

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2019)

 Blockchain Enabled Rooms Implementation

For Internet of Things

Joice Joseph, Dr Keivan Navaie

Department of Science and

Technology

Lancaster University

Lancaster, United Kingdom

Email: {K.Navaie,

Josephj1}@lancaster.ac.uk

Abstract—The number of IoT devices is growing at an

exponential rate. It is expected that by 2020, there will be

approximately 30 billion internet-connected devices and 500

billion by 2030. Not only, does it increase security concerns but

will give rise to interoperability issues. In this paper, the

recently introduced Ethereum network will be utilised with

respect to Internet of Things to create an infrastructure

compatible with IoT devices. With an addition of an

automated, immutable smart contract that will aid the

interoperability of various devices through the heterogenous-

friendly Ethereum network. The true potential of Ethereum,

when combined with IoT, will be explored and demonstrated.

Demonstrated through an implementation in which power will

be provided to a room embedded with various IoT devices

upon payment (in the form of rent) into a landlord’s smart

contract [1].

Keywords—Blockchain, Smart Contracts, Public Network,

Landlord, Ethereum, Proof of Work, Private Network, IoT

I. INTRODUCTION

With the rising concerns for security, interoperability,
and privacy, there was a dire need for an innovative new
technology with the capacity to revolutionise industries and
streamline users lives all while providing them with the
anonymity they deserve. The concept of blockchain was
introduced dating far back as 1976, in which a block
chaining technique involving ciphers was proposed- known
as cipher block chaining (CBC). In CBC, a small group of
bits is converted to hash code, then stored as a ‘block’ before
being assigned a unique key. Other concepts were also
proposed, one presented by Wei Dai suggested rewarding
nodes for solving computational puzzles. This ultimately
formed the framework around the Proof of Work algorithms
that exist today [2] [3].

A. Concept

 The concept described throughout this paper forms the

foundations of a real-life application. Though the model

designed is simplistic, the concept it embodies has the

potential to form the basis for a practical smart home in the

future.

 The combination of IoT and blockchain technology as

used within this use case can streamline rent payments,

control of home appliances and create a private network

within each home comprising of various (IoT) appliances,

whereby the network admin is the landlord. A smart

contract can then be deployed onto this network that

monitors and controls the appliances, electrical supply, and

water supply subjective to the landlord’s conditions. Smart

contracts can be programmed to automatically execute

routine payments for resources used i.e electricity, water,

etc.

B. Blockchain

 When stripped down to its core, blockchain consists of a

chain of digital signatures. Together, it forms a distributed,

immutable ledger with a unique hash assigned to each

signature that expands across a vast network of computers.

During transaction processing, the hash of – format SHA-

256 – the former transaction and its associated public key is

automatically signed and timestamped. This information is

saved as a block on the end of the chain [4]. Refer to figure

1.

Figure 1 Hash of previous block points to hash of most recent blocks and is

used to sign the most recent transactions (https://bitcoin.org/bitcoin.pdf)

Authentication of transactions is accomplished through a
consensus algorithm named Proof of Work. Here, specialised
nodes named miners solve complex computational puzzles
using a hash function to complete transactions prior to
placing onto the blockchain. This consensus algorithm is
currently in use by Ethereum.
 In 2014, Ethereum was launched. Providing an open
platform on which decentralised applications, known as
‘DApps’, can be deployed with ease. It utilises the
blockchain technology to its full potential. With the addition
of smart contracts and Ethereum VM, the capacity of
Ethereum had immensely increased. Of the many application
of Ethereum, IoT seemed the most promising. The Ethereum
enabled smart contract, can automate interactions between
IoT devices within a network. For instance, a supply chain
can track the condition and journey of their goods using an
Ethereum application that communicates with sensors
embedded within the packaging.
 With the exponentially increasing number of devices and
shift towards automating services, the movement to an IoT
world has already begun. It is accelerated by the global
investments into this field – estimated to exceed $1 trillion

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/227519585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://bitcoin.org/bitcoin.pdf

by 2020 – whereby the internet no longer exists behind a
monitor, but as a separate tangible object serving a very
specific purpose and exists as part of a system of systems [4]
[5].

C. Aims and Objectives

1. Conduct research into Ethereum’s implementation,
tools available for development and capabilities for
innovation.

2. Understand how Ethereum was derived from
blockchain 1.0 and existing deficiencies within
Ethereum.

3. Understand the functionalities of Raspberry Pi and
its suitability with Ethereum.

4. Create a functional room model implemented using
Raspberry Pi modules, whereby ‘tenants’ pay into a
smart contract using an interface and electricity is
provided to the smart room – signalled through
activation of IoT devices within the room.

