Association of cardiovascular and musculoskeletal biomarkers with clinical outcomes in chronic obstructive pulmonary disease.

This dissertation is submitted

 $_{\rm BY}$

JILLES MARTIJN FERMONT

 TO

The Department of Medicine

FOR THE DEGREE OF Doctor of Philosophy (PhD) IN THE SUBJECT OF MEDICINE

University of Cambridge Gonville & Caius College Cambridge, United Kingdom February 2019

©2019 — JILLES M. FERMONT

ALL RIGHTS RESERVED. NO PARTS OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OF ANY NATURE, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE HOLDER OF THE COPYRIGHT.

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my thesis has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text.

In accordance with the Degree Committee for the Faculty of Clinical Medicine, this dissertation does not exceed the prescribed limit of 60,000 words.

Summary

Association of cardiovascular and musculoskeletal biomarkers with clinical outcomes in chronic obstructive pulmonary disease.

Jilles M. Fermont

Background Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death in the world. In addition to premature mortality, the consequent socio-economic burden is high, causing reduced quality of life, loss of productivity, and hospital admission. Diagnosis of COPD relies on lung function tests, which are inadequate and often leave the condition undiagnosed and thus untreated. There is a growing interest in the extra-pulmonary manifestations of COPD and assessing the predictive value of cardiovascular abnormalities, musculoskeletal weakness and plasma biomarkers for acute exacerbation of COPD, hospital admission and mortality, as there is currently no individual biomarker able to reliably identify or predict these common clinical outcomes. The aim of this research was to identify and evaluate the predictive value of existing and novel biomarkers for COPD, and determine if and how these biomarkers can predict the longer-term clinical outcomes using electronic health record data.

Methods Electronic databases were systematically searched and identified 61 studies, which were synthesised, including meta-analyses to estimate pooled hazard ratios of the associations between selected biomarkers and common clinical outcomes. Data derived from the <u>E</u>valuating the <u>R</u>ole of <u>Inflammation</u> in <u>Chronic Airways</u> disease (ERICA) study were linked to electronic health record data (i.e. hospital admissions) and survival data. Predictive models for mortality and cardiovascular related hospital admission were developed using stratified multivariable Cox regression, and assessed by C-indices with 10-fold cross-validation. Negative binomial regression was used to model the event rate of acute exacerbation of COPD and determine the risk of hospitalisation due to acute exacerbation of COPD, and the associated length of stay. Data from the UK Biobank were used to explore cause-specific deaths in COPD. Sex-specific all-cause and cause-specific mortality rates were age-standardised using the 2013 European Standard Population. Hazard ratios were estimated using Cox proportional hazards regression, adjusted for age and sex.

Findings Systematic review indicated that shorter six-minute walk distance, elevated heart rate, fibrinogen, C-reactive protein, and white cell count were associated with a higher risk of mortality. Shorter six-minute walk distance and elevated fibrinogen and C-reactive protein were associated with COPD exacerbation, and shorter sixminute walk distance and higher heart rate, C-reactive protein and interleukin-6 were associated with hospitalisation. Data from the ERICA cohort indicated no significant difference between the discriminative ability of a BODE Index with six-minute walk and BODE Index with short physical performance battery when predicting mortality. For most musculoskeletal measures, poorer performance was associated with higher rate or longer duration of hospitalised acute exacerbation of COPD. Measures of arterial stiffness and carotid intima-media thickness were not associated with cardiovascular events. Measures of exercise capacity were significantly associated with cardiovascular disease and improved the discriminative ability when added to Framingham risk factors. Data from the UK Biobank indicated COPD was associated with a higher risk of all-cause mortality, and cardiovascular death. In both men and women, COPD had an associated threefold higher risk of early mortality, including a fourfold higher risk of cardiovascular-related death in women, and threefold higher risk of cardiovascular-related death in men.

Conclusions Epidemiological evidence indicates that musculoskeletal measures have the potential to replace the six-minute walk in the BODE Index for predicting mortality in COPD. In addition, physical capacity should be considered as an important treatable trait in reducing risk of hospitalisations for acute exacerbation of COPD. Data from the ERICA cohort does not support the use of objective measures of arterial stiffness and carotid intima-media thickness in addition to Framingham risk factors for predicting cardiovascular events within COPD. Findings in the UK Biobank indicated that COPD is associated with a higher risk of cardiovascular death but cancer and respiratory disease to be the leading causes.

Preface

The aim of this dissertation was to explore the relationships between existing and novel biomarkers, questionnaire data, and electronic health record data and determine if and how these biomarkers can predict common clinical outcomes (i.e. acute exacerbation of chronic obstructive pulmonary disease (COPD), hospitalisation, mortality) within a COPD population. To conduct the analyses I used clinical data from the <u>E</u>valuation of the <u>Role of Inflammation in Chronic A</u>irways disease (ERICA) cohort – a unique and well-defined dataset containing numerous biomarkers including musculoskeletal and cardiovascular markers, and demographic data of individuals diagnosed with COPD – and linked these to mortality data and electronic health record data obtained from the UK Office for National Statistics and National Health Services (NHS) Digital (England), NHS Wales and NHS Scotland, respectively. To explore how some of the findings in the ERICA cohort present in a different cohort, I have analysed data from the UK Biobank. "One of the challenges for biomedicine in the digital age is how to move from data to knowledge and from knowledge to action to enhance the lives of patients in real-world contexts."

Gibbons

Acknowledgements

This report presents independent research funded by GlaxoSmithKline (GSK). The views expressed are those of the author and not necessarily those of GSK or the University of Cambridge. My role and of others in each chapter in this thesis are described below. Although the work described is of my own, it would not have been possible without the input of others. I thank my supervisors Professor Ian Wilkinson at the Department of Medicine, division of Experimental Medicine and Immunotherapeutics, Dr Angela Wood at the Department of Public Health and Primary Care, Cardiovascular Epidemiology Unit, and Dr Hana Muellerova at GSK, Respiratory Epidemiology Unit for their support and guidance throughout my PhD. I thank Professor Michael Polkey and Dr Divya Mohan for their clinical input, Dr Emma Day and Dr Mellone Marchong, and Ms Alicia Gore for their support with the electronic health record data applications, and Mr Thomas Bolton for his support in the UK Biobank application. I would like to thank the ERICA consortium and all study participants. I am grateful to the University of Cambridge and GSK for funding my PhD studies in Cambridge with a 3-year PhD Studentship (RG79358). In addition, I thank the American Thoracic Society, the European Respiratory Society (ERS), the Centre for Health Economics at the University of York, and Gonville & Caius College for their Scholarships, allowing me to learn and disseminate my research nationally and internationally. In addition, I am grateful to be the recipient of an ERS Young Scientist 2018 award. Finally, I would like to thank Dr Christine Lu for her mentorship during my fellowship at Harvard University. On a personal note, I would like to thank my parents and twin brother for their love and support, and my close friends in Cambridge, in particular Paulina Rowicka and Alessandro Morelli for their friendship and making Cambridge such a wonderful experience.

Chapter 1 I drafted the text. Professor Ian Wilkinson, Dr Angela Wood and Dr Hana Muellerova provided helpful feedback.

Chapter 2 I wrote the study protocol for registration with *PROSPERO* (CRD 42016052075). I and Dr Angela Wood designed the study. I, Dr Magnus Jensen, Dr Renata Ferrari, Dr Valeria Pires Di Lorenzo, Dr Jacob Marot, Dr Philipp Schuetz, Dr Henrik Watz, Dr Benjamin Waschki, and Dr Hana Muellerova contributed to the data collection. I and Dr Katya Masconi extracted the data. I conducted the analysis, and produced the results figures and tables. Dr Angela Wood and Dr Katya Masconi provided advice on the statistical analysis. I wrote the initial draft of the manuscript. Dr Katya Masconi, Professor Michael Polkey, Professor Ian Wilkinson, and Dr Angela Wood contributed to the writing of the manuscript. All co-authors within the ERICA consortium read and commented on the manuscript.

Chapter 3 I created the database specification dictionary with clinical input from Dr Divya Mohan (**Appendix D**). I conducted the data management and data cleaning. I prepared and submitted applications with the National Health Service (NHS) Digital, NHS Wales, and NHS Scotland to obtain hospital episode statistics, and the Office for National Statistics to obtain mortality data for data linkage purposes. Supporting these applications I built the website http://ericacopd.org. I linked hospital episode statistics and mortality data with the ERICA data. I decided on and conducted the statistical analyses, produced the relevant tables and figures, and drafted the text. Dr Angela Wood and Professor Ian Wilkinson provided helpful feedback.

Chapter 4 I, together with Dr Angela Wood, Professor Ian Wilkinson, Dr Hana Muellerova, and Professor Michael Polkey designed the study. The source data set came from a study conceived and directed by Dr Ruth Tal-Singer, Professor Ian Wilkinson and Professor Michael Polkey, and with Dr Charlotte Bolton, Dr William Macnee, Dr John Cockroft, Dr Carmel McEniery, and Dr Jonathan Fuld as coinvestigators who organised and carried out the clinical study. I, Dr Divya Mohan and Dr Marie Fisk obtained the data. I conducted the analysis and produced the results, figures and tables. Dr Angela Wood provided advice on the statistical analysis. I used *STATA* program *precalib* developed by Dr Stephen Kaptoge to create calibration plots. I wrote the initial draft of the manuscript. Professor Michael Polkey, Dr Angela Wood, Professor Ian Wilkinson, and Dr Divya Mohan contributed to the writing of the manuscript. All co-authors critiqued and commented on the manuscript.

Chapter 5 I prepared the application and obtained access to the UK Biobank (35826). I decided on and conducted the statistical analyses, produced the relevant tables and figures, and drafted the text. Dr Angela Wood provided advice on the statistical analysis. Dr Angela Wood and Professor Ian Wilkinson provided helpful feedback.

Chapter 6 I, together with Dr Hana Muellerova, Professor Ian Wilkinson, Dr Angela Wood, and Professor Michael Polkey designed the study. The source data set came from a study conceived and directed by Dr Ruth Tal-Singer, Professor Ian Wilkinson and Professor Michael Polkey, and with Dr Charlotte Bolton, Dr William Macnee, Dr John Cockroft, Dr Carmel McEniery, and Dr Jonathan Fuld as co-investigators who organised and carried out the clinical study. I, together with Dr Divya Mohan and Dr Marie Fisk obtained the data. I conducted the analysis and produced the results, figures and tables. Dr Angela Wood provided advice on the statistical analysis. I wrote the initial draft of the manuscript. Dr Hana Muellerova, Dr Angela Wood, Professor Michael Polkey, Professor Ian Wilkinson, and Dr Divya Mohan contributed to the writing of the manuscript. All co-authors critiqued and commented on the manuscript. **Chapter 7** I, together with Professor Ian Wilkinson, Dr Angela Wood, Dr Hana Muellerova, and Professor Michael Polkey designed the study. The source data set came from a study conceived and directed by Dr Ruth Tal-Singer, Professor Ian Wilkinson and Professor Michael Polkey, and with Dr Charlotte Bolton, Dr William Macnee, Dr John Cockroft, Dr Carmel McEniery, and Dr Jonathan Fuld as coinvestigators who organised and carried out the clinical study. I, together with Dr Divya Mohan and Dr Marie Fisk obtained the data. I conducted the analysis and produced the results, figures and tables. Dr Angela Wood provided advice on the statistical analysis. I wrote the initial draft of the manuscript. Professor Ian Wilkinson, Professor Michael Polkey, Dr Angela Wood, and Dr Divya Mohan contributed to the writing of the manuscript. All co-authors critiqued and commented on the manuscript.

Chapter 8 I drafted the text. Professor Ian Wilkinson and Dr Angela Wood and Dr Hana Muellerova provided helpful feedback.

Abbreviations

4MGS	Four-metre gait speed	IL	Interleukins
6MW	Six-minute walk	IQR	Inter-quartile range
AECOPD	Acute exacerbation of COPD	IRR	Incidence risk ratio
AIx	Augmentation index	MICE	Multiple imputation by chained equations
BMI	Body mass index	MOOSE	Meta-analysis of observational studies in epi-
			demiology
BODE	Body mass index, airflow obstruction, dysp-	MRC	Medical Research Council
	noea and exercise capacity		
CAT	COPD assessment test	NHS	National Health Services
CIMT	Carotid intima-media thickness	ONS	Office for National Statistics
COPD	Chronic obstructive pulmonary disease	PRISMA	Preferred reporting items for systematic re-
			views and meta-analyses
CRP	C-reactive protein	PWV	Pulse wave velocity
CV	Cardiovascular	QMVC	Quadriceps maximum voluntary contraction
EHR	Electronic health record	SGRQ-C	$\operatorname{St.George}$ respiratory questionnaire for COPD
ERICA	Evaluation of the role of inflammation in	SMD	Standardised mean difference
	chronic airways disease		
FEV_1	Forced expiratory volume in one second	SNIP	Sniff nasal inspiratory pressure
FVC	Forced vital capacity	SPPB	Short physical performance battery
GFR	Glomerular filtration rate	STROBE	Strengthening the reporting of observational
			studies in epidemiology
GOLD	Global initiative for chronic obstructive lung	$\mathrm{TNF}\text{-}\alpha$	Tumour necrosis factor-alpha
	disease		
HDL	High-density lipoprotein	TRIPOD	Transparent reporting of a multivariable pre-
			diction model for individual prognosis or diag-
			nosis
HR	Hazard ratio	WCC	White cell count
ICD-10	10th revision of the international statistical		
	classification of diseases and related health		
	problems		

Contents

Conte	nts		ix	
List of	Figure	es	xvii	
List of	Tables	5	xxiii	
1 Int	roducti	on	1	
1.1	Backg	round	. 2	
	1.1.1	Definition	. 2	
	1.1.2	Biology of COPD and manifestations	. 3	
	1.1.3	Incidence and prevalence of COPD	. 5	
	1.1.4	Clinical outcomes	. 5	
	1.1.5	Diagnosing COPD	. 7	
	1.1.6	Established risk factors	. 8	
	1.1.7	Predicting clinical outcomes	. 9	
	1.1.8	Prognostic model development	. 9	
	1.1.9	Multidimensional scoring systems	. 10	
	1.1.10	Novel biomarkers	. 12	
		1.1.10.1 Inflammatory markers	. 12	
		1.1.10.2 Cardiovascular markers	. 12	
		1.1.10.3 Musculoskeletal markers	. 13	
	1.1.11	Clinical studies	. 14	
1.2	Thesis	outline	. 15	

4	DIU	marker	s and chinear outcomes in $OOID$ – a systematic revie	ew & meta	-
	ana	lysis			19
	2.1	Backg	ound		20
	2.2	Metho	m ds		21
		2.2.1	Search strategy		21
		2.2.2	Biomarkers and outcomes		22
		2.2.3	Data extraction and quality assessment		24
		2.2.4	Statistical analysis		24
	2.3	Findin	m gs		25
		2.3.1	Included biomarkers		32
		2.3.2	Data synthesis		32
		2.3.3	Association between cardiovascular and musculoskeletal mea	sures, and	
			clinical outcomes		33
			2.3.3.1 Six-minute walk distance		33
			2.3.3.2 Resting heart rate		34
			2.3.3.3 Fibrinogen		38
			2.3.3.4 C-reactive protein		42
			2.3.3.5 White cell count		48
			2.3.3.6 Interleukin 6		48
			2.3.3.7 Interleukin 8		49
			2.3.3.8 Tumour necrosis factor-alpha		49
			2.3.3.9 Quadriceps maximum voluntary contraction		49
			2.3.3.10 Sniff nasal inspiratory pressure		50
		2.3.4	Publication bias		50
	2.4	Discus	sion \ldots		52
	2.5	Conclu	sions		54

2 Biomarkers and clinical outcomes in COPD – a systematic review & meta-

U	Lva	iuatiii	5 the role of inhalimation in cononic Anways disease (Litter)	
	stuc	ły		55
	3.1	Backg	round	56
	3.2	Metho	ds	57
		3.2.1	Study details of the ERICA study	57
		3.2.2	Outcome measures	59
		3.2.3	Missing values in baseline characteristics	59
		3.2.4	Statistical analysis	60
		3.2.5	Patients' consent and permission to publish	60
	3.3	Findir	$\log s$	61
		3.3.1	Missing data	61
		3.3.2	Descriptive statistics	62
		3.3.3	Lung function measures	68
		3.3.4	Biochemical measures	68
		3.3.5	Musculoskeletal measures	74
		3.3.6	Cardiovascular measures	77
		3.3.7	Questionnaires	79
		3.3.8	Correlations	81
		3.3.9	Time to event outcomes	84
	3.4	Discus	sion	93
4	Can	ı simpl	ler measures substitute for the six-minute walk component of the	•
	BO	DE Inc	dex in predicting death in COPD in the ERICA cohort?	97
	4.1	Backg	round	98
		4.1.1	Introduction	98
	4.2	Metho	ds	101
		4.2.1	Study design and participants	101

3 Evaluating the Role of Inflammation in Chronic Airways disease (ERICA)

		4.2.2	Point assignment for components of BODE Index	101
		4.2.3	Statistical analysis	101
	4.3	Findir	m ngs	103
		4.3.1	Descriptive statistics	103
		4.3.2	Factors associated with all-cause mortality	103
		4.3.3	Predictive models	108
		4.3.4	Practical example of using the BODE Index	10
		4.3.5	Sensitivity analysis	117
	4.4	Discus	sion \ldots \ldots \ldots \ldots \ldots 1	122
		4.4.1	Critique of the method	122
		4.4.2	Significance of the findings	123
	4.5	Concl	usions \ldots \ldots \ldots \ldots \ldots 1	125
5	Cau	ises of	death in COPD using the UK Biobank	27
5	Cau	uses of	death in COPD using the UK Biobank	27
5	Cau 5.1	ises of Backg	death in COPD using the UK Biobank 1 round 1	27 128
5	Cau 5.1 5.2	ises of Backg Metho	death in COPD using the UK Biobank 1 round 1 ods 1	27 128 130
5	Cau 5.1 5.2	Backg Methc 5.2.1	death in COPD using the UK Biobank 1 round	27 128 130 130
5	Cau 5.1 5.2	Backg Metho 5.2.1 5.2.2	death in COPD using the UK Biobank 1 round 1 ods 1 Study design and participants 1 Definition of COPD 1	27 128 130 130
5	Cau 5.1 5.2	 ases of Backg Metho 5.2.1 5.2.2 5.2.3 	death in COPD using the UK Biobank 1 round 1 ods 1 ods 1 Study design and participants 1 Definition of COPD 1 Statistical analysis 1	27 128 130 130 131
5	Cau 5.1 5.2 5.3	Backg Metho 5.2.1 5.2.2 5.2.3 Findir	death in COPD using the UK Biobank 1 round 1 ods 1 ods 1 Study design and participants 1 Definition of COPD 1 Statistical analysis 1 ngs 1	 27 128 130 130 131 131 136
5	Cau 5.1 5.2	Backg Metho 5.2.1 5.2.2 5.2.3 Findir 5.3.1	death in COPD using the UK Biobank 1 round 1 ods 1 ods 1 Study design and participants 1 Definition of COPD 1 Ings 1 Descriptive statistics 1	 27 128 130 131 131 136 136
5	Cau 5.1 5.2	 1ses of Backg Metho 5.2.1 5.2.2 5.2.3 Findir 5.3.1 5.3.2 	death in COPD using the UK Biobank 1 round 1 ods 1 ods 1 Study design and participants 1 Definition of COPD 1 Statistical analysis 1 ngs 1 Descriptive statistics 1 Event and mortality rates 1	 27 128 130 131 131 136 136 136
5	Cau 5.1 5.2	 Ises of Backg Metho 5.2.1 5.2.2 5.2.3 Findir 5.3.1 5.3.2 5.3.3 	death in COPD using the UK Biobank 1 round 1 ods 1 Study design and participants 1 Definition of COPD 1 Itstatistical analysis 1 Itstatistical analysis	 27 128 130 130 131 131 136 136 143
5	Cau 5.1 5.2	 Ises of Backg Metho 5.2.1 5.2.2 5.2.3 Findir 5.3.1 5.3.2 5.3.3 5.3.4 	death in COPD using the UK Biobank 1 round 1 ods 1 ds 1 Study design and participants 1 Definition of COPD 1 Statistical analysis 1 ngs 1 Descriptive statistics 1 Non-fatal cardiovascular disease 1 Comparison with the ERICA cohort 1	 27 128 130 130 131 136 136 136 143 145
5	Cau 5.1 5.2 5.3	 Ises of Backg Metho 5.2.1 5.2.2 5.2.3 Findir 5.3.1 5.3.2 5.3.3 5.3.4 Discus 	death in COPD using the UK Biobank 1 round 1 ods 1 Study design and participants 1 Definition of COPD 1 Statistical analysis 1 ngs 1 Descriptive statistics 1 Non-fatal cardiovascular disease 1 Staison 1 Statistical analysis 1	 27 128 130 130 131 136 136 143 145 148

6	\mathbf{Exe}	ercise capacity traits and their association with COPD exacerbations re-					
	quir	ring ho	ing hospital admission: UK ERICA cohort linked with national hospital				
	stat	listics 15					
	6.1	Background					
	6.2	Metho	ds	156			
		6.2.1	Study design and participants	156			
		6.2.2	Study outcomes	157			
		6.2.3	Potential predictor variables	157			
		6.2.4	Statistical analysis	160			
	6.3	Findir	ngs	161			
		6.3.1	Missing data	161			
		6.3.2	Descriptive statistics	161			
		6.3.3	Factors associated with rate of AECOPD-related hospital admission	164			
		6.3.4	Factors associated with AECOPD-related hospital stay	164			
		6.3.5	Sensitivity analysis for rate of AECOPD-related hospital admission	169			
	6.4	Discus	ssion	174			
	6.5	Conclu	usions	177			
_	Б						
7	Do	arteria	al stiffness or carotid intima-media thickness improve on a Framing-	70			
	han	1 appr	oach when predicting cardiovascular disease in COPD?	.79			
	7.1	Backg	round	181			
	7.2	Metho	ds	182			
		7.2.1	Study design and participants	182			
		7.2.2	Clinical measures	183			
		7.2.3	Cardiovascular events	183			
		7.2.4	Outcomes and predictors of interest	185			
		7.2.5	Statistical analysis	185			

	7.3	Findin	gs	186
		7.3.1	Descriptive statistics	186
		7.3.2	Association of Framingham risk factors with CV events, and their predic-	
			tive value	186
		7.3.3	Association of arterial stiffness measures with CV events, and their pre-	
			dictive value	190
		7.3.4	Association of alternative measures with CV events, and their predictive	
			value	192
	7.4	Discus	sion	194
		7.4.1	Strength and limitations	195
		7.4.2	Significance of the findings	197
	7.5	Conclu	usions	198
8	Gen	eral D	iscussion	199
	8.1	Streng	ths and limitations	. 201
	8.2	Public	health implications	. 203
	8.3	Future	e research \ldots	. 205
			8.3.0.1 Frailty and multi-organ tissue loss	. 206
			8.3.0.2 Net reclassification index	. 208
			8.3.0.3 Years of life lost	. 208
			8.3.0.4 Genetic risk prediction	. 209
			8.3.0.5 Healthcare system	. 210
Aj	ppen	dix A:	research items authored during the PhD	213
Aj	ppen	dix B:	data completion form meta-analysis	217
Aj	ppen	dix C:	ERICA protocol	225

Appendix D: data dictionary	235
Appendix E: causes of death	265
Bibliography	27 1

List of Figures

1.1	Chronic inflammation of the small airways.	2
1.2	Inflammatory spill-over effect	4
1.3	Signs and symptoms of chronic obstructive pulmonary disease	6
1.4	Spirometry results indicating lung obstruction.	8
1.5	Prognostic multivariable modelling study.	11
2.1	Flow diagram of studies included in the review	26
2.2	Pooled hazard ratios for the risk of mortality with 95% confidence intervals, by	
	biomarker	34
2.3	Adjusted hazard ratios for the risk of mortality with 95% confidence intervals, by	
	biomarker	35
2.4	Hazard ratios for mortality using fixed-effect modelling, sensitivity analysis	36
2.5	Hazard ratios for mortality, sensitivity analysis.	37
2.6	Pooled standardised mean differences with 95% confidence intervals for the risk	
	of exacerbation, by biomarker	38
2.7	Standardised mean differences with 95% confidence intervals for the risk of exac-	
	erbation, by biomarker.	39
2.8	Standardised mean differences for exacerbation using fixed-effect modelling, sen-	
	sitivity analysis.	40
2.9	Standardised mean differences for exacerbation, sensitivity analysis	41
2.10	Pooled standardised mean differences with 95% confidence intervals for the risk	
	of hospitalisation, by biomarker	42

2.11	Standardised mean differences with 95% confidence intervals for the risk of hos-	
	pitalisation, by biomarker	43
2.12	Standardised mean differences for hospitalisation using fixed-effect modelling, sen-	
	sitivity analysis	44
2.13	Standardised mean differences for hospitalisation, sensitivity analysis	45
2.14	Galbraith plots for mortality.	46
2.15	Meta-regression six-minute walk distance and C-reactive protein, hazard ratio	
	mortality.	47
2.16	Funnel plots for mortality.	51
3.1	Missing values displayed by total and recruitment site	61
3.2	Percentage and pattern of missing values in key baseline characteristics	62
3.3	Missing data patterns.	63
3.4	Participant enrolment flow diagram.	64
3.5	Histograms displaying the distribution of age, by sex and recruitment site	67
3.6	Histograms displaying the distribution of body mass index, by sex and recruitment	
	site	67
3.7	Histograms displaying the distribution of forced expiratory volume in one-second	
	percentage predicted, by sex and recruitment site	68
3.8	Histograms displaying the distribution of exacerbation history, one year before	
	study enrolment, by sex and recruitment site	69
3.9	Histograms displaying the distribution of fibrinogen by sex and recruitment site	70
3.10	Histograms displaying the distribution of C-reactive protein by sex and recruit-	
	ment site	70
3.11	Histograms displaying the distribution of white blood cell count by sex and re-	
	cruitment site.	71

3.12	Histograms displaying the distribution of neutrophil count by sex and recruitment	
	site	71
3.13	Histograms displaying the distribution of glucose level by sex and recruitment site.	72
3.14	Histograms displaying the distribution of haemoglobin by sex and recruitment site.	72
3.15	Histograms displaying the distribution of glycated haemoglobin by sex and re-	
	cruitment site.	73
3.16	Histograms displaying the distribution of high-density lipoprotein levels by sex	
	and recruitment site	73
3.17	Histograms displaying the distribution of total cholesterol levels by sex and re-	
	cruitment site.	74
3.18	Histograms displaying the distribution of six-minute walk distance by sex and	
	recruitment site.	75
3.19	Histograms displaying the distribution of the short physical performance battery	
	by sex and recruitment site	75
3.20	Histograms displaying the distribution of quadriceps maximum voluntary con-	
	traction by sex and recruitment site	76
3.21	Histograms displaying the distribution of sniff nasal inspiratory pressure by sex	
	and recruitment site	76
3.22	Histograms displaying the distribution resting heart rate by sex and recruitment	
	site	77
3.23	Histograms displaying the distribution of mean arterial pressure by sex and re-	
	cruitment site.	78
3.24	Histograms displaying the distribution of systolic blood pressure by sex and re-	
	cruitment site.	78
3.25	Histograms displaying the distribution of carotid intima-media thickness by sex	
	and recruitment site	79

3.26	Histograms displaying the distribution of augmentation index by sex and recruit-	
	ment site.	80
3.27	Histograms displaying the distribution of pulse wave velocity by sex and recruit-	
	ment site.	80
3.28	Histograms displaying the distribution of COPD assessment test scores by sex	
	and recruitment site	81
3.29	Histograms displaying the distribution of St George's respiratory questionnaire	
	for COPD, by sex and recruitment site.	82
3.30	Correlation matrix of baseline variables	83
3.31	Scatter plots displaying the distribution of age, body mass index, exacerbation	
	history, and forced expiratory volume in one second percentage predicted, over	
	forced expiratory volume in one second, by sex	84
3.32	Scatter plots displaying the distribution of fibrinogen, high-density lipoprotein	
	cholesterol, white cell count, glomerular filtration rate, glycated haemoglobin,	
	and neutrophils over forced expiratory volume in one second, by sex	85
3.33	Scatter plots displaying the distribution of resting heart rate, six-minute walk dis-	
	tance, short physical performance battery, quadriceps maximum voluntary con-	
	traction, and sniff nasal inspiratory pressure over forced expiratory volume in one	
	second, by sex.	86
3.34	Scatter plots displaying the distribution of resting heart rate, short physical per-	
	formance battery, quadriceps maximum voluntary contraction, and sniff nasal	
	inspiratory pressure over six-minute walk distance, by sex	87
3.35	Scatter plots displaying the distribution of St. George respiratory questionnaire	
	for COPD, COPD assessment test, and Medical Research Council dyspnoea score	
	over forced expiratory volume in one-second, by sex	87

3.36	Scatter plots displaying the distribution of carotid intima-media thickness, aug-	
	mentation index, and pulse wave velocity over forced expiratory volume in one-	
	second, by sex	88
3.37	Scatter plots displaying the distribution of age, systolic blood pressure, and resting	
	heart rate under carotid intima-media thickness, augmentation index, and pulse	
	wave velocity, by sex	89
3.38	Cause of death during study period, by recruitment site	90
3.39	Deaths in the ERICA cohort, by cause and GOLD stage	90
3.40	Deaths in the ERICA cohort, by age band.	91
3.41	Hospital admissions extracted from electronic health record data, by primary and	
	secondary position.	91
3.42	Primary hospital admissions extracted from electronic health record data, by	
	ICD-10 chapter coding	92
4.1	Forest plot displaying standardized hazard ratios for three years of follow-up, by	
4.1	Forest plot displaying standardized hazard ratios for three years of follow-up, by category	05
4.14.2	Forest plot displaying standardized hazard ratios for three years of follow-up, by category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1	05 06
4.14.24.3	Forest plot displaying standardized hazard ratios for three years of follow-up, by category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1	05 06 09
4.14.24.34.4	Forest plot displaying standardized hazard ratios for three years of follow-up, by category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1	05 06 09
4.14.24.34.4	Forest plot displaying standardized hazard ratios for three years of follow-up, by 1 category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1 intervals. 1	05 06 09 11
 4.1 4.2 4.3 4.4 4.5 	Forest plot displaying standardized hazard ratios for three years of follow-up, by 1 category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1 Survival risk indices, by quartiles. 1	05 06 09 11 14
 4.1 4.2 4.3 4.4 4.5 4.6 	Forest plot displaying standardized hazard ratios for three years of follow-up, by 1 category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1 Survival risk indices, by quartiles. 1 Change scores C-index. 1	05 06 09 11 14 15
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Forest plot displaying standardized hazard ratios for three years of follow-up, by 1 category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1 Survival risk indices, by quartiles. 1 Change scores C-index. 1 C-indices with change scores, alternative BODE models. 1	05 06 09 11 14 15 17
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 	Forest plot displaying standardized hazard ratios for three years of follow-up, bycategory.1Forest plot displaying standardized adjusted hazard ratios, by years of follow-up.1Hazard ratios and C-indices with change scores for various BODE models.1Predicted and observed mortality by risk quartiles with associated 95% confidence1intervals.1Survival risk indices, by quartiles.1Change scores C-index.1C-indices with change scores, alternative BODE models.1Boxplots, after multiple imputation.1	05 06 09 11 14 15 17 18
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Forest plot displaying standardized hazard ratios for three years of follow-up, by 1 category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1 intervals. 1 Survival risk indices, by quartiles. 1 Change scores C-index. 1 C-indices with change scores, alternative BODE models. 1 Boxplots, after multiple imputation. 1 Kernel density plots, after multiple imputation. 1	05 06 09 11 14 15 17 18 19
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 	Forest plot displaying standardized hazard ratios for three years of follow-up, by 1 category. 1 Forest plot displaying standardized adjusted hazard ratios, by years of follow-up. 1 Hazard ratios and C-indices with change scores for various BODE models. 1 Predicted and observed mortality by risk quartiles with associated 95% confidence 1 intervals. 1 Survival risk indices, by quartiles. 1 Change scores C-index. 1 C-indices with change scores, alternative BODE models. 1 Boxplots, after multiple imputation. 1 Diagnostic histograms, after multiple imputation. 1	05 06 09 11 14 15 17 18 19 20

5.2	Crude annual all-cause and cause-specific mortality rates
5.3	Survival by COPD status
5.4	Cause-specific death for COPD, by sex
5.5	Age-standardised mortality rates and hazard ratios, by sex
5.6	Age-standardised fatal- and non-fatal event rates and hazard ratios, by sex 144
5.7	Age-standardised mortality rates and hazard ratios, by sex
5.8	Age-standardised non-fatal cardiov ascular event rates and hazard ratios, by sex 147
6.1	Type of acute exacerbation of COPD, by recruitment centre
6.2	Percentage of missing values
6.3	Missing data patterns
6.4	Yearly event rates, frequency and duration of AECOPD-related hospital admission.163
6.5	Associations of baseline musculoskeletal measures and rate of hospitalised acute
	exacerbation of chronic obstructive pulmonary disease in the ERICA cohort 167
6.6	Associations of baseline musculoskeletal measures and hospital length of stay after
	admission for acute exacerbation of chronic obstructive pulmonary disease in the
	ERICA cohort
7.1	Framingham risk factors at baseline, their hazard ratios and discriminative ability
	for cardiovascular disease
7.2	Arterial stiffness at baseline, their hazard ratios and discriminative ability for
	cardiovascular disease
7.3	Alternative measures at baseline, their hazard ratios and discriminative ability
	for cardiovascular disease

List of Tables

2.1	Search strategies
2.2	QUADAS-2 scoring
2.3	Search results systematic review
3.1	Baseline variables, by recruitment site
4.1	Multidimensional risk factors, published prediction models for the prediction of
	mortality in COPD
4.2	Assignment of points
4.3	Baseline characteristics by functional limitation
4.4	Adjusted multivariable associations, with the occurrence of death, by years of
	follow-up
4.5	Cox proportional hazards regression analyses for all-cause mortality, using con-
	tinuous data
4.6	Risk indices using point system, by survival status
4.7	Risk indices using point system, by cause of death
4.8	Cox proportional hazards regression analyses for all-cause mortality during follow-
	up, using composite scores for BODE indices
4.9	Cox proportional hazards regression analyses for all-cause mortality, using con-
	tinuous data after multiple imputation
5.1	Definitions of underlying (primary) cause of death: ICD10, available in UK Biobank.133
5.2	Definitions of diagnoses for non-fatal cardiovascular disease – main ICD10 \ldots 135

5.3	Baseline characteristics
5.4	Baseline characteristics
6.1	ICD-10 codes to ascertain acute exacerbation in COPD in the hospital episode
	statistics
6.2	Covariates considered
6.3	Baseline characteristics
6.4	Adjusted multivariable associations with frequency of AECOPD-related hospital
	admission
6.5	Factors associated with rate of AECOPD-related hospital admission in the step-
	wise multivariable model
6.6	Factors associated with rate of AECOPD-related hospital admission, by exacer-
	bation history
6.7	Factors associated with rate of AECOPD-related hospital admission, by sex 168
6.8	Adjusted multivariable associations with AECOPD length of stay
6.9	Factors associated with AECOPD-related hospital admission length of stay in the
	stepwise multivariable model
6.10	Adjusted multivariate associations with AECOPD frequency, by exacerbation his-
	tory
6.11	Adjusted multivariate associations with AECOPD frequency, by sex 173
7.1	Definitions of diagnoses by ICD-10 coding
7.2	Hazard ratios for cardiovascular disease with measured baseline levels of risk factors.187
7.3	Hazard ratios for cardiovascular disease with measured baseline levels of risk factors.187
7.4	Hazard ratios for cardiovascular disease with measured baseline levels of risk factors.194

Chronic obstructive pulmonary disease is a lung disease characterized by chronic obstruction of lung airflow that interferes with normal breathing and is not fully reversible

World Health Organisation

Introduction

Chapter summary

This chapter describes the definition, underlying biology and disease manifestation of chronic obstructive pulmonary disease (COPD). Incidence and prevalence of COPD are reported in addition to how COPD is diagnosed, and common clinical outcomes including COPD exacerbation, hospital admission and mortality. There is a great incentive to identify high risk individuals in an early stage of disease with a focus on extra-pulmonary manifestations of COPD (i.e. systemic disease). Biomarkers currently used in diagnosing and staging COPD are described, in addition to novel biomarkers that can potentially capture systemic disease that traditional lung function measures fail to capture. A specific focus is placed on cardiovascular and musculoskeletal measures. Several clinical studies are exploring the potential use of measuring extra-pulmonary manifestations of COPD, including the <u>Evaluating the Role of Inflammation in Chronic Airways</u> disease (ERICA) study and are briefly introduced. This chapter concludes with an outline of the thesis.

