editor of CadaML;
(iii) The model is validated for constraints and validation rules
imposed by CadaML; and (iv) The data access layer source
code is produced from the model. In this scenario, changes in
the requirements can be directly reflected in the model, thus,
code is generated from the model.

Compared to the manual approach, CadaML automates data
access layer implementation by generating source code from
the data architecture model. In addition, the validation tool
eliminates the testing phase through handling errors at the
model level before generating any artefact from the model.

A. The meta-model

Modeling languages are defined in a meta-model that de-
scribes language elements and relationships among them [5].
The concepts and notations of CadaML should correspond to
terminology that cloud data layer architects and developers

are familiar with. Thus, the meta-model has been created by
thoroughly analyzing common storage type characteristics of
major providers (namely, Alibaba Cloud, Amazon Web Ser-
vices (AWS), Google Cloud Platform, and Microsoft Azure),
features of existing modeling languages that support cloud
application development (e.g., [10], [11]), and peculiarities of
cloud data storage partitioning techniques that were described
in academic and industrial literature (e.g., [10], [11], [13],
[19]).

Figure 1 presents the concepts of the CadaML meta-model
and the interrelations therein. The main element of the meta-
model is DatabaseDiagram that represents a diagram in a
graphical editor where a developer designs a data architecture.
A diagram may include NoSQL Database, SQL Database and
Object Storage. NoSQL Database represents non-relational
databases with its partitioning schemes, and it consists of
tables (i.e., instances of NoSQL table) and their interrelations.
A NoSQL table is a collection of properties, where a property
is a fundamental data element with name and data type.
A NoSQL table must have a partition key and a row key
with their data types (i.e., STRING or NUMERIC), where
partition key values can be automatically generated by the
application by setting partitionKeyAutoGenerated parameter to
true. The relationships among tables are represented by NoSQL
reference, where source table and target table parameters refer
to multiplicity (i.e., ZERO, ONE, and MANY) between tables.

Relational databases are expressed by SQL database. SQL-

3

Partition of a relation database is classified according to
partitioning schemes that were described in §II-B. A SQL
database is composed of tables and their relationships that are
represented by SQL table and SQL reference, respectively. A
SQL table consists of fields, and each field has name, data type
and isPrimaryKey parameters where the last parameter defines
whether the field is a primary key. In addition, autoGen-
eratePrimaryKey parameter allows to automatically generate
primary key values of a table by the application. The source
and target parameters of SQL reference refer to tables in a
relationship, and reference key indicates to a foreign key in a
target table. Where multiplicity between tables are expressed
by source table and target table parameters.

Object Storage is associated with Blob storage type. In
blob storage, data is stored in buckets. A developer can
specify partition of a bucket to one of the described in
§II-B partitioning schemes. Object represents a blob that is
persisted in a bucket. An object is a set of attributes, where
each attribute has name, data type and isKey parameters. The
isKey parameter determines whether an attribute is a key that
will be associated with the object. A key for a blob can be
automatically generated by setting autoGenerateKey parameter
of an object to true. An object can be in relationships with
other objects which are expressed by object reference. The
source and target parameters refer to blobs in a relationship,
while multiplicity between blobs are expressed by source
object and target object parameters.

B. Multi-tenancy management

Multi-tenancy is supported by capturing data segmenta-
tion patterns of different data storage solutions in the meta-
model. Hence, developers can specify a desired partitioning
scheme for each storage type while modeling a data arch-
itecture. Partitioning schemes are defined at bucket level for
blob storage, and database instance level for relational and
non-relational databases. Based on defined schemes, CadaML
produces corresponding implementation of the data access
layer. For example, in a shared bucket tenant isolation is
implemented by appending the tenant identifier to the blob
key when uploading and retrieving blobs. Another example, a
tenant-specific schema name is specified when establishing a
connection to a shared relational database with separate tables
partitioning scheme.

The described meta-model offers benefits above existing
work, which mostly capture cloud services for defining pro-
visioning and deployment configurations of application com-
ponents. A few meta-models includes multi-tenancy patterns
for relational databases but do not comprise concepts to
model a cloud data architecture. In contrast, CadaML allows
to explicitly model a data architecture for different cloud
storage types with partitioning schemes, in line with current
best practices in this space, e.g., [20].

C. Implementation

CadaML has been implemented as a plugin for Eclipse IDE.
We decided to implement CadaML as a graphical modeling

Figure 2. The concrete syntax of CadaML implemented as a graphical editor

language because of the following benefits. First, visual repre-
sentation of a data architecture makes designing database ele-
ments and relationships among them more convenient. Second,
it is easier to find and correct errors in a graphical model [21].
Finally, visualization of a model allows non-developers to get
an overview of a data architecture and intuitively develop an
understanding of the data layer design.