II. BACKGROUND

The drastic increase in IoT devices brings forth the rise in
security concerns, verifiability, and interoperability
problems. Thus, the need for an infrastructure with the
capacity to nurture this rise in IoT devices is therefore
essential, and blockchain satisfies this condition.
 Blockchain introduces a new means for firms to automate
procedures between stakeholders such as businesses ordering
shipment from a supplier. These are monitored using IoT
devices without needing a complicated infrastructure with
individuals such as landlords to automate procedures and
eliminate the middlemen. Similarly, the data security
provided by blockchain will help to cultivate the relationship
between organisations and individuals which ultimately
increases the efficiency of processes further [6]. IoT
devices are inherently insecure, low-cost, often developed
with one sole purpose and possess weak computational
power with little security safeguard. This makes IoT devices
vulnerable to attackers. It is even possible to attack IoT
devices through side-channel attacks, in which
electromagnetic emanations can be exploited to extract the
sensitive data i.e private keys [7] [8].
 Due to the distributed nature of blockchain, the network
is prone to 51% attacks. As a result, private networks with
fewer blocks and small chain are more susceptible to attacks.
Similarly, this smart room implementation makes use of a
private Ethereum network where nodes are added to the
network individually after approval. Due to transaction
validation procedures and scalability issues, Ethereum is
only able to process approximately 15 transactions per
second and thus, will cause queues when many transactions
need to be processed. In comparison to Visa, that can process
24,000 transactions/second. However, this issue is avoided
in the smart room implementation with the private
blockchain network. As there are only a small number of
approved nodes, comprising of a thermostat, speakers, and
an LED light in each of the 2 rooms. Thus, a transaction
speed of 15/seconds offered by Ethereum is adequate for this
experiment [10].

A. Related Research Projects

 Previous research includes a smart home implemented

using blockchain technology, however, the primary focus

was on security and privacy issues. The smart home was

divided into 3 tiers: cloud storage, overlay, and smart home.

Each smart home was provided with an internet device

monitoring all messages and transactions passed to/from the

home. To support this, a blockchain framework was

implemented. Yet to make the framework more flexible to

suit the IoT ecosystem, Proof of Work system was removed.

Proof of Work is crucial to reaching legitimate, error-free

consensus with regards to transactions. Therefore, removing

or replacing it with another system will likely create

vulnerabilities [11]. In comparison to this Ethereum room

model which makes use of “dummy” miners to run a proof

of work system, for verifying all transactions before being

recorded onto to the private distributed ledger.

 IoT devices often have small storage space because their

main function is simply to transfer data seamlessly between

other devices, which makes blockchain technology difficult

to implement. As such, research has been done into creating

a blockchain based on ‘Hypergraphs’, so that the issue of

memory and security can be averted (in a smart home

setting at least), in which the network itself has been divided

into multiple parts (multiple ‘Hyperedges’) using the

proposed theory [12].

B. Ethereum Mining Fundamentals

 Each block on the Ethereum blockchain contains 3 vital

components: most recent state of the chain, block number,

and difficulty value. Fundamentally, the difficulty value

refers to the complexity of the computational puzzle miners

are required to solve during block creation. Meaning the

higher the difficulty, the longer the time taken to create a

block and thus more secure transactions. During the

initialisation of the private Ethereum network, difficulty

value for the genesis block will be intentionally set to a low

value of “0x20000” to guarantee that transactions can be

completed more promptly [13] [14].

 Although high transaction security has been sacrificed,

transactions made on the network are still secure due to the

authorisation needed to join the network initially. Control

over nodes joining the network will fall on the landlord’s

node i.e the admin. The steps to validating a block during

block creation are as follows:

1. Parent block is proven to exist and is verified.

2. Timestamp of current block > timestamp of

previous block and < 15 minutes into the future.

3. Block number, difficulty, transaction on root, gas

limit and uncle root are validated.

4. Validate PoW on current block.

5. Error is returned if gas limit has been reached.

6. Miners are rewarded with Ether after block has

been added to the chain.

7. If root of the previous block is the same as state

root; the block is valid. Otherwise invalid.

C. Account Creation and Functionality

 On Ethereum there are 2 forms accounts: user accounts,

each with a unique private key and contract accounts that

are managed by code automatically. Both types of accounts

have been used within this project, with 7 external accounts

each on a separate device. However, 6 of the 7 external

accounts are owned by the tenants through which they

transfer payments into the contract account, thereby

activating the programmed tenancy contract controlling the

contract account. Tenants are required to sign off the

transaction with their private keys to authenticate the

payment.

 However, contract accounts are subject to a cost when

used, called ‘gas’, as it utilises the computational resources

provided by the network. In short, the higher the gas value,

the higher the priority given by miners for they receive

larger rewards.

 Mist wallet was chosen as it offers a highly accessible

web interface providing the functionality to create external

and contract accounts. Mist can connect to the Ethereum

blockchain, enabled through the web3 library embedded in

Mist which interacts with nodes by connecting to an HTTP

connection. In contrast to creating accounts through the

terminal, which many non-tech savvy users will find

challenging. The abstraction provided by Mist will increase

the efficiency of users.

D. Role of Smart Contracts within Ethereum Network

 In this use case, the smart contract outlines the rules and

conditions for rent payment between a tenant and landlord,

which has been deployed onto the private blockchain

accessible by tenants. They will pay into the smart contracts

through their Ethereum accounts. Afterward, the contracts

will forward the payments directly into the landlords

account if pre-defined conditions have been met. Hence,

streamlining the payment process without the need for

intermediaries e.g. agencies, banks.

