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Abstract

In robust optimization, the uncertainty set is used to model all possible outcomes
of uncertain parameters. In the classic setting, one assumes that this set is provided
by the decision maker based on the data available to her. Only recently it has
been recognized that the process of building useful uncertainty sets is in itself a
challenging task that requires mathematical support.

In this paper, we propose an approach to go beyond the classic setting, by as-
suming multiple uncertainty sets to be prepared, each with a weight showing the
degree of belief that the set is a ”true” model of uncertainty. We consider theo-
retical aspects of this approach and show that it is as easy to model as the classic
setting. In an extensive computational study using a shortest path problem based
on real-world data, we auto-tune uncertainty sets to the available data, and show
that with regard to out-of-sample performance, the combination of multiple sets can
give better results than each set on its own.
Keywords: robust optimization; combinatorial optimization; uncertainty mod-

eling; computational study

1. Introduction

In this paper we consider combinatorial problems of the form

min
xxx∈X

cccxxx (P)

with X ⊆ {0, 1}n and uncertain cost vector ccc. To find a solution xxx that still performs
well under the possible cost realizations, different approaches have been proposed.
These include fuzzy optimization [KZ10], stochastic programming [BL11], or robust
optimization [GS16,GMT14].
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In the robust optimization approach, we assume that all possible cost realizations
ccc are modelled through a so-called uncertainty set U , and we want to protect against
all outcomes without knowledge of a probability distribution. The resulting worst-
case problem is then of the form

min
xxx∈X

max
ccc∈U

cccxxx

Special cases of this kind have been investigated thoroughly (see [KZ16, BK18] for
recent overviews on robust combinatorial optimization). A common assumption in
these settings is that the shape of the uncertainty set U is known, e.g., one commonly
assumes that the uncertainty is

interval-based U =
∏
i∈[n]

[ci, ci],

discrete U =
{
ccc1, . . . , cccK

}
,

ellipsoidal U =
{
ccc ∈ Rn

+ : (ccc− ĉcc)ΣΣΣ−1(ccc− ĉcc) ≤ λ
}
,

budgeted U = {ccc : ci = ci + zici,
∑
i∈[n]

zi ≤ Γ, zi ∈ {0, 1}},

or polyhedral U = {ccc : V ccc ≤ ddd,ccc ≥ 000}.

Note that in the min-max setting, using a discrete uncertainty set is equivalent to
using its convex hull U = conv

({
ccc1, . . . , cccK

})
. So far, comparatively little research

has investigated how a decision maker can actually come up with an uncertainty set
that produces a robust solution in accordance with his or her wishes. In the data-
driven approach [BGK18], we do not assume an uncertainty set to be given, but
only data observations, which are usually discrete. These are then used to construct
uncertainty sets, e.g, using different approaches from statistical testing.

In [CG18a, CG18c], the authors considered a setting in which the shape of the
uncertainty set is given, but not its size. Models are introduced by which compromise
robust solutions can be found, which perform well on average over all considered
uncertainty sizes. Furthermore, in [CKR18] the sensitivity of robust solutions to the
uncertainty size was considered.

In the recent paper [CDG19], real-world data modeling traffic speeds in the city
of Chicago were used to test different uncertainty sets for shortest path problems
experimentally. In particular, discrete uncertainty and ellipsoidal uncertainty sets
were found to produce a good trade-off on an out-of-sample evaluation set of scenar-
ios with respect to average performance, worst-case performance and the conditional
value at risk (CVaR) criterion.

In this paper, we introduce a novel approach to handle uncertainty in robust op-
timization. This mixed-uncertainty setting is a direct generalization of the classic
robust optimization approach, where we protect against multiple uncertainty sets
simultaneously. We demonstrate that this approach is well-suited to data-driven
settings, where the decision maker is not able to determine the shape and size of
uncertainty a priory. By using irace [LIDLSB11], a software designed to tune algo-
rithms automatically, we determine the best-performing combination of uncertainty
sets for the same Chicago test data as used in [CDG19]. Our proposed approach is
generally applicable, and possible to implement using off-the-shelf software with lit-
tle theoretical knowledge from the decision maker, making it flexible and attractive
for practical purposes.
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The rest of this paper is structured as follows. In Section 2, we formally introduce
our setting of mixed uncertainty sets for uncertain combinatorial problems. We
demonstrate how to find compact mixed-integer programming models, and point out
cases solvable in polynomial time. Section 3 presents an extensive computational
case study, highlighting the usefulness of our approach for a real-world shortest
path problem. We conclude this paper in Section 4 and point out further research
questions.