A screenshot of the CadaML graphical editor is shown
in Figure 2, and it consists of three parts: 1 a canvas
represents DatabaseDiagram from the meta-model in which
a modeler creates model elements, and the relationships that
define links between model elements; 2 the Palette comprises
tools associated with the model elements specified in the meta-
model; and 3 the Properties tab that shows properties of each
selected model element in the canvas.

The meta-model was created using the Emfatic notation [22]
and annotated using EuGENia [23] in order to be transformed
into a concrete Graphical Modeling Framework editor in the
Eclipse IDE. Our customizations amounted to 4,684 lines of
code written to implement CadaML: 203 for the implementa-
tion of the meta-model, 106 for adjusting the graphical editor,
315 for validation, and 4,060 for code generation.

D. Validation rules and constraints

A key advantage of CadaML is that the model is validated
against the meta-model semantics before generating derivative
artefacts. Constraints and validation rules are enforced at the
level of the model that can handle many kinds of errors.
For example, names of storage type elements (e.g., tables,
fields in a table, buckets, objects within a bucket) in a data
architecture must be unique and valid identifiers. As another
example, non-relational tables must have both partition and
row keys, while relational tables must have primary keys. In
CadaML, validation rules and constraints are defined in Epsilon
Validation Language [23]. Constraints are written based on the
characteristics of cloud storage types and principles of the Java
programming language.

4

E. Code generation

The main objectives of CadaML are to increase both devel-
oper productivity and code reliability by (semi-)automating
data architecture implementation. To achieve these goals,
CadaML includes a code generator that automatically and
rapidly transforms a model created by a developer to exe-
cutable Java code for AWS.

Figure 3. The code generation process

The code generator (Figure 3) is written in Epsilon Genera-
tion Language [23], and it produces 1) data models, 2) storage
context classes, 3) Java interfaces, and 4) cloud specific classes
for each storage type. All code that is specific to a storage
type is located in different packages. In addition, the generated
code decouples the data access logic from other layers of the
application. This separation, crucially, provides ease of code
maintenance, and allows to independently scale the data layer.

Blobs, relational and non-relational tables are each trans-
formed into a data model, a Java class with appropriate getters
and setters. For relational and non-relational tables, data mod-
els are annotated using Java Persistence API and DynamoDB
Java Annotations, respectively. The annotations are used to
map object fields to actual attribute names in database tables.
A storage context class contains storage related fields, such
as provider name, storage credentials, region, and replication
to initialize a storage connection. In the meantime, a Java
interface contains generic method signatures that are further
implemented by provider-specific classes.

The blob storage interface contains methods to initialize
storage, create a bucket, upload a blob, retrieve a single blob,
retrieve a list of blobs and delete a blob. Meanwhile, the
relational database interface includes create, update, read and
delete (CRUD) methods. Finally, the non-relational database
interface has methods to create a table, save an item in a table,
retrieve an item, and delete an item from a table. It is worth
noting that cloud provider specific classes implement methods
in a generic way that work on different data models.

IV. INDUSTRIAL USE CASE

To investigate the practical feasibility and to assess the
utility of applying CadaML, we conducted an experiment to
re-engineer the single-tenant data layer of a web application
from our industrial partner to adopt multi-tenancy.

A. Use case background

The chosen use case is a business process analyzing ap-
plication from our industrial partner, a major telecommuni-
cation provider operating in 150+ countries. The application
is distributed to many subsidiaries (hereafter, tenants) of a
holding company, and the purpose of the application is to
ensure compliance of business processes of each subsidiary
with the policies imposed by the holding company. The data
architecture consists of 18 entities with their interrelations,
which are designed for relational databases. For our experi-
ment, we use the core subset of these entities. We also spread
the application’s data into different cloud storage types to make
the solution scalable and to reduce the costs for data storage.

Figure 4. ER diagram of the business process analyzing application

An entity-relationship (ER) diagram of the experimental
data architecture is presented in Figure 4. The process defini-
tion entity defines a business process, and it comprises process
and task definition. The process entity describes a job, order,
or process execution, such as service fulfillment or fault repair
process, while task definition defines a description for a task
in a business process. The remaining entities, namely, process
attribute, task attribute, and attribute value, hold additional
attributes to provide extensibility of the data architecture.