 Smart contract will need to be validated by miners prior

to deployment delaying the release of the contract. An

implication that will be dealt with during the creation of the

tenancy smart contract. Thus, the higher the gas value set,

the quicker the contract will be deployed onto the

blockchain. Ethereum together with smart contracts is vastly

more capable than many other platforms, e.g. Bitcoin and

Ripple because of the turing-completeness, alterable state

transitions, blockchain-awareness, and value-awareness

[13].

 Solidity has a similar syntax to JavaScript; therefore,

programmers will be able to become proficient in solidity

with ease. During the creation of the tenancy smart contract,

the Remix IDE will be used to develop the code. The

tenancy contract can be compiled into bytecode then

executed on the public, Testnet, or private Ethereum

network. Using the contract address and JSON code, others

i.e tenants are then able to execute payments into the same

tenancy contract from other IoT nodes [15].

E. Consensus Algorithms

 Ethereum makes use of hashing procedure, in which the

difficulty value, is dynamic and constantly increasing the

limit to govern the rate at which Ethereum blocks are mined.

If there is a larger number of miners in the network mining a

block, the difficulty value is decreased, thus lowering the

chances of a miner discovering a valid block hash and vice

versa [16].

 Consensus algorithms are not limited to Proof of Work:

Proof of Stake, Delegated Proof of Stake, Proof of

Authority, Proof of Weight and Byzantine Fault Tolerance.

Ethereum is moving from PoW to the more efficient and

economical Proof of Stake. PoW was found to be very

computationally intensive (pollution) and provided a slow

throughput.

 Proof of Stake will increase the cost incurred during

attacks and is less computationally intensive. With Proof of

Stake, blocks are generated through miners as they wager on

which block hashes are approved. But in the future,

Ethereum will not require miners, as the transactions will be

validated and protected from interference by the token

owners. However, this transition can create an opportunity

for unforeseen, critical issues to rise within the Ethereum

system architecture [9] [17].

 However, the Smart room model makes use of a

permissioned Ethereum blockchain and so the PoW process

will be made redundant considering the private blockchain

can only be accessed by the approved nodes. Consequently,

the reliability of the Raspberry Pi-IoT nodes in each of the 2

rooms will dictate the security of the private blockchain

[18].

F. Main Network, Testnets and Private Network

 There are 3 main types of networks provided by

Ethereum: main network, test networks, and private

networks. Transactions that occur on the main network are

validated by authentic miners. Secondly, there exists the test

network providing a secure network ran by test ether which

is paid out when deploying beta applications or smart

contracts on the network to test functionality.

 On the testnet, it is possible for anyone to interact with a

smart contract or distributed application, which may add

unnecessary complications for the landlord when creating

contracts that cater to specific individuals e.g. a tenancy

contract. With private networks, only the approved nodes

will be permitted to pass through the built-in access control

layer, this is the only gateway into the private network

dissimilar to main networks or testnets with no access

control procedures.

 During the development of the tenancy contract, 2 clear

options were presented, to deploy the contract onto the

Testnet (e.g. Rinkeby) or to create a private net. Although

the Testnet supplied higher security, via the PoW algorithm.

The reliability of the rent payments made on the private

network are directly influenced by approved IoT nodes

participating in the network who validate transactions but as

there are only 3 users within the network (1 landlord and 2

room tenants), the identity of existing nodes will be known

and consequently, nodes are expected to be reliable.

G. Raspberry Pi for IoT Implementation

 IoT devices can be embedded into certain objects,

forming a “smart object”, e.g. smartwatch or into the

environment itself. In the following use case, the approach

taken replicates that of a smart environment, in which a

room has been integrated with small Raspberry Pi module(s)

controlling the electricity input into the room.

 Access to information from the physical world is made

possible through services offered, as stated in the article by

Stephan Haller: “Resources may offer a service interface

directly, or services inside the network act as proxies for the

actual resources, possibly providing additional levels of

abstraction”. If this smart room model was implemented in

the real world, it would follow a model like the one

displayed in figure 2 [19].

Figure 2 Haller, Stephen “Relationship between things, devices, resources, and

services” The Things in the Internet of Things, ResearchGate, January 2010

(https://www.researchgate.net/publication/228488111_The_Things_in_the_Inter
net_of_Things)

 The electricity data collected by the sensor would

constitute a “resource” while the IoT device embedded

within the room monitoring the electricity usage would be

regarded as the ‘service’ that is being provided. The power

supply is controlled by the landlord who will monitor the

electricity usage and will have the responsibility of

commanding the power supply to provide electricity to the

rooms after rent payment.

 Raspberry Pi’s provides a small and powerful device

with an impressive capacity for interoperability which

naturally makes it perfect for use with Ethereum (a platform

promoting interoperability). In addition, Raspberry Pi fits

effortlessly in an IoT ecosystem, with its built-in WiFi

connectivity, USB ports, USB interface supporting various

devices and simple configuration. As a result, the task of

configuring the Raspberry Pi device and connecting to

peripherals was simple. Raspberry Pi also supported Geth

software transforming the device into an Ethereum node.