1.1 Background

1.1.1 Definition

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) – an independent body working with health care professionals aimed at increasing the awareness and promoting evidencebased practice for lung disease – characterises chronic obstructive pulmonary disease (COPD) by a "persistent air flow limitation that is usually progressive" and by the association with "an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases".¹⁰⁷ It is characterised by acute exacerbations, also known as flare ups, and comorbidities with both contributing to disease severity. Previously differentiation was made between chronic bronchitis and lung emphysema, with bronchitis being characterised by productive sputum (i.e. phlegm) and emphysema by air trapping in the lungs due to breakage of the alveoli (i.e. air sacs). As most individuals have a combination of the two conditions, often just the term COPD is used (**Figure 1.1**, page 2). Chronic bronchitis, however, is still seen as a separate disorder and may exist in individuals even with normal spirometry.

Figure 1.1: Chronic inflammation of the small airways. In addition to narrowing of the airways, lung tissue is damaged due to inflammation of the airway lining removing the elastic recoil. Image taken from the British Lung Foundation. "COPD: Living with chronic obstructive pulmonary disease".

1.1.2 Biology of COPD and manifestations

Chronic inflammation is present throughout the airways, parenchyma – functional lung tissue -, and in the pulmonary vasculature. Pathological changes include structural changes in the airway epithelial, smooth muscle and connective tissue with destruction of capillaries and the development of pulmonary hypertension and abnormal enlargement of the heart.¹⁶⁵ In addition to the lungs, COPD is also believed to lead to systemic problems such as impaired systemic muscle function and reduced exercise intolerance resulting from an increase in inflammatory markers such as macrophages, eosinophil count and neutrophils in various parts of the lung.⁴³ Cardiovascular disease is believed to be a common comorbidity in COPD. Even in mild cases of COPD, individuals may experience a reduced maximum heart rate and oxygen uptake.³⁴ Cardiovascular disease is believed to be a common comorbidity in COPD. Evidence suggest the two diseases go hand-in-hand^{193,253} and can be explained by a so-called spill-over effect of inflammatory response (Figure 1.2, page 4).²⁷² As a result of chronic inflammation in the pulmonary vasculature, the walls gradually thicken starting with the intima, followed by an increase in smooth muscle, proteoglycans and collagen, and the infiltration of inflammatory cells into the vessel walls that in turn could lead to arterial stiffness.²²⁹ The evidence of a spill-over effect, however, is inconclusive with some studies being unable to measure a relationship between productive cough and blood.³ The statistical power of these studies is low, however, due to small sample sizes (n < 50). Also, even in the absence of COPD, smoking itself may lead to systemic inflammation²⁴¹ and has been found to continue in former smokers.¹²⁶ In addition, ageing itself is accompanied with low-grade inflammation.⁶⁹ An alternative view is to see systemic inflammation as a multi-organ inflammation.¹⁷ In the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) cohort, an association between common diseases such as heart disease and diabetes, and systemic inflammation was found.¹⁸⁰ Considering lowgrade inflammation continues after smoking cessation, and ageing being an unmodifiable factor there is growing interest in targeting systematic inflammation therapeutically (i.e. secondary prevention).²⁹⁴ Some evidence suggests that alongside smoking cessation, frequent exercise and administering anti-inflammatory medication such as statins in those with systemic disease to lower the risk of COPD (i.e. primary prevention).²⁹³

Figure 1.2: Inflammatory spill-over effect. "Mechanisms by which arterial stiffness is increased in chronic obstructive pulmonary disease".²⁷² With permission.

It takes several years for COPD to develop, with the airways gradually becoming narrower making it harder to breathe, causing chronic air trapping within the lungs. The usual onset of COPD is after the age of forty and most individuals will have a smoking history of at least ten pack years. Classical disease manifestations include chronic coughing, sputum production, dyspnoea (i.e. breathlessness), and an overall decline in lung function measured through spirometry (**Figure 1.3**, page 6). Systemic manifestations on the other hand include pulmonary hypertension, impaired systemic muscle function, unintended weight loss. Due to the various systemic

manifestations, it is suggested that COPD should be considered a systemic disease and research should focus on the metabolic and musculoskeletal manifestations.²¹⁸

1.1.3 Incidence and prevalence of COPD

Globally, COPD is highly prevalent and positioned within the top ten of diseases with highest disease burden, measured by disability-adjusted life years, and increases with advancing age.¹⁰⁶ In particular in the developing world, the global burden of disease is expected to increase, primarily due to ageing populations and an increasing number of smokers.²³⁹ In the United Kingdom (UK), approximately 1.2 million individuals are diagnosed with COPD with more than 100.000 newly diagnosed each year according to the British Lung Foundation. Diagnosis of COPD under the age of forty is uncommon but nearly 5% of people >40 have diagnosed COPD. Although COPD is dominated by men, within the UK there has been an increasing number of women with physician-based diagnosis of COPD. This particularly has been the case for socio-economically deprived areas and the northern-east part of the UK, affected by a threefold higher risk of COPD compared to more affluent areas. In terms of overall incidence of COPD in the UK, however, there has not been a significant change in recent years.²³⁹ Incidence rates for men were 2.1/1000 people and 1.8/1000 for women in 2012.

1.1.4 Clinical outcomes

Common clinical outcomes in COPD include premature mortality, acute exacerbation of COPD, and hospital admission. Globally, the number of deaths related to COPD is highest in Bulgaria followed by North Korea and Greece with the UK positioned twelfth.¹³⁴ These high number of deaths reflect past smoking patterns, levels of air pollution, occupational exposures, and poorly ventilated indoor cooking fires. In the UK, premature mortality from COPD is almost twice as high compared the European average.²⁹⁰ Hence, the Department of Health introduced a strategic agenda aimed at preventing, identifying, and treating COPD in earlier stages of disease hoping to improve life expectancy and quality of life.²⁰⁵ The increasing number of governmental

Figure 1.3: Signs and symptoms of chronic obstructive pulmonary disease. Netter image modified.
publications, initiatives, and allocation of research funding emphasises the importance of addressing COPD and its consequences. In 2017, pollution has been the central topic of the Chief Medical Officer's annual report, including recommendations targeted at improving the quality of air we breathe.⁶⁸ In 2018, to address the impact of common clinical outcomes, the National Health Services (NHS) England published the COPD RightCare Pathway report with a focus on early identification and accurate diagnosis to improve long-term care and management.¹⁹⁶ Other initiatives include funding allocation to the NHS Trust supporting the development of a self-management system for those affected, a National COPD Audit Programme aimed at improving provided care, and the NHS Business Services Authority Respiratory Dashboard that focuses on COPD exacerbations and inform best practice for drug prescription.

1.1.5 Diagnosing COPD

Diagnosing COPD relies heavily on spirometry results and is the most widely used marker for diagnosis and grading disease severity. An individual is required to exhale air completely from their lungs as quickly as possible after inhalation, expressed as the forced expiratory volume in one second (FEV₁). The volume of air exhaled after maximum inhalation indicates the forced vital capacity (FVC). Both measures are generally reduced with a lower score indicating worse lung function. Airflow limitation that is not fully reversible is confirmed by the presence of a post-bronchodilator FEV₁ <80% of predicted value in combination with an FEV₁/FVC <70% (**Figure 1.4**, page 8). These values have also been used by GOLD to categorise patients according to disease severity.¹⁰⁷ Initial categorisation was based on stages, according to lung function performance only, but have been replaced with groups based on COPD assessment test (CAT) or Medical Research Council (MRC) dyspnoea score and exacerbation history leading to hospital admission or not, in addition to airflow limitation. More recently, a system to classify COPD patients, primarily to address under-diagnosis, and assessment and management of COPD, was suggested by Agusti *et al.* where all smokers' regardless of cough, dyspnoea or sputum should undergo spirometry. Agusti suggested differentiating between 'Simple COPD' – referring to those who are younger than 65 years of age with only mild/moderate airflow limitations and few symptoms and would be categorised as GOLD A, and 'Complex COPD' – referring to all other patients who are more symptomatic and should be referred to specialist care, categorised as GOLD B, C and D.⁴

Figure 1.4: Spirometry results indicating lung obstruction. Image taken from the Global Initiative for Chronic Obstructive Lung Disease 2016 report.¹⁰⁷

1.1.6 Established risk factors

Smoking is in most cases what causes COPD related death, followed by air pollution and particulates in household and occupation.¹⁰⁶ One of the most important and cost-effective interventions considered that could prevent COPD and improve lung function and survival, is smoking cessation.^{29,261} However, especially amongst those with lower socio-economic status, there has been no significant reduction.²⁴⁴ An increasing importance is placed on minimising risk factors and disease progression through prevention other than smoking cessation, as COPD is still largely underdiagnosed and therefore undertreated due to the current diagnosis that primarily relies on lung function measurements failing to capture the heterogeneity of the disease.^{48,59,75,122,226}

1.1.7 Predicting clinical outcomes

It was believed that over time patients would worsen with increasing airflow limitation. However, clinicians have come to realise the disease is much more heterogeneous than initially thought and existing measures such as FEV_1 might not be appropriate as they fail to capture systemic disease. Replacing GOLD stages with groups based on symptoms and history of exacerbation in addition to airflow limitation, however, has not led to a significant difference being measured in terms of their ability to predict hospital admission and mortality.¹⁴¹ Identifying individuals at high risk for common clinical outcomes has remained difficult. There is a growing interest in systemic manifestations. Assessing the predictive value of cardiovascular (CV) abnormalities, skeletal muscle weakness and plasma biomarkers for clinical outcomes are recognised to be of increasing clinical importance. In particular manifestations that can easily be measured in clinical practice and that support early stage detection. For example, inflammatory markers such as C-reactive protein (CRP) and fibringen have been assessed for their association between COPD and systemic inflammation and higher levels are often found in those diagnosed with COPD compared to those without. Other biomarkers such as reduced walking distance or lower limb muscle strength (i.e. muscle weakness) may well be predictors of clinical outcomes. Exercise testing such as six-minute walk (6MW) distance and cardiopulmonary exercise testing have already been recommended in the European Respiratory Society²¹¹ and American Thoracic Society¹¹ guidelines.

1.1.8 Prognostic model development

Assessing the predictive value of biomarkers can be evaluated through the development of a multivariable prediction model. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines inform about the development, validation and updating of prediction models.⁵² When combining prognostic factors that have been identified as important predictors for a particular outcome such as mortality or AECOPD into a multidimensional index, they indicate disease severity or levels of risk and can be used in

clinical practice by healthcare providers supporting in their decision making (**Figure 1.5**, page 11). Alternatively, they can help stratify patients for clinical trials and interventions (e.g. drug treatment, smoking cessation, or physical rehabilitation) aimed at modifying disease outcomes (e.g. AECOPD, mortality or hospital admission). The performance (i.e. discriminative ability) of such models is commonly expressed as the area under the receiver operating characteristic curve,¹⁷⁷ Somers' D-statistic,²⁰² or Harrell's C-statistic.¹⁰ A model with a discriminative ability of 0.5 equates to random chance, whereas a performance of 1.0 is perfect prediction. As a rule of thumb, a C-statistic of 0.5-0.7 is considered weak, 0.7-0.8 good, and >0.8 very good.¹²⁹ However, there are no clear guidelines on the minimum level of model accuracy required. A persistent problem with risk prediction in lung disease, however, is the poor discriminative ability of predictive models. In addition, some models are based on too small datasets, lack statistical validation, fail to address missing data, are badly calibrated, or over-fit the data.^{27,155} Simultaneously, typically little attention is given to the clinical practicalities such as cost, complexity, patient burden and time required, limiting the impact (i.e. improving patient outcomes) and widespread adoption of prediction models in clinical practice. Using electronic health record (EHR) data has been suggested as a potential solution to improve the uptake of prediction models.¹⁰⁸ Improvement of the presentation of models and the inclusion of provider and patient preferences are alternative examples that have been suggested to improve uptake.¹⁴⁴

1.1.9 Multidimensional scoring systems

With the increased attention for extra-pulmonary manifestations in COPD, numerous scoring systems have been suggested and introduced aiming to improve prediction in clinical practice. For example, Celli and colleagues developed and validated a weighted multidimensional grading system based on body mass index, the degree of airflow obstruction, dyspnoea, and exercise capacity measured by the 6MW test (BODE). The BODE Index is better than FEV_1 to assess disease severity and predicting risk of death,⁴⁰ and found to be superior in predicting hospital

Figure 1.5: Prognostic multivariable modelling study. *Abbreviations*: T, moment of prediction. Y, time of the event. Image taken from the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement.⁵²

admission when compared to the GOLD classifications.²⁰⁸ Both GOLD and the BODE Index, however, appear to perform poorly at predicting mortality.⁴⁵ In addition, Puhan *et al.* concluded that the original BODE Index failed to accurately predict mortality and introduced an updated index (U-BODE) by re-assigning the number of points given to the variables included, in addition to developing a simplified ADO index based on age, dyspnoea and obstruction.²²⁵

Fisk *et al.* (2016, unpublished) compared three of these classification systems: GOLD stage, GOLD group, and BODE whilst assessing the relationship between COPD severity and the two most clinically important extra-pulmonary manifestations: CV disease and muscle weakness. The authors found that the cut-off points used in GOLD groups are incorrect and suggest the use of BODE Index quartiles in the evaluation of vascular and musculoskeletal phenotypes, in particular arterial stiffness and quadriceps weakness.

Considering COPD is irreversible, and treatments are still lacking, the focus of managing COPD is shifting towards prevention. Evaluating these systemic manifestations in COPD are considered to be a key unmet need, with some clinicians arguing to move away from disease labels such as COPD and focus on so-called 'treatable traits' such as improving quadriceps muscle strength, addressing disease complexity and overlap of symptoms amongst diseases.⁴

1.1.10 Novel biomarkers

1.1.10.1 Inflammatory markers

Biomarkers of interest that are believed to be of predictive value include multiple inflammatory markers and CV and musculoskeletal measures. See **Appendix C** for detailed descriptions. For example, fibrinogen, white cell count (WCC), interleukins 6 (IL-6) and 8 (IL-8), tumour necrosis factor-alpha (TNF- α), and CRP are measures of inflammation and may be related to muscle or CV problems in COPD patients. Both CRP and fibrinogen are acute phase reactants and considered key regulators of inflammation. Levels increase with the presence of acute systematic inflammation. In 2015, the Food and Drug Administration approved fibrinogen as a prognostic marker for mortality and COPD exacerbations.¹⁷⁹ White cell count (i.e. leukocytes) are essential part of the immune system with elevated levels indicating inflammation. Persistent systemic inflammation is linked to poor clinical outcomes.⁶ Interleukins 6 and 8, with IL-8 being a leukocyte chemotactic cytokine – low molecular weight proteins that stimulate recruitment of leukocytes – produced by various cells, are also inflammatory markers and play a key role in immune responses and production is activated by inflammatory stimuli.

1.1.10.2 Cardiovascular markers

Cardiovascular markers of interest include pulse wave velocity (PWV), augmentation index (AIx), and carotid intima-media thickness (CIMT). For example, elevated PWV has been reported in patients with COPD but the predictive value is not yet known. Similarly, these markers are predictors in other populations and have the potential of clinically predicting CV disease in COPD. In addition, despite the lack of widespread assessment, these markers are already known to a majority of respiratory and CV physicians. The PWV indicates the velocity of circulating blood flow and is a measure of vessel stiffness. Augmentation index reflects the pressure from the ascending aortic (i.e. central wave) and influences central blood pressure. Both can be measured using pulse wave analysis, a simple and reliable method.²⁸⁶ Higher values reflect increasing pres-

sure on the arterial system. It is suggested that those with systemic inflammation and vascular dysfunction may be more likely to suffer from CV disease and mortality.^{120,181} Findings in the Anglo-Cardiff Collaborative Trial (ACCT), a large cohort of healthy normotensive individuals, suggest AIx to be an appropriate measure for those aged <50, and PWV to be an appropriate measure for individuals aged >50.¹⁷³ Systematic analysis of PWV in predicting CV disease suggested model improvement to identify high-risk populations.¹⁹ Carotid intima-media thickness is a non-invasive measure of atherosclerotic burden but also reflects arterial remodelling, and is used as a proxy measure for CV disease. Albeit a weak predictor in fully adjusted models, evidence suggest increased CIMT to be linked with a higher risk of future cerebrovascular and CV events.^{25,26} In the ARIC (Atherosclerosis Risk In Communities) Study ¹⁹⁵ with nearly 16.000 individuals recruited from the general population, and The Multi-Ethnic Study of Atherosclerosis (MESA) study with nearly 7000 adults with absence of clinically diagnosed CV disease, ⁹⁵ CIMT was found to improve the predictive ability for coronary heart disease. Despite the suggestion of CIMT being an important risk factor for determining CV outcomes such as stroke and myocardial infarction, conclusive evidence for its usefulness in COPD is lacking.²⁶²

1.1.10.3 Musculoskeletal markers

In recent years there has also been an increasing interest in examining the predictive value of functional activities of the musculoskeletal system. Exercise limitation (i.e. impaired exercise tolerance) including musculoskeletal weakness is common within a COPD population, especially during and after acute exacerbation of COPD (AECOPD).²²¹ Level of impairment is thought to correspond with lung function but is prevalent in all stages of COPD.⁷⁷ Determinants of exercise capacity include 6MW distance and quadriceps strength.¹⁰⁹ The 6MW test is a well-known test to assess exercise intolerance and can evaluate an individual's functional exercise capacity. It is primarily used in chronic respiratory disease and heart failure. The goal of the 6MW is to walk as far as possible in six minutes. The test has been evaluated for its ability to predict mortality, hospitalisation and exacerbation in a variety of diseases including chronic heart

failure, peripheral arterial occlusive disease,¹⁸⁷ and COPD allowing stratification of patients for clinical trials.³⁸ Alternative measures include resting heart rate (i.e. measure of cardiac efficiency) and musculoskeletal measures short physical performance battery (SPPB), quadriceps maximum voluntary contraction (QMVC), and sniff nasal inspiratory pressure (SNIP). The SPPB is a battery of tests (i.e. four-metre gait speed, balance, chair stand) used to evaluate the physical performance of the lower extremities.¹¹⁶ Quadriceps muscle weakness is a surrogate marker of functional activity (i.e. quadriceps muscle strength) and found in 30-40% of COPD patients, regardless of breathlessness or the level of airflow limitation.^{237,292} Quadriceps muscle weakness is an indicator of declining muscle function and can be estimated through, for example, predicted quadriceps strength -a regression equation incorporating age, gender, height and fatfree mass.²³⁷ Sniff nasal inspiratory pressure is a surrogate marker of respiratory muscle function (i.e. inspiratory muscle strength) and can be used to identify respiratory muscle weakness. On the contrary to lung function, musculoskeletal functioning can be trained and improved with exercise training. Also, efforts are made in developing new medications to target musculoskeletal dysfunction. Not only does preventing or limiting declining exercise tolerance and physical training improve mortality, it also improves quality of life.¹⁷¹

Current evidence on the association between these selected CV and musculoskeletal biomarkers and the occurrence of clinical outcomes within a COPD population, however, is limited.

1.1.11 Clinical studies

Multiple cohort studies aimed at improving outcomes in COPD of which several are addressing the need for novel biomarkers in predicting common clinical outcomes exist. Examples include US-based "Exercise in Health and Chronic Obstructive Pulmonary Disease" study that aimed to assess oxidative stress in relation to peripheral muscle dysfunction (NCT02300064), the French "Role of Systemic Inflammation in Increase of Cardio-vascular Risk in Chronic Obstructive Pulmonary Disease (BPCO)" study (NCT0288886) that assessed the relationship between inflammatory markers and CV mortality, and the Belgium-based "Systemic Consequences and Comorbidities in Mild/Moderate Chronic Obstructive Pulmonary Disease (COPD), Time for Action!" study (NCT01314807) that evaluates skeletal muscle dysfunction and physical inactivity in COPD. UK-based studies, which are part of a partnership between multiple medical centres with an interest in COPD, and Innovate UK and GlaxoSmithKline include the ECLIPSE, 270 Assessment of Risk in Chronic Airways Disease Evaluation (ARCADE), 101 and Evaluating the <u>R</u>ole of Inflammation in <u>Chronic Airways</u> disease (ERICA) studies. 184 All three form part of a consortium that has the overarching aim to fill the biomarker gap and support stratified medicine. The ERICA study, however, is rather unique and differs from all other cohort studies through capturing multiple musculoskeletal and CV measures in addition to lung performance and questionnaire data. In addition, the cohort allows linkage with EHR data and survival data.

1.2 Thesis outline

Spirometry has limitations, COPD is more complex and heterogeneous than initially thought, and effective treatments are lacking. In particular due to the absence of treatment and the frequency of adverse outcomes, early diagnosis and identifying high risk individuals in an early stage of disease is crucial. The availability of EHR data has sparked the hope of being able to capture the heterogeneity of COPD, and assess the relationship between new potential risk factors and common clinical outcomes. Key scientific questions include which phenotypic traits (i.e. CV and musculoskeletal) influence treatment and clinical outcomes? Do EHR data enable to capture the various disease manifestations of COPD? Can COPD management be improved to better identify high risk individuals in an early stage of disease, allowing timely intervention, and treating the right patients?

The overall aim of my doctoral research is to identify and evaluate the relationships between existing and novel biomarkers, and questionnaire data, and EHR data and determine if and how these biomarkers can predict common clinical outcomes (i.e. AECOPD, hospitalisation, mortality) within a COPD population. **Chapter 2** describes systematically synthesised published evidence on the associations between selected CV and musculoskeletal biomarkers that are not yet widely used in clinical practice but may potentially better capture systemic problems in COPD than conventional measures, and the occurrence of clinical outcomes including exacerbations, hospitalisation, and mortality within a COPD population. Chapter 3 describes the ERICA cohort, baseline values of key variables captured, and differences between recruitment sites and sex, and examined the presence of missing data and relationships between variables of interest. Chapter 4 evaluates the association between the measures of skeletal muscle function and all-cause mortality in stable COPD patients, and with the assumption that a relationship would be found to investigate whether a BODE Index in which the 6MW component was replaced by alternative musculoskeletal measures retained predictive ability when predicting death. Chapter 5 describes cause of death in a COPD defined population identified in the UK Biobank, and compares survival risk with a non-COPD defined population. Comparisons between findings in the UK Biobank and the ERICA cohort are made. Chapter 6 evaluates the relationship between musculoskeletal measures and the risk of hospital admissions due to AECOPD, and determined a relationship between musculoskeletal measures and length of hospital stay for initial AECOPD using routinely collected hospital electronic health records and clinical data from the ERICA cohort. Chapter 7 describes incidence of fatal- and non-fatal CV disease within COPD, and evaluated the association of classical Framingham risk factors with subsequent fatal and non-fatal CV events in stable COPD patients using clinical data from the ERICA cohort and EHR data, and determined the association of measures of arterial stiffness and incident CV disease and their added value above and beyond Framingham risk factors. In addition, it describes the association of alternative measures including musculoskeletal function, thought to better capture systemic problems, and CV disease, and their added value above and beyond Framingham risk factors. Chapter 8 summarises and discusses the evidence available before this dissertation, the added value of the work presented in this doctoral research, and discusses the implications of all the available evidence. In addition, analysis for future research are proposed. Appendix A provides a list of research items I authored during the PhD. Ap**pendix B** includes a data dictionary I created providing descriptions and ranges of values of the variables (i.e. baseline and follow-up questionnaire data) captured in the ERICA study. **Appendix C** includes the ERICA study protocol. **Appendix D** includes the data completion form I created to collect data for the meta-analysis. **Appendix E** includes a table with cause of death descriptions.

2

Biomarkers and clinical outcomes in COPD – a systematic review & meta-analysis

Chapter summary

Background Conventional measures to evaluate chronic obstructive pulmonary disease (COPD) may fail to capture systemic problems particularly musculoskeletal weakness and cardiovascular disease. Identifying these manifestations and assessing their association with clinical outcomes (i.e. mortality, exacerbation, and COPD hospital admission) is of increasing clinical importance.

Objective To assess associations between six-minute walk distance, heart rate, fibrinogen, C-reactive protein, white cell count, interleukins 6 and 8, tumour necrosis factor-alpha, quadriceps maximum voluntary contraction, sniff nasal inspiratory pressure, short physical performance battery, pulse wave velocity, carotid intima-media thickness and augmentation index, and clinical outcomes in patients with stable COPD.

Methods We systematically searched electronic databases (August 2018) and identified 61

studies, which were synthesised, including Meta-Analyses and Systematic Reviews of Observational Studies (MOOSE) guidelines and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Findings Shorter six-minute walk distance and elevated heart rate, fibrinogen, C-reactive protein and white cell count were associated with higher risk of mortality. Pooled hazard ratios were 0.80 (95% CI 0.73 to 0.89) per 50 m longer six-minute walk distance, 1.10 (95% CI 1.02 to 1.18) per 10 bpm higher heart rate, 3.13 (95% CI 2.14 to 4.57) per twofold increase in fibrinogen, 1.17 (95% CI 1.06 to 1.28) per twofold increase in C-reactive protein and 2.07 (95% CI 1.29 to 3.31) per twofold increase in white cell count. Shorter six-minute walk distance and elevated fibrinogen and C-reactive protein were associated with exacerbation, and shorter six-minute walk distance, higher heart rate, C-reactive protein and interleukin-6 were associated with hospitalisation. Few studies examined associations with musculoskeletal measures.

Conclusion Findings suggest six-minute walk distance, heart rate, C-reactive protein, fibrinogen, and white cell count are associated with clinical outcomes in stable COPD patients. Use of musculoskeletal measures to assess outcomes in COPD patients requires further investigation.

2.1 Background

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide, with prevalence of 5.6% (3.2 million) in 2015 projected to increase to 7.8% by 2030.¹⁷² The consequent socio-economic burden of COPD is high, causing reduced quality of life, loss of productivity, increased hospital admissions and premature mortality.^{206,289} One important and cost-effective intervention is smoking cessation.^{29,261} However, increasing importance is placed on improving risk factors and slowing down disease progression by addressing non-pulmonary aspects of the condition.^{48,59,75,122,226}

Spirometry is the most widely used marker of disease severity and progression. No longer is it believed that all patients will worsen over time with increasing airflow limitation. Clinicians have now identified that COPD is more heterogeneous than initially thought and existing measures such as forced expiratory volume in one second (FEV₁) may fail to capture systemic disease⁵ and have divergent trajectories.¹⁵⁴

Chronic obstructive pulmonary disease also leads to systemic problems, such as skeletal muscle weakness and cardiovascular (CV) disease, the latter accounting for a third of deaths in COPD.¹⁷⁴ While multiple studies have shown that quadriceps involvement in COPD is associated with worse outcomes, ^{171,215,259} it has also been postulated that these features result from an increase in inflammatory markers like C-reactive protein (CRP) and fibrinogen, ⁴³ with a spill-over effect of inflammatory response proposed as the underling mechanism.²⁷² Thus capturing systemic manifestations such as exercise intolerance, CV abnormalities, skeletal muscle weakness, and plasma biomarkers are recognised to be of increasing clinical importance.¹⁷

We aim to systematically synthesise the published evidence on the associations between selected CV and musculoskeletal biomarkers that are not yet widely used in clinical practice but may potentially better capture systemic problems in COPD than conventional measures, and the occurrence of clinical outcomes including exacerbations, hospitalisation, and mortality within a COPD population. Individual studies and a limited number of reviews^{47,151,158} have assessed the association between selected biomarkers and clinical outcomes, however, to our knowledge no published study has systematically synthesised this evidence.

2.2 Methods

2.2.1 Search strategy

The review protocol was registered with PROSPERO (CRD 42016052075). The systematic review includes electronic searches in the Ovid versions of MEDLINE, Embase, Cochrane Library, CINAHL, and Web of Science. Search terms related to pulmonary disease were combined with terms related to CV and musculoskeletal measure, clinical outcome, and study design (**Table 2.1**, page 23). A meta-analysis was carried out following meta-analysis of observational studies

in epidemiology (MOOSE) guidelines and reported in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines to identify prospective studies assessing the relationship between CV or musculoskeletal measures and the occurrence of clinical outcomes in COPD.^{185,254}

2.2.2 Biomarkers and outcomes

Biomarkers that may capture systemic problems in COPD and are not yet widely used in clinical practice were included: six-minute walk (6MW) distance, resting heart rate, quadriceps maximum voluntary contraction (QMVC), sniff nasal inspiratory pressure (SNIP), short physical performance battery (SPPB), pulse wave velocity (PWV), carotid intima-media thickness (CIMT), and augmentation index (AIx). Data relevant to inflammation were fibrinogen, CRP, white cell count (WCC), interleukin-6, (IL-6) -8 (IL-8), and tumour necrosis factor-alpha (TNF- α). Clinical outcomes of interest included: mortality, exacerbation, and hospitalisation. Mortality was defined as all-cause mortality. Exacerbation was defined as patients who either had a change in medication, which required increase or initiation of steroids or antibiotics, or were admitted to hospital due to COPD. Hospitalisation, a subset of COPD exacerbation by definition, was limited to only exacerbations that resulted in admissions related to COPD.

Two reviewers independently completed the selection and review of articles. Full-text papers and reviews found in the initial search were cross-referenced. Studies that satisfied the full-text paper selection criteria included: (i) primary research; (ii) had a sample size ≥ 50 with COPD; (iii) assessing a relevant biomarker; (iv) full-text paper in English; (v) a general population (e.g. not a single gender); (vi) did not include unstable COPD patients (e.g. currently in acute exacerbation, currently hospitalised or recruited on discharge); and (vii) were prospective studies with a follow-up period ≥ 6 months.

Table	2.1:	Search	strategies
-------	------	--------	------------

Terms related to pul- monary disease	Terms related to selected CV and musculoskeletal biomarker	Terms related to clinical adverse outcomes	Terms related to study design
1. exp Pulmonary Dis- ease, Chronic Obstruc- tive/	9. biological marker.tw.	36. exp Cardiovascular Diseases/	52. exp Cohort Studies/
 chronic obstructive pulmonary disease.tw. COPD.tw. 	10. systemic inflamma- tion.tw.11. exp Leukocytes/	37. cardiovascular disease.tw.38. exp Hospitalization/	 53. cohort stud\$.tw. 54. exp Prospective Studies /
4. pulmonary emphy- sema.tw.	12. exp Interleukin-6/	39. hospitali\$.tw.	55. prospective.tw.
5. chronic bronchitis.tw.	13. exp Interleukin-8/	40. patient admission.tw.	56. longitudinal
6. exp Forced Expiratory	14. exp Fibrinogen/	41. exp Death/	57. exp Case-Control
7. exp Vital Capacity/	15. exp Tumor Necrosis	42. death.tw.	58. case-control
8. or/1-7	16. exp C-Reactive Pro- tein/	43. exp Mortality/	59. exp Randomized Controlled Trials as
	17. exp Carotid Intima-	44. mortality.tw.	60. rct.tw.
	18. CIMT.tw. 19. exp Pulse Wave Anal- vsis/	45. outcome.tw.46. exp Prognosis/	$\begin{array}{c} 61. \ {\rm or}/52\text{-}60 \\ 62. \ 8 \ {\rm and} \ 35 \ {\rm and} \ 51 \ {\rm and} \\ 61 \end{array}$
	20. pulse wave veloc- ity.tw.	47. prognos\$.tw.	
	21. PWV.tw.	48. exp Survival Analy- sis/	
	22. augmentation in-	49. survival.tw.	
	 23. AIx.tw. 24. exp Heart Rate/ 25. 6 minute walk\$.tw. 26. 6mwt.tw. 27. 6mwd.tw. 28. exp Quadriceps Muscle/ 29. quadriceps max\$ voluntary contraction.tw. 30. qmvc.tw. 31. sniff nasal inspiratory pressure.tw. 32. snip.tw. 33. short physical performance battery.tw. 34. sppb.tw. 35. or/9-34 	50. exacerbation.tw. 51. or/36-50	

*Terms related to pulmonary disease were combined with terms related to cardiovascular and musculoskeletal biomarker, clinical outcome and study design. Search strategy was used with Medline (Ovid) and modified as necessary for use with the other databases. For medical subject headings (MeSH) terms, all subheadings selected. *Abbreviations*: exp, exploded MeSH term. tw, text word.