Currently, for each tenant an application and a database
instances are deployed on tenant’s on-premises. Tenants regu-
larly upload log files of business processes to the application,
the application generates reports from the uploaded files,
and at the end of each month tenants send these reports
to the holding company. The reports are analyzed by the
holding company for conformance of business processes to

5

its regulations. The holding company wants to change this
allocation. It aims to evolve the application into a multi-tenant
cloud service. Hence, tenants subscribe to the application, and
the company can perform analysis anytime without requiring
tenants to send their reports. Moreover, sharing an application
and a database instances by all tenants will reduce the deploy-
ment and maintenance effort which leads to lower costs.

B. Evolving the data architecture

During the evolution process, the data architecture of the
use case is re-designed to use a combination of different
cloud storage solutions. This, in turn, provides scalability,
customizability and extensibility of the data layer, and reduces
the costs for data storage. Figure 5 shows, at a high level,
which data is stored in the different types of storage.

Figure 5. Data storage in the business process application

The application collects most of the tenant information with
configuration data during on-boarding process, and stores them
as a single object in a public bucket named ‘tenants’. A tenant
and its configuration are modeled as separate entities to enable
customization and management of each entity independently.
These entities will be deployed to Amazon S3.

In the meantime, the application stores process definitions,
processes, task definitions and tasks entities in separate non-
relational tables in Amazon DynamoDB. Storing these enti-
ties in non-relational tables simplifies the implementation of
customizability and extensibility of the application. To extend
these tables in a relational database, additional tables are used
to hold custom attributes. Fortunately, non-relational tables
allow to use multiple schemes in the same table, thus, each
tenant can have its own custom attributes.

Nevertheless, non-relational databases support limited oper-
ations which restricts execution of complex queries. Therefore,
for tenants who need complex analysis and management
of their own custom reporting requirement, the application
will provision a new relational database instance of Amazon
RDS during the on-boarding process. For tenants with such
requirements, the provisioning process will create necessary
tables in the database. Ideally, the actual database scheme
should be remained unchanged. For the experiment, the same
set of entities that are used for non-relational databases but
with different organizational structure are constructed.

C. Modeling in CadaML

CadaML is used to model the data architecture of the use
case. First of all, a database diagram needs to be created with
instances of the corresponding cloud storage types (i.e., Object
Storage, NoSQL Database and SQL Database).

Figure 6. Blob storage data architecture modeled in CadaML

As shown in Figure 6, a single bucket is created in the
object storage. The ‘Shared’ partitioning scheme is specified
for the bucket since the bucket is used as a central storage for
tenant-specific configuration data, and it is shared across all
tenants. Within the bucket, Tenant and Configuration entities
are modeled as objects with attributes, and the relationship
between these objects are defined by the object reference.

The Tenant object has ‘Name’ and ‘SubscriptionKind’ at-
tributes where the first attribute is set as the key that will be
associated with an instance of the object when storing it in the
bucket. Meanwhile, ‘Configuration’ object holds configuration
information that is used to provision a new relational database
instance, and it is bound to the Tenant object.

Figure 7. Non-relational data architecture modeled in CadaML

A NoSQL database instance is modeled with ‘Shared Ta-
bles’ partitioning scheme as illustrated in Figure 7. In the
database, non-relational entities are modeled as NoSQL tables
with their partition and row keys. However, the partition keys
and row keys are not shown in the diagram because they are
specified as attributes in the CadaML meta-model, thus, they
can be seen in the properties of tables in the graphical editor.

The partition key of the ProcessDefinition table contains the
tenant identifier. This value allows filtering by tenant identifier,
and ensuring the isolation of process definitions by tenant.
While the row key comprises the process definition identifier
to make sure that tenants cannot create two process definitions
with the same identifier.

6

The partition key for the Process and TaskDefinition tables
contain the row key from the ProcessDefinition table, which is
the process definition identifier. This enables the application to
insert all processes and task definitions for a process definition
in a single transaction, and to retrieve them from a single
partition. In the meantime, the Process and TaskDefinition
tables hold the process identifier and task definition identifier,
respectively, in their row keys.

Similarly, the identifying row key of the TaskDefinition table
is set as the partition key for the Task table, and the task
identifier is included in the row key. Other elements of entities
are added as properties, and the relationships between entities
are captured by NoSQL reference.

Figure 8. Relational data architecture modeled in CadaML

As depicted in Figure 8, a SQL database instance is created
with the ‘Separate Database Per Tenant’ partitioning scheme,
as the application will provide an instance of SQL database
for tenants who require additional reporting capabilities. Re-
lational entities are created as SQL tables with their fields.
For primary key fields, isPrimaryKey property is set to true.
The relationships are specified using SQL reference, where a
foreign key serves as a link between entities.