III. DESIGN

A. Private Network Constraints

 By utilising a private blockchain network, the Raspberry

Pi devices exchange data effectively. As there are only a

small number of the IoT nodes in this use case, a private

blockchain will aid the landlord’s desire to monitor each

tenant that interact with the smart contract more accurately,

in contrast to the public or test network with 10 million+

nodes. One constraint regarding private networks remains,

in which scalability will become a rising concern, as each it

will be difficult to authorise every node as the network

scales up.

B. Choice of Tools

 Raspberry Pi provides the option of 2 main operating

systems with which the device can be set up: Noobs,

Raspbian. Noobs offer a simplistic OS designed for

beginners, with a selection menu much like Raspbian,

without the need for network access, distinct imaging

software’s and demands less memory on the SD card [20].

 Raspbian OS contains a desktop image and despite

consuming more than 4GB in memory. Consequently, it is

possible for the Raspberry Pi device to interact with the

smart contract deployed on the private network and support

the development of python script controlling the connected

breadboard [21].

 Secondly, Ethereum provided the option to utilise their

main network, test networks or initialise a private net.

Utilising the main network or test network would cause

additional complications i.e unidentified nodes on the

blockchain interacting with the smart contract.

 Smart contracts can be developed through Remix IDE in

this scenario. Remix provided a user-friendly web page with

an integrated compiler containing a record of all smart

contract creations.

Figure 3 Online Remix IDE interface displaying an example smart contract

and selection of options to aid the development of smart contract

Upon clicking on the wallet icon, users will be taken to a

page providing them with the option to add an existing

account or create a new account. The balance of the selected

account is displayed on the right-hand side of the page.

 Clicking the contract icon will display the page providing

users with the option to deploy a new contract to the

connected private network. Additionally, the user will be

able to monitor previously deployed contracts.

 Remix interface displays all existing smart contracts

under development, saved on the IDE automatically. To the

center of the page, smart contracts can be created and edited.

 Errors will be highlighted after compilation. Remix auto

generates the Application Binary Interface (ABI) code –

which will be essential for the IoT nodes to access the

contract on the network. Bytecode is a set of instructions

created from the source code such that Ethereum VM can

comprehend the code. Contract bytecode will be necessary

for deploying a contract. Remix provides an additional array

of tools for the development, debugging and testing

purposes.

C. Ethereum- IoT Ecosystem Architecture

Figure 4 High-level architecture of the blockchain-IoT ecosystem

 The above diagram describes the scenario whereby the

landlord node sets up a private Ethereum network, hosted

over the internet through the WiFi connection to the router.

This private Ethereum network hosts an environment where

IoT nodes make transactions to the unique smart contract

deployed by the landlord. Although the IoT nodes are in a

different location, they can gain access to the private

Ethereum network. Initialising a geth node with the private

network ID and corresponding port number will gain the

IoT nodes access to the private network.

 Following this, IoT nodes will be able to interact with

the contract deployed on the private blockchain. The

contract ABI code can be used to search for the contract,

parallel with the contract address. After which tenants can

send transactions to the contract over the private network. If

the conditions have been met, the contract will communicate

with the python script running on the IoT nodes –

controlling the breadboard LED, room speakers and

thermostat to activate. Connections between the breadboard

and IoT device is via male to female jumper wires.

 Since each of the IoT nodes will be running Geth and the

python scripts, the smart contract will be accessible from

each IoT node. Therefore, it will be possible to execute

payments into the contract from any of the devices e.g. if

desired the tenant(s) will be able to make the payments

through the thermostat Raspberry pi-IoT. After the payment

has been processed and authorised, the landlord can then

proceed to provide power to the room(s).

D. Smart Contract Requirements

 Although the purpose of the smart contract is simplistic

in nature, additional functionality has been added to the

contract to provide supplementary information to the

landlord. The contract will be activating the LED lights for

approximately 30 seconds upon correct payment into the

contract. The expected payment value of 100 Ether (e.g.

£100/week) will be programmed into the contract, such that

the incoming payments will have to be compared against the

programmed expected payment values, forming a condition

that will have to be met for the rent payments to be valid i.e

payments exceeding 100 and below 100 will be rejected.

 While the condition is checked, the contract will be

expected to retain the transferred payments within the

contract – transactions will be held in the contract account

until further notice. Depending on the outcome of the

condition, retained funds will be expected to be either

transferred back to the tenant accounts or forwarded to the

landlord account (will be programmed into the contract).

E. Expected Flow of Processes

1) Initialise private net through geth.

2) Create tenancy contract through Remix.

3) Create account through Mist/terminal and deploy.

4) Create tenant accounts.

5) Add tenant to the private network.

6) Access contract by searching contract address.

7) Transfer payment into contract.

8) Authorise the activation of IoT devices.

9) IoT devices are activated.

