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Abstract

Recent advancements in neuroimaging have allowed the use of network analysis to
study the brain in a system-based approach. In fact, several neurological disorders
have been investigated from a network perspective. These include Alzheimer’s dis-
ease, autism spectrum disorder, stroke, and traumatic brain injury. So far, few studies
have been conducted on glioma by using connectome techniques. A connectome-based
approach might be useful in quantifying the status of patients, in supporting surgi-
cal procedures, and ultimately shedding light on the underlying mechanisms and the
recovery process.

In this manuscript, by using graph theoretical methods of segregation and integra-
tion, topological structural connectivity is studied comparing patients with low grade
glioma to healthy control. These measures suggest that it is possible to quantify the
status of patients pre- and post-surgical intervention to evaluate the condition.
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1 Introduction

Glioma is the most common type of primary brain tumor which arises from glial cells. It is

considered responsible for approximately 13000 deaths in the United States and more than

14000 in Europe each year [1]. It is considered one of the most aggressive types of cancer

especially in its advanced stage termed glioblastoma multiforme (GBM). Tumor resection is

the most effective therapy though generally complemented by chemo and radio therapies [2].
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Nevertheless, resection of brain tumors involving relevant cortical areas is still a challeng-

ing task, as preservation of neuronal functions after surgery remains the goal [2]. Several

studies have shown the potentiality of magnetic resonance imaging (MRI) in glioma patients

for identifying pre-operatively their relationship with eloquent cortical areas, but individual

significant variations in fiber structures and functional MRI (fMRI) activations have been

reported [3, 4, 2]. Diffusion-tensor imaging (DTI) is used to track fibers combined with corti-

cal stimulation as intra-operative support to preserve cognitive and motor functions, though

this analysis might be subjective [5]. Moreover, analysis of functional activations highlights

only the activations related to the task, but not the interaction among areas or the effect

among the overall brain.

A Connectome is the complete set of all neural connections of the human brain which can

be structural or functional [6]. The human connectome has recently gained attention for

its importance and possible implications for neuroscience as well as clinical neurology and

psychology. It has already been used for studying stroke, autism spectrum disorders (ASD),

Alzheimer’s disease, schizophrenia, and other pathologies [7, 8]. However, connectome anal-

ysis has not been extensively used for glioma patients. As for stroke, it is expected that

specific cognitive and behavioral functions are not localized to anatomically restricted areas,

but widespread across the neural networks of the injured brain, and specific symptoms are

not necessarily localized in specific brain regions [9]. Hence, it can be hypothesized that con-

nectomics can help to study cortical reorganization, functional recovery after resection, and

help planning surgical interventions. Briganti et al. studied the functional connectivity of

glioma affected patients by using a verb-generation task acquisition, and noticed that the pa-

tients had a statistically significant reduced degree of functional connectivity in the language

related regions compared to healthy control [10]. Similarly, in another study functional con-

nectivity exhibited chaotic changes in glioma patients compared to control correlating with

language deficits [11]. It was also noticed that patients with gliomas have altered functional

connectivity of the default mode network, and this was related to tumor grade, position and

post-surgical status [12].
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In this manuscript, topological measures are used to quantify the level of segregation and

integration comparing low grade glioma patients and healthy control.

2 Method

An individual network measure may characterize one or several aspects of global and local

brain connectivity. This study starts creating the tractography of the brain from DTI for

patients and control, generating the related structural connectome, on which topological

measures are computed to compare the two groups: low grade glioma patients and healthy

control subjects.

Tractographies for all subjects have been generated processing DTI data with the Python li-

brary Dipy [13]. In particular, a deterministic algorithm called Euler Delta Crossings [13] has

been used stemming from 2,000,000 seed-points and stopping when the fractional anisotropy

(FA) was smaller than < 0.1 . Tracts shorter than 30 mm or in which a sharp angle occurred

have been discarded. Linear registration has been applied between the automated anatom-

ical labeling (AAL) atlas [14] and the first volume of the DTI acquisition by using linear

registration with 12 degrees of freedom. Counting the fibers starting and ending in all r = 90

regions of the AAL atlas, a structural connectivity matrix of r×r elements is constructed for

each subject. Connections with less than 4 fibers are neglected, and the matrix is afterwards

binarized.