When the data architecture is designed, the developer can
check the model for errors and validate it. If there is no
violation of constraints and validation rules, the model is
transformed to Java code for AWS. This one-time process
takes ≈ 1.9 seconds on a machine with an Intel i5 1.30GHz.

V. EVALUATION

We first detail our experimental setup (§V-A), then present
and comment on the results (§V-B – §V-D).

A. Experiment design

Strategy: Our evaluation strategy is to exploit the use case
to assess developer productivity in terms of time required
to develop the data layer for AWS and completion rate of
the experiment tasks, the usability of CadaML, and generated
code reliability. We compare CadaML against manual code re-
factoring where developers implement the data layer of the
given use case. The controlled experiment design with the

Table I
SELF-REPORTED EXPERTISE IN PROGRAMMING WITH JAVA.

Low
(1-2)

Medium
(3-5)

High
(6-7) Total

Manual 1 5 5 11
CadaML 1 4 7 12

Sum 2 9 12 23

Table II
SELF-REPORTED EXPERTISE IN CLOUD DEVELOPMENT AND MODELING.

Cloud
Appl’s

Cloud
Data Layer

Modeling
Tools

None of
the above Total

Manual 4 3 3 1 11
CadaML 3 2 5 2 12

Sum 7 5 8 3 23

task analysis technique is used to observe how participants
interact with CadaML. Such analysis helps in understanding
the difficulties participants face in using the modeling language
and improvements that might be needed.
Procedure: The experiment procedure lasts for a maximum
of an hour per participant (plus assistance time, see below).
First, the participant fills a questionnaire about their experience
in programming languages, cloud application/data layer devel-
opment and modeling tools. Then, the participant is assigned
to implement the data architecture using either CadaML or
through manual coding in alternating order in order to avoid
interaction effects and to ensure equal number of participants
for both approaches. All participants used the same high-
end development PC. Finally, those who used CadaML are
interviewed at the end of the experiment to discuss reliability
of the code, usability of the modeling language, and how
CadaML affected their productivity. They are asked to respond
to a simple questionnaire using a 5-point Likert scale, then
optionally answer open-ended questions to solicit feedback on
things to improve.
Task: The experiment task is divided into 3 independent
sections for each of the storage types, which can be attempted
in any order. Each section consists of a list of implementation
tasks that are then used as a checkpoint system to gauge the
level of completion for each participant. There are 20 tasks in
the relational databases section, 18 in non-relational databases,
and 8 in blob storage.
Assistance: Before the experiment commences, the Amazon
Web Services API documentation and annotated code samples
are given to manual implementers, and a brief quickstart
guide (2-3 minutes) to CadaML users. During the experiment,
additional guidance is provided for any participant who has
trouble interacting with either Amazon APIs or CadaML.
Recruitment: Participants were recruited from local Computer
Science researchers and graduate students, as well as startup
developers. An incentive for participation was offered in
the form of an online shopping voucher (value of £10 ≈
USD$13). Overall, 23 developers participated with varying
Java expertise levels (Table I). Among them, 11 developers
manually implemented the data layer, while 12 others used

7

Table III
TIME SPENT (IN H:MIN:S) AND COMPLETION RATE (CR) BY PARTICIPANTS FOR EACH STORAGE TYPE THROUGH MANUAL IMPLEMENTATION

Blob Storage NoSQL SQL Overall
Time CR Time CR Time CR Time

P1 31:39 50.0% 29:07 25.0% - 0.0% 1:00:46
P2 25:48 62.5% 35:02 40.0% - 0.0% 1:00:50
P3 36:26 62.5% 23:41 20.0% - 0.0% 1:00:07
P4 39:12 87.5% 21:02 20.0% - 0.0% 1:00:14
P5 - 0.0% 25:22 25.0% 34:44 30.0% 1:00:06
P6 - 0.0% 1:00:09 52.0% - 0.0% 1:00:09
P7 - 0.0% 1:00:23 60.0% - 0.0% 1:00:23
P8 38:54 100.0% 21:06 20.0% - 0.0% 1:00:00
P9 41:23 62.5% 18:38 20.0% - 0.0% 1:00:01