2.2.3 Data extraction and quality assessment

Where possible, adjusted (i.e. age, sex, body mass index (BMI), and smoking status) and unadjusted hazard ratios (HR) for mortality were collected, as well as model performance measures (e.g. C-statistic). Sample sizes, mean values, and standard deviations of the biomarkers for individuals with and without the event (i.e. mortality, exacerbation, or hospitalisation) were extracted from published studies to estimate standardised mean differences (SMD). Where data were not published, the corresponding authors were contacted and asked to provide data by completing a data collection form (**Appendix B**). Three reminders were sent over a period of four months. For studies reporting the same cohort, data from the study with the most completed outcome data, largest sample size, or with the longest follow-up were used. The quality of each study was based on QUADAS-2 quality assessment criteria.²⁸⁵ Scoring was based on the follow-up period, sample size, reporting of adjustment factors, method of defining COPD, age of study participants, and study type (**Table 2.2**, page 27). Scores range from 0-15, where fifteen is considered of highest quality.

2.2.4 Statistical analysis

To synthesize and analyse quantitative data, while accounting for heterogeneity by incorporating between study variability of effect sizes, results from the studies were assessed with random effects meta-analysis. Data were graphically displayed using forest plots. Where necessary and possible, HRs were converted to the selected unit effect measure. Hazard ratios for log-transformed biomarkers represent a twofold increase in the biomarker. To address uncertainty, we excluded studies with a quality score in the bottom QUADAS-2 score tertile (1st, 15-12/2nd, 11-9/3rd, 8-0). Funnel plots – scatterplots of observed outcome against the standard error – were generated to assess potential publication bias. Asymmetry in the plots may indicate publication bias. Galbraith plots – radial plots of the ratio of observed outcome to standard error against reciprocal of standard error – were generated to assess heterogeneity in effect sizes. ¹²⁴ Results from a fixed-effects meta-analysis were compared against those from a random-effects meta-

analysis. Finally, meta-regression was conducted where possible to analyse the impact of length of follow-up, year of publication, and the mean age of the cohort. Trend analysis was performed using ANOVA.

2.3 Findings

The systematic review yielded 2852 unique references from five electronic databases. After screening the abstracts, 61 articles met the selection criteria (**Figure 2.1**, page 26 and **Table 2.3**, page 29). The age of participants of the included studies ranged from 40-80 years of age, with an approximate median age of 65 years. The sample sizes ranged from 53-20192 subjects, with a median size of 237. The follow-up period ranged between six and 423 months, with an approximate median time of 36 months. The evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE) and BMI, airflow obstruction, dyspnoea and exercise (BODE) cohorts were the most studied cohorts.

Figure 2.1: Flow diagram of studies included in the review, based on the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols.¹⁸⁵ Records identified: MEDLINE, n = 1175; Embase, n = 1597; Cochrane, n = 56; CINAHL, n = 143; Web of Science, n = 765. *Abbreviations*: COPD, chronic obstructive pulmonary disease.

¶Reasons for exclusion: only conference abstracts available (n = 41); cross-sectional i.e. there was no follow-up (n = 29); sample size of <50 with COPD (n = 18); follow-up period of <6 months (n = 21); other reasons e.g. single gender assessment (n = 17); assessed unstable COPD patients i.e. acute exacerbation or hospitalised (n = 13); not primary research e.g. review papers (n = 7); no assessment of relationship between COPD and relevant outcome (n = 6); full text unavailable in the English language (n = 2)

ality Tertile :e	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $	1 1 5 55 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Qua	12222222222222222222222222222222222222	111111100 0 00000 666 6 %
Study type	[1] Cohort or case-control[1] Cohort or case-control	 [0] RCT [1] Cohort or case-control [2] Cohort or case-control [3] Cohort or case-control [4] Cohort or case-control [5] Cohort or case-control [6] RCT [7] Cohort or case-control [1] Cohort or case-control [1] Cohort or case-control [1] Cohort or case-control [2] Cohort or case-control [3] Cohort or case-control [4] Cohort or case-control [4] Cohort or case-control [5] Cohort or case-control
Age study partici- pants	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Method of defining COPD	 [2] Spirometry [3] Spirometry [3] Spirometry [4] Spirometry [5] Spirometry [6] Spirometry [7] Spirometry [8] Spirometry [9] Spirometry [9] Spirometry [10] Spirometry 	 [2] Spirometry [3] Spirometry [4] Spirometry [5] Spirometry [6] Spirometry [7] Spirometry
Reporting of sample char- acteristics	 [2] All four [3] All four [4] All four [5] All four [6] All four [7] All four [8] All four [9] All four [9] Age + gender + BMI or 	 smoking status 2] All four 3] All four 3] All four 2] All four 3] All four 3] All four 2] All four 3] All four 3] All four 4] All four 5] All four 6] Age + gender + BMI or 3] All four 2] All four 3] All four 4] Age + gender + BMI or
Sample size	$\begin{array}{c} 4 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Follow-up period	$\begin{array}{c} [4] > 36 \ months \\ [2] \ 12 - 36 \ months \\ [2] \ months \\ [2] \ 12 - 36 \ months \\ [2] \ months \\$	 [4]>36 months [2] 12-36 months [2] 12-36 months [4]>36 months [4]>36 months [4]>36 months [4]>36 months [4]>36 months [2] 12-36 months [3] 12-36 months [4]>36 months [4]>36 months [2] 12-36 months [3] 12-36 months [4]>36 months [4]>36 months [4]>36 months [4]>36 months [2] 12-36 months [3] 12-36 months [4]>36 months [4]>36 months [2] 12-36 months [3] 12-36 months [4]>36 months [5] 12-36 months [6] 236 months [7] 248 months [8] 248 months [9] 200 months [9] 200 months [9] 200 months
Study ID	Agu002 Agu003 Dah059 Dah061 Jen108 Man128 Man129 Par148 Val187 Hur203 Cot031 Tho180 Cot051 Tho180 Cel039 Mil135 Mul141 Spr174 Spr174	Blu029 Hus104 Sin172 Swa178 War193 Was195 Cot053 Cot053 Cot053 Cot053 Liu124 Pin155 Dur073 Hop103 Moo138 Moo138

Table 2.2: QUADAS-2 scoring.

y Tertile	1/3 $1/3$	1/3	1/3	1/3	ç	$\frac{1}{3}$	$\frac{1}{3}$		$\frac{1/3}{1}$	1/3		1/3	1/3	1/3	1/3	1/3		1/3	1/3	ç	1/3	1/3	6/1	с/т	1/3	1/3
Qualit score	∞∞	8	×	x	c	χı			- 1).		7	7	7	7	9		9	9	¢	0	9	u	D	9	4
Study type	[1] Cohort or case-control [1] Cohort or case-control	[1] Cohort or case-control	[1] Cohort or case-control	[1] Cohort or case-control		[1] Cohort or case-control	[1] Cohort or case-control [1] Cohort or case-control		[1] Cohort or case-control	[1] Cohort or case-control		0] RCT	[1] Cohort or case-control	[1] Cohort or case-control	0] RCT	[1] Cohort or case-control		[1] Cohort or case-control	[1] Cohort or case-control		[1] Conort or case-control	[0] RCT	[1] Achant an area control	T COUNT OF CASE-COUNTRY	[0] RCT	[1] Cohort or case-control
Age study partici- pants	$\begin{array}{c} [1] & 65-70 \\ [1] & 65-70 \end{array}$	[1] 65-70	[1] 65-70	[1] 65-70		[1] 65-70	0]>70 [2]<65		0]>70	co>[7]		[1] 65-70	02 < [0]	02 < [0]	[1] 65-70	[1] 65-70		[1] 65-70	[1] 65-70		[1] 0 <i>2-</i> 70	[2] < 65	[1] &E 70	07-00 [T]	0]>70	[1] 65-70
Method of defining COPD	[2] Spirometry [2] Spirometry	[2] Spirometry	[2] Spirometry	[2] Spirometry		[2] Spirometry	[2] Spirometry [2] Spirometry	•	[2] Spirometry	[2] Spirometry		[2] Spirometry	[2] Spirometry	[2] Spirometry	[2] Spirometry	[2] Spirometry	2	[2] Spirometry	[2] Spirometry	2	[2] Spirometry	[2] Spirometry		f marmonder [7]	[2] Spirometry	[2] Spirometry
Reporting of sample char- acteristics	2 All four 2 All four	[2] All four	[2] All four	[0] Age + gender + BMI or	smoking status	[2] All four	[2] All tour [0] Age + gender + BMI or	smoking status	[2] All four	[0] Age + gender + BMI or	smoking status	[2] All four	[2] All four	[2] All four	[2] All four	0] Age + gender + BMI or	smoking status	[0] Age + gender + BMI or $\frac{1}{1}$	smoking status [0] Age + gender + BMI or	smoking status	[0] Age + gender + BMI or	smoking status $[0]$ Age + gender + BMI or	smoking status	[0] Age + genuer + Divit of smolting status	2] All four	$[\dot{0}]$ Age + gender + BMI or smoking status
Sample size	$0 < 250 \\ 0 < 250$	[0] < 250	[0] < 250	[0] < 250		0 < 250	[0] <250 [0] <250		[0] < 250	062>[0]		[0] < 250	[0] < 250	[0] < 250	$[0]{<}250$	[0] < 250	0 1 0 1 0	[0] < 250	$[0]{<}250$		062>[0]	$[0]{<}250$	[0] ~9£0	002/[0]	[0] < 250	[0] < 250
Follow-up period	[2] 12-36 months [2] 12-36 months	[2] 12-36 months	[2] 12-36 months	4]>36 months		[2] 12-36 months	[2] 12-36 months [2] 12-36 months	-	[2] 12-36 months	[2] 12-30 months		[2] 12-36 months	[2] 12-36 months	[2] 12-36 months	[2] 12-36 months	[2] 12-36 months		[2] 12-36 months	[2] 12-36 months		[Z] 12-30 months	[2] 12-36 months	[9] 19 <i>96</i> monthe		[2] 12-36 months	[0] < 12 months
Study ID	Don069 Dre070	Gak090	Jen107	Lac119	0011 111	Wed196	Bu,032 Bud033		Den066	FerU83		Mon137	Moy139	Moy140	Pow159	Ant017		Bat020	Daj062	r F	reru84	Guo100	000167	INTAAC	Wan191	Mar131

Abbreviations: BMI, body mass index. RCT, randomised controlled trial.

Study	Country	Sample size	Average	COPD defi-	Disease	Follow-	OLIADAS-	Source	Markers(s)	Outcome(s)
	6	(cohort name)	age or range	nition	severity	up (months)	2 score (out of 15)			
Agusti <i>et al.</i> , 2012 ⁶	Spain	1755 (ECLIPSE)	64	Spirometry	GOLD II-IV	36	15	Publication	6MWD, fib- rinogen, CRP, WCC, IL-6, IL-8, TNF-0	Mortality, exacer- bation
Agusti et $al.$, 2013 ⁵	Spain	2101 (aper 1947)	64	Spirometry	GOLD II-IV	36	15	Publication	0MWD	Mortality, hospi-
Antonelli-Incalzi et al., 2016 ¹³	Italy	(ECLIFSE) 134	69	Spirometry	Severe COPD	>24	9	Questionnaire	6MWD, heart rate, fibrinogen,	tallsation Mortality
Bafadhel et $al.$, 2011 ¹⁵	UK	115	69	Physician- diagnosis and spirome-	GOLD I-IV	12	Q	Publication	wcc, crp	Exacerbation
Blumenthal <i>et al.</i> , 2016 ²³	USA	326 (INSPIRE- II)	66	ury Spirometry	GOLD A-D	60	11	Publication	6MWD, CRP	Mortality, hospi- talisation
Bu <i>et al.</i> , 2001^{30}	China	56 (MLCC)	71 (me-	Spirometry	GOLD II-IV	24	7	Publication	6MWD	Exacerbation
Budweiser <i>et al.</i> , 2007 31	Germany	98	dian) 65	Sx, Spirome- trv	GOLD IV	>24	7	Publication	WCC	Mortality
Cano <i>et al.</i> , 2004^{33}	France	309	72	spirometry	,	8	10	Dataset	6MWD, CRP	Mortality, hospi-
Casanova <i>et al.</i> , 2008 36	USA, Spain	576	68	Hx, Spirome- trv	ı	>36	14	Publication	6MWD	talisation Mortality
Celli et al., 2012 ⁴²	Spain	1843 (ECLIPSE)	64	Spirometry	GOLD II-IV	36	13	Questionnaire	6MWD, heart rate, fibrinogen, WCC, IL-6, IL-8, TNF-α	Mortality
Cote <i>et al.</i> , 2007 ⁵⁶	USA, Spain, Venezuela	205 (BODE)	67	Spirometry	GOLD I-IV	24	×	Publication	6MWD	Hospitalisation
Cote et al., 2007 ⁵⁷	USA	365 (BODE)	68	Sx, Spirome-	GOLD I-IV	67	10	Publication	6MWD	Mortality
Cote <i>et al.</i> , 2008 ⁵⁵	USA, Spain, Venezuela	1379 (BODE)	66	u y Spirometry	GOLD I-IV	>25	14	Publication	6MWD	Mortality
Cote <i>et al.</i> , 2008 ⁵⁸	USA, Spain	444 (BODE)	66	Spirometry	GOLD I-IV	>37	10	Publication	6MWD, heart rate	Mortality
Dahl <i>et al.</i> , $2001 \frac{63}{64}$ Dahl <i>et al.</i> , $2007 \frac{64}{64}$	Denmark Denmark	8955 (CCHS) 1302 (CCHS)	58-62 68	Spirometry Spirometry	1 1	60 96	15 12	Publication Publication	Fibrinogen CRP	Hospitalisation Mortality, hospi-
Dahl et $al.$, 2011 ⁶⁵	Denmark	7974 (CCHS, CGPS)	49, 60	Spirometry, ICD-8(491- 92), ICD-		33	15	Publication	CRP	Hospitalisation
Dajczman et al.,	Canada	237	69	10(J41,J44) Spirometry	ı	12	9	Publication	6MWD	Mortality
de Torres et $al.$, 2008 72	USA, Spain	218 (BODE)	65	Spirometry	GOLD I-IV	36	x	Publication	6MWD, CRP	Mortality
Deng et al., 2014^{74}	China	116	71	Hx, Sx,	ı	32	7	Publication	CRP	Mortality
Donaldson et $al.$, 2005 ⁷⁸	UK	148	69 (me-dian)	Spirometry		>86	œ	Publication	Fibrinogen, IL-6, IL-8	Exacerbation

Table 2.3: Search results systematic review (number of studies = 61).

Study	Country	Sample size (cohort name)	Average age or range	COPD definition	Disease severity	Follow- up (months)	QUADAS- 2 score (out of 15)	Source	Markers(s)	Outcome(s)
Dreyse <i>et al.</i> , 2015 ⁸⁰	Chile	100	69	Spirometry	GOLD stage I-IV	24	œ	Questionnaire	e 6MWD, heart rate, fibrinogen, CRD 11_6	Mortality, exacer- bation, hospitali-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	USA	326 (INSPIRE- II)	67	Spirometry	GOLD A-D	60	6	Publication	6MWD	Mortality, hospi- talisation
Faganello et $al.,$ 2010 ⁸⁹	Brasil	120	65	Spirometry	GOLD I-IV	12	6	Questionnaire		Exacerbation, hospitalisation
Ferrari <i>et al.</i> , 2011 ⁹³ Ferrari <i>et al.</i> , 2013 ⁹²	Brasil Brasil	95 53	67 64	Spirometry Spirometry	GOLD I-IV GOLD I-IV	36 36	6 7	Questionnaire Questionnaire	6 6 MWD 6 6 MWD, CRP, WCC, IL-6, TNF-0	Exacerbation Mortality, exacer- bation, hospitali- sation
Gaki <i>et al.</i> , 2011 ⁹⁹	Greece	117	65	Spirometry		24	ø	Publication	6MWD, CRP, fib- rinogen	Hospitalisation
Groenewegen et al.,	Netherland	ls 277 (COS- MIC)	63	Spirometry		12	10	Publication	CRP, fibrinogen, TNF-~	Hospitalisation
Grolimund et $al.,$ 2015 112	Switzerland	d 469 (Pro- HOSP)	74	Sx, Spirome- try	GOLD I-IV	>60	10	Questionnaire	CRP, WCC	Mortality
Guo et al., 2014 115	China	(69	40-75	Spirometry	GOLD II-III	12	9	Publication	IL-6, IL-8, TNF-	Exacerbation
Hopkinson et $al.$, 2007 128	UK	64	62	Spirometry	GOLD I-IV	12	6	Dataset	QMVC	Exacerbation
Hurst et $al.$, 2010 ¹³²	Spain	2138 (ECLIPSE)	63	Spirometry	GOLD II-IV	36	13	Questionnaire	6MWD, heart rate, fibrinogen, CRP, WCC, IL-6, IL-8, TNF-0	Exacerbation
Husebo et $al.$, 2014 ¹³³	Norway	403 (Bergen COPD)	44-76 years	Spirometry	GOLD II-IV	36	11	Questionnaire	e 6MWD, heart rate, CRP, WCC,	Mortality, exacer- bation, hospitali- sation
Jennings et $al.$, 2009 ¹³⁷	\mathbf{USA}	194	67	Spirometry		12	œ	Questionnaire	6MWD	Exacerbation, hospitalisation
Jensen <i>et al.</i> , 2013^{139}	Denmark	2645 (CCHS)	59	Spirometry	GOLD I-IV	>423	15	Questionnaire	e Heart rate, CRP,	Mortality, hospi-
Lacasse et $al.$, 2005 ¹⁵²	Canada	147	65	Sx, Hx, Spirometry	ı	>21	œ	Publication	Heart rate	Mortality
Liu et al., 2011 ¹⁵⁹	China	114	20	Spirometry	GOLD I-IV	>24	10	Publication	6MWD, fibrino- gen, CRP	Mortality
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Canada USA	4787 (LHS) 8507 (NHANES 111)	$54 \\ 40-80+$	Spirometry Spirometry	- GOLD I-IV	$\begin{array}{c} 84\\ 216\end{array}$	$15 \\ 15$	Publication Publication	CRP Fibrinogen	Mortality Mortality
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Brasil	63	71 (me- dian)	Spirometry	GOLD II-III	6	4	Questionnaire	e 6MWD	Exacerbation
Miller $et \ al.$, 2013 ¹⁸⁰	Spain	2164 (ECLIPSE)	63	Spirometry	GOLD II-IV	36	13	Publication	6MWD, IL-6, IL- 8	Mortality, exacer- bation
Monninkhof <i>et al.</i> , 2003 ¹⁸⁶	Netherland	ls 248 (COPE)	65	Spirometry	Almost ex- clusively GOLD II	12	4	Questionnaire	6 6MWD	Exacerbation, hospitalisation
Moore <i>et al.</i> , 2010 ¹⁸⁸ Moy <i>et al.</i> , 2013 ¹⁹⁰	UK USA	110 (COPE) 169	63 71	Spirometry Hx, Spirome- trv	GOLD I-IV GOLD I-IV	6 16	9	Publication Publication	SNIP 6MWD	Mortality Exacerbation, hospitalisation
Moy <i>et al.</i> , 2014^{189}	\mathbf{NSA}	167	71	Hx, Spirome- try	GOLD I-IV	16	7	Publication	6MWD, CRP, IL- 6	Exacerbation, hospitalisation

	Country	cohort (cohort name)	age or range	III	Gallovac	(months)	2 score (out of 15)			
et al.,	Spain	2138 (ECLIPSE)	63	Spirometry	GOLD II-IV	36	13	Questionnaire	6MWD heart rate, CRP, fib- rinogen, WCC, IL-6, TNF- α	Hospitalisation
$ul., 2012 \frac{210}{2l., 2014}$ $al., 2014 \frac{212}{2l.}$	Turkey USA	73 1339 (NHANES 111)	59 40-80+	Spirometry Spirometry	GOLD I-IV GOLD I-IV	48 115	9 15	Publication Publication	6MWD CRP, fibrinogen, WCC	Hospitalisation Mortality
a et al.,	\mathbf{OSA}	253	65	Hx, Spirome- trv	GOLD I-IV	36	10	Publication	6MWD, IL-6, IL-8, TNF- α	Mortality
$al., 2007 \frac{223}{21}$	UK UK	142 137 (East London COPD)	66 68	Spirometry Spirometry	1 1	12 18	6	Publication	CRP, IL-6, IL-8 Fibrinogen, IL-6	Exacerbation Exacerbations
$il., 2010^{242}$	Spain	488 (ECLIPSE)	64	Spirometry	GOLD II-IV	12	11	Publication	CRP, IL-6, IL-8	Exacerbation
$al., 2012^{248}$	Denmark, UK, USA, Canada	2110 (ECLIPSE)	63	Spirometry	VI-II dJob	36	13	Publication	6MWD	Mortality, hospi talisations
et $al.,$	UK	162	64	Spirometry	GOLD I-IV	48	11	Dataset	QMVC	Mortality
et al.,	Denmark	8020 (CHCHS, CGPS)	67	Spirometry	GOLD I-IV	60	14	Publication	CRP, fibrinogen, WCC	Exacerbations
$ul., 2012^{265}$	USA	20192 (ARIC, CHS)	45-64	Spirometry	GOLD I-IV	>116	15	Publication	Fibrinogen	Mortality
$_{al.}^{al.}, 2014 \frac{278}{277}$ $_{al.}, 2014 \frac{277}{277}$	China China	136 331 (ChiCTR-	72 63	Spirometry Spirometry	GOLD I-IIV III-I GOLD I-IV	12 12	6 10	Publication Publication	6МWD 6MWD, IL-6, IL- 8, TNF-α	Exacerbation Hospitalisation
et $al.,$	Netherland	s 405	73	Spirometry, ICPC (R91,	GOLD I-IV	84	11	Publication	Heart rate	Mortality
et $al.,$	Germany	170	65	K95) Spirometry	GOLD I-IV	48	11	Questionnaire	6MWD, heart rate, fibrinogen, CBP WCC II.6	Mortality
et $al.,$	UK	93	67	Spirometry		12	œ	Publication	Fibrinogen, IL-6	Exacerbation

2.3.1 Included biomarkers

The most frequently reported biomarkers in the studies were: 6MW distance (56%), CRP (39%), fibrinogen (28%), IL-6 (25%), IL-8 (16%), WCC (16%), TNF- α (11%), and resting heart rate (8%), with few assessing CIMT, PWV, and AIx. With the exception of the 6MW distance, very few musculoskeletal biomarkers (i.e. QMVC, SNIP, and SPPB) were reported for their association with clinical outcomes within COPD. The majority of studies (n = 34) included mortality as an outcome measure, followed by exacerbation (n = 25) and hospitalisation (n = 15). Of these, eleven studies investigated two outcomes, and only one investigated all three outcomes.

2.3.2 Data synthesis

All 61 studies were included in the qualitative review, with 32 studies included in the quantitative data synthesis (**Figures 2.2 2.6 2.10**, pages 34-42; **Figures 2.3 2.7 2.11**, pages 35-43) and the sensitivity analyses (**Figures 2.4 2.5 2.8 2.9 2.12 2.13**, pages 36-45). Twenty (69%) studies reported data on mortality, nine (28%) reported data on COPD exacerbations, and eight (25%) reported data on COPD hospitalisation. Data from Faganello *et al.*⁸⁹ except for IL-8 were excluded as the same cohort but with a longer follow-up period was examined by Ferrari *et al.*⁹² Data from Spruit *et al.*²⁴⁸ were also excluded as the ECLIPSE cohort was examined in a more recent publication by Mullerova *et al.*¹⁹² Additionally, data from Agusti *et al.* (ECLIPSE cohort)⁷ and Durheim *et al.* (INSPIRE-II cohort)⁸² were not included as more data were made available through Celli *et al.*⁴² and Blumenthal *et al.*,²³ respectively. Results of the 6MWD reported by de Torres *et al.*⁷² (BODE cohort, n = 218) were not included because these were covered by Cote *et al.* using a larger study sample (n = 365) and longer follow-up time.⁵⁷

2.3.3 Association between cardiovascular and musculoskeletal measures, and clinical outcomes

2.3.3.1 Six-minute walk distance

Multiple studies, including ECLIPSE (n = 2138), BODE (n = 1379) and INSPIRE (investigating new standards for prophylaxis in reducing exacerbations)-II (n = 326), reported that COPD patients with a shorter 6MW distance at baseline have a higher number of clinical events over a follow-up period of at least six months. A 6MW distance of less than 350 metres was associated with higher risk of early mortality, according to Cote and colleagues, ⁵⁵ while only Dajczman *et al.* found a significant difference in mortality with a cut-off point of 6MW distance ≤ 150 metres.⁶⁶ The 6MW-based model, authored by Cote et al. had a C-statistic of 0.75, similar to Waschki et al. (C-statistic = 0.77)²⁸¹ and higher than Casanova et al. (C-statistic = 0.70),³⁶ and Spruit et al. (C-statistic = 0.67) for a 6MW distance threshold of 334 metres.²⁴⁸ The remaining studies, with relatively small sample sizes, indicated no statistical significant difference in 6MW distance between those with and without exacerbation.^{56,80,93} Meta-analysis indicated that longer walking distances at baseline were associated with early mortality (HR 0.80 per 50 metres increase, 95% CI 0.73 to 0.89, p <0.01, $I^2 = 99.4\%$, COPD exacerbation (SMD -0.27, 95% CI -0.41 to -0.13, p $<0.01, I^2 = 53.0\%$ and hospitalisation (SMD -0.48, 95% CI -0.66 to -0.30, p < 0.01, I^2 = 61.3\%). Galbraith plots showed several studies outside the 95% confidence intervals, indicating Ozgur et al.,²¹⁰ Marino *et al.*,¹⁶⁹ Monninkhof *et al.*,¹⁸⁶ and Dreyse *et al.*⁸⁰ to be the least consistent with the overall results, potentially causing bias (Figure 2.14, page 46). Removal of these studies did not alter findings. After removing studies with a quality score in the bottom tertile (≤ 8), SMDs for exacerbation (SMD -0.27 to -0.15) and hospitalisation (SMD -0.48 to -0.35) had a substantial change, resulting from the removal of studies with small sample sizes and short follow-up times. Meta-regression indicated no differences in HRs for studies with longer follow-up time or those more recently published, but suggests higher HRs for studies with older participants (p = 0.027; Figure 2.15, page 47).

Figure 2.2: Pooled hazard ratios for the risk of mortality with 95% confidence intervals, by biomarker. Studies included: Ferrari *et al.*, 2013, ⁹² Celli *et al.*, 2012, ⁴² Blumenthal *et al.*, 2016, ²³ de Torres *et al.*, 2008, ⁷² Cote *et al.*, 2007, ⁵⁷ Dajczman *et al.*, 2015, ⁶⁶ Waschki *et al.*, 2011, ²⁸¹ Dreyse *et al.*, 2015, ⁸⁰ Ozgur *et al.*, 2012, ²¹⁰ Mannino *et al.*, 2012, ¹⁶⁹ Jensen *et al.*, 2013, ¹³⁹ Valvi *et al.*, 2012, ²⁶⁵ Liu *et al.*, 2011, ¹⁵⁹ Grolimund *et al.*, 2015, ¹¹² Budweiser *et al.*, 2007, ³¹ Husebo *et al.*, 2014, ¹³³ Antonelli-Incalzi *et al.*, 2006, ¹³ Cano *et al.*, 2004, ³³ Lacasse *et al.*, 2005, ¹⁵² and Warnier *et al.*, 2014. ²⁸⁰ See Figure 2.3, page 35 for full study details. Bars, 95% confidence intervals.

2.3.3.2 Resting heart rate

Jensen *et al.* estimated that having a resting heart below 65 beats per minute (bpm) compared to above 85 bpm (C-statistic = 0.59), was associated with increased survival of approximately ten years in Global initiative for chronic Obstructive Lung Disease (GOLD)¹⁰⁷ stage I, ~7 years for GOLD stage II, and ~6 years in GOLD stages III-IV.¹³⁹ Meta-analysis indicated that higher resting heart rates at baseline were associated with early mortality (HR 1.10 per 10 bpm, 95% CI 1.02 to 1.18, p = 0.01, I² = 99.4%), exacerbation (SMD 0.09 bpm, 95% CI 0.00 to 0.17, p = 0.05, I² = 0.0%), and hospitalisation (SMD bpm 0.21, 95% CI 0.15 to 0.28, p <0.01, I² = 10.0%). After removing studies with a quality score in the bottom tertile, HRs for mortality increased (1.10 to 1.15), and SMD (0.09 to 0.08) lost significance for exacerbation.

Figure 2.3: Adjusted hazard ratios for the risk of mortality with 95% confidence intervals, by biomarker. Values in grey are unadjusted and not included in the pooling of results. ****Adjusted for age, sex, body mass index, and smoking status, unless otherwise indicated. \land Adjusted for additional confounders; Blumenthal *et al.* adjusted for age, Charlson index, duration of COPD, GOLD, and coping skills training; Cote *et al.* adjusted for body mass index and Charlson score; Dajzman *et al.* adjusted for age, sex, and FEV₁; Ozgur *et al.* adjusted for age, sex, body mass index, IC/TLC, FEV₁, dyspnoea index, PaO2, and PaCO2; Mannino *et al.* adjusted for age, sex, body mass index, smoking status, ethnicity, diabetes, cardiovascular disease, education level, and poverty income ratio; Valvi *et al.* adjusted for age, sex, body mass index, smoking status, cardiovascular disease, and GOLD stage; de Torres *et al.* adjusted for age, sex, pack-year history, cardiovascular risk factors or disease, and treatment with inhaled corticosteroids. Bars, 95% confidence intervals.

Author (year)	Sample size	Follow-up (months)	Level of adjustment	Mortality	HR [95% CI]
$\label{eq:stance} \begin{array}{l} \hline site-minute walk distance (per 50 m increase) \\ Antonelli-ncalic et al.(2006)FE2 \\ Cano et al.(2014)FE2 \\ Celli et al.(2014)FE2 \\ Celli et al.(2007)FE \\ Dajczman et al.(2016)FE5 \\ Ferrari et al.(2013)FE4 \\ Husebo et al.(2013)FE4 \\ Husebo et al.(2013)FE5 \\ Czgur et al.(2013)FE5 \\ Czgur et al.(2013)FE6 \\ Uu et al.(2011)FE6 \\ Waschki et al.(2011)FE6 \\ Pooled HR (p < 0.00; l^2 = 94.6\%) \end{array}$	131 326 309 1843 365 237 103 122 389 114 73 169	10 60 96 67 12 28 36 36 36 36 36 36 32 48 10	***	┶┺┤ ┶┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺	0.73 (0.60, 0.89) 0.79 (0.70, 0.90) 0.93 (0.86, 1.00) 0.79 (0.74, 0.84, 1.00) 0.78 (0.74, 0.84, 1.00) 0.78 (0.68, 0.86) 0.70 (0.69, 1.01) 0.66 (0.62, 0.77) NA (NA, NA, NA, 0.36 (0.22, 0.61) 0.71 (0.62, 0.81) 0.99 (0.99, 1.00)
Resting hear rate (per 10 bpm increase) Antonelli-incazi et al.(2005)FE.3 Celli et al.(2012)FE.6 Jussen et al.(2014)FE.5 Jussen et al.(2014)FE.5 Warnier et al.(2014)FE Warnier et al.(2014)FE Pole de la.(2014)FE	134 1843 433 2051 147 405 169	10 36 28 36 208 >21 84 10		₩ +=- =- -=- -= +=	1.01 [0.98, 1.04] 1.09 [0.97, 1.22] 1.01 [0.95, 1.07] 1.05 [0.89, 1.23] 1.12 [1.08, 1.15] NA, NA, NA 1.27 [1.13, 1.42] 1.38 [1.07, 1.78] 1.06 [1.04, 1.08]
$\begin{array}{l} \textit{Fibrinogen (per 100 g/dL)} \\ \text{Liu et al. (2011) FE. 2.} \\ \text{Mannino et al. (2012) FE} \\ \text{Valvi et al. (2012) FE} \\ \text{Pooled HR } (p=0.01; l^2=83.5\%) \end{array}$	114 8507 20192	>24 216 116	****A ****A	i= ●	NA [NA, NA] 1.17 [1.09, 1.26] 1.31 [1.24, 1.38] 1.26 [1.21, 1.31]
$\begin{array}{l} \textbf{Fibrinogen (log)} \\ \text{Antonelli–Incal2 et al. (2006) FE.2} \\ \text{Celli et al. (2012) FE.5} \\ \text{Dreyse et al. (2013) FE.3} \\ \text{Waschki et al. (2011) FE.4} \\ \text{Pooled HR (p = 0.52; l^2 = 0.0\%)} \end{array}$	128 1843 103 169	10 36 28 10	*** **** ***		4.32 [1.10, 16.93] 6.28 [3.23, 12.20] 0.95 [0.08, 10.93] 4.50 [0.88, 23.04] 5.18 [3.00, 8.95]
$\begin{array}{l} \textbf{C-reactive protein (log)} \\ \textbf{Blumenthal et al (2016)FE-1} \\ \textbf{Cano et al (2014)FE-1} \\ \textbf{Cano et al (2014)FE-1} \\ \textbf{de Tores et al (2008)FE} \\ \textbf{Dreyse et al (2008)FE} \\ \textbf{Dreyse et al (2015)FE-2} \\ \textbf{Husebo et al (2014)FE-1} \\ \textbf{Husebo et al (2014)FE-1} \\ \textbf{Husebo tal (2014)FE-1} \\ \textbf{Husebo tal (2014)FE-3} \\ \textbf{Poschi et al (2011)FE-3} \\ Poschi et al$	326 309 1843 103 77 499 420 114 169	60 36 38 28 36 60 36 36 224 10	**		1.44 [1.01, 2.06] 1.49 [1.23, 1.80] 1.34 [1.18, 1.53] 1.00 [0.98, 1.02] 1.64 [0.23, 11.82] 2.18 [0.63, 7.62] 1.43 [0.23, 11.82] 1.43 [1.18, 1.73] NA [NA, NA] 1.14 [0.83, 1.57] 1.02 [1.00, 1.04]
$\label{eq:constraint} \begin{array}{l} \textit{White Blood Cell count (log)} \\ \textit{Antonelii-Incalic et al. (2007)FE} \\ \textit{Budweiser et al. (2007)FE} \\ \textit{Gellii et al. (2017)FE} \\ \textit{Grolimund et al. (2015)FE 1} \\ \textit{Maschki et al. (2015)FE 2} \\ \textit{Maschki et al. (2015)FE 2} \\ \textit{Pooled HR} (p < 0.00; l^2 = 80.0\%) \\ \end{array}$	134 98 1843 502 419 169	10 >24 36 60 36 10	*** **** **** ****		3.96 [1.06, 14.80] NA [NA, NA] 3.11 [1.81, 5.34] 1.14 (0.80, 1.61] 6.13 [2.45, 15.34] 3.92 [0.90, 17.11] 1.84 [1.41, 2.40]
$\label{eq:response} \begin{array}{l} \textit{Interleavkin 6 (log)} \\ \textit{Cellis et al} (2015)FE_2 \\ \textit{Dreyse et al} (2015)FE_1 \\ \textit{Ferran et al} (2013)FE_2 \\ \textit{Husebo et al} (2014)FE_2 \\ \textit{Waschki et al} (2011)FE_1 \\ \textit{Pooled HR} (p = 0.01; l^2 = 71.4\%) \\ \end{array}$	1843 103 72 408 168	36 28 36 36 10	****		1.37 [1.23, 1.53] 0.71 [0.20, 2.56] 1.59 [0.56, 4.48] 0.91 [0.75, 1.10] 1.23 [0.79, 1.92] 1.24 [1.13, 1.36]
Tumor Necrosis Factor (log) Celli et al.(2012)FE:1 Ferrari et al.(2013)FE:1 Husebo et al.(2014)FE:1 Pooled HR (p = 0.99)? ² = 0.0%)	1843 73 408	36 36 36	**** **** ****		0.91 [0.82, 1.01] 1.08 [0.05, 21.83] 0.93 [0.70, 1.23] 0.91 [0.83, 1.01]

Figure 2.4: Hazard ratios for mortality using fixed-effect modelling, sensitivity analysis.