IV. IMPLEMENTATION

A. Determining a Suitable Ethereum Wallet

 Mist was chosen to be the most suitable wallet

application for this implementation. Mist provides a

platform with a simple GUI supporting smart contract,

deployment, account creation and clear records of all

transactions to the deployed smart contract. Providing

advanced features such as multi-signature accounts and

withdrawal limit options, Mist provides a wide array of

options that were not possible through the conventional

JavaScript command line interface [22].

B. Smart Contract Generation

The tenancy contract created for the private network was

developed in Ethereum Remix IDE. Through Remix, smart

contracts can be compiled and deployed onto the public

network, test network that your node is connected to or an

external blockchain network. During the design phase, the

requirements for the smart contract was outlined. The

requirements were as follows:

1. Incoming payments will have to be compared against the

programmed expected payment of 100 Ether.

2. Payments exceeding 100 Ether or below 100 Ether will be

rejected.

3. The contract will hold the payments within the contract

account until transaction payments have been validated.

4. Rejected payments will be sent back to the tenants’

accounts with immediate effect.

5. Validated payments will be forwarded from the contract

account to the landlord’s account address – programmed

into the smart contract.

6. Tenancy contract shall activate the LED lights a fixed

amount of time before deactivating.

 An external payable function will be initialised within

the contract thus enabling the tenancy contract to accept

payments from external addresses. Absence of this function

would mean transactions made to the contract address would

bounce. An implemented contract balance function will

allow others to check the balance the contract account

(including pending transactions).

 The function to send payments will contain a conditional

if-else statement checking whether the transaction made to

the contract matches the programmed weekly amount of 100

Ether (dependent on the landlord’s terms). If the payment

matches pre-programmed amount, payments will be

forwarded from the contract address to the landlord’s

address. Contained within that conditional is a loop that will

keep the Breadboard LED, room speakers and thermostat

activated for a given amount of time, thus satisfying

requirements 1,3, 5 and 6. The else condition will forward

the payment back to the sender’s address if the payment

does not match 100 Ether, thereby meeting requirement 4.

Together the if-else conditional satisfies requirement 3.

 An additional function ‘kill’ will be included. If an

updated contract is released or the existing tenancy contract

is not adequate for one reason or another, the kill function

will permanently terminate the contract. After the contract

has been developed and tested on Ethereum Remix, the

source code can then be copied and pasted into the Mist.

The account address and gas limit will be detailed before

deploying the contract onto the private net connected to the

Mist wallet.

C. Private Network Initialisation Procedure

 Go Ethereum was essential to the initialisation of an

Ethereum network, Geth will transform the PC and IoT

devices into an Ethereum node and enabled the nodes to

communicate and exchange data within an Ethereum

network. As a result, the first steps of the initialisation

procedure will be to install Go Ethereum software onto the

IoT devices and PC.

 The second step of the procedure is to configure a

genesis block, achieved by creating a file of type JSON and

initialising geth on the terminal specifying the genesis block

file. The genesis block will lay the foundations for the

private network, outlining the unique parameters of the

private network.

Figure 5 Figure displaying the details of the genesis block and specific

parameters set for a private Ethereum network.
 After the creation of the genesis block file, the private

blockchain will be initialised by running geth and specifying

the folder in which genesis file lies, i.e. >geth –datadir

privateBlockchain init genesis.json. Chain data will be

saved into this folder. By doing so, a private Ethereum

blockchain can be established from the genesis block. Every

block that chains from the genesis block specified will be

subject to the parameters set in the genesis block file.

 The third step will consist of opening another terminal

window and running another instance of geth while setting

parameters for the private network: 'port’, ‘networkid’,

‘nodiscover’, ‘datadir’ and ‘rpcport’. However, certain

network ids are reserved for specific networks provided by

Ethereum: main Ethereum network – network id 1, Morden

public Ethereum test network – network id 2, Ropsten cross-

client test network – network id 3, Rinkeby public test

network – network id 4.

 The IoT nodes will have to be added to the network

manually, reducing the possibility of an anonymous node

interfering with the actions between the tenant and landlord

nodes This is done using the following command: > geth --

port 3000 --networkid 5081 --nodiscover --

datadir=./privateBlockchain --rpcport 8757. A specific data

directory is mentioned, into which the blockchain data will

be saved. RPC commands permits http-rpc server and

specified the port to which the rpc messages will be

forwarded to.

D. Initialising & Adding IoT Nodes to Private Network

 The process of configuring the Raspberry Pi devices will

begin with formatting an external SD card of size 4GB on a

PC to which the Raspbian OS will be installed from the

Raspberry Pi website. Raspberry Pi provided 2 main

operating systems for public use: Noobs, and Raspbian.

Raspbian was chosen as the most appropriate OS to be

installed onto the SD cards. After Raspbian has been

downloaded onto the formatted SD cards, they will be

inserted into the Raspberry Pi devices.

 Once the Raspberry Pi has been booted and internet

connection has been established, the Raspbian desktop

image will be downloaded together with the installation files

and any additional programs that have been specified. Upon

successful configuration of the Raspbian desktop, it will

then be possible to run the device as an Ethereum node.