2. Mixed Uncertainty Sets

In classic min-max robust combinatorial optimization, we consider the problem

min
xxx∈X

max
ccc∈U

cccxxx (RP)

where the uncertainty set U contains all possible outcomes of the cost vector ccc. As
a direct generalization, it is possible that multiple uncertainty sets U1, . . . ,UN need
to be considered. For each j ∈ [N ], we are given a weight wj that denotes the
importance to protect against Uj , or likelihood of its occurrence.

The resulting weighted robust optimization is then as follows:

min
xxx∈X

∑
j∈[N ]

wj max
ccc∈Uj

cccxxx (WRP)

There are different settings where the application of a model of the form (WRP)
can be useful. For example: (1) We receive different forecasts for future develop-
ments of costs, each providing a set of most likely scenarios. Instead of using only
one of these sets or merging them, we consider a weighted robust problem, where we
assign each forecast an expert estimate wj whether it can be trusted. (2) We create
different uncertainty sets based on different degrees of risk-willingness. We then find
a single compromise solution against all levels of risk. For example, one uncertainty
set may cover the worst 80% of outcomes of a multivariate normal distribution,
whereas another uncertainty set covers 95%. We can find a single solution hedging
against both worst cases with prescribed weights. (3) We have an original set of ob-
servations for our uncertain data, and do not know which shape of uncertainty set
may be appropriate for the problem at hand. Selecting the (right) uncertainty set
is itself a decision problem under uncertainty. So far, researchers left this problem
to the user/decision-maker and developed approaches for robust optimization after
this decision is made offering different choices to this decision. However, this itself
can be posed as an optimization or a learning problem. In other words, ideally, we
would want to learn the right uncertainty set from data, which may be a mix of
many known sets. Also, automatically learning a mixed uncertainty set allows the
possibility for the set to be dynamic which can change with a change in the random
nature of the underlying uncertain parameters.

Mixing uncertainty sets and tuning the mixing (hyper) parameters to learn the
best mix is a challenging task. Research in this direction is in its early stages,
the only work to have experimented in this direction is that of [CH15] where au-
thors consider combining ellipsoidal sets within a Bayesian setting for robust linear
programs. Moreover, even under the assumption that we can formulate this learn-
ing task and embed it in a holistic algorithmic framework for data-driven robust
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optimization, there is no guarantee that mixing sets will help in improved robust
solutions for any choice of robustness measures. In this spirit, (WRP) is a first step
towards automating selection of the right uncertainty set. In this work we would
like to investigate if mixing (known) sets can give better robust solutions.

We now consider the complexity of (WRP), and possibilities to formulate it us-
ing mixed-integer programming. Note that (WRP) can be written as a compact
optimization problem if that is possible for each Ui, by combining each model.
As an example, if U1 is a budgeted uncertainty set of the form U1 = {ccc : ci =
ci + zici,

∑
i∈[n] zi ≤ Γ, zi ∈ {0, 1}} (see [BS03]), then the robust problem (RP) can

be written as

min
∑
i∈[n]

cixi + Γπ +
∑
i∈[n]

ρi

s.t. π + ρi ≥ (ci − ci)xi ∀i ∈ [n]

xxx ∈ X

If U2 is a polyhedral uncertainty set of the form U2 = {ccc : V ccc ≤ ddd,ccc ≥ 000}, then its
robust problem (RP) can be written as

min dddααα

s.t. V tααα ≥ xxx
ααα ≥ 000

xxx ∈ X

Combining both uncertainty sets in a weighted robust problem (WRP) using weights
w1 for budgeted uncertainty and w2 for polyhedral uncertainty, the combination of
models yields

min w1(
∑
i∈[n]

cixi + Γπ +
∑
i∈[n]

ρi) + w2dddααα

s.t. π + ρi ≥ (ci − ci)xi ∀i ∈ [n]

V tααα ≥ xxx
xxx ∈ X

As (WRP) is an generalization of (RP), it is at least as hard. Hence, cases of
(WRP) that involve uncertainty sets Ui for which we already know that the classic
robust optimization problem is NP-hard, will be NP-hard as well.