Author (year)	Sample size	Follow-up	Level of adjustment	Mortality	HR [95% CI]
$\label{eq:response} \begin{array}{l} \hline Sitz-minute walk dictance (per 50 m increase) \\ \hline Blumenthal et al. (2016) 2 \\ \hline Cano et al. (2012) 7 \\ \hline Collei et al. (2012) 7 \\ \hline Collei et al. (2012) 7 \\ \hline Forrari et al. (2013) 4 \\ \hline Husebo et al. (2013) 4 \\ \hline Husebo et al. (2014) 6 \\ \ Liu et al. (2011) 3 \\ \hline Orgun et al. (2012) \\ \hline Waschki et al. (2011) 6 \\ \hline Pooled HR (p < 0.00) r^2 = 95.0\%) \end{array}$	326 309 1843 365 122 389 114 73 169	60 96 67 36 36 >24 48 10	***	┝┺┤ ₩ ₩ ₩ ╄= ╄ ╄ ₩	0.79 [0.70, 0.90] 0.93 [0.86; 1.00] 0.79 [0.74, 0.84] 0.82 [0.70, 0.95] 1.00 [0.99, 1.01] 0.69 [0.82, 0.77] NA [NA, NA] 0.36 [0.22, 0.61] 0.71 [0.82, 0.81] 0.79 [0.70, 0.89]
Resting hear rate (per 10 bpm increase) Cellie tal., (2012);6 Husebo et al., (2014),5 Jensen et al., (2013) Warnier et al., (2014) Waschki et al., (2011),5 Pooled HR (p < 0.09;l ² = 49.9%)	1843 433 2051 405 169	36 36 208 84 10		┝═┥ ┝═┥ ┝╕ ┝═┶┥	1.09 [0.97, 1.22] 1.05 [0.88, 1.23] 1.12 [1.08, 1.15] 1.27 [1.13, 1.42] 1.38 [1.07, 1.78] 1.15 [1.07, 1.23]
Fibrinogen (per 100 g/dL) Liu et al.,(2011).2 Mannino et al.,(2012) Valvi et al.,(2012) Pooled HR (p = 0.01;l ² = 83.5%)	114 8507 20192	>24 216 116	••••A	⊨ ■	NA [NA, NA] 1.17 [1.09, 1.26] 1.31 [1.24, 1.38] 1.24 [1.11, 1.39]
Fibrinogen (log) Celli et al.,(2012).5 Waschki et al.,(2011).4 Pooled HR (p = 0.71;l ² = 0.0%)	1843 169	36 10			6.28 [3.23, 12.20] 4.50 [0.88, 23.04] 5.99 [3.23, 11.08]
$\begin{array}{l} \textbf{C-reactive protein (log)} \\ \text{Blumenthal et al. (2016), 1} \\ \text{Cano et al. (2014), 1} \\ \text{Cell et al. (2012), 4} \\ \text{Ferrai et al. (2013), 3} \\ \text{Fordimund et al. (2015), 2} \\ \text{Fordimund et al. (2015), 2} \\ \text{How the et al. (2011), 1} \\ \text{Waschlet et al. (2011), 1} \\ \text{Waschlet et al. (2011), 3} \\ \text{Pooled HR} (p < 0.03), l^2 = 53.9\%) \end{array}$	326 309 1843 77 499 420 114 169	60 96 36 60 36 >24 10			1.44 [1.01, 2.06] 1.49 [1.23, 1.80] 1.34 [1.14, 1.53] 2.16 [0.62, 7.60] 1.13 [0.16, 1.23] 1.39 [1.64, 1.23] 1.30 [1.64, 1.23] 1.31 [1.40, 1.34, 1.57] 1.31 [1.16, 1.47]
White Blood Cell count (log) Celli et al., (2012).3 Grolimund et al., (2015).1 Husebo et al., (2014).3 Waschki et al., (2011).2 Pooled HR (p < 0.00;) ² = 81.4%)	1843 502 419 169	36 60 36 10			3.11 [1.81, 5.34] 1.14 [0.80, 1.61] 6.13 [2.45, 15.34] 3.92 [0.90, 17.11] 2.74 [1.25, 6.01]
Interloukin 6 (log) Celli et al.,(2012),2 Ferrari et al.,(2013),2 Husebo et al.,(2014),2 Waschki et al.,(2011),1 Pooled HR (p = 0.00;1 ² = 72.7%)	1843 72 408 168	36 36 36 10			1.37 [1.23, 1.53] 1.59 [0.56, 4.48] 0.91 [0.75, 1.10] 1.23 [0.79, 1.92] 1.17 [0.90, 1.53]
Tumor Necrosis Factor (log) Celli et al., (2012).1 Ferrari et al., (2013).1 Husebo et al., (2014).1 Pooled HR (p = 0.99;l ² = 0.0%)	1843 73 408	36 36 36			0.91 [0.82, 1.01] 1.08 [0.05, 21.83] 0.93 [0.70, 1.23] 0.91 [0.83, 1.01]
				0.5 1 2 5	

Figure 2.5: Hazard ratios for mortality, sensitivity analysis. Lower quartile QUADAS-2 scores removed.

Figure 2.6: Pooled standardised mean differences with 95% confidence intervals for the risk of exacerbation, by biomarker. Studies included: Faganello *et al.*, 2010,⁸⁹ Cote *et al.*, 2007,⁵⁷ Dreyse *et al.*, 2015,⁸⁰ Ferrari *et al.*, 2011,⁹³ Monninkhof *et al.*, 2003,¹⁸⁶ Hurst *et al.*, 2010,¹³² Husebo *et al.*, 2014,¹³³ Wedzicha *et al.*, 2000,²⁸² Jennings *et al.*, 2009,¹³⁷ and Marino *et al.*, 2014.¹⁷⁰ See Figure 2.7, page 39 for full study details. Bars, 95% confidence intervals.

2.3.3.3 Fibrinogen

Within the Copenhagen City Heart Study and Copenhagen General Population Study (n = 8020), Thomsen *et al.* reported a higher risk of exacerbation with elevated fibrinogen levels, however, only in combination with elevated levels of CRP and WCC at baseline (C-statistic = 0.73).²⁶⁰ Celli *et al.* reported a similar C-statistic of 0.70 when including fibrinogen together with WCC, CRP, and other inflammatory markers to their predictive model.⁴² Meta-analysis indicated that for mortality, there was a positive association with fibrinogen (HR 3.13 per twofold increase, 95% CI 2.14 to 4.57, p <0.01, I² = 0.0%, and HR 1.24 per 100 g/dL, 95% CI 1.11 to 1.39, p <0.01, I² = 83.5%).^{159,169,265} Higher levels of fibrinogen were also associated with exacerbation (SMD 0.23 g/dL, 95% CI 0.14 to 0.33, p <0.01, I² = 0.0%).

Author (year)	Exacerbation	Standardised mean difference (95% CI)	N, mean (SD); Exacerbators	N, mean (SD); Non–exacerbators	% Weight
Six-Minute Walk Distance (meter) Cole et al. (2007) Dreyse et al. (2015) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2010) Jennings et al. (2009) Marino et al. (2003) Pooled SMD (I–squared =53.0%, p =0.038)		$\begin{array}{c} -0.04 \ (-0.33, 0.24) \\ -0.43 \ (-0.90, 0.04) \\ -0.49 \ (-0.90, -0.08) \\ -0.15 \ (-0.25, -0.05) \\ -0.18 \ (-0.39, 0.03) \\ -0.14 \ (-0.46, -0.42) \\ -0.49 \ (-1.46, -0.42) \\ -0.40 \ (-0.57, -0.12) \\ -0.27 \ (-0.41, -0.13) \end{array}$	130, 354 (119) 80, 395 (93) 91, 421 (86.2) 1542, 365 (119) 266, 417 (103) 109, 298 (100) 29, 384 (87.6) 162, 424 (91) 2409	75, 359 (120) 23, 435 (93) 31, 466 (106) 547, 383 (127) 123, 437 (128) 60, 312 (93) 34, 461 (75.8) 78, 458 (74) 971	12.98 6.83 8.20 24.28 16.82 11.57 5.75 13.56 100.00
Resting heart rate (bpm) Dreyse et al. (2015) Hurst et al. (2010) Husebo et al. (2014) Marino et al. (2014) Pooled SMD (I-squared =0.0%, p =0.528)		0.16 (-0.29, 0.62) 0.11 (0.02, 0.21) -0.01 (-0.22, 0.19) -0.15 (-0.64, 0.35) 0.09 (0.00, 0.17)	81, 78 (11) 1583, 78.3 (12.7) 297, 77.8 (13.3) 29, 83.9 (10.5) 1990	24, 76 (16) 555, 76.9 (13.3) 136, 77.9 (14.2) 34, 85.4 (10) 749	3.43 76.32 17.35 2.90 100.00
Fibrinogen (g/dL) Dreyse et al. (2015) Hurst et al. (2010) Wedzicha et al. (2000) Pooled SMD (I-squared =0.0%, p =0.611)	+	0.01 (-0.45, 0.48) 0.24 (0.14, 0.34) 0.16 (-0.29, 0.62) 0.23 (0.14, 0.33)	80, 339 (69) 1340, 462 (105) 67, 3.9 (.67) 1487	23, 338 (70) 543, 437 (99.8) 26, 3.79 (.67) 592	4.25 91.31 4.44 100.00
CRP (mg/L) Dreyse et al. (2015) Ferrari et al. (2013) Hurst et al. (2010) Hursebo et al. (2014) Pooled SMD (I-squared =0.0%, p =0.867)		0.23 (-0.24, 0.69) -0.04 (-0.60, 0.51) 0.13 (0.03, 0.23) 0.08 (-0.12, 0.29) 0.12 (0.04, 0.21)	81, .529 (.451) 49, .64 (.47) 1530, 7.15 (12.4) 287, 1.39 (1.37) 1947	23, .425 (.482) 17, .66 (.43) 540, 5.64 (8.8) 133, 1.28 (1.32) 713	3.43 2.43 76.67 17.47 100.00
White Blood Cell count (mc/L) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2014) Pooled SMD (I–squared = 18.7%, p =0.292)		-0.17 (-0.73, 0.38) 0.11 (0.01, 0.21) -0.05 (-0.25, 0.16) 0.05 (-0.06, 0.17)	49, 7.9 (1.49) 1547, 7.98 (2.35) 287, 8.07 (2.18) 1883	17, 8.19 (2.14) 526, 7.73 (2.17) 132, 8.17 (2.25) 675	4.45 69.07 26.49 100.00
Interleukin 6 (pg/m)) Dreyee et al. (2015) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2010) Wedzicha et al. (2000) Pooled SMD (I-squared =0.0%, p =0.554)		-0.24 (-0.70, 0.22) -0.22 (-0.77, 0.33) 0.07 (-0.03, 0.17) 0.12 (-0.09, 0.33) 0.13 (-0.33, 0.58) 0.06 (-0.02, 0.15)	81, 4.82 (6.24) 49, 1.01 (.77) 1532, 5.38 (22.2) 286, 3.36 (17.1) 26, 4.63 (.243) 1974	23, 6.98 (15.3) 17, 1.19 (.93) 525, 4.04 (8.06) 122, 1.61 (3.57) 67, 4.45 (1.62) 754	3.39 2.39 74.40 16.25 3.56 100.00
Interleukin 8 (pg/ml) Faganello et al. (2010) Hurst et al. (2010) Pooled SMD (I–squared =83.5%, p =0.014)		0.55 (0.07, 1.03) -0.07 (-0.17, 0.03) 0.19 (-0.40, 0.79)	36, 24.4 (10.3) 1528, 13.5 (28.9) 1564	33, 14.8 (22.8) 526, 15.7 (40.6) 559	42.42 57.58 100.00
Tumor Necrosis Factor (pg/ml) Ferrari et al. (2013) – Hurst et al. (2010) Husebo et al. (2014) Pooled SMU (_couped_=52.4%, p=0.070)		-0.48 (-1.04, 0.08) 0.05 (-0.05, 0.14) 0.20 (-0.01, 0.41) 0.04 (-0.17, 0.25)	49, 4.47 (.88) 1537, 73.7 (1102) 286, 1.99 (3.64) 1872	17, 4.94 (1.23) 528, 30 (87.2) 122, 1.33 (2.4) 667	11.74 51.43 36.83 100.00

Figure 2.7: Standardised mean differences with 95% confidence intervals for the risk of exacerbation, by biomarker. Bars, 95% confidence intervals.

Author.(year)	Follow-up		Standardised mean difference (95% CI)	N, mean (SD); Exacerbators	N, mean (SD); Non-exacerbators	% Weight
Six-Minute Walk Distance (met Cole et al. (2007) Dreyse et al. (2015) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2014) Jennings et al. (2009) Marino et al. (2004) Monninkhof et al. (2003) Subtotal (I-squared = 53.0%, p. =	ter) 67 36 36 36 12 6 12 2 0.038)		$\begin{array}{c} -0.04 \ (-0.33, \ 0.24) \\ -0.43 \ (-0.90, \ 0.04) \\ -0.49 \ (-0.90, \ -0.08) \\ -0.15 \ (-0.25, \ 0.05) \\ -0.18 \ (-0.39, \ 0.03) \\ -0.14 \ (-0.46, \ 0.17) \\ -0.94 \ (-1.46, \ -0.42) \\ -0.40 \ (-0.67, \ -0.12) \\ -0.20 \ (-0.28, \ -0.12) \end{array}$	130, 354 (119) 80, 395 (93) 91, 421 (86.2) 1542, 365 (119) 266, 417 (103) 109, 298 (100) 29, 384 (87.6) 162, 424 (91) 2409	75, 359 (120) 23, 435 (93) 31, 466 (106) 547, 383 (127) 123, 437 (128) 60, 312 (93) 34, 461 (75.8) 78, 458 (74) 971	7.00 2.59 3.33 59.35 12.35 5.69 2.07 7.62 100.00
Resting heart rate (bpm) Dreyse et al. (2015) Hurst et al. (2010) Husebo et al. (2014) Marino et al. (2014) Subtotal (I-squared = 0.0%, p =	28 36 36 6 0.528)	+	0.16 (-0.29, 0.62) 0.11 (0.02, 0.21) -0.01 (-0.22, 0.19) -0.15 (-0.64, 0.35) 0.09 (0.00, 0.17)	81, 78 (11) 1583, 78.3 (12.7) 297, 77.8 (13.3) 29, 83.9 (10.5) 1990	24, 76 (16) 555, 76.9 (13.3) 136, 77.9 (14.2) 34, 85.4 (10) 749	3.43 76.32 17.35 2.90 100.00
Fibrinogen (g/dL) Dreyse et al. (2015) Hurst et al. (2010) Wedzicha et al. (2000) Subtotal (I-squared = 0.0%, p =	28 36 12 0.611)	+	0.01 (-0.45, 0.48) 0.24 (0.14, 0.34) 0.16 (-0.29, 0.62) 0.23 (0.14, 0.33)	80, 339 (69) 1340, 462 (105) 67, 3.9 (.67) 1487	23, 338 (70) 543, 437 (99.8) 26, 3.79 (.67) 592	4.25 91.31 4.44 100.00
CRP (mg/L) Dreyse et al. (2015) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2014) Subtotal (I-squared = 0.0%, p =	28 36 36 36 0.867)	+	0.23 (-0.24, 0.69) -0.04 (-0.60, 0.51) 0.13 (0.03, 0.23) 0.08 (-0.12, 0.29) 0.12 (0.04, 0.21)	81, .529 (.451) 49, .64 (.47) 1530, 7.15 (12.4) 287, 1.39 (1.37) 1947	23, .425 (.482) 17, .66 (.43) 540, 5.64 (8.8) 133, 1.28 (1.32) 713	3.43 2.43 76.67 17.47 100.00
White Blood Cell count (mc/L) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2014) Subtotal (I-squared = 18.7%, p =	36		-0.17 (-0.73, 0.38) 0.11 (0.01, 0.21) -0.05 (-0.25, 0.16) 0.07 (-0.02, 0.16)	49, 7.9 (1.49) 1547, 7.98 (2.35) 287, 8.07 (2.18) 1883	17, 8.19 (2.14) 526, 7.73 (2.17) 132, 8.17 (2.25) 675	2.54 79.20 18.26 100.00
Interleukin 6 (pg/ml) Dreyse et al. (2015) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2014) Wedzicha et al. (2000) Subtotal (I-squared = 0.0%, p =	28		-0.24 (-0.70, 0.22) -0.22 (-0.77, 0.33) 0.07 (-0.03, 0.17) 0.12 (-0.09, 0.33) 0.13 (-0.33, 0.58) 0.06 (-0.02, 0.15)	81, 4.82 (6.24) 49, 1.01 (.77) 1532, 5.38 (22.2) 286, 3.36 (17.1) 26, 4.63 (.243) 1974	23, 6.98 (15.3) 17, 1.19 (.93) 525, 4.04 (8.06) 122, 1.61 (3.57) 67, 4.45 (1.62) 754	3.39 2.39 74.40 16.25 3.56 100.00
Interleukin 8 (pg/ml) Faganello et al. (2010) Hurst et al. (2010) Subtotal (I-squared = 83.5%, p =	12 36 = 0.014)	*	- 0.55 (0.07, 1.03) -0.07 (-0.17, 0.03) -0.04 (-0.14, 0.05)	36, 24.4 (10.3) 1528, 13.5 (28.9) 1564	33, 14.8 (22.8) 526, 15.7 (40.6) 559	4.07 95.93 100.00
Tumor Necrosis Factor (pg/ml) Ferrari et al. (2013) Hurst et al. (2010) Husebo et al. (2014) Subtotal (I-squared = 62.4%, p =) 36 36 = 0.070)	←	-0.48 (-1.04, 0.08) 0.05 (-0.05, 0.14) 0.20 (-0.01, 0.41) 0.06 (-0.03, 0.15)	49, 4.47 (.88) 1537, 73.7 (1102) 286, 1.99 (3.64) 1872	17, 4.94 (1.23) 528, 30 (87.2) 122, 1.33 (2.4) 667	2.52 80.12 17.37 100.00
	 -1.5 -1 Decreasi	5 0 .5	 1 1.5			

Figure 2.8: Standardised mean differences for exacerbation using fixed-effect modelling, sensitivity analysis.

Author.(year)	Follow-up			Standardised mean difference (95% CI)	(SD); Exacerbator	N, mean (SD); s Non-exacerbator	% s Weig
Six-Minute Walk D Cote et al. (2007) Hurst et al. (2010) Husebo et al. (2014 Subtotal (I-squared	istance (meter) 67 36 1) 36 1 = 0.0%, p = 0.734)	+		-0.04 (-0.33, 0.24) -0.15 (-0.25, -0.05) -0.18 (-0.39, 0.03) -0.15 (-0.23, -0.06)	130, 354 (119) 1542, 365 (119) 266, 417 (103) 1938	75, 359 (120) 547, 383 (127) 123, 437 (128) 745	8.90 75.41 15.69 100.0
Resting heart rate Hurst et al. (2010) Husebo et al. (2014 Subtotal (I-squared	(bpm) 36 9) 36 1 = 20.4%, p = 0.262)	+		0.11 (0.02, 0.21) -0.01 (-0.22, 0.19) 0.08 (-0.03, 0.19)	1583, 78.3 (12.7) 297, 77.8 (13.3) 1880	555, 76.9 (13.3) 136, 77.9 (14.2) 691	75.08 24.98 100.0
Fibrinogen (g/dL) Hurst et al. (2010) Subtotal (I-squared	36 d = .%, p = .)	10	5	0.24 (0.14, 0.34) 0.24 (0.14, 0.34)	1340, 462 (105) 1340	543, 437 (99.8) 543	100.0 100.0
CRP (mg/L) Hurst et al. (2010) Husebo et al. (2014 Subtotal (I-squared	36 4) 36 1 = 0.0%, p = 0.669)	+		0.13 (0.03, 0.23) 0.08 (-0.12, 0.29) 0.12 (0.03, 0.21)	1530, 7.15 (12.4) 287, 1.39 (1.37) 1817	540, 5.64 (8.8) 133, 1.28 (1.32) 673	81.4 18.5 100.9
White Blood Cell of Hurst et al. (2010) Husebo et al. (2014 Subtotal (I-squared	count (mc/L) 36 9) 36 d = 40.8%, p = 0.194)	+		0.11 (0.01, 0.21) -0.05 (-0.25, 0.16) 0.06 (-0.08, 0.20)	1547, 7.98 (2.35) 287, 8.07 (2.18) 1834	526, 7.73 (2.17) 132, 8.17 (2.25) 658	68.5 31.4 100.
Interleukin 6 (pg/m Hurst et al. (2010) Husebo et al. (2014 Subtotal (I-squared	nl) 36 4) 36 d = 0.0%, p = 0.659)	+	-	0.07 (-0.03, 0.17) 0.12 (-0.09, 0.33) 0.08 (-0.01, 0.17)	1532, 5.38 (22.2) 286, 3.36 (17.1) 1818	525, 4.04 (8.06) 122, 1.61 (3.57) 647	82.0 17.9 100.9
Interleukin 8 (pg/m Faganello et al. (20 Hurst et al. (2010) Subtotal (I-squared	n i) 10)12 36 i = 83.5%, p = 0.014)		→ >	0.55 (0.07, 1.03) -0.07 (-0.17, 0.03) 0.19 (-0.40, 0.79)	36, 24.4 (10.3) 1528, 13.5 (28.9) 1564	33, 14.8 (22.8) 526, 15.7 (40.6) 559	42.42 57.58 100.0
Tumor Necrosis Fa Hurst et al. (2010) Husebo et al. (2014 Subtotal (I-squared	actor (pg/ml) 36 9 36 1 = 38.9%, p = 0.201)	+ 0	_	0.05 (-0.05, 0.14) 0.20 (-0.01, 0.41) 0.09 (-0.05, 0.23)	1537, 73.7 (1102) 286, 1.99 (3.64) 1823	528, 30 (87.2) 122, 1.33 (2.4) 650	69.66 30.34 100.0
NOTE: Weights are	from random effects analysis						
	-1.5 -15	0	I I .5 1	l 1.5			
	Decreasing		Increase				

Figure 2.9: Standardised mean differences for exacerbation, sensitivity analysis. Lower quartile QUADAS-2 scores removed.

Figure 2.10: Pooled standardised mean differences with 95% confidence intervals for the risk of hospitalisation, by biomarker. Studies included: Ferrari et al., 2013, ⁹² Mullerova et al., 2015, ¹⁹² Dreyse et al., 2015, ⁸⁰ Monninkhof et al., 2003, ¹⁸⁶ Jensen et al., 2013, ¹³⁹ Groenewegen et al., 2008, ¹¹¹ Husebo et al., 2014, ¹³³ Cano et al., 2004, ³³ Jennings et al., 2009, ¹³⁷ and Dahl et al., 2011. ⁶⁵ See **Figure 2.11**, page 43 for full study details. Bars, 95% confidence intervals.

2.3.3.4 C-reactive protein

Moy *et al.* suggested that combining CRP with step count is a good predictor of acute exacerbations (C-statistic = 0.59) and hospital admission (C-statistic = 0.69).¹⁸⁹ However, de Torres *et al.* (BODE cohort, n = 218), reported no statistically significant associations between baseline CRP levels and mortality,⁷² along with Grolimund *et al.* (ProHOSP, n = 469),¹¹² Ferrari *et al.*,⁹² and Waschki *et al.*²⁸¹ There was also no difference in CRP levels at baseline for COPD exacerbation in the COSMIC study.¹¹¹ Meta-analysis indicated that individuals with higher levels of CRP measured at baseline had a higher risk of early mortality (HR 1.17 per twofold increase, 95% CI 1.06 to 1.28, p <0.01, I² = 81.5%). Higher levels of CRP were also associated with COPD exacerbations (SMD 0.12 mg/L, 95% CI 0.04 to 0.21, p <0.01, I² = 0.0%), and hospitalisation (SMD 0.33 mg/L, 95% CI 0.13 to 0.53, p <0.01, I² = 92.8%). After removing studies with a quality score in the bottom tertile, HRs for mortality increased (1.25 to 1.31), and decreased for hospitalisation (0.20 to 0.13). Meta-regression indicated no statistical signifi-
Author (year)	Hospitalisation	Standardised mean difference (95% CI)	N, mean (SD); Hospitalised	N, mean (SD); Non–hospitalised	% Weight
Six-Minute Walk Distance (meter) Cano et al. (2014) Dreyse et al. (2015) Ferrari et al. (2013) Husebo et al. (2014) J ennings et al. (2009) Monninkhof et al. (2003) Mullerova et al. (2015) Pooled SMD (I-squared = 61.3%, p = 0.013)		$\begin{array}{c} -0.16 \left(-0.48, 0.17\right) \\ -1.08 \left(-1.65, -0.52 \\ -0.33 \left(-0.88, 0.23\right) \\ -0.43 \left(-0.64, -0.22 \\ -0.59 \left(-0.98, -0.19 \\ -0.91 \left(-1.33, -0.56 \\ -0.35 \left(-0.45, -0.26 \\ -0.48 \left(-0.66, -0.30 \right) \right) \end{array}\right)$	62, 226 (110) 15, 322 (108) 16, 409 (85) 132, 392 (109) 31, 257 (89) 26, 366 (89) 650, 341 (116) 932	92, 245 (119) 88, 418 (85) 61, 439 (92.8) 257, 439 (110) 138, 313 (97) 214, 443 (84) 1439, 383 (122) 2289	14.87 7.48 7.77 20.30 12.05 11.35 26.18 100.00
Resting heart rate (bpm) Dreyse et al. (2015) Husebo et al. (2014) J ensen et al. (2013) Mullerova et al. (2015) Pooled SMD (I-squared =10.0%, p=0.343	3)	0.39 (-0.14, 0.93) 0.18 (-0.01, 0.38) 0.16 (0.06, 0.25) 0.27 (0.18, 0.36) 0.21 (0.15, 0.28)	16, 82 (11) 146, 79.6 (14.5) 586, 77.2 (13.4) 670, 80.3 (12.9) 1418	89, 77 (13) 287, 76.9 (14) 1465, 75.1 (13.4) 1468, 76.9 (12.7) 3309	1.66 11.36 41.94 45.04 100.00
CRP (mg/L) Cano et al. (2014) Dahl et al. (2011)a Dahl et al. (2011)b Dreyse et al. (2015) Ferrari et al. (2015) Groenewegen et al. (2008) Husebo et al. (2014) Mullerova et al. (2015) Pooled SMD (I–squared =92.8%, p =0.000		0.30 (-0.03, 0.64) 0.73 (0.65, 0.81) 0.48 (0.41, 0.55) -0.74 (0.20, 1.29) -0.02 (-0.57, 0.53) 0.07 (-0.13, 0.28) 0.20 (0.11, 0.29) 0.33 (0.13, 0.53)	62, 2.39 (.977) 1085, 2.83 (1.2) 1235, 2.92 (1.46) 16, .785 (.426) 16, .61 (.6) 31, 10.8 (112) 144, 1.42 (1.31) 645, 8.36 (14.7) 3234	80, 2.12 (.835) 1580, 2.2 (.51) 3092, 2.4 (.907) 88, 455 (.447) 61, 62 (.5) 283, 22.9 (700) 276, 1.32 (1.37) 1425, 6.03 (9.74) 6885	11.40 16.29 16.42 7.49 7.37 10.61 14.29 16.14 100.00
White Blood Cell count (mc/L) Ferrari et al. (2013) Husebo et al. (2014) Mullerova et al. (2015) Pooled SMD (I-squared = 72.5%, p = 0.026		- 0.66 (0.09, 1.22) -0.01 (-0.22, 0.19) 0.23 (0.14, 0.33) 0.20 (-0.05, 0.44)	16, 8.85 (1.44) 142, 8.08 (2.06) 656, 8.28 (2.55) 814	54, 7.77 (1.7) 277, 8.11 (2.27) 1417, 7.74 (2.17) 1748	13.64 38.22 48.14 100.00
Interleukin 6 (pg/ml) Dreyse et al. (2015) Ferrari et al. (2013) Husebo et al. (2014) Mullerova et al. (2015) Pooled SMD (I–squared =0.0%, p =0.533)		-0.11 (-0.64, 0.43) -0.01 (-0.61, 0.59) 0.02 (-0.18, 0.22) 0.15 (0.06, 0.24) 0.12 (0.04, 0.20)	16, 4.49 (5.31) 13, 1.08 (.81) 143, 3.02 (9.06) 654, 7.03 (31) 826	88, 5.45 (9.54) 59, 1.09 (.9) 265, 2.74 (16.7) 1403, 4.11 (10.6) 1815	2.41 1.90 16.52 79.17 100.00
<i>Tumor Necrosis Factor (pg/ml)</i> Ferrari et al. (2013) Groenewegen et al. (2008) Husebo et al. (2014) Mullerova et al. (2015) Pooled SMD (I–squared = 0.0%, p = 0.986)		-0.01 (-0.58, 0.56) -0.05 (-0.42, 0.32) 0.02 (-0.18, 0.23) -0.01 (-0.10, 0.08) -0.01 (-0.09, 0.07)	15, 4.65 (1.09) 31, 2.99 (4.11) 143, 1.85 (3.29) 655, 56.4 (294) 844	58, 4.66 (1.03) 283, 11.1 (160) 265, 1.77 (3.56) 1410, 65.4 (1134) 2016	2.05 4.82 16.01 77.11 100.00
-1.5	I I I I I -1 5 0 .5 1 Standardised mean difference	1.5			

Figure 2.11: Standardised mean differences with 95% confidence intervals for the risk of hospitalisation, by biomarker. Bars, 95% confidence intervals.

Author.(year)	Follow-up				Standardised mean difference (95% CI)	N, mean (SD); Hospitalised	N, mean (SD); Non-hospitalised	% Weight
Six-Minute Walk Distance Cano et al. (2014) Dreyse et al. (2015) Ferrari et al. (2015) Husebo et al. (2014) Jennings et al. (2009) Monninkhof et al. (2003) Mullerova et al. (2015) Subtotal (I-squared = 61.3	e (meter) 22 28 36 36 12 36 36 12 36 36 36 12 36 36 36 12 36 36 12 36 36 36 36 36 36 36 36 36 36				-0.16 (-0.48, 0.17) -1.08 (-1.65, -0.52) -0.33 (-0.88, 0.23) -0.43 (-0.64, -0.22) -0.59 (-0.98, -0.19) -0.91 (-1.33, -0.50) -0.35 (-0.45, -0.26) -0.39 (-0.47, -0.32)	62, 226 (110) 15, 322 (108) 16, 409 (85) 132, 392 (109) 31, 257 (89) 26, 366 (89) 650, 341 (116) 932	92, 245 (119) 88, 418 (85) 61, 439 (92.8) 257, 439 (110) 138, 313 (97) 214, 443 (84) 1439, 383 (122) 2289	5.81 1.88 1.98 13.44 3.88 3.51 69.51 100.00
Resting heart rate (bpm) Dreyse et al. (2015) Husebo et al. (2014) Jensen et al. (2013) Mullerova et al. (2015) Subtotal (I-squared = 10.0	28 36 208 36 0%, p = 0.343)	-	++		0.39 (-0.14, 0.93) 0.18 (-0.01, 0.38) 0.16 (0.06, 0.25) 0.27 (0.18, 0.36) 0.21 (0.15, 0.28)	16, 82 (11) 146, 79.6 (14.5) 586, 77.2 (13.4) 670, 80.3 (12.9) 1418	89, 77 (13) 287, 76.9 (14) 1465, 75.1 (13.4) 1468, 76.9 (12.7) 3309	1.36 9.80 42.44 46.40 100.00
CRP (mg/L) Cano et al. (2014) Dahl et al. (2011)a Dahl et al. (2011)b Dreyse et al. (2015) Ferrari et al. (2013) Groenewegen et al. (2008) Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 92.8	22 33 33 28 36) 12 36 36 36 3%, p = 0.000)		+ + + + 0		$\begin{array}{c} 0.30 \ (-0.03, \ 0.64) \\ 0.73 \ (0.65, \ 0.81) \\ 0.48 \ (0.41, \ 0.55) \\ 0.74 \ (0.20, \ 1.29) \\ -0.02 \ (-0.57, \ 0.53) \\ -0.02 \ (-0.57, \ 0.53) \\ 0.07 \ (-0.13, \ 0.28) \\ 0.20 \ (0.11, \ 0.29) \\ 0.26 \ (0.42, \ 0.51) \end{array}$	62, 2.39 (.977) 1085, 2.83 (1.2) 1235, 2.92 (1.46) 16, .785 (.426) 16, 61 (.6) 31, 10.8 (112) 144, 1.42 (1.31) 645, 8.36 (14.7) 3234	80, 2.12 (.835) 1580, 2.2 (.51) 3092, 2.4 (.907) 88, 455 (.447) 61, 62 (.5) 283, 22.9 (700) 276, 1.32 (1.37) 1425, 6.03 (9.74) 6885	1.65 28.91 41.22 0.62 0.61 1.34 4.52 21.13 100.00
White Blood Cell count (Ferrari et al. (2013) Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 72.5	mc/L) 36 36 36 5%, p = 0.026)	_			0.66 (0.09, 1.22) -0.01 (-0.22, 0.19) 0.23 (0.14, 0.33) 0.20 (0.12, 0.28)	16, 8.85 (1.44) 142, 8.08 (2.06) 656, 8.28 (2.55) 814	54, 7.77 (1.7) 277, 8.11 (2.27) 1417, 7.74 (2.17) 1748	2.15 17.02 80.83 100.00
Interleukin 6 (pg/ml) Dreyse et al. (2015) Ferrari et al. (2013) Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 0.09	28 36 36 36 %, p = 0.533)		+		-0.11 (-0.64, 0.43) -0.01 (-0.61, 0.59) 0.02 (-0.18, 0.22) 0.15 (0.06, 0.24) 0.12 (0.04, 0.20)	16, 4.49 (5.31) 13, 1.08 (.81) 143, 3.02 (9.06) 654, 7.03 (31) 826	88, 5.45 (9.54) 59, 1.09 (.9) 265, 2.74 (16.7) 1403, 4.11 (10.6) 1815	2.41 1.90 16.52 79.17 100.00
Tumor Necrosis Factor (Ferrari et al. (2013) Groenewegen et al. (2008) Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 0.09	pg/ml) 36) 12 36 36 %, p = 0.986)				-0.01 (-0.58, 0.56) -0.05 (-0.42, 0.32) 0.02 (-0.18, 0.23) -0.01 (-0.10, 0.08) -0.01 (-0.09, 0.07)	15, 4.65 (1.09) 31, 2.99 (4.11) 143, 1.85 (3.29) 655, 56.4 (294) 844	58, 4.66 (1.03) 283, 11.1 (160) 265, 1.77 (3.56) 1410, 65.4 (1134) 2016	2.05 4.82 16.01 77.11 100.00
	І -1.5	-15	0 .5 1	1.	5			

Figure 2.12: Standardised mean differences for hospitalisation using fixed-effect modelling, sensitivity analysis.