P10 36:24 100.0% 23:36 25.0% - 0.0% 1:00:00
P11 24:48 75.0% 20:55 25.0% - 0.0% 45:23

Median 36:25 62.5% 23:41 25.0% 34:34 30.0% 1:00:07

Table IV
TIME SPENT (IN H:MIN:S) AND COMPLETION RATE (CR) BY PARTICIPANTS FOR EACH STORAGE TYPE USING CadaML

Blob Storage NoSQL SQL Overall
Time CR Time CR Time CR Time

P12 15:28 100.0% 14:55 100.0% 20:05 100.0% 50:28
P13 13:40 100.0% 11:48 100.0% 15:57 100.0% 41:25
P14 13:26 100.0% 08:24 100.0% 11:03 100.0% 32:53
P15 08:41 100.0% 06:07 100.0% 10:19 100.0% 25:07
P16 13:08 100.0% 12:11 100.0% 16:36 100.0% 41:55
P17 16:46 100.0% 15:54 100.0% 19:40 100.0% 52:20
P18 16:09 100.0% 19:07 100.0% 12:41 100.0% 47:57
P19 10:18 100.0% 11:32 100.0% 09:08 100.0% 30:58
P20 16:18 100.0% 18:06 100.0% 17:12 100.0% 51:36
P21 11:27 100.0% 11:36 100.0% 12:43 100.0% 35:46
P22 22:17 100.0% 19:53 100.0% 16:23 100.0% 58:33
P23 09:54 100.0% 12:16 100.0% 08:07 100.0% 30:17

Median 13:33 100.0% 12:14 100.0% 14:20 100.0% 41:40

CadaML. Furthermore, 7 developers had some cloud applica-
tion implementation experience and only 5 among them had
data layer implementation experience – see Table II. Nearly
the same number of developers (8) have used modeling tools.
Both tables emphasize that developers are as fairly allocated
for both approaches as possible, without taking specific skills
into consideration.

B. Productivity results

The productivity of participants is evaluated by calculating
the implementation time, and completion rate of tasks through
testing and debugging written/generated code.

Table III shows the time taken to manually develop the
data architecture, as well as the associated completion rate
of implementation tasks per storage type. Participants spent
an average of 32 minutes per storage type, with a median
completion rate of 63% for blob storage and 25% for non-
relational database.

More importantly, within the one hour of time given for the
experiment, none of the participants could fully accomplish all
tasks using manual methods. Two participants (P8 and P10)
showed 100% completion rate for blob storage, with the best
completion rate for non-relational data architecture being 60%.
Meanwhile, only one participant (P5) attempted to manually
implement the data layer for relational database, completing
only 30% of the given tasks. This clearly demonstrates the

complexity of successfully completing the required tasks using
manual methods in under an hour.

In stark contrast, using CadaML significantly improves the
development time and completion rates as demonstrated in
Table IV. Interestingly, participants spent around 14 minutes
on average to model the data architecture of each storage
type. The minimum times required for blob storage, non-
relational and relational databases were about 9, 6, and 8
minutes, respectively. Meanwhile, the maximum times were 22
minutes for blob storage, and 20 minutes for non-relational and
relational databases. Moreover, all participants fully completed
the tasks within the hour, and the generated code passed all
test cases (more details in the following subsection).

To further expand on the above results, the general distri-
bution of time taken by the participants in both experiments is
depicted in Figure 9. Generally, 30-40 minutes were required
to manually implement the blob storage architecture, and 20-
35 minutes for non-relational database. The majority of the
participants started the implementation with the blob storage,
and spent any remaining time developing other storage types.
Therefore, the time for the implementation of non-relational
data access layer is less, but with lower completion rates (as
discussed before; see Table III). Unfortunately, implementation
time for relational databases can not be generalized as only
one participant attempted it at the expense of the blob tasks.
On the other hand, most participants using CadaML were able
to finish each data layer implementation in 10–17 minutes.

8

Figure 9. The distribution of time taken by participants to implement the data
layer using 3 different datastore types. Using CadaML significantly reduces
development time. Only one participant attempted to accomplish any progress
on SQL using manual implementation, hence the very narrow box on the right.

C. Reliability results

We also evaluated the reliability of the written/generated
code on a module level using the JUnit 5 testing framework.
Noticeably more errors were encountered in the application
code by participants who manually implemented the data
access layer. Specifically, errors were discovered in the code
of 9 (out of 11) participants. On the contrary, CadaML users
fared better: only 5 (out of 12) participants made errors in the
data architecture model, most of which were captured.