We therefore focus on cases where (RP) is still polynomially solvable. First, notice
that when U1, . . . ,UN are interval uncertainty sets of the form Uj =

∏
i∈[n][c

j
i , c

j
i ],

then ∑
j∈[N ]

wj max
ccc∈Uj

cccxxx =
∑
i∈[n]

(
∑
j∈[N ]

wjc
j
i )xi

which is a problem of nominal type. Hence, (WRP) with interval sets has the same
complexity as the nominal problem (P).

Now let U1, . . . ,UN be budgeted uncertainty sets with Uj = {ccc : ci = cji +

zic
j
i ,
∑

i∈[n] zi ≤ Γj , zzz ∈ {0, 1}n}. We can write (WRP) as

min
∑
j∈[N ]

wj(
∑
i∈[n]

cjixi + Γjπj +
∑
i∈[n]

ρji ) (B-WRP)
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s.t. πj + ρji ≥ (cji − c
j
i )xi ∀i ∈ [n], j ∈ [N ]

xxx ∈ X

Lemma 1. There is an optimal solution to (B-WRP), where for all j ∈ [N ], we
have πj = cji(j) − c

j
i(j) for some i(j) ∈ [n], or πj = 0.

Proof. For some fixed xxx, the remaining optimization problem in πj and ρρρj can be
decomposed in to N independent sub-problems. For each sub-problem, the result is
known from the classic budgeted uncertainty case (see [BS03]).

Theorem 2. For constant N , (B-WRP) can be solved in polynomial time, if (P)
can be solved in polynomial time.

Proof. We rewrite (B-WRP) as

min
∑
j∈[N ]

wj

∑
i∈[n]

cjixi + Γjπj +
∑
i∈[n]

[
(cji − c

j
i )xi − π

j
]
+


s.t. xxx ∈ X

where [y]+ = max{y, 0}. Note that[
(cji − c

j
i )xi − π

j
]
+

=
[
cji − c

j
i − π

j
]
+
xi

as π ≥ 0. Using Lemma 1, we enumerate all (n + 1)N options for the πj variables.
For fixed values of πππ, (B-WRP) reduces to

min
xxx∈X

∑
i∈[n]

∑
j∈[N ]

wj

(
cji +

[
cji − c

j
i − π

j
]
+

)xi +
∑
j∈[N ]

wjΓ
jπj ,

which is of the nominal type.

Note that this approach cannot be used if N is unbounded (i.e., part of the input).
For this case, we can still identify cases that are tractable in the following.

For xxx ∈ X , denote by X = {i ∈ [n] : xi = 1} the corresponding set of chosen
items. We rewrite the objective of (WRP) as

f(X) =
∑
j∈[N ]

wj

(∑
i∈X

cji +Dj(X)

)

where Dj(X) denotes the sum of the Γj largest values dji := cji − c
j
i for i ∈ X, i.e.,

Dj(X) = max

∑
i∈X

djizi :
∑
i∈[n]

zi ≤ Γj , zzz ∈ {0, 1}n


Theorem 3. Function f is submodular.
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Figure 1: Illustration for the proof of Theorem 3.

Proof. We first show that Dj is a submodular function. As the sum of submodular
functions is still submodular, it follows that f is submodular.

To see that Dj is submodular, let S, T ⊆ [n] be given. Let `(X) be the up to Γj

items that maximize
∑

i∈`(X) d
j
i . Note that `(S ∪ T ) ⊆ `(S) ∪ `(T ), while `(S ∩ T )

is not necessarily in `(S) ∪ `(T ). Figure 3 illustrates these relationships.
For any element i ∈ `(S ∩ T ), one of two cases hold: If i ∈ `(S ∪ T ), then also i ∈

`(S) and i ∈ `(T ). If i /∈ `(S∪T ), then there is an element k ∈ (`(S)∪`(T ))\`(S∪T )
with djk ≥ d

j
i . Hence,

Dj(S) +Dj(T ) ≥ Dj(S ∪ T ) +Dj(S ∩ T )

and the claim follows.

Recall that a matroid consists of a finite set S and a collection S of subsets of S,
such that (i) ∅ ∈ S, (ii) if A ∈ S and B ⊆ A, then B ∈ S, and (iii) if A,B ∈ S with
|A| = |B|+ 1, there exists e ∈ A \ B such that B ∪ {e} ∈ S (see, e.g., [Wel10]). As
it is possible to optimize a submodular function efficiently over a matroid, we reach
the following conclusion.