Author.(year)	Follow-up	Standardised mean difference (95% CI)	N, mean (SD); Hospitalised	N, mean (SD); Non-hospitalised	% Weight
Six-Minute Walk Distar Cano et al. (2014) Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 0.	nce (meter) 22 36 36 → 0%, p = 0.386)	-0.16 (-0.48, 0.17) -0.43 (-0.64, -0.22) -0.35 (-0.45, -0.26) -0.35 (-0.43, -0.27)	62, 226 (110) 132, 392 (109) 650, 341 (116) 844	92, 245 (119) 257, 439 (110) 1439, 383 (122) 1788	6.55 15.14 78.31 100.00
Resting heart rate (bpr Husebo et al. (2014) Jensen et al. (2013) Mullerova et al. (2015) Subtotal (I-squared = 3	n) 36 208 36 1.1%, p = 0.234)	0.18 (-0.01, 0.38) 0.16 (0.06, 0.25) 0.27 (0.18, 0.36) 0.21 (0.13, 0.29)	146, 79.6 (14.5) 586, 77.2 (13.4) 670, 80.3 (12.9) 1402	287, 76.9 (14) 1465, 75.1 (13.4) 1468, 76.9 (12.7) 3220	13.96 41.89 44.15 100.00
CRP (mg/L) Cano et al. (2014) Dahl et al. (2011)a Dahl et al. (2011)b Groenewegen et al. (2014) Husebo et al. (2015) Subtotal (I-squared = 9-	22 33 33 33 308)2 36 36 4.7%, p = 0.000)	0.30 (-0.03, 0.64) 0.73 (0.65, 0.81) 0.48 (0.41, 0.55) -0.02 (-0.39, 0.35) 0.07 (-0.13, 0.28) 0.20 (0.11, 0.29) 0.32 (0.10, 0.54)	62, 2.39 (.977) 1085, 2.83 (1.2) 1235, 2.92 (1.46) 31, 10.8 (112) 144, 1.42 (1.31) 645, 8.36 (14.7) 3202	80, 2.12 (.835) 1580, 2.2 (.51) 3092, 2.4 (.907) 283, 22.9 (700) 276, 1.32 (1.37) 1425, 6.03 (9.74) 6736	13.40 19.13 19.28 12.46 16.78 18.95 100.00
White Blood Cell coun Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 75	t (mc/L) 36 36 9.0%, p = 0.029)	-0.01 (-0.22, 0.19) 0.23 (0.14, 0.33) 0.13 (-0.11, 0.37)	142, 8.08 (2.06) 656, 8.28 (2.55) 798	277, 8.11 (2.27) 1417, 7.74 (2.17) 1694	43.15 56.85 100.00
Interleukin 6 (pg/ml) Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 2)	36 36 2.8%, p = 0.255)	0.02 (-0.18, 0.22) 0.15 (0.06, 0.24) 0.12 (0.01, 0.23)	143, 3.02 (9.06) 654, 7.03 (31) 797	265, 2.74 (16.7) 1403, 4.11 (10.6) 1668	24.73 75.27 100.00
Tumor Necrosis Factor Groenewegen et al. (200 Husebo et al. (2014) Mullerova et al. (2015) Subtotal (I-squared = 0. NOTE: Weights are from	r (pg/ml) 08)2 36 0%, p = 0.930) r (random effects analysis	-0.05 (-0.42, 0.32) 0.02 (-0.18, 0.23) -0.01 (-0.10, 0.08) -0.01 (-0.09, 0.08)	31, 2.99 (4.11) 143, 1.85 (3.29) 655, 56.4 (294) 829	283, 11.1 (160) 265, 1.77 (3.56) 1410, 65.4 (1134 1958	4.92 16.35)78.73 100.00
	-1.5 -15 0 .5 Decrease Increa	1 1.5 Ise			

Figure 2.13: Standardised mean differences for hospitalisation, sensitivity analysis. Lower quartile QUADAS-2 scores removed.

Figure 2.14: Galbraith plots for mortality.

Figure 2.15: Meta-regression six-minute walk distance and C-reactive protein, hazard ratio mortality. Bubble plot with fitted meta-regression line.

cant difference for studies with longer follow-up time, with older participants and more recently published (**Figure 2.15**, page 47).

2.3.3.5 White cell count

Only a few studies compared baseline measures with clinical outcomes over time (≥ 6 months). Several studies reported COPD patients with higher WCC levels at baseline at higher risk of clinical outcomes.^{31,42,132,192,260} However, Husebo *et al.* did not find higher baseline measures to be associated with a higher number of exacerbations during three years of follow-up.¹³³ Additionally, Grolimund *et al.* (ProHOSP, n = 469) did not find a statistically significant difference between WCC levels and mortality.¹¹² Meta-analysis indicated an association between higher levels of WCC at baseline and a higher risk of earlier death (HR 2.07 per twofold increase, 95% CI 1.29 to 3.31, p <0.01, I² = 75.3%). However, WCC levels were not associated with exacerbation (SMD 0.05, 95% CI -0.06 to 0.17, p = 0.38, I² = 18.7%) or hospitalisation (SMD 0.20, 95% CI -0.05 to 0.44, p = 0.12, I² = 72.5%). After removing studies with a quality score in the bottom tertile, HRs for mortality increased for fibrinogen (5.18 to 5.99; **Figure 2.5**, page 37).

2.3.3.6 Interleukin 6

Hurst *et al.* (ECLIPSE, n = 2138) did not find higher baseline measures to be associated with a higher number of exacerbations.¹³² Additionally, Waschki *et al.*²⁸¹ and Wedzicha *et al.*²⁸² did not find higher IL-6 baseline levels to be associated with a higher risk of mortality. Meta-analysis indicated no association between IL-6 and earlier mortality (HR 1.10 per twofold increase, 95% CI 0.92 to 1.32, p = 0.28, I² = 66.1%). Neither was there an association with exacerbation (SMD 0.06, 95% CI -0.02 to 0.15, p = 0.16, I² = 0.0%). Increased levels were, however, associated with hospitalisation (SMD 0.12, 95% CI 0.04 to 0.20, p = 0.01, I² = 0.0%).

2.3.3.7 Interleukin 8

Interleukin 8 levels and its relation with clinical outcomes in COPD is not well reported. Within the ECLIPSE study (n = 2138), Hurst *et al.*, found that IL-8 levels at baseline was not a statistically significant predictor for exacerbations after one year of follow-up.¹³² However, Celli *et al.*, who also used data from ECLIPSE (n = 1843), did find increased levels at baseline to be associated with a higher risk of mortality after three years of follow-up.⁴² Meta-analysis indicated no association between IL-8 and exacerbation (SMD 0.19, 95% CI -0.40 to 0.79, p = 0.52, I² = 83.5%).

2.3.3.8 Tumour necrosis factor-alpha

Celli *et al.* (ECLIPSE, n = 1843) did not find a statistically significant difference between those who died after three years of follow-up and those still alive.⁴² Hurst *et al.* (ECLIPSE, n = 2138) reported similar findings for exacerbations after one year of follow-up.¹³² Additionally, Groenewegen *et al.* reported no statistically significant difference between the baseline TNF- α measure and clinical outcomes in the COSMIC cohort (n = 277), after one year of followup.¹¹¹ Meta-analysis indicated no associations between elevated levels of TNF- α and the risk of earlier death (HR 0.94 per twofold increase, 95% CI 0.88 to 1.01, p = 0.07, I² = 0.0%), nor for exacerbation (SMD 0.04, 95% CI -0.17 to 0.25, p = 0.71, I² = 62.4%), or hospitalisation (SMD -0.01, 95% CI -0.09 to 0.07, p = 0.88, I² = 0.0%).

2.3.3.9 Quadriceps maximum voluntary contraction

In recent years there has been an increasing interest in examining the predictive value of functional activities of the musculoskeletal system. The quadriceps muscle is of particular interest, being assessed using QMVC as a surrogate marker. However, only two studies assessing the same cohort of patients have assessed QMVC in relation to clinical outcomes, where quadriceps muscle function of 184 COPD patients using QMVC was found to be a good predictor of mortality after four years of follow-up (HR 0.88, 95% CI 0.77 to 1.00) with higher levels reducing risk.^{188,259}

2.3.3.10 Sniff nasal inspiratory pressure

Moore *et al.* reported a statistically significant association between baseline SNIP and mortality (HR 0.73 per 10 cmH₂O, 95% CI 0.63 to 0.84, C = 0.68) and suggest that, compared to pulmonary plethysmographs, a test commonly performed to measure functional residual capacity, SNIP is recommended because of its low cost and efficiency.¹⁸⁸

No studies included in our systematic review reported associations with SPPB, PWV, CIMT, and AIx.

2.3.4 Publication bias

Publication bias was present in most biomarkers for all outcome measures, indicated through asymmetrical funnel plots (**Figure 2.16**, page 51). Larger studies appear in the top of the graphs with outliers near the bottom. Bias seemed to primarily occur due to the poor quality of small studies, which deviated most from the other studies. As indicated, the smaller studies have the tendency to show larger differences between those with the event compared to those without. Removal of studies that fell outside of the funnel plot did not alter findings.

Figure 2.16: Funnel plots for mortality. A = six-minute walk distance. B = resting heart rate. C = fibrinogen. D = C-reactive protein. E = white cell count. F = interleukin-6. G = tumour necrosis factor-alpha

2.4 Discussion

This study systematically summarises and examines the association between multiple outcomes and biomarkers that may potentially better capture systemic problems in COPD patients and are not yet widely utilised in clinical practice. Our main findings indicate that stable COPD patients had higher risks of premature death if they had a shorter walking distance, and higher resting heart rate, fibrinogen, CRP and WCC at baseline, when followed-up over a period of at least six months. Only a shorter walking distance, and higher fibrinogen and CRP levels indicated a higher risk of COPD exacerbation. The risk for COPD-related hospital admission was higher with a shorter walking distance, and higher resting heart rate and CRP and IL-6 levels.

No studies evaluating SPPB, CIMT, PWV, and AIx were included in our systematic review. However, a small number of publications have assessed these in relation to clinical outcomes in COPD (which did not meet our selection criteria). Based on a meta-analysis of seventeen studies, mainly in the general population, a SPPB score <10 (range 0-12) was found to be predictive of all-cause mortality.²¹⁶ The gait speed, one of SPPBs components, was also found to predict hospital readmission in elderly COPD patients.¹⁴⁸ The non-invasive CIMT and its role in clinical outcomes in COPD patients has not been largely investigated. However, it has been shown that patients with COPD, in particular smokers, are at higher risk of an elevated CIMT due to atherosclerotic plaque formation and developing arterial stiffness as a result of hypoxaemia.^{49,94,135} Other studies found associations with PWV²¹³ and AIx.¹⁸¹ We have identified gaps in the literature that need to be examined in order to address these research questions, and while the recommendation for clinical utility differs slightly, the evidence across the studies suggest that the use of musculoskeletal measures to assess outcomes in COPD patients are worth further investigation.

This review has some potential limitations. By focussing on stable (i.e. non-hospitalised) patients, our results may not be generalisable to unstable COPD patients. Additionally, study

heterogeneity exists due to differences between studies in definitions of stable COPD, the duration of stability prior to study enrolment, patient selection criteria, length of follow-up, and outcome definitions. We aimed to address this by using random effects modelling, using SMDs (which are robust to varying lengths of follow-up¹¹⁴), and sensitivity analysis. We did not have access to individual patient data, which would allow us to model time-to-event data, adjust for a common set of confounders and estimate the discriminative ability of the biomarkers. Where possible, HRs are presented with adjustment for age, sex, BMI, and smoking status. Ideally studies should be adjusted for disease severity (i.e. FEV_1) and comorbidities like hypertension and diabetes.¹⁸⁰ And even so, continuous variables such as FEV_1 might not have been linear in the included studies and should have been transformed appropriately. Fitting a linear model to nonlinear data may result in biased estimates. Other potential sources of bias include e.g. history of sleep apnoea, number of previous hospital admissions prior study enrolment, and years of COPD. Also, most studies included had short follow-up times of about six months. Selecting a longer follow-up period, for example of a year, as a cut-off point would result in too few studies being included. Simultaneously, while over a too long time period or time, the predictive value of a biomarker would diminish.

Future investigation should focus on evaluating and validating the predictive ability of COPD biomarkers, preferably in large studies with longer follow-up time. Emphasis should be placed on ensuring biomarkers are generalisable (i.e. more diversity in ethnicity and comorbidities) and practical for clinical use. Tests such as the 6MW distance are not well adopted for clinical practice as they require time and space.²³ Future research could focus on the validation of fast and simple tests such as the SPPB or its components. These are easier and faster to conduct, require less space, and patients are less likely to require oxygen. Newly developed risk models could help monitor clinically diagnosed COPD patients in an early stage of disease to identify patients at high risk for mortality, exacerbation, and hospitalisation. Some work is already underway, with the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD) study group developing a debility score aiming to identify COPD patients with debility, i.e. extreme breath-

lessness, decreased exercise capacity, and poor health status.⁵⁴ Additionally, the <u>E</u>valuation of the <u>R</u>ole of <u>Inflammation in Chronic Airways disease</u> (ERICA) study cohort could help provide answers to these questions aiming to fill the biomarker gap.

2.5 Conclusions

These findings suggest that 6MW distance, resting heart rate, fibrinogen, CRP, WCC, and IL-6 are associated with clinical outcomes in COPD. The review process elicited very few studies that examined the association between musculoskeletal measures (e.g. SPPB and QMVC) and COPD. While the recommendation for clinical utility differs slightly, the evidence across the studies suggest these are worth further investigation.

3

Evaluating the Role of Inflammation in Chronic Airways disease (ERICA) study

Chapter summary This chapter describes the Evaluating the Role of Inflammation in Chronic Airways disease (ERICA) study, a multi-centre non-interventional epidemiological observational study of individuals clinically diagnosed with chronic obstructive pulmonary disease (COPD). Baseline values of key variables are compared by recruitment site and sex using standard non-parametric statistics. Missing data are described. Partial correlations are used to examine the relationships between variables. Hospital episode statistics and causes of death are briefly described. In total, 714 individuals were included in the analysis. Most individuals had GOLD (Global initiative for chronic Obstructive Lung Disease) stage II. There were noticeable differences in most baseline variables such as age, resting heart rate and walking distance between recruitment sites and sexes. Individuals at Cardiff had worse scores for most baseline variables compared to other sites, for example, they scored lower on the musculoskeletal measures, had worse arterial stiffness, and higher COPD impact scores. For most variables (e.g. age, forced expiratory volume in one second, and walking distance) there were significant differences between sexes but not lung function, body mass index, and inflammatory markers. Most primary hospital admissions related to pulmonary- and cardiac disease. A majority of deaths were attributed to pulmonary disease. Compared to other COPD cohorts, the ERICA study has a relatively small sample size but is unique in terms of data density, including measures of cardiovascular and musculoskeletal function in addition to lung function, medical- and family history, and biochemical measures.

3.1 Background

The Evaluating the Role of Inflammation in Chronic Airways disease (ERICA) study is a multicentre observational, non-interventional, epidemiological cohort study, with a sample size of 734 individuals diagnosed with chronic obstructive pulmonary disease (COPD), established to identify cardiovascular (CV) and musculoskeletal biomarkers that could be targeted to improve the outcomes of COPD patients. It is a unique dataset that contains numerous biomarkers and demographic data measured longitudinally on patients diagnosed with COPD. The data collection is tied to capture events and changes related to respiratory, musculoskeletal and CV function including changes in therapy allowing to investigate the prevalence and significance of CV and musculoskeletal manifestations of COPD. Five UK centres with an interest in COPD undertook this study: Cambridge (n = 90), Edinburgh (n = 102), Cardiff (n = 374), Nottingham (n = 107) and London (n = 61). The ERICA study is part of a consortium based on a partnership between academia and industry. The consortium includes additional cohort studies ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points)²⁷⁰ and ARCADE (Assessment of Risk in Chronic Airways Disease Evaluation).¹⁰¹

Key variables captured in the ERICA study relate to musculoskeletal and CV function. Musculoskeletal measures of particular interest are the short physical performance battery (SPPB) and its components four-metre gait speed (4MGS), balance and chair stand. Others include quadriceps maximum voluntary contraction (QMVC), six-minute walk (6MW) distance, and sniff nasal inspiratory pressure (SNIP). Key CV function measures include arterial pulse wave velocity (PWV), carotid-intima media thickness (CIMT), and augmentation index (AIx). These measures are not yet widely used in clinical practice but may potentially better capture systemic problems in COPD than conventional measures, and the occurrence of clinical outcomes (i.e. COPD exacerbations, hospital admission, mortality) within a COPD population.

The aim of this chapter was to describe the ERICA cohort, baseline values of key variables captured and differences between recruitment sites and sex, and to examine any missing data and relationships between variables of interest.

3.2 Methods

3.2.1 Study details of the ERICA study

The patient population includes adults aged >40 years with a clinical diagnosis of COPD, postbronchodilator spirometry forced expiratory volume in one second (FEV₁/ forced vital capacity (FVC) ratio <0.7 and FEV₁ \leq 80% of predicted normal, current or ex-smoker with a smoking history of at least ten pack years, and who were clinically stable for more than four weeks from any exacerbation requiring treatment with oral steroids or antibiotics or hospitalisation were eligible.¹⁸⁴ Patients with the inability to provide written informed consent, a known diagnosis of α 1-anti-trypsin deficiency, known neurological or skeletal muscle disease, pregnancy, and ongoing participation in a trial of an experimental drug were excluded from the ERICA study. Individuals were prospectively recruited either from existing databases, through clinicians at outpatient COPD clinics, or by advertisements at one of the study sites. In Cardiff, individuals were selected from the ARCADE study – a CV screening cohort – who consented for the ERICA study. At the other sites patients were recruited opportunistically from COPD clinics.

Clinical measures, blood samples, medical history, and questionnaire data were collected

starting December 2011 and individuals were followed-up every six months for up to 30 months via postal or telephone questionnaire, or until death. Standard operating procedures were developed to standardise measurements between the different study sites. For blood biomarkers, up to 50 ml of blood was drawn and analysed at the local National Health Services biochemical and haematological laboratory. Full details of the study protocol, including standardisation procedures, have been provided elsewhere,¹⁸⁴ and are available on ericacopd.org (created by J.M. Fermont). The study was registered with the UK Clinical Trials Gateway. See **Appendix C** for the ERICA study protocol, and **Appendix D** for a detailed data dictionary (created by J.M. Fermont).

Fibrinogen and neutrophil levels, amongst other parameters such as high-sensitivity Creactive protein (CRP) and lipid profiles, were measured for all ERICA study participants via withdrawing up to 50 ml venous blood. Arterial stiffness was measured via aortic PWV, AIx, and central blood pressure using the non-invasive SphygmoCor system.²⁸⁶ During each cardiac cycle mean arterial pressure indicated average blood pressure. The highest pressure on the cardiac system was indicated by the systolic blood pressure. The CIMT was measured on both sides of the neck through imaging using ultrasound (triggered R-wave) with a linear probe 7-12 MHz and three electrocardiogram electrodes. Patients lied down and rested five minutes before scanning but were seated for examination. Quadriceps maximum voluntary contraction was measured using the technique described by Edwards *et al.* where the best effort of six contractions was recorded.⁸⁵ The 6MW distance was recorded as the distance walked by the patient as quickly as possible for six minutes.¹⁴ Body mass index (BMI) was estimated through bodyweight and height, and categorised according to the World Health Organization.²⁹¹ Exacerbation history, one year preceding the study, was defined as self-reported antibiotics and/or steroids use in the last twelve months. Disease severity was defined according to Global initiative for chronic Obstructive Lung Disease (GOLD) classification.¹⁰⁷ The SPPB has a range of 0-12 points and its three subtests score 0-4. Total SPPB score is the sum of points of each component. Functional limitation was defined by a SPPB cut-off score of $<10.^{20,216}$ In addition, the SPPB was categorised in groups <3 vs. 3-11 vs. 12.²¹⁴ The COPD assessment test (CAT) was categorised in groups <10 (low), 10-20 (medium, 21-30 (high) and >30 (very high).¹⁰⁵ Total St. George's Respiratory Questionnaire for COPD (SGRQ-C) score, consisting of a symptoms, activity, and impact component, was estimated using the item-weighted algorithm provided by Jones.¹⁴² Both questionnaires reflect on the impact of COPD on activities of daily living with higher scores indicating increasing limitations. Self-reported comorbidities at baseline were elicited with, for example, the questions "Have you ever required antibiotics for your chest?", and "If yes, how many courses of steroids have you required in the last 12 months?".

3.2.2 Outcome measures

Clinical data from the ERICA study were linked with mortality data obtained from the UK Office for National Statistics (ONS) and hospital episode statistics (HES) obtained from the National Health Services (NHS) Digital, NHS Scotland and NHS Wales. Applications for data linkage were prepared by J.M. Fermont and submitted March 2016. Data were received November 2017. The following information was used for data linkage purposes only: NHS number, date of birth, postcode, forename and surname. Causes of death were categorised by CV and respiratory physicians according to descriptions provided on death certificates (**Appendix E**).

3.2.3 Missing values in baseline characteristics

Some individuals had missing values for various baseline characteristics (**Table 3.1**, page 65). These were examined to assess the level and type of missing data, the missing data patterns and other basic descriptive statistics. Extreme values were examined individually. Based on thresholds determined by a clinician part of the ERICA consortium, unusual values were removed: glucose (n = 20), glycated haemoglobin (HbA1c; n = 9), glomerular filtration rate (GFR; n = 27), fibrinogen (n = 4), white cell count (WCC; n = 1), haemoglobin (n = 2), neutrophils (n = 1), total cholesterol (n = 1), low-density lipoprotein (LDL; n = 18), and CIMT (n = 1).

3.2.4 Statistical analysis

Demographics were described using number and percentage for categorical variables such as Medical Research Council (MRC) dyspnoea score and GOLD stage,¹⁰⁷ and the median with interquartile range (IQR) for continuous variables such as age and BMI. Categorical data were analysed using chi-square tests, unless e.g. the expected cell frequency condition fails, in which case the Fisher's exact test was used. Continuous and ordinal data were analysed using the Wilcoxon-Mann-Whitney test and Kruskal-Wallis test. Associations between the clinical measures were quantified using partial Spearman's rank correlations adjusted for age, sex, FEV₁, and recruitment site. Values <0.30 were considered weak, 0.30-0.50 as moderate, and >0.50 as strong.⁵¹ The maximum number of independent variables to be included in the models was determined by the number of events. According to Van Belle's statistical rules of thumb approximately ten events per variable are required to obtain reliable regression coefficient estimates.²⁶⁶

All tests were two-sided and of statistical significance at an alpha level of 0.05. Analyses were performed using *STATA* version 13.0 (College Station, Texas) and R (R Foundation). Patient demographics and group comparisons are displayed in figures and tabular form.

3.2.5 Patients/ consent and permission to publish

Ethics approval and written informed patient consent was obtained in writing from all study participants and permits the processing and publishing of all data included in this dissertation. Each patient has been allocated a unique study number. Ethics approval was granted by the National Research Ethics Service Committee East of England - Cambridge South and registered under reference 11/EE/0357. The ERICA study was funded by the Technology Strategy Board and the Medical Research Council.

3.3 Findings

3.3.1 Missing data

In total, there was <10% missing values with most for CIMT, followed by PWV, 6MW distance, QMVC and SNIP. The majority of missing values for CIMT were present in London, for PWV in Nottingham, and for 6MW in Cambridge. Most of the missing values related to a single variable, for example, 46 (6%) had missing values for CIMT only. These were likely to be missing due to the difficulty of obtaining high quality images. Eleven individuals (2%) had missing values for both CIMT and PWV. Only four individuals had missing values for CIMT, PWV, 6MW and QMVC (Figures 3.1 3.2, pages 61-62).

Figure 3.1: Missing values displayed by total and recruitment site. CIMT = carotid intima-media thickness. Abbreviations: PWV, pulse wave velocity. 6MW, six-minute walk. QMVC, quadriceps maximum voluntary contraction. SNIP, sniff nasal inspiratory pressure. AIx, augmentation index. SPPB, short physical performance battery. BMI, body mass index. MRC, Medical Research Council dyspnoea. FEV₁, forced expiratory volume in one second.

It is unlikely these values are missing completely at random. For example, plots suggest that missing values in walking distances are not missing completely at random: walking distance seemed to be missing for those with (A) lower QMVC, (B) higher BMI, (C) worse MRC dyspnoea

Figure 3.2: Percentage and pattern of missing values in key baseline characteristics. Abbreviations: QMVC, quadriceps maximum voluntary contraction. *Abbreviations*: 6MW, six-minute walk. PWV, pulse wave velocity. CIMT, carotid-intima media thickness.

scores, and (D) worse FEV_1 (Figure 3.3, page 63).

3.3.2 Descriptive statistics

Of the 734 individuals entered into the study, 729 met study inclusion criteria of whom 714 were able to be linked with NHS and ONS for hospital admission and survival status (**Figure 3.4**, page 64). Most individuals were recruited in Cardiff (n = 370). In total, 434 (61%) were male with a median baseline age of 67 years (range 43-89 years), median (IQR) BMI of 26.6 kg/m² (23.3 - 31.1) with two-thirds above normal bodyweight (**Table 3.1**, page 65, and **Figures 3.5 3.6**, pages 67-67). Cambridge and Nottingham had a significantly higher number of males compared to other sites, with Cardiff the least (p <0.001). Overall, the median age was lowest in London (p = 0.027) but with the largest difference in median age by sex (p = 0.019). Body mass index was highest in London (23 kg/m²) and lowest in Cardiff (28 kg/m²; p <0.001), whereas Nottingham had the highest difference in BMI between sexes (p = 0.018).

Figure 3.3: Missing data patterns. Margin plots in blue indicate the distribution of observed data given the other variable is observed. Red box plots indicate data distribution of the observed data given the other variable is missing. *Abbreviations*: BMI, body mass index. 6MW, six-minute walk. FEV₁, forced expiratory volume in one second. QMVC, quadriceps maximum voluntary contraction. SNIP, sniff nasal inspiratory pressure.

Figure 3.4: Participant enrolment flow diagram. *Abbreviations*: $FEV_1 =$ forced expiratory volume one second. FVC =forced vital capacity. ONS, Office for National Statistics. HES, hospital episode statistics. NHS = National Health Services.

¶Missing baseline data: body mass index (n = 7), smoking status (n = 4), Medical Research Council dyspnoea score (n = 5), six-minute walk distance (n = 34), short physical performance battery (n = 8), quadriceps maximum voluntary contraction (n = 27), sniff nasal inspiratory pressure (n = 26).

Characteristic	Total	N (%)	Se Female (n =	ex Male (n =	Cambrid <i>o</i> e (n	Edinhurøh (n	Recruitment site Cardiff (n =	Nottingham	London (n =
			280)	434)	= 86)	= 97	370)	(n=102)	59)
Description Age (years) Sex - male, n (%) BMI (kg/m ²)	$\begin{array}{c} 67 \ (62\text{-}73) \\ 434 \ (61) \\ 27 \ (23\text{-}31) \end{array}$	714 (100) 714 (100) 707 (99)	66 (62-72) - 27 (23-31)	68 (63-74) - 27 (24-31)	$\begin{array}{c} 69 & (65-74) \\ 67 & (78) \\ 26 & (23-30) \end{array}$	$\begin{array}{c} 69 & (64\text{-}75) \\ 57 & (59) \\ 26 & (23\text{-}29) \end{array}$	$\begin{array}{c} 67 \ (62\mathchar`73) \\ 197 \ (53) \\ 28 \ (24\mathchar`32) \end{array}$	68 (62-72) 73 (72) 27 (22-31)	65 (60-72) 40 (68) 23 (20-27)
Lung function FEV ₁ (litre) FEV ₁ % predicted Smoking status -	$\begin{array}{c} 1.3 \ (0.9\text{-}1.7) \\ 53 \ (40\text{-}65) \\ 218 \ (31) \end{array}$	$712 (100) \\ 712 (100) \\ 710 (99)$	$\begin{array}{c} 1.0 \ (0.8{\text -}1.3) \\ 55 \ (43{\text -}65) \\ 93 \ (33) \end{array}$	$\begin{array}{c} 1.5 \ (1.1\text{-}2.0) \\ 52 \ (39\text{-}65) \\ 125 \ (29) \end{array}$	$\begin{array}{c} 1.3 \ (1.0\text{-}1.8) \\ 53 \ (35\text{-}61) \\ 14 \ (16) \end{array}$	$\begin{array}{c} 1.3 \ (1.0\text{-}1.7) \\ 53 \ (41\text{-}66) \\ 31 \ (32) \end{array}$	$\begin{array}{c} 1.2 \ (0.9\text{-}1.6) \\ 54 \ (42\text{-}66) \\ 137 \ (37) \end{array}$	$\begin{array}{c} 1.5 \ (1.1\text{-}1.8) \\ 54 \ (44\text{-}63) \\ 29 \ (29) \end{array}$	$\begin{array}{c} 1.0 \ (0.7\text{-}1.5) \\ 40 \ (27\text{-}60) \\ 7 \ (12) \end{array}$
current, n (%) MRC dyspnoea	646(91)	(66) 602	261 (94)	385 (89)	75 (88)	92 (95)	345(94)	81 (80)	53 (93)
score, ≥2, n (%) GOLD - stage IV, n	62 (6)	713 (100)	14(5)	53 (12)	12 (14)	3 (3)	28 (8)	5(5)	19 (32)
(%) Exacerbation his-	473 (67)	(66) 602	212 (77)	261 (60)	60 (71)	64 (66)	242 (65)	68 (67)	39 (68)
tory (1 year), ≥ 1 Productive cough -	327 (46)	708 (99)	128 (46)	199 (46)	30(35)	37 (38)	177 (48)	56(55)	27 (47)
yes, n (%) Biochemical									
measures Glucose (mmol/L) Fibrinogen (g/dL) CRP (mg/L) WCC (mcL) GFR (mL/min/1.73	$\begin{array}{c} 4.9 & (4.5 - 5.4) \\ 3.4 & (2.9 - 3.9) \\ 3.4 & (1.6 - 7.5) \\ 7.1 & (6.0 - 8.6) \\ 87.2 & (76.5 - 6) \end{array}$	687 (96) 700 (98) 696 (97) 704 (99) 679 (95)	$\begin{array}{c} 4.9 & (4.5 \hbox{-} 5.4) \\ 3.4 & (3.0 \hbox{-} 3.9) \\ 3.3 & (1.5 \hbox{-} 7.7) \\ 7.1 & (5.8 \hbox{-} 8.5) \\ 86.0 & (77.2 \hbox{-} 86.0) \end{array}$	$\begin{array}{l} 4.9 \ (4.5 - 5.3) \\ 3.3 \ (2.9 - 4.0) \\ 3.4 \ (1.7 - 7.2) \\ 7.2 \ (6.2 - 8.6) \\ 89.3 \ (75.4 - 8.6) \end{array}$	$\begin{array}{l} 4.7 \ (4.4 \hbox{-} 5.2) \\ 3.1 \ (2.8 \hbox{-} 3.4) \\ 3.0 \ (1.5 \hbox{-} 6.3) \\ 7.0 \ (6.0 \hbox{-} 8.2) \\ 77.6 \ \ (63.6 \hbox{-} 6.3) \end{array}$	$\begin{array}{c} 4.9 & (4.6 5.3) \\ 3.5 & (3.0 3.8) \\ 4.1 & (2.0 9.1) \\ 7.4 & (6.2 8.9) \\ 90.2 & (77.8 8.9) \end{array}$	$\begin{array}{c} 4.9 & (4.6\text{-}5.4) \\ 3.4 & (2.9\text{-}4.0) \\ 3.3 & (1.6\text{-}7.7) \\ 7.1 & (6.0\text{-}8.5) \\ 91.7 & (80.7\text{-}) \end{array}$	$\begin{array}{c} 5.1 & (4.7 - 5.5) \\ 3.5 & (3.1 - 4.2) \\ 3.3 & (1.4 - 7.8) \\ 7.5 & (6.1 - 9.3) \\ 78.6 & (70.1 - 78.6) \end{array}$	$\begin{array}{c} 4.7 \ (4.3-5.1) \\ 3.5 \ (3.0-3.9) \\ 4.0 \ (1.0-7.0) \\ 7.1 \ (6.3-9.0) \\ 98.6 \ \ (81.4- \end{array}$
m ²) Neutrophils (mm ³) Haemoglobin	$\begin{array}{c} 101.0) \\ 4.5 \ (3.6-5.6) \\ 14.3 \ (13.4 \ - \end{array}$	701 (98) 703 (98)	$\begin{array}{c} 96.1 \\ 4.3 \ (3.4\text{-}5.6) \\ 13.8 \ \ (12.9\text{-} \end{array}$	$104.4) \\ 4.5 (3.7-5.6) \\ 14.7 (13.8-$	$\begin{array}{c} 90.2) \\ 4.5 \ (3.8 5.5) \\ 14.4 \ \ (13.5 \end{array}) \end{array}$	$\begin{array}{c} 100.3)\\ 4.7\ (3.8\text{-}5.8)\\ 14.7\ (13.8\text{-}\end{array}$	$\begin{array}{c} 103.7 \\ 4.3 \ (3.5\text{-}5.4) \\ 14.1 \ (13.05\text{-} \end{array}$	88.2) 4.8 (3.6-5.8) 14.8 (13.8-	$113.5) \\ 4.4 (3.4-5.9) \\ 14.3 (13.5-$
(g/dL) HbA1c (mmol/mol) HDL (mmol/L) Total cholesterol	$\begin{array}{c} 15.3) \\ 41 \ (38-45) \\ 1.4 \ (1.2-1.7) \\ 5.0 \ (4.3-5.8) \end{array}$	692 (97) 706 (99) 705 (99)	$\begin{array}{c} 14.5 \\ 41 \ (38-46) \\ 1.5 \ (1.3-1.8) \\ 5.4 \ (4.7-6.1) \end{array}$	$15.6) \\41 (38-44) \\1.3 (1.1-1.6) \\4.8 (4.2-5.6)$	$\begin{array}{c} 15.0) \\ 42 & (39-45) \\ 1.5 & (1.2-1.9) \\ 5.1 & (4.2-5.9) \end{array}$	$\begin{array}{c} 15.5 \\ 40 & (37-43) \\ 1.4 & (1.1-1.6) \\ 5.0 & (4.4-5.7) \end{array}$	$\begin{array}{c} 15.2 \\ 42 & (40-46) \\ 1.3 & (1.1-1.6) \\ 5.0 & (4.3-5.9) \end{array}$	$\begin{array}{c} 15.9)\\ 39 \ (37\text{-}41)\\ 1.6 \ (1.3\text{-}2.1)\\ 5.05 \ (4.4\text{-}5.9) \end{array}$	$\begin{array}{c} 15.0) \\ 41 & (39-43) \\ 1.5 & (1.3-1.8) \\ 4.9 & (4.3-5.6) \end{array}$
(mmol/L)									

Table 3.1: Baseline variables, by recruitment site.