Therefore, the latest version of geth – arm7 geth 1.8.1.tar

package, will be downloaded onto all Raspberry Pi devices

through the Raspbian desktop browser. The downloaded

geth package will then be untarred using the ‘tar -xvf’

command and moved into the local /bin folder.
 The landlord node is then booted. It will be initialised

with the following parameter values explicit to the private

network: port number of 3000, network id of 5081, and rpc

port number of 8757. From the terminal, the IoT nodes can

begin their own geth instance by starting geth and

specifying a networkid that matches the geth instance

running on the landlord’s node. However, each tenant node

will be required to specify a unique port and rpc port

number. E.g.:

Landlord Node:

> geth --port 3000 --networkid 5081 --nodiscover --

datadir=./privateBlockchain -- rpcport 8757

 IoT Node 1 (Thermostat):

> geth –port 3012 --networkid 5081 --nodiscover --rpcport

8750 --datadir=./iotBlockchain

IoT Node 2(Speaker):

> geth --port 3032 --networkid 5081 --nodiscover --rpcport

8751 --datadir=./iotBlockchain2

IoT Node 3(LED light):

> geth --port 3042 --networkid 5081 --nodiscover --rpcport

8752 –datadir=./iotBlockchain3

 By running the following commands on each of the

devices appropriately, 3 separate geth instances can be

initiated. Each of the nodes can participate in the same

network. The first node will be required to copy the encoded

URL of its geth instance by using the command

‘admin.nodeInfo’. The encoded URL can then be used to

establish a connection between the IoT nodes and the

landlord node by calling the ‘admin.addPeer(landlord’s

encode URL)’ command from within the tenant’s geth

instance. The landlord can check the details of tenants/nodes

that are connected to the private network using the

command ‘admin.peers’ [23].

V. PROPOSED SYSTEM IN OPERATION

A. Robustness of Ethereum Network

 The durability provided by Ethereum is reliant on the

number of nodes partaking in the network. Due to the

distributed nature of Ethereum, there is no single point of

failure and additionally, any effort to alter an existing block

on the blockchain network would cause all following blocks

to become invalid as each block points to the hash of the

previous block.

 In a real-world application, to alter a block on the

blockchain network, miners/participants will need to control

more than 50% of the networks mining and computational

power – 51% attack. Only then will malicious miners be

able to manipulate the transactions and confirmation

procedures, e.g. make double spending possible. However,

with a globally distributed network such as Ethereum, this is

extremely improbable. It is also possible to attempt to

manipulate without possessing more than 50% of the mining

hash rate, though it is computationally impractical, the cost

incurred with mining would far exceed the gains made from

manipulating the transaction [24] [25].

 The private network used within this use scenario only

contains 7 nodes: 1 landlord and 6 of the IoT nodes. As the

landlord holds full knowledge of the IoT nodes he is

responsible for manually adding the nodes to the network, it

is unlikely that the network will be compromised even

though the reliability of the network is fully dependent on

the nodes participating. One of the negatives and admittedly

greatest advantages was complete transparency. Sensitive

information should not be accessible by any node, but as a

private network is used, any information shared within the

network is hidden with minute possibility of leakage and

only accessible to connected nodes, adding to its reliability.

B. Blockchain-IoT Ecosystem Features

 By using Mist as the chosen wallet for transactions, all

users of the wallet can benefit from the additional features

provided. Aside from the wallet functions provided by Mist,

it enables the tenants to create smart contracts and deploy it

to another Ethereum network if necessary, by utilising the

built-in workspace and configuration screens that have been

designed to appeal to non-tech savvy individuals. Thus, it is

well suited to the tenants of a housing agency. Tenants are

also able to create pools of money, like that of

crowdfunding which may have tremendously practical

applications in the case of rent payments.

 Hypothetically, tenants of a shared household will be

able to generate pools of money – such that each tenant will

contribute an equal amount of money towards their rent

before transferring the money as a lump sum to the

landlord/agency at an agreed time. By doing so, the rent

payments procedure can be streamlined as the time and

effort taken to pursue each individual tenant regarding

weekly/monthly payments can be avoided. Another feature

provided by Mist and one that is not widely appreciated is

its ability to allow users to generate a database of

information only alterable by select users but accessible by

the public. In the real world, this has the potential to

streamline communication between landlord and tenant

among many other applications. The landlord can create a

database (only alterable by the landlord) presenting

important information or updates which can be viewed by

tenants.

 However, certain features of Mist are of higher

importance in this use case, such as the multi-signature

accounts which is extremely beneficial if there are 2 or more

landlords who are responsible for the same tenants. Multiple

landlords can oversee the same account and manage all

transactions associated with the account. Tenants can also

view all transactions – past and present presented in a

simple format through the Mist interface.

Withdrawal/payment limits can also be set on accounts,

which will aid with regulating rent payments i.e ensuring

that rent payments do not exceed the amount set in the smart

contract.