Corollary 4. For problems where X is a matroid, (B-WRP) can be solved in poly-
nomial time, even for unbounded N .

Corollary 4 applies to, e.g., the weighted robust spanning tree problem, or the
weighted robust selection problem. These results also apply to combinations of
interval and budgeted uncertainty sets.

Note that the above reasoning can also be extended to (WRP) using knapsack un-
certainty, see [Pos18]. In this setting, each Uj is given as a multi-knapsack polytope
with |S| knapsack constraints, i.e.,

Uj =

ccc :
∑
i∈[n]

ajkici ≤ bk, k ∈ S, 000 ≤ ccc ≤ cccj


If |S| = 1, then the worst-case problem can be solved by sorting all items in X
with respect to ajki/bk. Recall that a function f is submodular, if and only if
fu(A) ≥ fu(B) for all A ⊆ B and u ∈ [n] \ B, where fu(S) = f(S ∪ {u}) − f(S) is
the marginal contribution of u. As the set A will sort its items in the same order as
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they appear in B, the marginal contribution of an added element will be at least as
large to A as it is to B.

This sorting argument does not hold in the case of |S| ≥ 2. As an example,
consider

U =
{
ccc ∈ [0, 1]3 : c1 + c2 ≤ 1, c2 + c3 ≤ 1

}
For S = {1, 2} and T = {2, 3}, we have f(S) = 1, f(T ) = 1, f(S ∪ T ) = 2 and
f(S ∩ T ) = 1 (modifying the definition of f accordingly).

Finally, we consider the approximability of problems with discrete uncertainty
sets. It is a well-known result (see, e.g., [ABV09, CG18b]) that for classic robust
combinatorial optimization problems with discrete uncertainty U = {ccc1, . . . , cccK}, an
optimal solution to the midpoint scenario 1

K

∑
k∈[K] ccc

k gives a K-approximation.
We extend this result to mixed discrete uncertainty sets.

Let U j = {ccc1,j , . . . , cccKj ,j} for all j ∈ [N ]. We construct the mixed-uncertainty
midpoint scenario

ĉcc =
∑
j∈[N ]

wj

 1

Kj

∑
k∈[Kj ]

ccck,j


and set Kmax = maxj∈[N ]Kj .

Theorem 5. An optimal solution to problem (P) with costs ĉcc is a Kmax-approximation
to (WRP) with mixed discrete scenarios.

Proof. Let x̂xx be an optimal solution to ĉcc, and let xxx∗ be an optimal solution to
(WRP). Then

∑
j∈[N ]

wj max
k∈[Kj ]

ccck,jx̂xx ≤
∑
j∈[N ]

wj

 ∑
k∈[Kj ]

ccck,jx̂xx


≤ Kmax

∑
j∈[N ]

wj

 1

Kj

∑
k∈[Kj ]

ccck,jx̂xx


≤ Kmax

∑
j∈[N ]

wj

 1

Kj

∑
k∈[Kj ]

ccck,jxxx∗


≤ Kmax

∑
j∈[N ]

wj max
k∈[Kj ]

ccck,jxxx∗

Hence, the objective of solution x̂xx in problem (WRP) is at most Kmax times the
objective of an optimal solution.

While Theorem 5 holds for any N , we can get stronger approximation results for
bounded values of N , as the following result demonstrates.

Theorem 6. If there exists an α(Kmax)-approximation to the min-max problem
with Kmax scenarios, then there exists an α((Kmax)N )-approximation to (WRP). In
particular, for constant values of Kmax and N , there exists an FPTAS for (WRP)
if the underlying problem (P) is shortest path, minimum spanning tree, selection,
representative selection, or min-knapsack.
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Proof. Let discrete uncertainty sets U j = {ccc1,j , . . . , cccKj ,j} for all j ∈ [N ] be given.
We construct the following set, consisting of all combinations of scenarios:

U ′ =

∑
j∈[N ]

wjccc
kj ,j : kj ∈ [Kj ] for all j ∈ [N ]


Note that |U ′| ≤ (Kmax)N and∑

j∈[N ]

wj max
k∈[Kj ]

ccck,jxxx = max
k1,...,kN

∑
j∈[N ]

wjccc
kj ,jxxx = max

ccc∈U ′
cccxxx

Hence, (WRP) is equivalent to a min-max optimization problem with at most
(Kmax)N scenarios. The existence of an FPTAS for specific problems of type
(WRP) thus follows from the existence of an FPTAS for the min-max problem,
see, e.g., [KZ16].