			S	ex			Recruitment site		
Characteristic	Total	N (%)	Female (n $=$	Male (n =	Cambridge (n	Edinburgh (n	Cardiff (n =	Nottingham	${\rm London}~({\rm n}~=~$
			280)	434)	= 86)	= 97)	370)	(n = 102)	59)
Cardiovascular									
status									
Heart rate (bpm)	74 (66-82)	702(98)	76 (68-83)	73 (65-82)	74 (67-83)	72(64-79)	73 (66-81)	78 (67-86)	79 (68-87)
SBP (mmHg) Arterial stiffness	142(131-154)	706(99)	140 (129-154)	143(132-155)	143 (131-154)	139 (125 - 148)	144 (133 - 157)	141(131-157)	$136\ (128-145)$
CIMT (mm)	0.81 (0.71-	648(91)	0.79 (0.69-	0.82 (0.72-	0.76 (0.69-	0.82 (0.72-	0.83 (0.74-	0.82 (0.66-	0.74 (0.62-
PWV (m/sec)	$\begin{array}{c} 0.96 \\ 9.8 \ (8.4\text{-}11.8) \end{array}$	654 (92)	0.94) 9.5 (8.2-11.2)	0.97) 10.1 (8.5-	0.86) 10.1 (8.5-	0.96) 9.8 (8.9-12.3)	0.96) 9.9 (8.5-11.8)	0.96) 8.9 (6.9-10.5)	0.91) 10.1 (8.2-
Alx (%) Musculoskeletal	28 (20-34)	(88)	31 (25-37)	$\begin{array}{c} 12.1)\\ 25 \ (18\text{-}32)\end{array}$	11.9 27 (19-30)	29 (22 - 36)	28 (21-35)	27 (20-32)	12.0) 24 (17-33)
measures 6MW distance (me-	$366\ (255-440)$	680 (95)	340 (240-420)	383 (275-457)	420 (300-498)	$399\ (298-480)$	$346\ (220-420)$	$363 \ (255-436)$	423 (302-480)
tre)									
SPPB score $(0-12)$	10(8-11)	706(99)	9 (7-11)	11 (9-12)	11 (10-12)	11 (9-11)	9(7-11)	11 (9-12)	11 (10-12)
- 4MGS (0-4)	4(3-4)	(66) 602	4(3-4)	4(4-4)	4(4-4)	4 (4-4)	4(3-4)	4 (4-4)	4(4-4)
- Balance $(0-4)$	4(4-4)	711 (100)	4(3-4)	4(4-4)	4(4-4)	4(4-4)	4(3-4)	4(4-4)	4(4-4)
- Chair stand (0-4)	3(1-4)	(66) 202	2(1-4)	3(1-4)	3(2-4)	3(2-4)	2(1-3)	3(1-4)	3(2-4)
QMVC peak (kg)	30(22-39)	(96)	22(18-28)	35(28-43)	31 (26-40)	30(24-38)	28(20-37)	33 (25-42)	31 (23-36)
SNIP (cm H ₂ O) Questionnaires	53(38-70)	(96)	46(33-61)	58 (42-77)	65(45-81)	70 (59-83)	44(32-58)	66(51-81)	51(39-67)
SGRQ-C (0-100)	51 ((34-66)	692 (97)	53(37-70)	50(32-64)	42(29-58)	48(32-60)	55(37-71)	50(32-63)	50(36-63)
CAT (0-40)	20(13-26)	702 (98)	21 (15-27)	19(13-25)	16(12-22)	19(13-25)	21 (15-27)	20(14-25)	18(12-24)
Diabetes - yes	82(12)	(66) (60)	30(11)	52(12)	14(16)	5(5)	51(14)	10(10)	2(4)
CVD drugs - yes	402(56)	714 (100)	155 (55)	247(57)	41 (48)	59(61)	233~(63)	47(46)	22(37)
Values are giv	en as the media	an and interqua	rtile range (IQR), or No. of case	ss (%). Baseline	data of 714 pat	tients were inclu	ided. Diabetes a	nd the
use of CVD d	rugs were self-re	eported. Abbrev	iations: BMI, b	ody mass index.	FEV_1 , forced e	expiratory volur	ne in one second	1. MRC, Medice	l
Research Cou filtration rate	ncil. GOLD, glo HbA1c_slvrat	obal initiative fo	n obstructive lu HDL high-de	ng disease. CRI seity linonrotein	, C-reactive pro	blood pressure	uite cell count. (CIMT carotid	JFR, glomerula intima-media	
thickness. PW	V, pulse wave	velocity. AIx, a	ugmentation inc	lex. 6MW, six-n	ninute walk. SP	PB, short physi	cal performance	measure. 4MG	S,
four-metre ga	it speed. QMVC	C, quadriceps m	aximum volunta	ury contraction.	SNIP, sniff nas:	al inspiratory pr	essure. SGRQ-0	C, St. George	
respiratory qu	estionnaire for	CUPD. CAL, C	UPD assessmer	it test. CVD, ca	rdiovascular dis	ease.			

Figure 3.5: Histograms displaying the distribution of age, by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.6: Histograms displaying the distribution of body mass index, by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

3.3.3 Lung function measures

All individuals were ex-smokers with at least ten pack years of smoking by default with 218 (31%) current smokers, and 406 (57%) were identified as GOLD stage II equating to a median (IQR) FEV₁ of 1.3 (0.9-1.7) litre. About 46% (n = 327) had self-reported productive cough – mucus or phlegm – on most mornings. The median number of self-reported exacerbations of COPD one year before study enrolment was 1 (0-3; **Table 3.1**, page 65, and **Figures 3.7 3.8**, pages 68-69). Individuals from London had a significantly lower FEV₁ % predicted compared to the other sites (p <0.001). Edinburgh had a significant higher number of women with an exacerbation history than men (p = 0.004).

Figure 3.7: Histograms displaying the distribution of forced expiratory volume in one-second (FEV₁) percentage predicted, by sex and recruitment site. Dashed lines indicate median values by sex.

3.3.4 Biochemical measures

The median (IQR) levels of circulating inflammatory markers were 3.4 (2.9 - 3.9) g/dL for fibrinogen and 3.4 (1.6 - 7.5) mg/L for C-reactive protein (CRP). Median white cell count (WCC; i.e. leukocytes) was 7.1 (6.0 - 8.6) mcL. Neutrophils were 1.4 (1.2 - 1.7) mmol/L. There

Figure 3.8: Histograms displaying the distribution of exacerbation history, one year before study enrolment, by sex and recruitment site. Dashed lines indicate median values by sex.

was a significant difference in fibrinogen levels between sites with the lowest in Cambridge (3.1; p = 0.001) but not for other inflammatory markers CRP (p = 0.470), WCC (p = 0.305), and neutrophils (p = 0.136; Table 3.1, page 65, and Figures 3.9 3.10 3.11 3.12, pages 70-71).

Median haemoglobin levels were 14.3 (13.4 - 15.3) g/L, 41 (38 - 45) mmol/mol for HbA1c and 4.9 (4.5 - 5.4) mmol/L for glucose. Haemoglobin levels were higher for men than for women (p <0.001). Median GFR values were 87 (76 - 101) mL/min/1.73 m². Glomerular filtration rates decreased with advancing age (p <0.001; **Table 3.1**, page 65, and **Figures 3.13 3.14 3.15**, pages 72-73).

Individuals from Cardiff had the lowest high-density lipoprotein (HDL) levels (1.3; p <0.001). Median HDL levels were 1.4 (1.2 - 1.7) mmol/L, with higher levels indicating a lower risk of heart disease. Median total cholesterol levels were 5.0 (4.3 - 5.8) mmol/L (**Table 3.1**, page 65, and **Figures 3.16 3.17**, pages 73-74).

Figure 3.9: Histograms displaying the distribution of fibrinogen by sex and recruitment site. Dashed lines indicate median values by sex.

Figure 3.10: Histograms displaying the distribution of C-reactive protein by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.11: Histograms displaying the distribution of white cell count by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.12: Histograms displaying the distribution of neutrophil count by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.13: Histograms displaying the distribution of glucose level by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.14: Histograms displaying the distribution of haemoglobin by sex and recruitment site. Dashed lines indicate median values by sex.

Figure 3.15: Histograms displaying the distribution of glycated haemoglobin by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.16: Histograms displaying the distribution of high-density lipoprotein levels by sex and recruitment site. Dashed lines indicate median values by sex.

Figure 3.17: Histograms displaying the distribution of total cholesterol levels by sex and recruitment site. Dashed lines indicate median values by sex.

3.3.5 Musculoskeletal measures

The median (IQR) 6MW distance was 366 (255 - 440) metres, with shortest distances in Nottingham and longest in London (p <0.001). Men completed longer walking distances than women (p <0.001). More than 40% (n = 292) had functional limitation with a median total SPPB score of 10 (8 - 11), and SPPB components 4MGS 4 (3 - 4), balance 4 (4 - 4), and chair stand 3 (1 - 4) points. Men scored two median points higher than women (p <0.001; **Table 3.1**, page 65, and **Figures 3.18 3.19**, pages 75-75).

Median values of peak quadriceps contraction were 30 (22 - 39) kg. Scores were the lowest for those in Cardiff (28 kg) and highest in Nottingham (33 kg; p <0.001). Males had a median additional 13 kg of quadriceps strength compared to females (p <0.001). The sniff nasal inspiratory pressure had a median score of 53 (38 - 70) cm H₂O. Women, and generally those in Cardiff had significantly lower median SNIP scores compared to men and other sites respectively (p <0.001, p <0.001; **Table 3.1**, page 65, and **Figures 3.20 3.21**, pages 76-76).

Figure 3.18: Histograms displaying the distribution of six-minute walk distance by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.19: Histograms displaying the distribution of the short physical performance battery by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.20: Histograms displaying the distribution of quadriceps maximum voluntary contraction by sex and recruitment site. Dashed lines indicate median values by sex.

Figure 3.21: Histograms displaying the distribution of sniff nasal inspiratory pressure by sex and recruitment site. Dashed lines indicate median values by sex.

3.3.6 Cardiovascular measures

The median (IQR) resting heart rate was 74 (66-82) beats per minute, with about a third (n = 217) of the cohort a resting heart rate too high. Edinburgh (72 bpm) had the lowest resting heart rate with London (79 bpm) the highest (p = 0.002). Women had slightly higher resting heart rates than men (p = 0.006). Median value of the mean arterial pressure was 103 (95 - 111) mmHg. Median systolic blood pressure was 142 (131 - 154) mmHg, with 92% who had a systolic blood pressure >120 mmHg (**Table 3.1**, page 65, and **Figures 3.22 3.23 3.24**, pages 77-78).

Figure 3.22: Histograms displaying the distribution resting heart rate by sex and recruitment site. Dashed lines indicate median values by sex.

Measures of arterial stiffness include CIMT, PWV, and AIx. Median CIMT was 0.81 (0.71 - 0.96) mm, with Cardiff (0.83) reporting the highest thickness followed by Edinburgh (0.82) and Nottingham (0.82; p = 0.002). Augmentation index had median values of 28% (20 - 34%) with Edinburgh (29%) and woman (31%) reporting highest values, p = 0.002 and p < 0.001 respectively. Median PWV was 9.8 (8.4 - 11.8) m/sec. with nearly half of the cohort (n = 310) had an abnormally raised PWV. Cambridge (10.1), London (10.1) but also males (10.1) reported

Figure 3.23: Histograms displaying the distribution of mean arterial pressure by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

Figure 3.24: Histograms displaying the distribution of systolic blood pressure by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.
highest median values (p = 0.002, p = 0.011 respectively; **Table 3.1**, page 65, and **Figures 3.25 3.26 3.27**, pages 79-80).

Figure 3.25: Histograms displaying the distribution of carotid intima-media thickness by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

3.3.7 Questionnaires

A proportion over 45% (n = 323) had high COPD Assessment Test (CAT) scores with a median (IQR) of 20 (13-26) points for the cohort, and median SGRQ-C points of 51 (34-66) with Cambridge (SGRQ-C, 42 points; CAT 16 points) scoring the lowest scores for both measures (p <0.001 and p <0.001, respectively). Most individuals (91%) were symptomatic with 40% (n = 281) feeling at least "short of breath when hurrying on the level or walking up a slight hill", and 64 (9%) feeling "too breathless to leave the house or I am breathless when dressing", measured by the MRC dyspnoea scale indicating perceived impact of breathlessness on mobility (i.e. physical activity). Eighty-two (12%) individuals self-reported diabetes, and 402 (56%) self-reported taking medications for treating CV disease. Cardiff (63%) and Edinburgh (61%)

Figure 3.26: Histograms displaying the distribution of augmentation index by sex and recruitment site. Dashed lines indicate median values by sex.

Figure 3.27: Histograms displaying the distribution of pulse wave velocity by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

had a significant higher number of individuals taking such medications with London the least (37%; p <0.001; Table 3.1, page 65, and Figures 3.28 3.29, pages 81-82).

Figure 3.28: Histograms displaying the distribution of COPD assessment test scores by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

3.3.8 Correlations

There was a strong positive correlation between COPD impact measures CAT, MRC, and SGRQ-C; measures of physical functioning SPPB and its components (i.e. 4MGS, balance, and chair stand), and 6MW; between sex and QMVC; and between inflammatory markers fibrinogen and CRP. There was a strong negative correlation between MRC, SGRQ-C, CAT and 6MW. The 6MW distance and MRC dyspnoea score correlated strongly with most variables including CAT, SGRQ-C, and SPPB (**Figure 3.30**, page 83).

After adjustment, correlations between FEV_1 and age, and BMI, exacerbation history, and FEV_1 were weak: reducing lung capacity with advancing age, and higher BMI, and fewer exacerbations with higher FEV_1 (**Figure 3.31**, page 84).

Figure 3.29: Histograms displaying the distribution of St George's respiratory questionnaire for COPD, by sex and recruitment site. Dashed lines indicate median values by sex. Where only one median line is visible, medians for both sexes are similar.

There was little evidence of correlation between inflammatory markers such as fibrinogen and WCC, and FEV_1 . This was similar for other biochemical measures such as neutrophils and HDL cholesterol (**Figure 3.32**, page 85).

Data indicated a moderate positive association between 6MW distance, QMVC, and FEV₁ indicating longer walk distances and increasing quadriceps muscle strength with increasing lung capacity. Correlations between resting heart rate and other musculoskeletal measures SPPB or its components (4MGS r = 0.19, balance r = -0.01, and chair stand r = 0.11) and SNIP were weak (Figure 3.33, page 86).

There was a strong positive correlation between SPPB (4MGS r = 0.57, balance r = 0.26, and chair stand r = 0.57) and 6MW distance, indicating increasing physical functioning, except for balance, with longer walking distance. Correlations between resting heart rate, QMVC, SNIP, and FEV₁ were weak (**Figure 3.34**, page 87).

Figure 3.30: Correlation matrix of baseline variables. *Abbreviations*: GFR, Glomerular filtration rate. SMOKE, smoking status. PHL, phlegm. EXAC, exacerbations. MRC, dyspnoea scale. SGRQ, St George's respiratory questionnaire for COPD. CAT, COPD assessment test. HR, heart rate. WCC, white cell count. NEUT, neutrophils. FIB, fibrinogen. CRP, C-reactive protein. HDL, high-density lipoprotein. CHOL, total cholesterol. AIx, augmentation index. SBP, systolic blood pressure. MAP, mean arterial pressure. CIMT, carotid intima-media thickness. PWV, pulse wave velocity. BG, glucose. HBA1c, glycated haemoglobin. DB, diabetes. BMI, body mass index. DRUG = use of cardiovascular drugs. FEV₁, forced expiratory volume in one-second. HB, haemoglobin. QMVC, quadriceps maximum voluntary contraction. SNIP, sniff nasal inspiratory pressure. SPPB, short physical performance battery. WD, six-minute walk distance. Correlation coefficients with a values <0.30 were considered weak, 0.30 - 0.50 as moderate, and >0.50 as strong.⁵¹

Figure 3.31: Scatter plots displaying the distribution of (A) age, (B) body mass index (BMI), (C) exacerbation history, and (D) forced expiratory volume in one second (FEV_1) percentage predicted, over FEV_1 , by sex. Partial correlations (pr) are displayed in the top left corners.

Correlations between COPD symptom questionnaires and FEV_1 were moderate, with higher scores (i.e. increasingly symptomatic) associated with worse lung function (Figure 3.35, page 87).

There was an absence of correlation between arterial stiffness measures CIMT, PWV, AIx, and FEV_1 (Figure 3.36, page 88).

Increasing CIMT and PWV, but not AIx, were moderately associated with advancing age. Pulse wave velocity correlated moderately with higher systolic blood pressure. Higher AIx was strongly correlated with increasing resting heart rate (**Figure 3.37**, page 89).

3.3.9 Time to event outcomes

Survival data and electronic hospital records were available for 714 individuals, as fifteen individuals were not followed by the NHS. During 75 months of follow-up, a total of 149 deaths (21%) occurred. There was a higher proportion of deaths in Cardiff (49%) compared to the other sites (**Figure 3.38**, page 90). A majority of deaths were due to pulmonary causes (55%),

Figure 3.32: Scatter plots displaying the distribution of (A) fibrinogen, (B) high-density lipoprotein (HDL) cholesterol, (C) white cell count (WCC), (D) glomerular filtration rate (GFR), (E) glycated haemoglobin (HbA1c), and (F) neutrophils over forced expiratory volume in one second (FEV₁), by sex. Partial correlations (pr) are displayed in the top left corners.

Figure 3.33: Scatter plots displaying the distribution of (A) resting heart rate (HR), (B) six-minute walk (6MW) distance, (C) short physical performance battery (SPPB), (D) quadriceps maximum voluntary contraction (QMVC), and (E) sniff nasal inspiratory pressure (SNIP) over forced expiratory volume in one second (FEV₁), by sex. Partial correlations (pr) are displayed in the top left corners.

Figure 3.34: Scatter plots displaying the distribution of (A) resting heart rate (HR), (B) short physical performance battery (SPPB), (C) quadriceps maximum voluntary contraction (QMVC), and (D) sniff nasal inspiratory pressure over six-minute walk distance, by sex. Partial correlations (pr) are displayed in the top left corners.

Figure 3.35: Scatter plots displaying the distribution of (A) St. George respiratory questionnaire for COPD (SGRQ-C), (B) COPD assessment test (CAT), and (C) Medical Research Council (MRC) dyspnoea score over forced expiratory volume in one-second (FEV₁), by sex. Partial correlations (pr) are displayed in the top left corners.

Figure 3.36: Scatter plots displaying the distribution of (A) carotid intima-media thickness (CMIT), (B) augmentation index (AIx), and (C) pulse wave velocity (PWV) over forced expiratory volume in one-second (FEV₁), by sex. Partial correlations (pr) are displayed in the top left corners.

followed by cancer (24%) with 12% a cardiac cause of death. Pulmonary-related cause of death increased with advancing disease severity (i.e. GOLD; **Figure 3.39**, page 90). Most deaths occurred amongst those aged 65-74 years (**Figure 3.40**, page 91).

Most hospital ICD-10 (10th revision of the international statistical classification of diseases and related health problems) diagnoses were recorded at the secondary position during hospital admission (**Figure 3.41**, page 91). Diseases of the respiratory and circulatory system were amongst the most common diagnosis, with "chronic lower respiratory diseases" (J40-J47) and "ischaemic heart diseases" (I20-I25) as one of the most frequently reported primary diagnosis (**Figure 3.42**, page 92).

Figure 3.37: Scatter plots displaying the distribution of age, systolic blood pressure, and resting heart rate (HR) under (A-C) carotid intima-media thickness (CIMT), (D-F) augmentation index (AIx), and (G-I) pulse wave velocity (PWV), by sex. Partial correlations (pr) are displayed in the top left corners.

Figure 3.38: Cause of death (n = 149) during study period, by recruitment site. Mortality data were obtained from the Office for National Statistics. Deaths were categorised by cardiac and respiratory physicians.

Figure 3.39: Deaths in the ERICA cohort, by cause and GOLD stage.

Figure 3.40: Deaths in the ERICA cohort, by age band.

Figure 3.41: Hospital admissions extracted from electronic health record data using ICD-10 chapter coding, by primary and secondary position.

Figure 3.42: Primary hospital admissions extracted from electronic health record data, by ICD-10 chapter coding. J95-J99, Other diseases of the respiratory system. J40-J47, Chronic lower respiratory diseases. J09-J18, Influenza and pneumonia. I70-I79, Diseases of arteries, arterioles and capillaries. I60-I69, Cerebrovascular diseases. I30-I52, Other forms of heart disease. I26-I28, Pulmonary heart disease and diseases of pulmonary circulation. I20-I25, Ischaemic heart diseases. D10-D36, Benign neoplasms. C81-C96, Malignant neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic and related tissue. C76-C80, Malignant neoplasms of ill-defined, secondary and unspecified sites. C51-C58, Malignant neoplasms of female genital organs. C43-C44, Melanoma and other malignant neoplasms of skin. C30-C39, Malignant neoplasms of respiratory and intrathoracic organs. C15-C26, Malignant neoplasms of digestive organs. XXI, Factors influencing health status and contact with health services. XIX, Injury, poisoning and certain other consequences of external causes. XVIII, Congenital malformations, deformations and chromosomal abnormalities. XIV, Diseases of the genitourinary system. XIII, Diseases of the musculoskeletal system and connective tissue. XI, Diseases of the digestive system. VII, Diseases of the eye and adnexa. III, Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism.

3.4 Discussion

This chapter describes the ERICA cohort including selection criteria, definitions used, outcomes measures captured, presence of missing values, and differences in key variables between sexes and recruitment sites, and the association between baseline characteristics. In addition, clinical outcomes are briefly described. Most individuals had GOLD stage II, indicating moderate lung disease. Noticeable were the differences between sexes. The cohort consisted predominantly of men, and women were about two years younger. Compared to men, women had higher number of previous exacerbations, cholesterol levels, resting heart rate and AIx, and were more symptomatic, measured by CAT, SGRQ-C, and MRC. Women had lower levels of neutrophils and haemoglobin, shorter walk distance, lower SPPB, QMVC, and SNIP scores, and CIMT and PWV scores. There were no differences in $FEV_1\%$, BMI, and inflammatory markers between sexes. There was a strong correlation between 6MW distance and chair stand component of the SPPB, which requires quadriceps muscle strength, yet correlation between 6MW and QMVC was weak. Overall, there was a moderate correlation between measures of function and symptoms, and FEV_1 . Correlations between spirometry and blood tests were weak. The SPPB scores were skewed negative with a longer left tail, in particular for men. Especially for the balance component, many individuals scored the highest possible score, indicating that the balance component may not be sensitive enough to capture performance differences in this population.

The study was originally designed and powered on the basis of a tertile analysis of variables PWV and QMVC, based on an estimated sample size of 800 individuals with COPD.¹⁸⁴ However, not all individuals could be included due to study ineligibility. In addition, the NHS and ONS did not follow (i.e. flag) all individuals for survival status and hospital admission, further reducing the sample size for analysis and therefore also statistical power. The overall sample size was relatively small, limiting e.g. subgroup analysis.

Patient questionnaires included self-reported questions such as history of exacerbations and use of steroids and CV drugs. Recall bias is common when collecting self-reported data with increasing bias as time passes. For example, Frei *et al.* reported that patients were unable to accurately recall the number of COPD exacerbations.⁹⁶ The authors assessed >400 patients over a 6-month period and found inaccuracies in reporting. Quint *et al.* reported on the other hand that using daily diary cards can reliably recall the number of exacerbations in the first year.²²⁷ No diary cards were used in the ERICA study.

In terms of generalisability, individuals were recruited throughout the UK. For each centre, baseline measures of ten volunteers were compared with those of the other sites.¹⁸⁴ Inter- and intra-user reliability was assessed through intra-class correlation coefficients. All sites required individual site training as well as centralised training in addition to standardisation visits. Only when sites were considered competent, sites could start with the recruitment. In addition to recruitment pamphlets, which might have led to self-selection bias, potential study participants were identified by local principle investigators and clinical care teams. Also, individuals with systemic inflammatory diseases like rheumatoid arthritis and inflammatory bowel disease were excluded and may therefore limit generalisability.

Assessments were anticipated to take place over two visits but had to be completed within three months. Some individuals had already undergone assessments in previous studies within the consortium such as either ARCADE, the ECLIPSE Extension study, PROACTIVE, MRC WP4 Consortium or Skeletal Muscle dysfunction study but these measures were only used if captured within the last three months of recruitment. More importantly, post-bronchodilator spirometry, one of the selection criteria, had to be performed before or on the first visit. Spirometry is the gold standard to diagnose COPD.

Despite the training and standardisation there was variation between recruitment sites for most variables. Populations at the different sites were not comparable on several measures. The centre in London had slightly healthier individuals, whereas individuals from Cardiff had more severe disease. For example, individuals from Cardiff scored lower on the musculoskeletal measures, had worse arterial stiffness and higher COPD impact scores compared to the other sites. Although, according to the ONS life expectancy is the worst in Scotland and Wales.²⁰⁷ There was, however, some evidence that data such as the 6MW distance were not missing completely at random. A possible cause could be that measurements such as QMVC and 6MW were either novel to most sites or required verbal encouragement and instructions. Along with PWV and CIMT, these measures were considered most likely to result variability between sites due to differences in equipment and measurements (i.e. expertise). Also, missing values for the 6MW could have resulted from the contraindications for conducting a 6MW test. Myocardial infarction during the previous month and unstable angina were absolute contraindications. A resting heart rate >120 bpm, a systolic blood pressure >180 mmHg, or a diastolic blood pressure >100 mmHg were relative contraindications.

The mean age in the ERICA cohort (67 years) was well above the usual age of COPD diagnosis and comparable to other cohorts including the Investigational Study of Psychological Intervention in Recipients of Lung Transplant (INSPIRE)-II cohort (66 years) and Body mass index, airflow Obstruction, Dyspnoea and Exercise (BODE) cohort (67 years) with the exception of the ECLIPSE study, one of the largest COPD cohorts. ERICA participants were slightly older compared to ECLIPSE participants (64 years). In terms of disease severity, ERICA participants were comparable to the other cohorts.

In contrast to many other cohort studies,^{151,158} all individuals were clinically stable. The clinical pathway differs between stable and unstable COPD. The focus of disease management for individuals with stable COPD is on health education, disease coping strategy, treatment regulation, and prevention. Disease management for individuals with unstable COPD, however, is primarily focussed on medical intervention including non-invasive positive pressure ventilation and antibiotic treatment. When assessing the predictive performance of novel biomarkers, aimed at identifying high risk individuals in an early stage of disease allowing for preventative intervention such as exercise training, it is crucial to assess biomarkers that are clinically stable.

Most deaths were related to pulmonary disease followed by cancer, of which a large proportion had hospital visits (primary visits) related to chronic lower respiratory disease and lung cancer, as expected within a COPD population. The ERICA study was designed as a multi-centre observational, non-interventional, epidemiological cohort study with prospective data collection. Strengths of observational cohort studies, in particular prospective ones, include the ability of evaluating the association between disease or baseline measures and multiple outcomes (e.g. acute exacerbation of COPD, hospital admission, and mortality) and allows for the calculation of disease rates. One of the disadvantages of prospective cohort studies is the associated cost. For example, follow-up data were collected every six months via postal or telephone questionnaire but for cost reasons there were no repeated measurements of CV and musculoskeletal measures taken, limiting the assessment of the predictive value of these biomarkers at different time points. Attrition (i.e. systematic loss to follow-up) is a potential bias in observational studies. However, the use of electronic health records prevented this, as the NHS collects every hospital visit, and the ONS reports any deaths. Linked electronic health record data therefore is one of the major strengths of this dissertation. It not only avoids recall bias, which is often the case with self-reported data, but also prevents lost to follow-up and therefore improves the reliability of findings.

In conclusion, the ERICA cohort is unique in terms of the density of the data captured in a COPD population. Other and larger cohort studies, such as ECLIPSE²⁷⁰ and NHANES (National Health and Nutritional Examination Survey)-III,¹⁶⁸ do exist but none have captured musculoskeletal and CV function measures in addition to lung performance, biochemical markers, medical history, et cetera. ERICA is the first prospective observational cohort study that has enabled the examination of the relationship between inflammatory markers, musculoskeletal and CV measures within a COPD population, and evaluate their association with common clinical outcomes.

4

Can simpler measures substitute for the six-minute walk component of the BODE Index in predicting death in COPD in the ERICA cohort?

Chapter summary

Background The BODE (Body mass index, airflow Obstruction, Dyspnoea and Exercise) Index predicts mortality in chronic obstructive pulmonary disease but includes a six-minute walk component; the test would be simpler if the six-minute walk was replaced.

Objective We investigated whether a modified BODE Index in which six-minute walk was replaced by alternative measures of skeletal muscle performance, the short physical performance battery or components (i.e. four-metre gait speed, balance, and chair stand), quadriceps and nasal inspiratory muscle strength, retained predictive ability.

Methods We analysed 630 individuals with stable chronic obstructive pulmonary disease at

baseline from the <u>E</u>valuation of the <u>R</u>ole of <u>I</u>nflammation in <u>C</u>hronic <u>A</u>irways disease (ERICA) cohort study and in whom UK Office for National Statistics verified mortality data was available. Variables tested at baseline included short physical performance battery, quadriceps maximum voluntary contraction, and sniff nasal inspiratory pressure. Predictive models were developed using stratified multivariable Cox regression, and assessed by C-indices and calibration plots with 10-fold cross-validation and replication.

Findings During median two years of follow up, 60 (10%) individuals died. There was no significant difference between the discriminative ability of BODE based on six-minute walk (C-index 0.709, 95% CI, 0.680 to 0.737), BODE based on short physical performance battery (C-index 0.683, 95% CI, 0.647 to 0.712), BODE based on four-metre gait speed (C-index 0.676, 95% CI, 0.643 to 0.700), BODE based on balance (C-index 0.686, 95% CI, 0.651 to 0.713), and BODE based on nasal inspiratory muscle strength (C-index 0.676 (95% CI, 0.637 to 0.703) when predicting mortality. Quadriceps muscle voluntary contraction was not able to substitute the six-minute walk in the BODE Index without loss in discriminative ability.

Conclusion Short physical performance battery, its four-metre gait speed and balance components, and sniff nasal inspiratory pressure have the potential to replace the six-minute walk in the BODE Index without significant loss of predictive ability.

4.1 Background

4.1.1 Introduction

Chronic obstructive pulmonary disease (COPD) was responsible for 3.2 million deaths globally in 2015.¹⁰⁶ Accurate assessment of prognosis enables clinicians to focus their resources on their most vulnerable patients, to decide on safety for interventional procedures and may also be useful for stratification of entry into clinical trials. The best known prognostic index is the BODE Index, which generates a composite score from the Body mass index, airflow Obstruction, Dyspnoea, and Exercise capacity, with the latter measured by the six-minute walk (6MW) test (Table 4.1, page 100),⁴⁰ which even on its own has predictive ability for mortality.²⁴⁸ However, both BODE and the 6MW have received limited adoption in clinical practice, perhaps, in part, because the 6MW requires a minimum thirty-metre corridor, and with the necessity for a training walk with rest in between,¹²⁷ which may in practice take over 30 minutes. It is unsurprising therefore that NICE (National Institute for Health and Care Excellence) UK 2018 guidelines for COPD included a recommendation not to use the BODE Index for prognosis in COPD, as some components are time-consuming and not routinely available in primary care; of the four components of BODE, the 6MW test is the one that is most unavailable in primary care settings.²⁰⁰

Thus, a test that has sufficient predictive ability to replace the 6MW, and which is more clinically practical might facilitate uptake of prognostic scoring. In the original BODE study the authors considered individual measures which were known to have prognostic value and using the same approach, having reviewed recent literature, we identified other tests reflective of physical function. These were the short physical performance battery (SPPB), which is prognostic for mortality in older individuals in the general population, ^{157,274} and its components (i.e. four-metre gait speed (4MGS), balance, and chair stand); quadriceps strength²⁵⁹ measured as maximum voluntary contraction force (QMVC) and maximal sniff nasal inspiratory pressure (SNIP), ¹⁸⁸ as potential alternative measures of musculoskeletal function.

The aim of our analysis was to first evaluate the association between the measures of skeletal muscle function and all-cause mortality in stable COPD patients, and with the assumption that a relationship would be found to investigate whether a BODE Index in which the 6MW component $(BODE_{6MW})$ was replaced by alternative musculoskeletal measures retained predictive ability. Finally, we aimed to assess whether the prediction of all-cause mortality using BODE Index can be improved by the addition (as opposed to substitution) of these measures to the standard BODE.