During the manual implementation experiment, the most
common errors were incorrect implementation of: (i) object
serialization and de-serialization to upload and retrieve a blob;
(ii) non-relational table creation; and (iii) storing referenced
entities in a non-relational database. The reasons for these
errors seem to stem from some participants perceiving the
provided code samples as prescriptive rather than illustrative.
For example, in the Amazon tutorial, an example is given of
uploading a file as a blob. Some participants simply ignored
this fact, and blindly followed the tutorial when instead they
needed to upload as a Java object (not a blob), which obviously
caused errors. Another reason is the time constraint. Some
participants may have felt the need to to fully accomplish
the experiment tasks in the allocated time of an hour without
ensuring the validity of their code.

Conversely, there were no fundamental errors in the code
generated by CadaML. Moreover, most errors were captured
and fixed by the validation tool – see §III-D. Examples of such
errors include: (i) missing primary keys for relational tables;
(ii) incorrect multiplicity specification for a relationship be-
tween non-relational tables; and (iii) creation of relationships
between the wrong tables. The participants who encountered
such errors admitted that the reason for errors was lack of
attention while following the experiment tasks. This might
suggest too much reliance on CadaML, although it is difficult
to tell if this is indicative without conducting a wider study.

D. Exit interview results

After the experiment, participants who used CadaML were
interviewed about their experience in exploiting the modeling

language. They were asked a series of 9 questions, to which
they respond using a 5-point Likert scale (‘Strongly disagree’,
‘Disagree’, ‘Neutral’, ‘Agree’, and ‘Strongly agree’). The
first three questions aim to find out how CadaML affects
productivity. The next three questions relate to reliability of the
generated code, while the remaining ones focus on usability.

Productivity (Figure 10): All participants agreed that less
time than expected was required to come up with source
code and that CadaML made the implementation process easier
through visualization of the data architecture. Half of the
participants claimed that no extra manual coding was required
to accomplish the experiment. The other half, however, stated
that some extra manual coding may be needed depending on
application requirements.

Figure 10. Participant feedback on productivity: all agreed that CadaML
helps reduce implementation time and difficulty, but not all agreed that it
was sufficient on its own.

Reliability (Figure 11): The majority of participants (92%)
found the generated code to be readable, while only one
participant (8%) neither agreed nor disagreed. All participants
stated that fewer errors occurred in the code with CadaML in
comparison with manual implementation. However, 42% of
participants found it harder to locate errors in the generated
code compared to the manually-written alternative.

Figure 11. Participant feedback on reliability: generated code is of high
readability and low frequency of errors; but with mixed perceptions about the
ability of finding errors in the generated code.

Usability (Figure 12): Most participants found CadaML easy
to use (83%), flexible enough (67%), and with intuitive con-
cepts and notations (92%). Nonetheless, a few participants
struggled in using CadaML and stated that the modeling
language restricts their freedom as a programmer (8% agreed
and 25% neutral).

VI. DISCUSSION

The findings of the experiments certainly demonstrate that
with CadaML less time is spent to implement the data layer
and with less errors appearing in the application code. We now
look back at how this matches with the research objectives we
set in §II-C, and comment on room for improvement.

9

Figure 12. Participant feedback on usability: CadaML is generally perceived
to be intuitive and easy to use without restricting the developers’ freedom.

A. Reflection on the research objectives

All participants emphasized that the graphical editor makes
modeling a data architecture more convenient. They also
highlighted that the visual representation eases understanding
of the model, and saves effort when applying changes in the
model. The majority of the participants were satisfied with
the concepts and notations provided by the language. Hence,
we achieved objectives RO1 and RO2 by providing a way to
design a multi-tenant data architecture in an abstract level
and reducing the development effort through modeling. The
interview results also support our last objective (RO4) where
we aimed to offer a reasonable level of usability.

Less errors occurred in the application code due to the
validation capability of CadaML. In addition, good readability
of the generated code was noted by the participants. On the
other hand, finding assumed errors in the application code
was not straightforward for some participants because of the
number of generated Java classes. This problem can be solved
by incrementally testing and debugging the application code.
Nonetheless, we can say that RO3 is also achieved as CadaML
improved reliability of the application code by reducing the
number of errors and producing well structured code.

B. Limitations and future work

For the evaluation, developers of varying familiarity with
Java and cloud data layer architectures were recruited. This
helped identify baseline improvement across a wide developer-
base. However, a more in-depth study with experienced cloud
data layer developers would provide further insights.

Changes in the generated code are currently not reflected
in the model. As a result, synchronization issues that could
emerge between model and code. Also, changes in the code
will be overwritten when a developer re-generates it from the
model. This is something we plan to mitigate in the future.