3. Tuning Experiments

Algorithms which solve optimization problems involve a number of parameters, and
these parameters can be carefully tuned so that the performance of the algorithms is
optimized. For this purpose, a tuning tool to automatically configure optimization
algorithms called irace [LIDLSB11] has been developed. We use irace to find the
best-performing combination of uncertainty sets for (WRP) a given set of instances
of the robust shortest path problem.

3.1. Experimental Setup

We used the same real-world shortest path data as first introduced in [CDG19]. The
graph models the City of Chicago, and consists of 538 nodes and 1308 arcs. The
morning data set was used to model the problem uncertainty, containing 271 sce-
narios that represent morning rush hours during week days. Each scenario contains
the travel speed for each arc.

In our experiments, three uncertainty sets, ellipsoidal, convex hull and interval,
are used in generating the mixed uncertainty sets. Additionally, we set N = 3,
meaning that we combine up to three uncertainty sets; however, the tuning algorithm
can also choose less. We refer to these three sets as the parent uncertainty sets.
The choice of parent uncertainty sets is driven by computational efficiency and
relative performance of uncertainty sets demonstrated in [CDG19]. It is possible
that two parent sets are of the same type, e.g., a combination that uses two convex
hull uncertainty sets and one ellipsoidal uncertainty set. Corresponding to each
parent set, we have a scaling parameter λ, which takes up values in pre-defined
intervals (including the interval limits). The intervals are so chosen to reflect a
reasonable range of choices for a decision maker. For ellipsoidal uncertainty we
use λ ∈ [0, 20], while we use λ ∈ [0, 1] for interval and convex hull uncertainty.
Parameter λ represents the size of the uncertainty set, in relation to the observed
scenarios. For a formal parameter definition, we refer to [CDG19].

Moreover, we also associate a weight wj to each parent set which corresponds to
the significance of the parent in the mixed uncertainty set and, therefore, in the
objective function.

8



In our experiments, our objective is to find a path that is robust when driving
during morning rush hours, modeled through 271 scenarios. We use 75% of the sce-
narios (in-sample data) to construct the uncertainty sets, and we evaluate solutions
in-sample and out-of-sample separately. To this end, we generate 600 random s-t
pairs over the node set, which fulfill a minimum distance criterion to avoid nodes
that are close to each other. To find a balanced evaluation of all methods, we use
three performance criteria: (1) The average objective function value over all s-t
pairs and all scenarios, denoted as Avg. (2) The average of the worst-case objective
function value for each s-t pair, denoted as Max. (3) The average value of the worst
5% of objective values for each s-t pair (as in the conditional value at risk measure),
denoted as CVaR. We see that each evaluation is comprised of three performance
measures, i.e., each solution is assigned a three-dimensional objective vector.

For irace to tune the algorithmic parameters of mixed uncertainty sets, the al-
gorithm must return the cost function as a single value. Hence, three additional
parameters were defined, with each parameter being a weight to each performance
measure in the objective vector. The cost function then becomes a weighted sum of
the performance measures. However, it is important to note that these three weights
are user-defined and not automatically configured by irace. The three weights cor-
responding to their performance measures are sampled from the interval [0, 1] with
a step size of 0.1, and only those values are retained that sum up to one (which
makes a total of 66 such combinations of weights). Each combination results in an
algorithm, and therefore, a solution for the shortest path problem using the mixed
uncertainty sets. Hence, in total, for mixed uncertainty sets, we have nine automat-
ically configurable parameters and three fixed user-defined parameters. We used a
fixed computational budget of 10,000 experiments for a given irace run.

As a comparison, we generate 41 possible values for the scaling parameter λ when
each parent uncertainty set is separately used to compute solutions to the robust
shortest path problem; this does not involve any parameter tuning as solutions
are computed for different sizes of the parent uncertainty sets. The 41 values are
equidistant, i.e., for ellipsoidal sets we use a step size of 0.5 for λ, whereas for interval
and convex hull we use a step size of 0.025. We use the 41 models obtained for each
parent set to compare the performance of mixed set solutions with the performance
of the solutions delivered by the pure parent sets.