Table 4.1: Multidimensional risk factors, published prediction models for the prediction of mortality in COPD. Placed in order of publication date.

	80DE ⁴⁰	IADO ⁸⁷	1BODE ⁵⁸)PI ²⁸	00MI BOX ¹⁵⁰	DO^{225}	J-BODE ²²⁵	0DEx ²⁴⁶	BODE ²⁴⁶	•ILE ¹⁷⁵)CLIPSE ⁴²	30DE-A ²⁵²
	Щ	iμi	u		Ц	₹		щ	e	ц	<u>щ</u>	Щ
Age				V		\checkmark					\checkmark	
Sex	/		/	V	/		/	/	/		/	/
Duestionnaires (MBC ATS	v	1	V	V	~	/	V	v	V		v	V
Eletcher CBO)	v	v	v	v	v	v	v	v	v		v	v
FEV ₁ %	1	1	1	1	1	1	1	1	1	1	1	1
6MW distance	• •	•	•	•	· √	•	·	•	·	•	• •	• •
Exacerbation	•			\checkmark	✓		·	\checkmark	• •		•	·
Exercise max. O_2 consump-			\checkmark									
tion												
O ₂ -use			\checkmark									
CVD				\checkmark								
Blood Oxygen (PaO_2)				\checkmark								
Health status		\checkmark										
Activity		\checkmark										
QMVC										\checkmark		
Inflammatory markers (e.g.										\checkmark	\checkmark	\checkmark
IL-6 and fibrinogen)												
Total sample size	625	611	444	8802	68	232	232	185	185	268	1843	549
Observed deaths (total No.)	162	94	206	166	22	79	79	71	71	83	168	26
Follow-up (months)	28	36	22	6-36	36	30	30	36	36	73	36	12
C-statistic	0.74	0.68	0.72	0.71	N/A	0.63	0.61	0.74	0.77	0.71	0.73	0.75

Abbreviations: BMI, body mass index. MRC, Medical Research Council. CRQ, Chronic Respiratory Questionnaire. ATS, American Thoracic Society. FEV₁, forced expiratory volume in one second. 6MW, six-minute walk. SGRQ, St.George Respiratory Questionnaire. CVD, cardiovascular disease. PaO₂, partial pressure of oxygen. QMVC, quadriceps maximum voluntary contraction. IL-6, interleukin 6.

4.2 Methods

4.2.1 Study design and participants

The ERICA study is a multi-centre observational, non-interventional, epidemiological cohort study, with a sample size of 729 stable global initiative for chronic obstructive lung disease (GOLD) stage II-IV¹⁰⁷ COPD patients.¹⁸⁴ A baseline assessment was undertaken between December 2011 and January 2014, with planned interval mortality obtained from the UK Office for National Statistics (ONS) last updated for this study in November 2017. Analyses were limited to three years of follow-up (August 2016).

4.2.2 Point assignment for components of BODE Index

Points for BODE Index were assigned and classified in quartiles as described by Celli *et al.*, with higher scores indicating a higher risk of mortality.⁴⁰ The SPPB has a range of 0-12 points and comprises three subtests scored 0-4. To preserve a four-category system, we combined 1 and 2 points. The SPPB itself was divided into 10-12, 7-9, 4-6 and <4 based on the cut-off score of <10 to define functional limitation, 20,216 and the distribution of the data. In the absence of a generally accepted categorisation system, SNIP and QMVC were divided into quartiles (**Table 4.2**, page 102).

4.2.3 Statistical analysis

Hazard ratios (HR) were estimated using multivariable Cox regression, stratified by recruitment centre, and adjusted for age and sex. Further analyses included body mass index (BMI), forced expiratory volume in one second (FEV₁), smoking status, and Medical Research Council (MRC) dyspnoea. Multiple predictive models were developed according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) and guidelines for clinical prediction models.^{52,232,251} The pre-selected prediction models were: (i) BMI, (ii) BMI + MRC dyspnoea, (iii) BMI + MRC dyspnoea + FEV₁%, (iv) BMI + MRC dyspnoea

Variable	0 points	1 point	2 points	3 points
BODE				
BMI (kg/m^2)	> 21	≤ 21		
FEV_1 (% predicted)	≥ 65	50-64	36-49	≤ 35
Dyspnoea (MRC scale)	0-1	2	3	4
Six-minute walk distance (m)	≥ 350	250 - 349	150-249	≤ 149
Alternative musculoskeletal				
measures				
SPPB (points)	10-12	7-9	4-6	$<\!4$
Four-metre gait speed (points)	4	3	1-2	0
Balance (points)	4	3	1-2	0
Chair stand (points)	4	3	1-2	0
SNIP (cm H_2O)	≥ 71	54-70	39-53	≤ 38

Table 4.2: Assignment of points.

Abbreviations: BMI, body-mass index. FEV₁, forced expiratory volume in one second. MRC, Medical Research Council. SPPB, short physical performance battery. SNIP, sniff nasal inspiratory pressure.

+ FEV₁% + 6MW, (v) BMI + MRC dyspnoea + FEV₁% + SPPB, and (vi) BMI + MRC dyspnoea + $FEV_1\%$ + SNIP. Linearity of continuous predictors was assessed visually. We tested for violation of the proportional hazards assumption by including time interactions and visually examining Arjas plots. Discrimination (i.e. Harrell's C-statistic^{10,202} and calibration (i.e. Hosmer-Lemeshow test⁹ and calibration plots) were assessed using 10-fold cross validation with 200 replications.²⁴⁵ Effect of missing data was assessed in sensitivity analyses using multivariable imputation by chained equations (MICE). Predictive mean matching was used for continuous variables, ordered logistic regression (as continuous) for ordinal variables, multinomial logistic regression for categorical variables, and logistic regression for binary variables. Derived variables such as SPPB (a composite score of 4MGS, balance, and chair stand) were estimated post MICE using passive imputation. To minimise potential overfitting caused from using the same imputed dataset for the training and test data for 10-fold cross-validation, we created 10 x 2 imputed datasets and used ten for model derivation and the other ten for model validation. Thus, within each step of the cross-validation, the training and test datasets were from two different imputations. We performed cross-validation separately for the ten pairs of imputed datasets before combining estimates of interest using Rubin's rules. Observational data is reported according to the Strengthening The Reporting of OBservational Studies in Epidemiology

(STROBE) statement.²⁷⁵

4.3 Findings

4.3.1 Descriptive statistics

In total, 714 individuals were followed by the ONS for survival status, of which 630 had complete baseline data and were included in the primary analysis (**Figure 3.4**, page 64). Of the cohort, 386 (61%) were male, 192 (30%) were current smokers, 358 (57%) were identified as GOLD stage II, and the median baseline age was 67 years (range 43-84 years; **Tables 3.1 and 4.3**, pages 65 and 104). In total, 245 (39%) had defined functional limitation (SPPB score <10) with a median (IQR) SPPB score of 10 (8-12), a median 6MW distance of 370 (268-440) metres, a median QMVC of 30 (22-39) kg, and a median maximal SNIP of 53 (38-70) cm H₂O.

4.3.2 Factors associated with all-cause mortality

The three years survival probability was 90% (88-93% CI) with an event rate of 3.3 (95% CI 2.6 to 4.3) per 100 person-years. Event rates differed by recruitment site: 2.4 (1.0 to 5.8) for Cambridge, 3.6 (1.9 to 7.0) for Edinburgh, 2.8 (1.9 to 4.1) for Cardiff, 3.3 (1.7 to 6.6) for Nottingham, and 7.1 (3.9 to 12.8) for London. In total 60 patients (10%) died after study enrolment, with a median follow-up time of two years. Age-adjusted multivariable analysis identified multiple markers associated with mortality including BMI (HR 0.91 per 1 point increase, 95% CI, 0.86 to 0.97, p = 0.002), 6MW distance (HR 0.85 per 30-metre increase, 95% CI, 0.78 to 0.92, p < 0.001), SPPB (HR 0.81 per 1 point increase, 95% CI, 0.72 to 0.92, p = 0.002), 4MGS (HR 0.67 per 1 point increase, 95% CI, 0.49 to 0.93, p = 0.015), balance (HR 0.63 per 1 point increase, 95% CI, 0.69 to 0.95, p = 0.010; (Figures 4.1 4.2 and Table 4.4, pages 105-107). Chair stand and QMVC were not associated with all-cause mortality, after further adjustment.

Characteristic	Total (%)	N (%)	SPPB, ≤ 9	SPPB ≥ 10	P value
				points	varue
Description	(7, (69, 79))	714 (100)	$=$ $=$ $(c_2, =r)$	cc(c0, 71)	:0.001
Age (yrs.), median (IQR)	67(62-73)	714(100)	(0 (63-75))	66(62-71)	< 0.001
Male $(1 (2))$		714(100)	129(53)	257(67)	<0.001
Body mass index (kg/m^2) , median	27 (23-31)	707 (99)	28 (24-32)	26(23-29)	< 0.001
(IQR)					
Lung function	()				
FEV_1 %predicted, median (IQR)	53(40-65)	712 (100)	52(39-63)	54(41-66)	0.265
Current smoker	192 (30)	709 (99)	73 (30)	119(31)	0.767
MRC dyspnoea score		709(99)			
1	54(9)	-	7 (3)	47(12)	< 0.001
≥ 2	576(91)	-	238 (97)	338 (88)	
GOLD		713 (100)			
Stage II	358(57)	-	131 (53)	227 (59)	0.357
Stage III	216 (34)	-	89 (36)	127(33)	
Stage IV	56 (9)	-	25 (10)	31 (8)	
Musculoskeletal measures					
6MW distance (metre), median	370 (268-440)	680 (95)	265 (174-344)	420 (360-470)	< 0.001
(IQR)					
SPPB (0-12), median (IQR)	10 (8-12)	706 (99)			
No functional limitation, ≥ 10	385 (61)	-			
Functional limitation < 10	245 (39)	-			
4MGS score (0-4), median (IQR)	4 (3-4)	709 (99)	3 (3-4)	4 (4-4)	< 0.001
Balance points (0-4), median	4 (4-4)	711 (100)	4 (3-4)	4 (4-4)	< 0.001
(IQR)				× /	
Chair stand score (0-4), median	3(1-4)	707 (99)	1 (1-1)	3(3-4)	< 0.001
(IQR)				()	
QMVC peak (kg), median (IOR)	30 (22-39)	687 (96)	25 (19-33)	32(26-41)	< 0.001
SNIP (cm H_2O), median (IQR)	53 (38-70)	688 (96)	44 (32-61)	59 (44-74)	< 0.001

Table 4.3: Baseline characteristics by functional limitation (n = 630).

Values are given as the median and interquartile range (IQR), or No. of cases (%). Baseline data of 630 individuals are included. P-values estimated using Wilcoxon-Mann-Whitney test for continuous data, and Chi-square test for categorical data. *Abbreviations*: MRC, Medical Research Council. GOLD, global initiative for obstructive lung disease. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction. SNIP, sniff nasal inspiratory pressure.

, and MRC dyspnoea
FEV1%
smoking status,
x, BMI,
djusted: age, se
age and sex 🔳 A
 Adjusted:

	HR (95% CI)					T	R (95% CI)
Description	per unit					đ	er 1 SD
Age – per 10 year increase	1.61 (1.13 to 2.30)				•		45 (1.10 to 1.92)
Sex – male	1.53 (0.85 to 2.75)		<u>;</u> 1				23 (0.93 to 1.64)
Body mass index - per 1 point increase	0.91 (0.86 to 0.97)	• •	-			0	60 (0.43 to 0.83)
Lung function							
Smoking status – current	1.65 (0.96 to 2.86)			-			26 (0.98 to 1.62)
FEV1% – per 5% increase	0.93 (0.84 to 1.02)		- 7				78 (0.57 to 1.06)
MRC dyspnoea score – 2–4	1.00 (0.35 to 2.86)			+			30 (0.99 to 1.70)
GOLD stage – per 1 stage increase	1.45 (0.95 to 2.22)				•		28 (0.97 to 1.68)
Musculoskeletal measures							
6MW distance – per 30 meter increase	0.85 (0.78 to 0.92)	•					50 (0.35 to 0.70)
SPPB – per 1 point increase	0.81 (0.72 to 0.92)					0	63 (0.48 to 0.84)
Functional limitation – yes	1.85 (1.04 to 3.28)			-	•		35 (1.02 to 1.78)
4MGS – per 1 point increase	0.67 (0.49 to 0.93)		+			0	75 (0.59 to 0.95)
Balance – per 1 point increase	0.63 (0.48 to 0.82)		T 			0	68 (0.54 to 0.85)
Chair stand – per 1 point increase	0.84 (0.68 to 1.04)			Ī			79 (0.60 to 1.05)
QMVC – per 1 kg increase	0.97 (0.94 to 1.04)	•				0	72 (0.50 to 1.04)
SNIP – per 10 cm H2O) increase	0.81 (0.69 to 0.95)	•				0	63 (0.44 to 0.89)
				-			
	0.4	4 0.6	0.8	1.0 1.2	1.4	6 1.8 2.0	
	,	 Lower risk of mortality 	Hazard rati	o (standard	Hi sed) of	gher risk mortality	

Figure 4.1: Forest plot displaying standardized hazard ratios (HR) for three years of follow-up, by category. The top dashed lines indicate HR for adjustment of BMI, smoking status, $FEV_1\%$, and dyspnoea scores. *Abbreviations*: SD, standard deviation. CI, confidence intervals. BMI, body mass index. $FEV_1\%$, predicted forced expiratory volume one second. MRC, Medical Research Council. GOLD, global initiative for chronic obstructive lung disease. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction. SNIP, sniff nasal inspiratory pressure.

Description									HR (95% CI), 3 years
Age - per 1 SD				<u> </u>					→ 1.45 (1.10 to 1.92)
Sex - male			• •				T 		1.23 (0.93 to 1.64)
Body mass index - per 1 SD \checkmark	-	•	+						0.60 (0.43 to 0.83)
Lung function									
Smoking status - current					•		- +		⁺ 1.26 (0.98 to 1.62)
FEV1% - per 1 SD			•						0.78 (0.57 to 1.06)
MRC dyspnoea score - per 1 SD							•		→ 1.30 (0.99 to 1.70)
GOLD stage - per 1 SD				•		•		- T	1.28 (0.97 to 1.68)
Musculoskeletal measures									
6MW distance - per 1 SD		• •			Ţ				0.50 (0.35 to 0.70)
SPPB - per 1 SD		•							0.63 (0.48 to 0.84)
Functional limitation - yes						• • •			→ 1.35 (1.02 to 1.78)
4MGS - per 1 SD		-							0.75 (0.59 to 0.95)
Balance - per 1 SD		•		- - -					0.68 (0.54 to 0.85)
Chair stand - per 1 SD			•	-					0.79 (0.60 to 1.05)
QMVC - per 1 SD		•	•	+					0.72 (0.50 to 1.04)
SNIP - per 1 SD	•		-	<u> </u>					0.63 (0.44 to 0.89)
□ 0.4	,	0.6	0.8	1.0	1.2	1.1	1.6	1.8	2.0
,	Lower risk of mortality						Ιŏ	ligher risk f mortality	
			Hazard ra	atio (standardi	sed)				
Figure 4.2: Forest plot	displaving standardi	zed adjusted h	azard ratios h	r vears of	քոլլ_ալ	Hazard	motion m		motod mine Con

♦ Adjusted, 1 year ■ Adjusted, 3 years ● Adjusted, 5 years

regression. All analyses were adjusted for age, sex, body mass index, smoking status, FEV1%, and MRC dyspnoea score. Hazard ratios Abbreviations: SD, standard deviation. HR, hazard ratio. CI, confidence intervals. BMI, body mass index. FEV₁%, predicted forced expiratory volume one second. MRC, Medical Research Council. GOLD, global initiative for chronic obstructive lung disease. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary displayed are after 3 years of follow-up. Number of deaths was 15 after 1 year, 60 after 3 years, and 121 after 5 years of follow-up. contraction. SNIP, sniff nasal inspiratory pressure.

Baseline Characteristics	Hazard ratio (95% CI) ^a	, years (n = P value ^c	: 60 deaths) Hazard ratio (95% CI) ^b	P value ^c	5 Hazard ratio (95% CI) ^a	years (n = P value ^c	121 deaths) Hazard ratio (95% CI) ^b	P value ^c
Description Age - per 10 year increase Sex - male Body mass index - per 1 point	$\begin{bmatrix} 1.42 \ (1.01 \ to \ 2.01) \\ 1.48 \ (0.83 \ to \ 2.63) \\ 0.89 \ (0.84 \ to \ 0.94) \end{bmatrix}$	$\begin{array}{c} 0.046 \\ 0.186 \\ < 0.001 \end{array}$	$\begin{array}{c} 1.61 \ (1.13 \ {\rm to} \ 2.30) \\ 1.53 \ (0.85 \ {\rm to} \ 2.75) \\ 0.91 \ (0.86 \ {\rm to} \ 0.97) \end{array}$	$\begin{array}{c} 0.008 \\ 0.154 \\ 0.002 \end{array}$	$\begin{array}{c} 1.54 \\ 1.20 \\ to 1.97 \\ 1.35 \\ 0.91 \\ to 2.02 \\ 0.92 \\ 0.89 \\ to 0.96 \end{array}$	$\begin{array}{c} 0.001 \\ 0.138 \\ < 0.001 \end{array}$	$\begin{array}{c} 1.76 \ (1.36 \ {\rm to} \ 2.28) \\ 1.36 \ (0.91 \ {\rm to} \ 2.04) \\ 0.94 \ (0.91 \ {\rm to} \ 0.98) \end{array}$	< 0.001 < 0.133 0.002
increase Lung function Smoking status - current FEV ₁ - per 5% increase %pre-	$\begin{array}{c} 2.02 \ (1.18 \ \mathrm{to} \ 3.46) \\ 0.86 \ (0.79 \ \mathrm{to} \ 0.94) \end{array}$	0.011 0.001	$\begin{array}{c} 1.65 \ (0.96 \ \mathrm{to} \ 2.86) \\ 0.93 \ (0.84 \ \mathrm{to} \ 1.02) \end{array}$	$0.072 \\ 0.114$	$\begin{array}{c} 1.77 \ (1.20 \ \mathrm{to} \ 2.61) \\ 0.84 \ (0.79 \ \mathrm{to} \ 0.89) \end{array}$	0.004 < 0.001	1.51 (1.02 to 2.25) 0.88 (0.82 to $0.95)$	0.04 < 0.001
dicted MRC dyspnoea score - 2-4 GOLD stage - per increase to	$\begin{array}{c} 1.44 \ (0.52 \ {\rm to} \ 4.01) \\ 1.95 \ (1.36 \ {\rm to} \ 2.80) \end{array}$	0.487 < 0.001	$1.00 (0.35 to 2.86) \\ 1.45 (0.95 to 2.22)$	$0.999 \\ 0.086$	$\begin{array}{c} 1.93 \; (0.84 \; {\rm to} \; 4.42) \\ 1.83 \; (1.36 \; {\rm to} \; 2.46) \end{array}$	$\begin{array}{c} 0.121 \\ < 0.001 \end{array}$	$\begin{array}{c} 1.33 \ (0.57 \ \mathrm{to} \ 3.09) \\ 1.83 \ (1.36 \ \mathrm{to} \ 2.46) \end{array}$	0.507 < 0.001
next stage Musculoskeletal measures Six-minute walk distance - per 30	0.87 (0.82 to 0.92)	< 0.001	0.85 (0.78 to 0.92)	< 0.001	0.89 (0.85 to 0.92)	< 0.001	0.88(0.84 to 0.94)	< 0.001
metre increase SPPB score (0-12) - per 1 point	$0.80 \ (0.71 \ to \ 0.89)$	< 0.001	0.81 (0.72 to 0.92)	0.002	0.93 (0.85 to 1.02)	0.125	$0.93\ (0.85\ { m to}\ 1.02)$	0.125
increase Functional limitation (SPPB) -	2.13(1.24 to 3.66)	0.006	1.85(1.04 to 3.28)	0.036	1.33 (0.88 to 2.00)	0.173	1.33 (0.88 to 2.00)	0.173
yes 4MGS score (0-4) - per point in-	0.63 (0.48 to 0.84)	0.002	0.67 (0.49 to 0.93)	0.015	$0.88 \ (0.69 \ to \ 1.13)$	0.31	0.88 (0.69 to 1.13)	0.31
crease Balance score (0-4) - per increase	0.63 (0.49 to 0.81)	< 0.001	0.63 (0.48 to 0.82)	0.001	$0.80\ (0.65\ { m to}\ 0.99)$	0.04	$0.80\ (0.65\ to\ 0.99)$	0.04
of 1 point Chair stand score (0-4) - per point	$0.79\ (0.65\ to\ 0.96)$	0.02	$0.84(0.68\ { m to}\ 1.04)$	0.112	$0.96\ (0.82\ { m to}\ 1.11)$	0.565	$0.96\ (0.82\ { m to}\ 1.11)$	0.565
increase QMVC peak - per 1 kg increase SNIP - per 10 cm H ₂ O increase	$\begin{array}{c} 0.95 \ (0.92 \ to \ 0.97) \\ 0.77 \ (0.67 \ to \ 0.89) \end{array}$	< 0.001 < < 0.001	$\begin{array}{c} 0.97 \ (0.94 \ {\rm to} \ 1.00) \\ 0.81 \ (0.69 \ {\rm to} \ 0.95) \end{array}$	$0.082 \\ 0.01$	$\begin{array}{c} 0.96 \; (0.94 \; \mathrm{to} \; 0.98) \\ 0.91 \; (0.82 \; \mathrm{to} \; 1.01) \end{array}$	$0.111 \\ 0.082$	$\begin{array}{c} 0.98 \; (0.96 \; \mathrm{to} \; 1.00) \\ 0.91 \; (0.82 \; \mathrm{to} \; 1.01) \end{array}$	$0.111 \\ 0.082$
Hazard ratios were estimated included due to too few event dyspnoea score ^c P values bas Medical Research Council. G ^o gait speed. QMVC, quadricer	using Cox regressio as $(n = 15)$. ^a Adjus sed on Cox regressic OLD, global initiati os maximum volunti	m. All analy ted for age m. Abbrevia ve for obstr ary contract	rses were stratified and sex ^b Adjusted <i>tions</i> : CI, confiden uctive lung disease ion. SNIP, sniff na	by recruitm l for age, sex .ce intervals. . SPPB, sho sal inspirato	ent centre. Data af , body mass index, , FEV ₁ , forced expi art physical perform ry pressure.	ter one-yea smoking st ratory volu ance batter	r follow-up are not latus, FEV ₁ %, and me in one second. I .y. 4MGS, four-met	MRC MRC, re

Table 4.4: Adjusted multivariable associations, with the occurrence of death, by years of follow-up (n = 630).

4.3.3 Predictive models

Predictive modelling indicated slightly higher HR for SPPB and its components compared to $BODE_{6MW}$ (Figure 4.3, page 109). The C-statistic was the highest for $BODE_{6MW}$ (C = 0.709, 95% CI, 0.680 to 0.737) but there was no significant difference in discriminative ability compared to $BODE_{SPPB}$ (C = 0.683, 95% CI, 0.647 to 0.712; Figure 4.3 and Table 4.5, pages 109 and 112). Neither was there a significant difference in risk discrimination when compared with the $BODE_{4MGS}$ (C = 0.676, 95% CI, 0.643 to 0.700), $BODE_{BALANCE}$ (C = 0.686, 95% CI, 0.651 to 0.713), and the $BODE_{SNIP}$ (C = 0.676, 95% CI, 0.637 to 0.703). When comparing $BODE_{SPPB}$ with its components, there were no significant differences in risk discrimination between indices. Calibration tests and plots of the hazard models indicate good model fit and calibration for 3-year prediction of mortality (Figure 4.4, page 111).

Model		HR [95% CI]		C-statistic [95% CI] (Change C-stat [95% CI]
BODE _{60W} - per 1 point increase	Ī	1.30 [1.17 to 1.44]	Ī	0.709 [0.680 to 0.737]	Reference
BODE _{SPPB} – per 1 point increase		1.34 [1.19 to 1.51]	Ī	0.683 [0.647 to 0.712]	-0.027 [-0.051, -0.009]
BODE _{4MGS} - per 1 point increase		1.35 [1.19 to 1.52]	Ŧ	0.676 [0.643 to 0.700]	-0.033 [-0.057, -0.013]
BODE _{BALANCE} - per 1 point increase		1.40 [1.23 to 1.58]	Ŧ	0.686 [0.651 to 0.713]	-0.024 [-0.047, -0.005]
BODE _{SNIP} - per 1 point increase	Ī	1.33 [1.18 to 1.49]	Ī	0.676 [0.637 to 0.703]	-0.033 [-0.055, -0.010]
0.	1.25 1.5 Hazard ratio	2.0 0.50	∣ 0.75 C⊸statistic	- 0 .	

Figure 4.3: Hazard ratios and C-indices with change scores for various BODE models. All models were stratified by recruitment centre. *Abbreviations*: HR, hazard ratio. CI, confidence interval. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. SNIP, snift nasal inspiratory pressure.

4.3.4 Practical example of using the BODE Index

Estimating an individuals' BODE score with these indices is similar to the original BODE Index (Table 4.2, page 102), with scores ranging between 0 and 10 points (Tables 4.6 4.7 and Figure 4.5, pages 113 and 114). For example, when using the BODE_{SNIP}, an individual with a BMI of ≤ 21 (1 point), FEV₁ of 36-49% predicted (2 points), dyspnoea score of four (3 points), and SNIP score of 54-70 cm H₂O (2 points), has a total score of eight points out of ten. The BODE_{SNIP} Index quartile 1 was defined by a score of 0-2, quartile 2 by a score of 3-4, quartile 3 by a score of 5-6, and quartile 4 by a score of 7-10. A BODE_{SNIP} Index score of eight would then indicate a 23% predicted risk of early mortality over the next three years (Figure 4.4, page 111). In other words, out of 100 individuals with the same BODE_{SNIP} score, 23 are likely to die within the next three years.

Figure 4.4: Predicted and observed mortality by risk quartiles with associated 95% confidence intervals (n = 630). X-axis indicates four risk groups with predicted mortality ranges. Y-axis indicates 3-year risk for mortality as a probability. Labels indicate predicted and observed risks. (A) $BODE_{6MW}$, (B) $BODE_{SPPB}$, (C) $BODE_{4MGS}$, (D) $BODE_{BALANCE}$, and (E) $BODE_{SNIP}$.

Variable	Model 1: BMI	Model 2: BMI,	Model 3: BMI,	Model	4: Model	5:	Model 6:	Model 7:	Model 8:
Variable		MRC	MRC, FEV ₁ %	BODE _{6MW} Hazard F	BODEs tatio (95%	CI)	$\mathrm{BODE}_{4\mathrm{MGS}}$	BODE _{BALANCE}	BODE _{SNIP}
BMI - per 1	0.90 (0.85 to	0.91 (0.86 to	0.91 (0.87 to	0.89 (0.85 t	0.90 (0.86 to	0.91 (0.86 tc	0.91 (0.87 to	0.92 (0.87 to
point increase MRC dyspnoea	0.95)	$\begin{array}{c} 0.95 \\ 1.38 & (1.10 & to \end{array}$	0.96) 1.27 (0.99 to	$\begin{array}{c} 0.94 \\ 0.92 & (0.68 \end{array} t \end{array}$	0.95) 0 1.05 (1	0.80 to	$\begin{array}{c} 0.95 \\ 1.15 & (0.89 \ \mathrm{tc} \end{array}$	$\begin{array}{c} 0.96 \\ 1.15 & (0.90 & to \end{array}$	$\begin{array}{c} 0.97 \\ 1.21 \end{array} (0.94 \ to \end{array}$
score - per 1		1.72)	1.63)	1.23)	1.38)		1.49)	1.49)	1.55)
point increase FEV ₁ - per 5%			0.93 (0.85 to	0.98 (0.89 t	0.93 (0.84 to	0.94 (0.85 tc	0.92 (0.83 to	0.95 (0.86 to
increase %pre-			1.02)	1.07)	1.02)		1.03)	1.01)	1.04)
dicted 6MW - per 30				0.84 (0.78 t	Q				
metre increase SPPB (com-				0.91)	0.80 (1	0.71 to	0.61 (0.45 tc	0.63 (0.49 to	
ponent) - per					(06.0)		0.84)	0.82)	
increase of 1									
point SNIP - per									0.81 (0.69 to
$10 \text{ cm } \text{H}_2\text{O}$									0.94)
increase									
C-index	0.634 (0.600 to)	0.650 (0.620 to	0.646 (0.607 to	0.709 (0.680 t	0.682 (0.647 to	0.676 (0.642 to	0.685 (0.651 to	0.676 (0.637 to
Goodness of fit,	0.658) 10.63	0.676) 2.57	0.672) 1.95	0.737) 2.64	$0.712) \\ 1.57$		0.700) 0.89	0.712) 4.28	0.703) 2.67
$\begin{array}{ll} {\rm chi2(3)}\\ {\rm P}>{\rm chi2}\\ {\rm Change} & {\rm in} \ {\rm C}-\end{array}$	0.014 -0.075 (-0.106	0.464 -0.060 (-0.082	0.583 -0.064 (-0.083	0.451 Reference	0.665 -0.027	(-0.052	0.827 -0.033 (-0.057	0.233 -0.024 (-0.047	0.445 -0.033 (-0.055
statistic	to -0.048)	to -0.037)	to -0.041)		to -0.00	(6(to -0.013)	to -0.005)	to -0.010)
All models we BMI, body m short physical	ere stratified by re ass index. MRC, l performance bat	ecruitment centre. Medical Research tery. 4MGS, four-	Goodness of fit Council. FEV ₁ % -metre gait speed	estimates was 6, predicted fo I. SNIP, sniff r	based on q rced expira tasal inspira	luartiles tory volu atory pre	of risk. <i>Abbrevi</i> , ime one second. ssure.	<i>ttions</i> : CI, confide 6MW, six-minute	nce intervals. walk. SPPB,

continuous data ortality using Ş analyses for all-cause 5 zards ortional ha Table 4.5. Cov nron

Risk indices	Median (IQR)	Survivors	Non-survivors	P value \P
$BODE_{6MW}$ (0-10)	3(1-5)	3(1-5)	5(2-7)	< 0.001
$BODE_{SPPB}$ (0-10)	3(1-4)	2(1-4)	4 (2-6)	< 0.001
$BODE_{4MGS}$ (0-10)	3(1-4)	2(1-4)	4 (2-6)	$<\!0.001$
$BODE_{BALANCE}$ (0-10)	2(1-4)	2(1-4)	4 (2-6)	$<\!0.001$
$BODE_{SNIP}$ (0-10)	4 (2-6)	4(2-5)	5 (4-7)	$<\!0.001$

Table 4.6: Risk indices using point system, by survival status.

Table 4.7: Risk indices using point system, by cause of death.

Risk indices	Pulmonary	Cardiac	Cancer	Other	P value \P
$BODE_{6MW}$ (0-10)	6 (4-7)	2 (1-7)	2(1-4)	3 (1-7)	0.004
$BODE_{SPPB}$ (0-10)	5(3-6)	2(1-5)	2(1-4)	4 (2-6)	0.004
$BODE_{4MGS}$ (0-10)	6 (3-6)	2(1-5)	2(2-3)	3(2-6)	< 0.001
$BODE_{BALANCE}$ (0-10)	5(3-6)	4 (1-6)	3(1-3)	4(2-5)	0.007
$BODE_{SNIP}$ (0-10)	6 (4-8)	4(2-6)	3 (3-4)	5 (3-7)	0.005

¶Kruskal-Wallis equality-of-populations rank test. *Abbreviations*: 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. SNIP, sniff nasal inspiratory pressure.

Compared to the composite scoring, use of continuous data did not improve discriminative ability for any of the BODE indices significantly (**Table 4.8**, page 116). When assessing BODEs' individual scoring components (i.e. BMI, FEV₁%, dyspnoea, 6MW), most of BODEs' predictive ability was attributed to the 6MW component (C = 0.648, 95% CI, 0.609 to 0.673; Figure 4.6, page 115). When replacing the 6MW component with the SPPB, or its components 4MGS or balance, the C-index changed from 0.671 (95% CI 0.641 to 0.693) to 0.667 (95% CI 0.627 to 0.694), 0.670 (95% CI 0.634 to 0.694), and 0.682 (95% CI 0.646 to 0.702) respectively. When replacing the 6MW component with SNIP, the C-index changed from 0.671 to 0.672 (95% CI 0.629 to 0.695).

[¶]Wilcoxon-Mann-Whitney test. *Abbreviations*: 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. SNIP, sniff nasal inspiratory pressure.

Figure 4.5: Survival risk indices, by quartiles with number at risk at different time points: (A) $BODE_{6MW}$, (B) $BODE_{SPPB}$, (C) $BODE_{4MGS}$, (D) $BODE_{BALANCE}$, and (E) $BODE_{SNIP}$. Mortality data obtained from the UK Office of National Statistics. *Abbreviations*: 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. SNIP, sniff nasal inspiratory pressure.

Figure 4.6: Change scores C-index. Individual components BODE. *Abbreviations*: CI, confidence interval. 6MW, six-minute walk. BMI, body mass index. MCR, Medical Research Council.