Once the connectome is constructed, the glioma patients and control subjects were charac-

terized by the most common graph-topological measures. Topological measures are divided

into measures of segregation and integration. Segregation measures are representations of

densely connected network communities, while integration measures are related to network

hubs that are rich in connections between the communities [15]. Simulations on artificial

networks demonstrated that as the connectivity gradually changes from an ordered lattice

to a pseudo-random network, perturbational integration decreases, and perturbational seg-
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regation increases [15]. However these decreases and increases are not easily quantifiable as

different diseases might affect in different ways the brain or relevant nodes of it [16]. For this

study, we chose the two most common measures of segregation (the Louvain modularity and

clustering coefficient) and integration (characteristic path length and global efficiency) [17]

computed for the n nodes of each graph.

The modularity of a network is the degree to which the network may be subdivided into

non-overlapping groups. The Louvain algorithm is known for its efficiency in producing par-

titioned communities, and it is applicable to weighted and unweighted graphs. For weighted

graphs, modularity is defined as

Q = 1
2m

∑
ij

[
Aij − kikj

2m

]
δ(ci, cj), (1)

where ti and ki is respectively the number of triangles around a node i, and the degree of

the node i. It measures how much neighbors of a node are connected to each other. In the

results, the mean value across the nodes are reported. The characteristic path length dij is

the average shortest path length in the network between each node i and j. The efficiency

measure is given by the average inverse shortest path length. It can be computed globally

or limited to the neighborhood of a node defining the local efficiency. Global efficiency is

defined as

E = 1
n

∑
i∈N

∑
j∈N,j 6=i d

−1
ij

n− 1 . (2)

Given the measures as features for representing the two populations of glioma patients and

control, p-values were generated from a two-sample t-tests performed on each metric with

the goal to assess difference between the two groups.
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3 Data and Experimental Settings

The neuroimage data for the patients are from The Cancer Imaging Archive (TCIA) (http:

//cancerimagingarchive.net), which is a large and growing archive, comprising several

hundreds volumes in different modalities. However, diffusion tensor and fMRI data available

are very limited or acquired in different protocols. The brain volumes for the low grade

glioma patients were acquired with a 1.5 T GE Signa Excite. In particular, the 20 available

DTI volumes were acquired with an isotropic voxel-size of 2.6 mm, TR = 17 s, TE = 84.6

ms, and using 26 gradient directions. The mean age of the patients was 45.74 ± 13.35 years.

Being no control brain available in TCIA archive, those were matched with the 20 control

volumes available from the NKI-Rockland Sample (http://fcon_1000.projects.nitrc.

org/indi/pro/nki.html) randomly selected. Those DTI volumes were acquired with a

Siemens 1.5 T scanner and isotropic voxel-size of 2 mm, TR = 10 s, TE = 91 ms, and using

35 gradient directions. The age of the healthy control was 38 ± 19.15 years.

All data had the skull stripped and eddy current correction performed before the tractography

construction.

4 Results

The results of the network analysis for the two datasets and significance are reported in Table

1 as mean and variance value for the two groups. The last column reports the p-value of

the discriminative test between the two groups. An example of resulting connectome for the

healthy control subjects is shown in Fig. 1, while Figs. 2 and 3 depict axial slices for two

cases subjects. In particular, those are T1 post gadolinium injection, FLAIR, tractography

stopping the tracts if the FA was smaller than 0.25, and structural connectome using the

tractography constructed stopping the tracts if the FA was smaller than 0.01.
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Table 1. Topological network measures reported as mean and variance. The last column
reports the p-value of the discriminative test between the two groups.