3.2. Results

We present the performance of the uncertainty sets, both mixed and parent, in
Figures 2 and 3. As mentioned earlier, a total of 41 objective space vectors are
obtained for each parent uncertainty set, whereas a total of 66 objective space vectors
are obtained for the mixed uncertainty sets. Each objective space vector among
the 66 vectors for mixed uncertainty sets corresponds to a unique best parametric
configuration obtained for different combinations of the weights of the performance
measures. Moreover, each element (performance measure) of the objective space
vector corresponding to a unique configuration is an average of all the values of
that performance measure taken over all the scenarios and s-t pairs. This also
holds true for the solutions obtained using the parent uncertainty sets. Figure 2
shows the trade-off curves between the Avg and the Max performance measures for
both in-sample and out-of-sample data, while Figure 3 shows the trade-off curves
between the Avg and the CVaR performance measures for both in-sample and out-
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of-sample data. All the values are in unit of minutes; a lower value indicates better
performance. Hence, good trade-off solutions should move from top left to the
bottom right of the curves. Some values for interval sets are not visible, as they are
outside the plotted ranges.

Figure 2(a) shows that for in-sample performance, convex hull solutions dominate
all other solutions for the Avg vs Max trade-offs by construction; however, the mixed
set solutions closely match the convex hull solutions. Interval solutions perform the
worst among all, especially for higher values of the scaling parameter. Figure 3(a)
shows that for in-sample performance, ellipsoidal solutions exhibit the best Avg
vs CVaR trade-offs among all the solutions but are closely matched by the mixed
set solutions. However, convex hull solutions perform worse than both ellipsoidal
and mixed set, and interval solutions closely match the performance of the convex
hull solutions. Summarily, both ellipsoidal and convex hull solutions do not exhibit
stability across both the trade-off curves, i.e., while convex hull dominates the in-
sample Avg vs Max curves, ellipsoidal exhibits best performance for in-sample Avg
vs CVaR trade-offs. Mixed uncertainty set solutions exhibit stability across both
in-sample Avg vs Max and in-sample Avg vs CVaR trade-offs as they closely match
the respective performance of both convex hull and ellipsoidal solutions.
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Figure 2: Average vs Worst-Case Performance

When out-of-sample performance is considered for both Avg vs Max and Avg
vs CVaR trade-offs (Figures 2(b) and 3(b)), mixed set solutions can dominate all
other solutions. Convex hull solutions perform even worse than interval solutions for
both the trade-offs, implying that they are over-fitted to the data. The performance
of ellipsoidal solutions improve from in-sample to out-of-sample compared to the
performance of convex hull and interval solutions for Avg vs Max trade-offs, but
lose their best trade-off performance for Avg vs CVaR only to mixed set solutions.

The key aspect to note is that, even though mixed solutions only use the three
parent sets, their combination can outperform each separately, i.e., we can observe
a synergy effect when mixing uncertainty sets.

While the performance comparison among all the uncertainty sets help us establish
that mixed uncertainty sets not only exhibit stability over both in-sample and out-of-
sample data but also perform better than the parent sets for certain configurations,
we do not observe how each uncertainty set performs for each s-t pair separately, as
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Figure 3: Average vs CVaR Performance

we explained earlier that each solution delivered by an uncertainty set is an average
of all the values taken over all the scenarios and s-t pairs. In Appendix A, we present
additional insight on representative configurations.

We summarize our findings. Convex hull solutions show good in-sample perfor-
mance for Avg vs Max trade-offs, but are not stable when facing out-of-sample
scenarios. The in-sample performance of convex hull solutions is closely matched
by the mixed set solutions. Convex hull solutions perform worse for Avg vs CVaR
trade-offs across both in-sample and out-of-sample scenarios.

Interval solutions do not perform well in general, but are easy to find and can be
a reasonable approach for smaller values of the scaling parameter.

Ellipsoidal solutions exhibit stability over both in-sample and out-of-sample per-
formance for both Avg vs Max and Avg vs CVaR trade-offs and offer a good ap-
proach over a wide range of the scaling parameter. In addition, they also deliver
the best CVaR performance across both in-sample and out-of-sample data among
all the uncertainty sets. However, solutions given by ellipsoidal set are dominated
by the mixed set solutions in the region of best trade-offs for both in-sample and
out-of-sample scenarios when averaged over all the s-t pairs and scenarios.