We also intend to address concerns about reliability of
error localization, and restriction of developer freedom that
were collected through the exit interviews. Finally, we plan to
further evaluate the generalizability of the modeling language
by expanding CadaML to support different data storage types of
multiple cloud service providers, supporting the development
of multi-tenant applications that span multiple clouds.

VII. RELATED WORK

An XML-based modeling language [24] is provided by
Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) to define application components and their re-

lationships. Similarly, CloudML-SINTEF [25] is a standalone
DSL to express deployment specification of application com-
ponents. In both approaches, the data layer can be described
as a separate component with database properties. Another
XML-based modeling language, CloudML-UFPE [26], allows
the description of the data layer in terms of cloud resources
and services with their requirements.

Using StratusML [27], a developer can specify a storage
group that will be used to persist an application’s data and de-
scribe different data partitioning strategies. Similar approaches
are adopted by Holmes [28] and Blueprint [29].

Quality requirements of a multi-tenant data layer is cap-
tured by leveraging the Orthogonal Variability Modeling Lan-
guage [11]. In [10], feature modeling is used to express data
segmentation schemes for each functional part of an applica-
tion that interacts with a data layer. In both approaches, tenants
select partitioning options, and configuration information is
generated accordingly. In [30], evolution from single- to multi-
tenancy is handled for relational databases using a DSL.

All the above modeling languages automate software provi-
sioning and migration by generating deployment specification
models. However, they do not fully capture multi-tenancy
patterns at the data layer. Moreover, they do not produce data
access code from the model. The only exception is regarding
data definition scripts in CloudML-SINTEF.

In addition, current works focus only on partitioning rela-
tional databases, although most real-world cloud applications
are polyglot, i.e., using a combination of different storage
types [31]. Hence, automatically dealing with the conceptual
differences between different storage types and their partition-
ing implementation peculiarities is not addressed in the state
of the art.

VIII. CONCLUSION

Multi-tenant data architectures enable efficient resource uti-
lization whilst maintaining tenant isolation, making it a wide-
spread practice in cloud applications. However, introducing
multi-tenancy at the data layer makes for a relatively laborious
and error-prone development process. To overcome this, we
present a domain-specific modeling language CadaML that
provides support to create an abstract data architecture model,
as well as automated model-to-text transformation to interpret
the model and generate appropriate source code for different
cloud data storage types. Along with its model validation
support, CadaML relieves developers from the need to create
their own multi-tenant-safe implementation and the details of
managing different storage types, and instead allows them to
focus on their abstract data architecture model. CadaML is a
graphical language so no syntax needs to be learned.

We report on applying CadaML on an industrial business
process analyzing application, where we compare CadaML
against manual implementation of the data layer. The results
show exploiting CadaML can significantly reduce the time and
effort to implement the data architecture, and decrease number
of errors in the application code.

10

REFERENCES

[1] C.-P. Bezemer and A. Zaidman, “Multi-tenant SaaS applications: Main-
tenance dream or nightmare?” in EVOL and IWPSE Workshops, 2010.

[2] R. Krebs, C. Momm, and S. Kounev, “Architectural concerns in multi-
tenant SaaS applications,” in CLOSER, 2012.

[3] J. R. Hamilton, “On designing and deploying internet-scale services,” in
LISA, vol. 18. USENIX, 2007.

[4] T. Dykstra, R. Anderson, and M. Watson, Building Real-World Cloud
Apps with Windows Azure. Microsoft Corporation, 2014.

[5] M. Fowler, Domain Specific Languages. Addison-Wesley, 2010.
[6] N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg, “Managing

multi-cloud systems with CloudMF,” in Nordic Symposium on Cloud
Computing & Internet Technologies, 2013.

[7] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable
automated deployment and management of cloud applications,” in
Advanced Web Services. Springer, 2014, pp. 527–549.

[8] G. C. Silva, L. M. Rose, and R. Calinescu, “Cloud DSL: A language
for supporting cloud portability by describing cloud entities,” in Cloud-
MDE@MoDELS, 2014.

[9] A. Bergmayr, U. Breitenbücher, O. Kopp, M. Wimmer, G. Kappel, and
F. Leymann, “From architecture modeling to application provisioning
for the cloud by combining UML and TOSCA,” in CLOSER, 2016.

[10] F. Mohamed, M. Abu-Matar, R. Mizouni, M. Al-Qutayri, and Z. Al Mah-
moud, “SaaS dynamic evolution based on model-driven software product
lines,” in CloudCom, 2014.