 Aside from Mist, the contract itself will provide

additional functionality for the tenants. The contract will

allow the landlord to check the balance of the contract,

giving the landlord a clear indication of the number of rent

payments that have been made into the contract. Another

function provided by the contract is the kill function.

VI. EVALUATION & CONCLUSION

A. Review of Original Aims

 Aim 1: In pages 1, 2 and 3 exhaustive research and

analysis were carried out into blockchain technology, and in

doing so, discovered the tools accessible for building smart

contracts and constructing a private blockchain network.

The deficiencies that existed in blockchain 1.0 that formed

the basis for the development of blockchain 2.0 were

identified and studied.

 Aim 2: Research on Raspberry Pi operating systems

were covered in page 4 in which a comprehensive analysis

was carried out into the various aspects of Raspberry Pi and

the role it will play within this use case. Applications of

Raspberry Pi within an IoT ecosystem was also explored

and the packages provided by Raspberry that encourage the

use of Raspberry Pi with Go Ethereum.

 Aim 3: The smart room model was created by hand after

the system was created during the system in operation and

testing process – described in chapter 5.

 Aim 4: As this is a highly specific use case, there are

very few research materials concerning this area.

Nonetheless, the focus was on security and risk, therefore

the results obtained were not relevant to this project as were

the objectives. Comparisons were still made with the

methodology used in the related research, but there were no

practical uses to be gained from the comparison.

B. Design & Implementation Revisions

 As Mist is a public software, it has been created to serve

a common function – support exchange of transactions and

smart contract development. If the house owner required

additional functionality, e.g. supporting tenant-landlord

communication, Mist’s interface will be inadequate.

Therefore, a small-scale distributed application (Dapp) with

an interface and functionality unique to the landlord’s

specifications/ tenant needs can be built. This application

can utilise the private Ethereum network set up by the

landlord and will prove to be more effective.

C. Future Works

An Ethereum powered door lock to monitor room entry can

be implemented, the conventional door lock will be replaced

with a smart lock. The lock will contain an Arduino with

network access, connected to the private blockchain

network. An electronic card reader will be connected to the

Arduino board. Therefore, once the tenant scans their card,

the card reader will signal the Arduino to open the electronic

lock. Connection to the private Ethereum network will be

through the ethernet controller. Every entry and exit will be

recorded to the private blockchain. Additionally, each card

held by the user will have a unique ID that is known to the

landlord, hence if a break-in is attempted, it will be recorded

on the blockchain containing a smart contract that can be

programmed to automatically contact law enforcement if

such an event occurs.

Figure 6 High-level architecture of the smart door lock system

 With regards to the future of blockchain and IoT, it is

assumed that it will effectively utilise the increasing size of

big data. This will streamline the services provided to

consumers, as blockchain will act as the platform that

enables the interoperability and effective exchange of

information between various IoT devices. Yet, there is no

tamper-proof glue to bind blockchain technology with many

IoT devices currently. The issues that exist within

blockchain such as low bandwidth and waste-full consensus

algorithms shows that it is not ready for industry adoption.

However, as more companies experiment with blockchain

and IoT implementations, it will eventually be refined [26].

D. Conclusion

 The emphasis of this project was on the capabilities of

blockchain when combined with IoT. This project presents

tangible proof of one of the many applications that a

blockchain-IoT system enables. The Ethereum enabled a

rent payment network to act as a model of a potential real-

life use case with very practical applications as evidenced

by this project. As blockchain technology continues to

develop, its capabilities and potential applications will grow.

The existing weaknesses will eventually diminish and will

rival the traditional systems in its efficiency and

convenience such that blockchain technology may become

the norm. However, there will be risks in moving from the

trusted, traditional systems to one that is remarkably

different. But there is no innovation without risk.

REFERENCES

[1] Quora.com. (2018). What are the applications of Ethereum to the
Internet of Things? - Quora. [online] Available at:
https://www.quora.com/What-are-the-applications-of-Ethereum-to-
the-Internet of Things

[2] Smartym - Mobile and Web App Development. (2018). Blockchain
practical use cases: Internet of Things, insurance, healthcare, digital
rights. [online] Available at: https://smartym.pro/blog/blockchain-
practical-use-cases-Internet of Things-insurance-healthcare-digital-
rights/

[3] Medium. (2018). Usage of the word “blockchain” – richbodo –
Medium [online] Available at:
https://medium.com/@richbodo/common-use-of-the-word-
blockchain-5b916cecef29

[4] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash
System. [pdf] Available at: https://bitcoin.org/bitcoin.pdf

[5] Medium. (2019). How Blockchain and Smart Contracts Can Impact
Internet of Things – Smartz Platform Blog – Medium. [online]

Available at: https://medium.com/smartz-blog/how-blockchain-and-
smart-contracts-can-impact-Internet of Things-f9e77ebe02ab

[6] I-scoop.eu. (2019). Blockchain and the Internet of Things: the IoT
blockchain picture. [online] Available at: https://www.i-
scoop.eu/blockchain-distributed-ledger-technology/blockchain-iot/

[7] Orcutt, M. (2019). How secure is blockchain really?. [online] MIT
Technology Review. Available at:
https://www.technologyreview.com/s/610836/how-secure-is-
blockchain-really/

[8] O’Neill, M. (2016). Insecurity by Design: Today's IoT Device
Security Problem. Engineering, 2(1), pp.48-49.