Mixed set solutions closely match the in-sample performance of convex hull and
ellipsoidal solutions for Avg vs Max and Avg vs CVaR trade-offs respectively, but
they dominate all the other solutions when facing out-of-sample scenarios, especially
in the region of best trade-offs, i.e., mixed set solutions are found to deliver the best
solutions among all the uncertainty sets for certain configurations. Besides, mixed
set solutions exhibit stability across both in-sample and out-of-sample scenarios.

Mixed set solutions do not always deliver the best solution compared to the parent
sets for each s-t pair when we consider the best trade-offs among the performance
measures; but when the mixed sets give better solutions than the parent sets, the
margin by which they are better is much higher than the margin by which they
are worse when they under-perform compared to the parent sets. This makes the
average value of the solutions given by mixed sets over all the s-t pairs and scenarios
better than the parent sets, and hence, make them a better option to find better
trade-offs among the objective vector elements.
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4. Conclusion

In this paper we have proposed a mixed uncertainty set approach to robust com-
binatorial optimization. Our results give a strong evidence in support of mixed
sets giving superior solutions compared to individual approaches. This evidence
paves way to further investigation into developing efficient algorithmic framework
for building such mixed sets. For example, as an immediate future extension of this
work, one option is to consider a Bayesian type approach, instead of a black-box
optimizer like irace, which updates the weight on each parent set under considera-
tion with every new bit of data collected. Furthermore, as the weights wj assigned
to each uncertainty set Uj are not known precisely, an additional layer of uncer-
tainty on www may be added and handled using distributional robust optimization
(see, e.g., [BTDHDW+13]).
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A. Additional Experimental Results

To understand how each uncertainty set performs for each s-t pair, we choose a
representative configuration for each uncertainty set to compare the performance.
The description of the configurations which are compared can be found below.

• Mixed Uncertainty Set: We use a mix of convex hull and ellipsoidal uncertainty.
The scaling parameter, λ, and the weight parameter, wj , of convex hull are
0.2234 and 0.7502 respectively. For the ellipsoidal set, the scaling and weight
parameters take the values 5.4609 and 0.9796 respectively.

13



• Convex Hull: The scaling parameter is 0.2

• Ellipsoidal: The scaling parameter is 6.0

• Interval: The scaling parameter is 0.075

Figure 4 shows the comparison in performance for each measure (Avg, Max and
CVaR), both in-sample and out-of-sample, for every pair of mixed set and parent
set, i.e., we compare performance for mixed and convex hull sets, for mixed and
ellipsoidal sets and for mixed and interval sets. This is achieved by taking the
relative difference in the solutions delivered by the mixed set and the comparing
parent set for each s-t pair, i.e., we calculate the difference between the value of
parent and mixed solution, and divide by the value of the mixed solution. While a
negative value indicates that the solution delivered by the mixed set is better than
the parent set, a positive value indicates the opposite. For the sake of clarity in the
plots, we filter out the sample containing only zero values as they indicate that both
the sets deliver exactly the same solution. In our case, for each pair of mixed and
parent set, the number of s-t pairs for which the solutions differed are as follows:
131 (21.8%) for mixed and convex hull sets; 91 (15.2%) for mixed and ellipsoidal
sets; and 129 (21.5%) for mixed and interval sets.

Figures 4(a) and 4(d), and Figures 4(b) and 4(e) respectively compare the Avg
and Max performance measures (both in-sample and out-of-sample) for each pair of
mixed and parent set. For the majority of the s-t pairs, mixed set performs better
than both ellipsoidal and interval sets for both in-sample and out-of-sample data.
Moreover, while in-sample performance given by convex hull is better than that of
mixed set, the out-of-sample performance of convex hull is similar to that of mixed
set. Similarly, for the CVaR performance measure, Figures 4(c) and 4(f) lead us
to conclude that for majority of the s-t pairs, for both in-sample and out-of-sample
performances, while mixed set performs worse than ellipsoidal set, it performs better
than the other two parent sets.
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Figure 4: Relative differences with respect to average, worst-case (max), and average of
worst 5% (CVaR) performance measures.
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