[11] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability mod-
eling to support customization and deployment of multi-tenant-aware
software as a service applications,” in PESOS, 2009.

[12] A. Jumagaliyev and Y. Elkhatib, “CadaML: A modeling language
for multi-tenant cloud application data architectures,” in International
Conference on Cloud Computing (CLOUD). IEEE, Jul. 2019.

[13] F. Chong and G. Carraro, “Architecture strategies for catching the long
tail,” Microsoft Corporation, Tech. Rep. 479069, 2006.

[14] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large
scale data management approaches in cloud environments,” IEEE Comm.
Surveys Tuts., vol. 13, no. 3, 2011.

[15] R. Sellami, S. Bhiri, and B. Defude, “Supporting multi data stores
applications in cloud environments,” IEEE Trans. Serv. Comput., vol. 9,
no. 1, 2016.

[16] S. Walraven, E. Truyen, and W. Joosen, “Comparing PaaS offerings in
light of SaaS development,” Computing, vol. 96, no. 8, 2014.

[17] Y. Elkhatib, “Mapping Cross-Cloud Systems: Challenges and Opportu-
nities,” in Conference on Hot Topics in Cloud Computing (HotCloud).
USENIX Association, Jun. 2016, pp. 77–83.

[18] M. Abu-Matar, R. Mizouni, and S. Alzahmi, “Towards software product
lines based cloud architectures,” in IC2E, 2014.

[19] A. Jumagaliyev and J. Whittle, “Model-driven engineering for multi-
tenant SaaS application development,” in Workshop on CrossCloud
Infrastructures & Platforms, 2016.

[20] S. Strauch, V. Andrikopoulos, T. Bachmann, D. Karastoyanova, S. Pas-
sow, and K. Vukojevic-Haupt, “Decision support for the migration of
the application database layer to the cloud,” in CloudCom, 2013.

[21] G. Hogenson, G. Warren, S. Cai, A. Homer, T. Petersen, M. Jones,
and M. Blome, Modeling SDK for Visual Studio - Domain-Specific
Languages, Microsoft, 2016.

[22] C. Daly. Emfatic: A textual syntax for EMF Ecore meta-models.
[23] D. Kolovos, L. M. Rose, and R. F. Paige, The Epsilon Book, 2018.
[24] A. Atrey, H. Moens, G. V. Seghbroeck, B. Volckaert, and F. D. Turck,

“An overview of the OASIS TOSCA standard: Topology and orchestra-
tion specification for cloud applications,” IBCN-iMinds, Department of
Information Technology, Tech. Rep., 2015.

[25] A. Bergmayr, A. Rossini, N. Ferry, G. Horn, L. Orue-Echevarria,
A. Solberg, and M. Wimmer, “The evolution of CloudML and its
applications,” in Workshop on MDE on and for the Cloud, 2015.

[26] G. E. Gonçalves, P. Endo, M. Santos, D. Sadok, J. Kelner, B. Melander,
and J.-E. Mangs, “CloudML: An integrated language for resource,
service and request description for d-clouds,” CloudCom, 2011.

[27] M. Hamdaqa and L. Tahvildari, “Stratus ML: A layered cloud modeling
framework,” in IC2E, 2015.

[28] T. Holmes, “Automated Provisioning of Customized Cloud Service
Stacks using Domain-Specific Languages,” in CloudMDE, 2014.

[29] D. K. Nguyen, F. Lelli, Y. Taher, M. Parkin, M. P. Papazoglou, and W.-
J. van den Heuvel, “Blueprint template support for engineering cloud-
based services,” in European Conf. on a Service-based Internet, 2011.

[30] A. Jumagaliyev, J. Whittle, and Y. Elkhatib, “Using dsml for handling
multi-tenant evolution in cloud applications,” in Conference on Cloud
Computing Technology & Science (CloudCom). IEEE, Dec. 2017.

[31] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of “big data” on cloud computing: Review and
open research issues,” Information Systems, vol. 47, pp. 98 – 115, 2015.

11

	Introduction
	Problem Space
	Data store types
	Data architecture partitioning schemes
	Research objectives

	CadaML: Concepts and Implementation
	The meta-model
	Multi-tenancy management
	Implementation
	Validation rules and constraints
	Code generation

	Industrial Use Case
	Use case background
	Evolving the data architecture
	Modeling in CadaML

	Evaluation
	Experiment design
	Productivity results
	Reliability results
	Exit interview results

	Discussion
	Reflection on the research objectives
	Limitations and future work

	Related Work
	Conclusion
	References