[9] Blockgeeks.com. (2019). [online] Available at:
https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/

[10] Blocksplain. (2019). Blockchain speeds & the scalability debate |
Blocksplain. [online] Available at:
https://blocksplain.com/2018/02/28/transaction-speeds/

[11] Dorri, A., Jurdak, R., Gauravaram, P. and Kanhere, S. (2017).
Blockchain for IoT Security and Privacy: The Case Study of a Smart
Home. [online] ResearchGate. Available at:
https://www.researchgate.net/publication/312218574_Blockchain_for
_IoT_Security_and_Privacy_The_Case_Study_of_a_Smart_Home

[12] Qu, C., Tao, M. and Yaun, R. (2018). A Hypergraph-Based
Blockchain Model and Application in Internet of Things-Enabled
Smart Homes. [online] ResearchGate. Available at:
https://www.researchgate.net/publication/327217691_A_Hypergraph-
Based_Blockchain_Model_and_Application_in_Internet_of_Things-
Enabled_Smart_Homes

[13] Buterin, V. (2013). A Next Generation Smart Contract &
Decentralized Application Platform. Ethereum White Paper, p.18.

[14] DLTlabs. (2019). How Difficulty Adjustment Algorithm Works in
Ethereum - DLTlabs. [online] Available at: https://dltlabs.com/how-
difficulty-adjustment-algorithm-works-in-ethereum/

[15] Mathew Kurian, A. (2018). Interacting With Ethereum Smart
Contracts Through Web3.js. [online] Medium. Available at:
https://medium.com/coinmonks/interacting-with-ethereum-smart-
contracts-through-web3-js-e0efad17977

[16] Mycryptopedia. (2019). Ethash Explained - Mycryptopedia. [online]
Available at: https://www.mycryptopedia.com/ethash-explained/

[17] Witherspoon, Z. (2019). A Hitchhiker’s Guide to Consensus
Algorithms – Hacker Noon. [online] Hacker Noon. Available at:
https://hackernoon.com/a-hitchhikers-guide-to-consensus-algorithms-
d81aae3eb0e3

[18] Thompson, C. (2019). Private Blockchain or Database? – The
Blockchain Review – Medium. [online] Medium. Available at:
https://medium.com/blockchain-review/private-blockchain-or-
database-whats-the-difference-523e7d42edc

[19] Haller, S. (2010). The Things in the Internet of Things. [ebook]
ResearchGate, pp.1, 2. Available at:
https://www.researchgate.net/publication/228488111_The_Things_in
_the_Internet_of_Things

[20] Raspberry Pi. (2019). Introducing the New Out Of Box Software
(NOOBS) - Raspberry Pi. [online] Available at:
https://www.raspberrypi.org/blog/introducing-noobs/

[21] Raspberry Pi. (2019). Download Raspbian for Raspberry Pi. [online]
Available at: https://www.raspberrypi.org/downloads/raspbian/

[22] Hess, T. (2019). What's the difference between Accounts and Wallets
in Mist?. [online] Ethereum Stack Exchange. Available at:
https://ethereum.stackexchange.com/questions/212/whats-the-
difference-between-accounts-and-wallets-in-mist

[23] Ethereum.gitbooks.io. (n.d.). Setting up a cluster | Ethereum Frontier
Guide. [online] Available at: https://ethereum.gitbooks.io/frontier-
guide/content/cluster.html#

[24] Frankfield, J. (2019). 51% Attack. [online] Investopedia. Available at:
https://www.investopedia.com/terms/1/51-attack.asp

[25] Thumar, C. (2018). How to Control Blockchain Durability and
Robustness. [online] technology.org. Available at:
https://www.technology.org/2018/01/11/how-to-control-blockchain-
durability-and-robustness/

[26] Hauser, A. (2018). What is the future of Internet of Things (IOT) -
Blockchain? - Dataconomy. [online] Dataconomy. Available at:
https://dataconomy.com/2018/10/what-is-the-future-of-internet-of-
things-iot-blockchain/

https://www.mycryptopedia.com/ethash-explained/
https://hackernoon.com/a-hitchhikers-guide-to-consensus-algorithms-d81aae3eb0e3
https://hackernoon.com/a-hitchhikers-guide-to-consensus-algorithms-d81aae3eb0e3
https://medium.com/blockchain-review/private-blockchain-or-database-whats-the-difference-523e7d42edc
https://medium.com/blockchain-review/private-blockchain-or-database-whats-the-difference-523e7d42edc
https://www.raspberrypi.org/blog/introducing-noobs/
https://www.raspberrypi.org/downloads/raspbian/
https://ethereum.gitbooks.io/frontier-guide/content/cluster.html
https://ethereum.gitbooks.io/frontier-guide/content/cluster.html