Features Low grade glioma patients Healthy controls p-value
Modularity 0.491 ± 0.021 0.438 ± 0.026 1.15 × 10−7

Clustering coefficient 0.605 ± 0.012 0.592 ± 0.017 0.0252
Char. path length 2.265 ± 0.058 2.139 ± 0.054 1.15 × 10−7

Global efficiency 0.512 ± 0.010 0.540 ± 0.010 1.13 × 10−8

Figure 1. Axial (a) and sagittal (b) view of a healthy control connectome (no slice). The
size of the nodes represents the degree, while the number of tracts connecting the nodes is
represented by the stroke of the edges. The tractography for these structural connections is

constructed stopping the tracts if the FA was smaller than 0.01.
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Figure 2. Presurgical axial slices for one case subjects: (a) T1 post gadolinium injection,
(b) FLAIR, (c) tractography stopping the tracts if the FA was smaller than 0.25, and (d)
whole structural connectome using the tractography constructed stopping the tracts if the

FA was smaller than 0.01 (no slice).
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Figure 3. Presurgical axial slices for one case subjects: (a) T1 post gadolinium injection,
(b) FLAIR, (c) tractography stopping the tracts if the FA was smaller than 0.25, and (d)
whole structural connectome using the tractography constructed stopping the tracts if the

FA was smaller than 0.01 (no slice)
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5 Discussions

The measures of segregation and integration used in this article have been already investi-

gated for other diseases. In a study about ASD, all measures used in functional connectomes

showed lower scores in ASD patients compared to healthy control [18]. In a study related

to schizophrenia [19], connectomes of patients with psychotic episodes showed larger char-

acteristic path length, but smaller global efficiency and clustering coefficients compared to

schizophrenia subject without psychotic episodes. Another topological comparison between

connectomes of schizophrenia patients and control subject showed smaller global efficiency

and other integration metrics in the patients [20]. Conversely, other studies on schizophrenia

showed elevated values of clustering coefficients and small values of characteristic shortest

path, suggesting overall more segregated patterns in the network [21]. This lack of agreement

can be related to different pre-processing steps, neglected local anatomical differences, or on

the selecting criteria of the matching control group [21].

Our results for the case connectomes showed an increased modularity and clustering co-

efficient, and an increased characteristic path length and reduced related global efficiency

compared to the control connectome scores. The increased path length and reduced global

efficiency can be hypothetically explained as the destructive effect of low grade glioma being

similar to the disconnecting impact of schizophrenia which share the same discrimination

between case and control.

No clear difference was noticeable by visual inspection of the connectome, though an atlas

with more detailed cortical subdivision might have allowed also this visual difference [22].

However, if the stopping threshold of the FA was moved from 0.01 to 0.25, the tracts crossing

the tumor disappeared. This is a sign of damage in the area. It can hypothesized that due

to the low grade of the tumors tracts are still presents and not completely damaged as with

glioblastoma which is a brain tumor of higher grade. The main limitation of the study is the

limited sample size and also the different type of acquisition for the case and control dataset

which might have influenced the detected differences. Therefore, further studies with even
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more consistent datasets are required. Moreover, the measures give an indicative score of the

status of the network to potentially correlate with health status, but they are not enough

to help during surgical procedures, since population statistics to identify relevant areas or

connections has only a relative meaning for pre-surgical planning [23]. However, the study

of individual connectomes could be used jointly to existing procedure of cortical activation

and stimulation to support surgical decisions.

Despite the registration of the volumes to the atlas was considered properly carried out

as noticed by visual inspection, concerns remain about possible influence of the glioma in

deforming the brain anatomy. In fact, it can be argued that due to the presence of the

tumor some tracts might be pushed ending in a different location than expected by the

atlas and therefore corrupting the subsequent analysis. The issue has been argued in tract

based spatial statistics studies considering multiple sclerosis lesions, concluding that the

misplacement effect is negligible [24]. Conversely, it has been argued that for high grade

glioma located near the corticospinal tracts and eloquent areas, it is possible that such an

effect has an impact [10]. Being this study mostly focused on the overall topological measures

and using only low grade gliomas patients, this issue could be considered negligible, though

an analysis with a model which take into account potential displacement is planned as a

future work.

6 Conclusion

Understanding the brain connectome and dynamic network changes that occur due to tu-

mor can give further information on the status of patients and evaluate rehabilitations. In

fact, topological measures appear to differ in terms of segregation and integration in glioma

patients compared to healthy control.
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