Variable	Model 1:	Model 2:	Model 3:	Model 4:	Model 5:	Model 6:	Model 7:	Model 8:
	BMI	BMI, MRC	BMI, MRC,	$\mathrm{BODE}_{6\mathrm{MW}}$	$BODE_{SPPB}$	$\mathrm{BODE}_{4\mathrm{MGS}}$	BODEBALANC	$_{\rm E}$ BODE _{SNIP}
			FEV1%					
Variable			I	Hazard Rat.	io (95% CI)			
BMI - per 1 point	0.90 (0.85 to	0.91 (0.86 to	0.91 (0.87 to	Z	Z	Z	Z	2
increase MRC dyspnoea	(0.95)	$\begin{array}{c} 0.95 \\ 1.38 & (1.10 \ to \end{array}$	0.96) 1.27 (0.99 to	2	2	ζ	ζ	ζ
score FEV $_1$ - per 5% in-	ζ	1.72) \sim	$\begin{array}{c} 1.63 \\ 0.93 & (0.85 \ \mathrm{to} \end{array}$	2	2	ζ	ζ	ζ
crease %predicted BODE	ζ	ζ	1.02) \sim	1.30 (1.17 to	1.34 (1.19 to	1.35 (1.19 to	1.40 (1.23 to	1.33 (1.18 to
				1.44)	1.51)	1.52)	1.58)	1.49)
C-index	0.608 (0.559	0.649 (0.608	0.649 (0.609	0.671 (0.641	0.667 (0.627	0.670 (0.634	0.682 (0.646	0.672 (0.629
Goodness of fit,	to 0.641) 0.22	to 0.679) 5.17	to 0.685) 7.91	to 0.693) 0.75	to 0.694) 3.88	to 0.694) 3.08	to 0.702) 5.43	to 0.695) 3.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.894 -0.063 (-0.101	0.16 -0.021 (-0.044	0.048 -0.021 (-0.050	0.862 Reference	0.274 -0.003 (-0.018	0.379 -0.001 (-0.013	0.143 0.011 (-0.003	0.321 0.001 (-0.015
statistic	to -0.033)	to -0.001)	to 0.010)		to 0.012)	to 0.014)	to 0.027)	to 0.016)

The BODE_{6MW} had a significantly higher C-index (0.709, 95% CI 0.680 to 0.737) compared to the ADO Index²²⁵ (age, dyspnoea and obstruction; FEV_1 ; C = 0.649, 95% CI 0.604 to 0.678). Adding age or any musculoskeletal measures to the BODE_{6MW} did not significantly improve the predictive ability of BODE (**Figure 4.7**, page 117). Measuring just SPPB resulted in a Cstatistic of 0.617, 95% CI 0.580 to 0.645).

Figure 4.7: C-indices with change scores, alternative BODE models. All models were stratified by recruitment centre. $BODE_{ALL}$ includes body mass index, MRC dyspnoea score, FEV_1 , 6MW, short physical performance battery components four-metre gait speed and balance, and sniff nasal inspiratory pressure.

4.3.5 Sensitivity analysis

All 714 individuals (n = 71 deaths after three years of follow-up) were included in sensitivity analyses using multiple imputation of missing baseline values (**Figures 4.8 4.9 4.10**, pages 118-120). Hazard ratios decreased for all models except for the model based on SNIP, which increased only slightly. Cross-validated C-indices decreased but were unchanged between the different models (**Table 4.9**, page 121).

Figure 4.8: Boxplots, after multiple imputation. (A) body mass index. (B) forced expiratory volume in one second. (C) sniff nasal inspiratory pressure. (D) six-minute walk distance. Boxplots in the first column presents data from the complete-case dataset. Boxplots in columns 1-20 present imputed data.

Figure 4.9: Kernel density plots, after multiple imputation. (A) body mass index. (B) forced expiratory volume in one second. (C) sniff nasal inspiratory pressure. (D) six-minute walk distance.

Figure 4.10: Diagnostic histograms, after multiple imputation. (A) four-metre gait speed. (B) balance. (C) chair stance. All three variables are components of the short physical performance battery (SPPB), and were together with the sniff nasal inspiratory pressure score used to estimate the SPPB total score.

Model	Model	ij	Model 2:	Model	3:	Model 4:	Model 5:	Model 6:	Model 7:	Model 8:
	BMI		BMI, MRC	BMI, I	MRC,	$BODE_{6MW}$	BODE _{SPPB}	$\mathrm{BODE}_{\mathrm{4MGS}}$	BODEBALANCI	$_{\rm E}~{ m BODE}_{ m SNIP}$
				$FEV_1\%$						
Variable				4		Hazard Rat	io (95% CI)			
BMI - per 1 point	0.91 (0.8	7 to	0.92 (0.88 to	0.93 (0.3	88 to	ζ	2	Z	2	z
increase MRC dyspnoea	(96.0)		0.96) 1.42 (1.16 to	$\begin{array}{c} 0.97 \\ 1.31 \end{array} $ (1.0	04 to	ζ	ζ	ζ	ζ	ζ
score FEV1 - per 5% in-	ζ		1.74) \sim	$1.63) \\ 0.99 (0.9)$	97 to	ζ	ζ	ζ	ζ	ζ
crease %predicted BODE	ζ		ζ	1.00)		1.29 (1.17 to	1.33 (1.19 to	1.33 (1.20 to	1.37 (1.22 to	1.33 (1.20 to
						1.42)	1.48)	1.49)	1.53)	1.48)
C-index	0.546 ((0.529	0.617 (0.606	0.662 (0.650	0.690 (0.679	0.661 (0.650	0.660 (0.650	0.673	0.670 (0.658
	to 0.560)		$to \ 0.629)$	to 0.673)	~	to 0.699)	to 0.671)	to 0.672)	(0.658to	to 0.682)
									0.685)	

All models were stratified by recruitment centre. *Abbreviations*: CI, confidence intervals. BMI, pouy mass mass mass mass for a stray. 4MGS, Council. FEV₁%, predicted forced expiratory volume one second. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. SNIP, sniff nasal inspiratory pressure.

4.4 Discussion

The main finding of the present study was that SPPB or its 4MGS and balance components, or SNIP may substitute 6MW in BODE for the prediction of all-cause mortality in stable COPD patients (GOLD stage II-IV). The study confirms prior observations that each test on its own is associated with prognosis in simple age and gender adjusted analysis, but QMVC and chair stand, however, performed less well.

4.4.1 Critique of the method

This study has limitations. Firstly, there is no independent validation cohort with a fully comparable dataset. We addressed this issue using a cross-validation technique approach and estimated C-indices through random partitioning of the dataset. Secondly, baseline data differed amongst the recruitment centres but was addressed through stratification by centre. Thirdly, there were missing data with evidence that some was not at random (**Figure 3.3**, page 63). Analysing complete-case data may have introduced bias, and although HRs and C-statistics of the models shifted following MICE, the main conclusions were unchanged. Subgroup analysis, for example, assessing the predictive ability for different age groups was not possible due to the limited number of events. Results should be interpreted with caution, however. Overall, the study sample size was rather small limiting statistical power, making it difficult to provide robust conclusions but instead our findings encourage further analysis in larger cohorts.

In many diseases and scoring systems, for example the ADO Index,²²⁵ age is a strong predictor of death, and unsurprisingly we found the risk of death to rise with age. However, our data showed that ADO compared to $BODE_{6MW}$ provides less discriminative ability, or even adding age to the models did not provide any significant difference in discriminative ability.

The ERICA cohort consisted primarily of individuals GOLD staged II-III, making generalisations to those with very mild COPD, or those with very advanced disease difficult. Additional deaths occurred beyond the three years of follow-up included in the primary analysis. However, three years of follow-up was chosen because insufficient deaths occur over a short time frame while over a long time period, the predictive ability of BODE diminishes, both because ageing is a strong predictive variable and because measured variables are so distant from the point of death. Consistent with this, some very large COPD trials such as the TOwards a Revolution in COPD Health (TORCH)¹⁷⁴ and Study to Understand Mortality and Morbidity in COPD (SUMMIT)²⁵⁶ have used 3-year follow-up.

The BODE Index is a point-based system using cut-off points, but Puhan *et al.* have already pointed out the poor calibration of the original BODE Index resulting in an Updated BODE Index.²²⁵ Such a score would have detracted from utility of the BODE at the time of its conception but would be readily available as a phone or web based app now. However, our analysis failed to demonstrate the superiority of continuous rather than categorical data. While this may reflect lack of statistical power, or due to the fact that the SPPB and its components are categorical, our data do not suggest any advantage for a model based on continuous variables. On the other hand, even when outcomes lack statistical significance – a statement about the likelihood of findings being due to chance – this differs from the clinical significance. Clinical significance considers rather the practical value or relevance of a specific biomarker, or using continuous variables for example, which does not necessarily consider statistical significance.

Some of our data did not have defined quartiles of normality and therefore these categories were created from the dataset. This arbitrary point assignment may not be optimal and undermine validity. We do not know how well these quartiles would map to alternative or non-trial populations and to what extent the categorisation we created or the matching to prognostic impact would be maintained. Therefore, the validity of this scoring should be tested in an alternative and independent cohort.

4.4.2 Significance of the findings

By 2030, chronic respiratory diseases, cardiovascular diseases and cancer are each predicted to be responsible for a third of deaths globally.¹⁷² Existing COPD risk indices have so far failed

to achieve widespread clinical adoption. In some cases this may be due to insufficient clinical validation data, but in the case of BODE we speculate that impracticalities relating to the 6MW component, especially such test duration, and the requirement of space and equipment, may play a role.

The SPPB, however, is a simple test to measure lower limb function that requires only a chair, clock and a four-metre flat surface taking less than five minutes. In early 2018, the European Medicines Agency approved the SPPB as a measure of frailty for disease associated with musculoskeletal decline.⁸⁸ In fact, our data suggest that even substitution of a single test that is quick (e.g. 4MGS or balance) does not result in any significant loss in predictive ability compared with BODE_{6MW}.

Another quick and simple measurement that may be performed at the bedside is the SNIP. Measuring SNIP, however, requires a respiratory pressure metre costing approximate £1000, which many primary care units do not have. Maximal SNIP reflects diaphragm function and is therefore directly impacted by hyperinflation^{222,238} and also is susceptible to generalised cachectic influences. In a separate cohort we found that SNIP was predictive of survival and indeed to some extent slightly outperformed direct measurement of hyperinflation.¹⁸⁸ Hyperinflation has previously also been reported as predictor of poor prognosis.³⁵

Several studies have tried to improve the BODE Index by adding additional markers (**Table 4.1**, page 100).²⁶⁷ Within the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study, for example, inflammatory markers such as fibrinogen and C-reactive protein were added. However, only interleukin-6 improved the models' predictive performance,⁴² and other inflammatory markers did not improve performance significantly. Moreover, adding exacerbation history does not show to substantially improve the prognostic capacity of BODE for mortality.²⁴⁶

With regard to our final hypothesis, we were not able to demonstrate any significant improvement in the predictive ability of the $BODE_{6MW}$ by adding alternative musculoskeletal measures, specifically SPPB. We believe this is because they are likely to capture the same phenotypic information as 6MW. Strong correlations between 6MW and SPPB (and its components) have been described previously¹⁴⁹ and were to be expected as they both depend on lower limb function. The QMVC was moderately correlated with 6MW but performed less well. Relationships between QMVC and SPPB were also expected since SPPB was designed as a test of lower limb function. We suspect this explains why the SPPB can be easily substituted for 6MW but also why it conferred no additional value when added to 6MW.

The superiority of the balance component is of interest and may reflect the impact of comorbidities in COPD beyond those traditionally captured by chest physicians, or indeed by the current protocol. In particular impaired balance may reflect multiple pathologies beyond musculoskeletal weakness. Sensory input is one such that would be impaired in patients with poorly controlled diabetes or alcohol related neuropathy. Visual impairment might also impair balance, as would cognitive issues. Although, only 128 individuals (20%) had a score below the maximum four points. This may indicate that these individuals, especially those with 0-1 points were extremely ill and possibly frail.

4.5 Conclusions

We conclude that the SPPB, and its 4MGS and balance components have potential to replace the 6MW component in the BODE Index for our cohort without significant loss of predictive ability in all-cause mortality, thus potentially enhancing the uptake of such risk measures in clinical practice. Large prospective validation of such simpler measures to replace the 6MW component for use in prognostic tools is warranted.

5

Causes of death in COPD using the UK Biobank

Chapter summary

Background There is uncertainty about the incidence of fatal cardiovascular disease amongst the chronic obstructive pulmonary disease (COPD) population. Early studies have suggested that cardiovascular death occurs in one tenth of COPD patients, whilst more recent studies suggest this is closer to one third. In the <u>E</u>valuation of the <u>R</u>ole of <u>Inflammation in C</u>hronic <u>A</u>irways disease (ERICA) cohort there were only few cardiac deaths, much lower than expected. Further investigations are required to confirm/ replicate these findings. The primary aim of this study was to determine cause of death in the UK Biobank cohort by estimating age-standardised all-cause and cause-specific mortality rates by sex in COPD, and compare these rates with those found in the ERICA cohort. Secondly, we aimed to estimate the age-standardised non-fatal cardiovascular disease incidence rates by sex in COPD, and compare these with those found in the ERICA cohort.

Methods We analysed survival and causes of death of individuals with at least two spirom-

etry measurements and complete information for sex, height and smoking status aged 40 years and older identified in the UK Biobank data (n = 150,542) recruited between 2006 and 2018. We compared outcomes between individuals with defined COPD and non-COPD. Chronic obstructive pulmonary disease was defined based on spirometry results and smoking history. Causes of death and non-fatal cardiovascular related hospital admission were obtained from the UK Office for National Statistics and the National Health Services respectively, and categorised using ICD-10 coding. Sex-specific mortality rates were age-standardised using the 2013 European Standard Population. Hazard ratios were estimated using age- and sex-adjusted Cox regression.

Findings Cumulative survival was 98% (98-98% CI) at 5 years, 97% (97-97% CI) at 7 years, and 96% (96-97% CI) at 9 years. The highest cause-specific mortality rates were cancer-related. In both men and women, COPD had an associated threefold higher risk of early mortality. In women, COPD had an associated fourfold higher risk of cardiac-related death and ninefold higher risk of pulmonary death. In men, COPD was associated with a threefold higher risk of cardiac-related death and sevenfold higher risk of pulmonary death.

Interpretation Findings in the UK Biobank indicate cancer to be the leading cause of death in COPD with a lower cardiac-death rate than expected. Our findings may reflect the downward trend in fatal cardiovascular disease incidence/ improved cardiovascular survival in COPD, and an increased prevalence of death from other causes especially cancer and respiratory disease (i.e. trumped by the speed of progression of these diseases). Chronic obstructive pulmonary disease is, however, associated with higher all-cause mortality, including cardiac-specific death. Differences in fatal and non-fatal cardiovascular disease event rates, and the associated risk by sex suggests tailored COPD management and treatment to be important.

5.1 Background

There is controversy regarding the incidence of fatal and non-fatal cardiovascular (CV) disease amongst the chronic obstructive pulmonary disease (COPD) population. Systematic analysis of CV comorbidity in patients with COPD reported individuals with COPD to have at least a twice as high risk of non-fatal CV disease compared to those without.⁴⁶ However, high levels of heterogeneity were found between studies. Cardiovascular co-morbidity is thought to significantly contribute to both in-hospital and post-discharge mortality in COPD.^{8,53,98} Yet, a systematic review on the risk of myocardial infarction (MI) and mortality in COPD suggests there is evidence indicating COPD to be associated with a higher risk of MI and mortality after MI but not in-hospital mortality.²³¹ In addition, the recent Korean Health and Nutritional Examination Survey (KNHANES, n = 24,429) found COPD to be associated with all-cause mortality but not with increased CV mortality.²⁴⁷

Early studies have suggested that CV death occurs in only one tenth of COPD patients,³² whilst more recent studies suggest this closer to a third. A review on all-cause mortality in COPD published in 2007 found that 35% of deaths have a respiratory cause, 27% CV, 21% cancer, 10% other and 8% are unknown.¹⁷⁴

The reliability of classifying causes of death from COPD, however, has been questioned with potential under reporting of respiratory disease being the underlying cause of death.^{81,118,138} Competing risks of multiple diseases associated with mortality, especially for ageing populations who are more likely to have multiple morbidities, may serve as an explanation. Likewise, minor diseases such as pneumonia, which are common in COPD patients and particularly in the elderly, have found to be often misclassified as an underlying cause of death.¹⁷⁸

Furthermore, previous studies did not age-standardise death rates or separate by sex. For most causes of death, rates differ by age and require death rates to be adjusted to a standard age distribution. Failing to age-standardise mortality rates may result in variation of overall death rates when comparing two or more populations. Mortality rates may also differ by sex. For example, in the TOwards a Revolution in COPD Health (TORCH) study, causes of death were similar between sexes but with higher mortality rates for men.³⁹ In the Body mass index, airflow Obstruction, Dyspnoea and Exercise (BODE) study, also higher all-cause mortality rates and death related to pulmonary disease were found in men.⁷¹ In the <u>E</u>valuation of the <u>R</u>ole of Inflammation in <u>Chronic Airways</u> disease (ERICA) cohort about a third of individuals had nonfatal CV disease with only very few CV related deaths. Out of 714 individuals with a total of 149 deaths during the study period, only eighteen (12%) of individuals died of cardiac causes, much lower than expected. Further investigations, however, are required to confirm/replicate these findings in both UK and non-UK populations.

One of the largest and most detailed UK-based population cohort studies with data made available to any qualified health researcher is the UK Biobank. The UK Biobank contains a large number of measurements, including lung performance measures obtained using spirometry. It has followed-up individuals for survival status, including cause-specific death, and captured any hospital admission including CV related ones since study enrolment.

The primary aim of this study was to determine cause of death within the UK Biobank, estimate age-standardised all-cause mortality and cause-specific rates by sex and COPD status, and compare these rates with those found in the ERICA cohort. Secondly, we aimed to estimate the age-standardised non-fatal CV disease incidence rates by sex and COPD status, and compare these with those found in the ERICA cohort study.

5.2 Methods

5.2.1 Study design and participants

Data from the UK Biobank (application P35826) were linked to mortality data obtained from the UK Office for National Statistics, and electronic health record (EHR) data (i.e. hospital admission data) obtained from the National Health Services. Data were collected between 2006 and 2010 with continuous follow-up of survival status. The UK Biobank is a large long-term prospective national and international biobank study in the United Kingdom with approximately 500.000 individuals aged between 40-69 years. Individuals recruited in the UK Biobank were expected to develop common diseases over time including lung and CV disease: 5000 cases of COPD and 10.000 cases of myocardial infarction and coronary death eight years after recruitment. Data were captured at 22 assessment sites across the UK and included demographics, medical history, measures of pulmonary function, and others. Full details are provided elsewhere.²⁵⁵ Analysis were limited to those of white European ancestry, at least two forced expiratory volume in one second (FEV₁) and forced vital capacity (FVC) measures, and complete information for spirometry method, sex, standing height, and smoking status, and aged above forty years.

5.2.2 Definition of COPD

Individuals with COPD at baseline were identified using the following selection criteria: (i) COPD defined as post-bronchodilator FEV₁ of 80% or less of their predicted value, a baseline FEV_1/FVC ratio of <0.7 measured by spirometry, (ii) a smoking history of at least ten pack-years, and (iii) Global initiative for Obstructive Lung Disease (GOLD) stage \geq II.¹⁰⁷

5.2.3 Statistical analysis

Based on baseline disease, individuals were categorised according to defined COPD or non-COPD (reference group). The primary outcome measure was cause-specific incidence of death within the UK Biobank by COPD status. Causes of death were categorised according to the international classification of diseases and related health problems 10th revision coding (ICD-10; **Table 5.1**, page 133). The secondary outcome measure was hospitalised non-fatal CV disease derived through EHR data. These data were first cleaned for episode status and events were extracted from both primary and secondary positions of ICD-10 coding (**Table 5.2**, page 135). Time to event (i.e. time to death or time to first hospitalised non-fatal CV disease) was defined as time to death or admission from the baseline visit date to date of death or admission, or censored at November 2018. Time to hospitalised non-fatal CV disease was defined as time to first admission from the baseline visit to date of admission, or censored at November 2018. Sex specific all-cause and cause-specific mortality rates were age-standardised using the 2013 European Standard Population.¹⁹⁸ Hazard ratios (HRs) were estimated using Cox proportional hazards regression, adjusted for age and sex. Demographics were described using number and percentage for categorical variables, and the medians (inter-quartile ranges (IQR)) for continuous variables.

End point	ICD-10 codes
Diseases of the circulatory system (IX)	F01, G45, I05-I15, I20-I28, I30-I52, I60-I89, Q20-Q28, R96
Vascular dementia	F01
Transient cerebral ischaemic attacks and related syndromes	G45
Chronic rheumatic heart diseases	I05-I09
Hypertensive diseases	I10-I15
Ischaemic heart diseases	120-125
Pulmonary heart disease and diseases of pulmonary circulation	126-128
Other forms of heart disease	130-152
Cerebrovascular diseases	I60-I69
Diseases of arteries, arterioles and capillaries	170-179
Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified	I80-I89
Congenital malformations of the circulatory system	Q20-Q28
Other sudden death, cause unknown	R96
Diseases of the respiratory system (\mathbf{X})	J09-J18, J20-J22, J30-J47, J60-J70, J80-J86, J90-J99
Influenza and pneumonia	J09-J18
Other acute lower respiratory infections	J20-J22
Other diseases of upper respiratory tract	J30-J39
Chronic lower respiratory diseases	J40-J47
Lung diseases due to external agents	J60-J70
Other respiratory diseases principally affecting the interstitium	J80-J84
Suppurative and necrotic conditions of lower respiratory tract	J85-J86
Other diseases of pleura	J90-J94
Other diseases of the respiratory system	J95-J99
Neoplasms (II)	C00-C26, C30-C41, C43-C58, C60-C97, D10-D48
Malignant neoplasms of lip, oral cavity and pharynx	C00-C14
Malignant neoplasms of digestive organs	C15-C26
Malignant neoplasms of respiratory and intrathoracic organs	C30-C39
Malignant neoplasms of bone and articular cartilage	C40-C41
Melanoma and other malignant neoplasms of skin	C43-C44
Malignant neoplasms of mesothelial and soft tissue	C45-C49
Malignant neoplasm of breast	C50
Malignant neoplasms of female genital organs	C51-C58
Malignant neoplasms of male genital organs	C60-C63
Malignant neoplasms of urinary tract	C64-C68

 Table 5.1: Definitions of underlying (primary) cause of death: ICD10, available in UK Biobank.

End point	ICD-10 codes
Malignant neoplasms of eye, brain and other parts of central nervous system	C69-C72
Malignant neoplasms of thyroid and other endocrine glands	C73-C75
Malignant neoplasms of ill-defined, secondary and unspecified sites	C76-C80
Malignant neoplasms, stated or presumed to be primary, of lymphoid,	C81-C96
haematopoietic and related tissue	
Malignant neoplasms of independent (primary) multiple sites	C97
Benign neoplasms	D10-D36
Neoplasms of uncertain or unknown behaviour	D37-D48
Other	
Certain infectious and parasitic diseases (I)	A00-A09, A15-A28, A30-A49, A80-A89, B00-B09, B15-B64, B90-B94, B99
Diseases of the blood and blood-forming organs and certain disorders involv-	D55-D77, D80-D89
ing the immune mechanism (III)	
Endocrine, nutritional and metabolic diseases (IV)	E00-E07, E10-E16, E20-E35, E65-E68, E70-E90
Mental and behavioural disorders (V)	F00, F02-F19, F30-F39, F80-F89
Diseases of the nervous system (VI)	G00-G14, G20-G26, G30-G32, G35-G37, G40-G41, G47, G50-G64, G70-G73,
	G80-G83, G90-G99
Diseases of the digestive system (XI)	K20-K31, K35-K38, K40-K46, K50-K52, K55-K67, K70-K77, K80-K87, K90-
	K93
Diseases of the skin and subcutaneous tissue (XII)	L00-L08, L50-L54, L80-L99
Diseases of the musculoskeletal system and connective tissue (XIII)	M00-M03, M05-M25, M40-M43, M45-M49, M60-M63, M70-M90
Diseases of the genitourinary system (XIV)	N00-N08, N10-N23, N25-N51, N80-N98
Congenital malformations, deformations and chromosomal abnormalities	Q00-Q07, Q38-Q45, Q60-Q89
(XVII)	
Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere	R00-R09, R47-R69, R95, R97-R99
classified (XVIII)	
External causes of morbidity and mortality (XX)	V01-V29, V40-V49, V80-V97, W00-W99, X00-X19, X30-X49, X58-X99, Y10-
	Y34, Y40-Y69, Y83-Y89
Codes for special purposes (XXII)	U00-U49

Abbreviations: ICD-10, international classification of diseases 10th edition.

End point	ICD-10 codes
Diseases of the arteries	I70.2, I72, I73.9-I79, E10.5, E11-E14
Peripheral arterial disease	I70.2, I73.9, E10.5, E11-E14
Diseases of arteries, arterioles and capillaries	172, 174-179
Coronary heart disease	I20.0-I20.1, I20.8-I21-I25
Angina	I20.1, I20.8-I20.9
Unstable angina	I20.0, I24
Coronary heart disease not otherwise specified	I25
Acute MI, and certain current complications following	I21, I23
acute MI	
Subsequent myocardial infarction	I22
All stroke	I60, I61, I.62, I63, I64, I65-I69, F01, G46.3-G46.7, G458,
	G459
Subarachnoid haemorrhage	I60
Intra-cerebral haemorrhage	I61
Cerebral infarction	I63
Stroke, not specified as haemorrhage or infarction	I64
Stroke syndromes	G46.3-G46.7
Transient ischaemic attack	G458, G459
Other stroke	I62, I65-I69, F01
Heart failure	I11.0, I13.0, I13.2, I50
Heart failure	I50
Hypertensive heart disease with (congestive) heart failure	I11.0
Hypertensive heart and renal disease with (congestive)	I13.0
heart failure	
Hypertensive heart and renal disease with both (conges-	I13.2
tive) heart failure and renal disease	

 Table 5.2: Definitions of diagnoses for non-fatal cardiovascular disease – main ICD10

Atrial fibrillation and flutter (I48) and hypertensive diseases (I10-I15) were considered risk factors and therefore not included. *Abbreviations*: ICD-10, international classification of diseases 10th edition. MI, myocardial infarction.

5.3 Findings

5.3.1 Descriptive statistics

From a total of 502 595 individuals in the UK Biobank, 472 866 were of white European ancestry but only 150 542 individuals had at least two FEV₁ and FVC measures, complete phenotype data (i.e. height and sex) and were aged >40 years and therefore included in the primary analysis (**Figure 5.1**, page 137). Those without complete phenotype data (i.e. excluded from analysis) were one year older (p <0.001) and more likely to be male (p <0.001) compared to those included. Most missing data were present for FEV₁ (68%) and FVC (25%) measures. Of those included, 9926 (7%) individuals were identified with COPD. The selected cohort in UK Biobank (n = 150 542) had slightly more women (58%) than men, the median age 57 years (range 41-72), 45% were overweight, median FEV₁ (IQR) was 2.7 (2.2-3.2) litre, and a third was an ever smoker at baseline with 10% GOLD staged II or above (**Table 5.3**, page 136). Those with COPD were older (p <0.001), had higher body mass index (BMI; p <0.001), had lower FEV₁ (p <0.001) and were more likely to be male (p <0.001) compared to those without COPD.

Table 5.3: Baseline characteristics (n = 150 542).

Characteristic	Selected cohort	Non-COPD	COPD
No. $(\%)$ of participants	150 542	140 616	9926
Age at survey, median (IQR), years	57(50-63)	57 (50-63)	61(56-65)
Male sex, No. (%)	62 844 (42)	57 416 (41)	5428(55)
BMI, median (IQR), kg/m^2	27 (24-30)	27 (24-30)	28 (25-31)
FEV_1 , median (IQR), litre	2.7(2.2-3.2)	2.7(2.3-3.3)	1.9(1.5-2.3)
Ever smoker, No. $(\%)$	$46\ 279\ (31)$	36 353 (26)	9926~(100)
GOLD stage, \geq II	23 118 (9)	13 192 (9)	9926 (100)

Values are given as the medians and interquartile ranges (IQR), or No. of cases (%). Baseline data of 150 542 patients included. *Abbreviations*: BMI, body mass index. FEV_1 , forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease.

5.3.2 Event and mortality rates

Cumulative survival was 98% (98-98% CI) at 5 years, 97% (97-97% CI) at 7 years, and 96% (96-97% CI) at 9 years. Crude all-cause mortality and cause-specific mortality rates gradually

Figure 5.1: Flow diagram of sample selection strategy, UK Biobank. Total number of deaths (n = 4173). *Abbreviations*: FUP, follow-up period. FEV_1 , forced expiratory volume one second. FVC, forced vital capacity. GOLD, global initiative for obstructive lung disease.

increased throughout the study period for both sexes (Figure 5.2, page 139). During 7-year median follow-up a total of 4173 (3%) individuals died: 870 (9%) with COPD and 3303 (2%) non-COPD. Age- and sex-adjusted survival rates indicated those with COPD to be at higher risk of mortality (Figure 5.3, page 140). The leading primary (underlying) cause of death was cancer followed by diseases of the circulatory system, respiratory system, and other (Figure 5.4, page 141). Individuals with defined COPD had a higher proportion of deaths related to cardiac and respiratory diseases, and a lower proportion of deaths related to cancer compared to those without COPD, regardless of sex.

Age- and sex-adjusted all-cause mortality rates after 9-year follow-up were higher in men (0.53 per 100 person-years (95% CI 0.48 to 0.58)) than in women (0.28 (95% CI 0.25 to 0.31); **Figure 5.5**, page 142). Death due to cancer had the highest rate followed by cardiac disease. Chronic obstructive pulmonary disease was associated with higher all-cause and cause-specific mortality, in particular men. All-cause mortality for individuals with COPD (1.23 [95% CI 0.97-1.50] per 100 person-years for men, and 0.77 [95% CI 0.53-1.01] for women) were higher compared to those without COPD (0.45 [95% CI 0.40-0.50] for men, and 0.25 [95% CI 0.22-0.28] for women). Cardiac death rates for COPD were 0.29 (95% CI 0.17-0.41) per 100 person-years for men, and 0.11 (95% CI 0.04-0.18) for women compared to 0.10 (95% CI 0.08-0.12) and 0.03 (95% CI 0.02-0.04) for men and women without COPD, respectively.

Age- and sex-adjusted HRs for all-cause mortality were 2.70 (95% CI 2.43 to 2.93) and 3.06 (95% CI 2.69-3.47) for men and women with COPD, respectively (**Figure 5.5**, page 142). For all-cause and cause-specific mortality, HRs were higher for women. Hazard ratios for cardiac death for women with COPD were 3.55 (95% 2.57-4.89), and 2.81 (95% 2.32-3.41) for men with COPD.

Figure 5.2: Crude annual all-cause and cause-specific mortality rates with 95% CI, by sex and COPD status. Figure (A) indicates event rates by COPD status for women. Figure (B) indicates event rates by COPD status for men.

Figure 5.3: Age- and sex-adjusted survival, by COPD status. Time in years. Risk table indicates the number of individuals at risk of death during the study period, and cumulative number of events at specific time points.

Figure 5.4: Cause-specific death by sex of (A, D) selected cohort: males (n = 2427 deaths) and females (n = 1746), (B, E) non-COPD: males (n = 1847 deaths) and females (n = 1456), and (C, F) COPD: males (n = 580 deaths) and females (n = 290).

A . Al	_		B. Non	-COPD		с . соР	Q		D. Compariso	ſ
No. Death Death	Ø	Mortality Rate (95% Cl)	No. Deaths		Mortality Rate (95% Cl)	No. Deaths		Mortality Rate (95% Cl)		Hazard Ratio (95% CI)
All-cause F 1746 M 2427	•	0.28 (0.25 to 0.31) 0.53 (0.48 to 0.58)	1456 1845	•	0.25 (0.22 to 0.28) 0.45 (0.40 to 0.50)	290 580	+	0.77 (0.53 to 1.01) 1.23 (0.97 to 1.50)	• -	3.06 (2.69 to 3.47) 2.70 (2.43 to 2.93)
Cancer F 1231 M 1349	. •	0.19 (0.17 to 0.22) 0.29 (0.26 to 0.33)	1046 1050	. •	0.18 (0.15 to 0.20) 0.26 (0.22 to 0.29)	185 299	¦ †	0.51 (0.31 to 0.72) 0.60 (0.43 to 0.79)	•.	2.73 (2.34 to 3.20) 2.36 (2.08 to 2.69)
Cardiac F 238 M 555		0.04 (0.03 to 0.05) 0.12 (0.10 to 0.14)	191 415		0.03 (0.02 to 0.04) 0.10 (0.08 to 0.12)	47 140	.+	0.11 (0.04 to 0.18) 0.29 (0.17 to 0.41)	+	3.55 (2.57 to 4.89) 2.81 (2.32 to 3.41)
Pulmonary F 74 M 137	••	0.01 (0.01 to 0.02) 0.03 (0.02 to 0.04)	44 73		0.01 (0.00 to 0.01) 0.02 (0.01 to 0.03)	30 64		0.07 (0.02 to 0.11) 0.15 (0.06 to 0.25)		 9.37 (5.88 to 14.93) 7.41 (5.27 to 10.42)
Other F 203 M 384		0.03 (0.02 to 0.04) 0.09 (0.07 to 0.11)	175 307		0.03 (0.02 to 0.04) 0.08 (0.06 to 0.10)	28 77	• +	0.08 (0.01 to 0.16) 0.19 (0.09 to 0.30)	+ +	2.63 (1.76 to 3.94) 2.41 (1.87 to 3.11)
	0 0.4 0.8 1.2 Mortality Rate per 100 Person-Yea	- 1.6 ars	_	0 0.4 0.8 1.2 1. Mortality Rate per 100 Person-Years	φ	0 -	0 0.4 0.8 1.2 1 Mortality Rate per 100 Person-Years	- o . °	0 2 4 6 8 Hazard Ratio (95% CI)	- 0

Figure 5.5: Age-standardised mortality rates and hazard ratios with 95% CI after nine years of follow-up, by sex. The selected cohort (A) included 150 542 participants over 1053 741 person-years: 87698 women over 615 956 person-years, and 62844 men over 437 785 cause-specific hazard ratios, by sex. Top rows indicate results for female. Second rows indicate results for male (coloured yellow). person-years. Figures (A-C) present all-cause and cause-specific mortality rates, by sex. Figure (D) presents all-cause and

142

5.3.3 Non-fatal cardiovascular disease

During the study period there were in total 13 800 (9%) individuals admitted to hospital for nonfatal CV disease. Age-adjusted overall non-fatal CV event rate was higher for men than women (2.10 [95% CI 2.01-2.20] vs. 0.87 [95% CI 0.82-0.92] per 100 person-years; **Figure 5.6**, page 144). The group with defined COPD had a higher non-fatal CV event rate than the non-COPD group, especially men (3.22 [95% CI 2.82-3.63] vs. 1.69 [95% CI 1.60-1.77] per 100 person-years). Event rates for women with COPD compared to those without were 1.90 [95% CI 1.54-2.26] vs. 0.81 [95% CI 0.75-0.86] per 100 person-years, respectively.

Age- and sex-adjusted HRs for non-fatal CV disease rates were 2.28 (95% CI 2.10-2.46) for women with COPD, and 1.88 (95% CI 1.78-1.99) for men with defined COPD at baseline (**Figure 5.6**, page 144).

0.0	Event Rate N (95% CI) E (95% CI) E (95% CI) A (95% CI)	Vo. Events 191 L		Event Rate (95% CI) (95% CI) 0.03 (0.02 to 0.04) 0.10 (0.08 to 0.12)	No. Events 47 140		Event Rate (95% CI) 0.11 (0.04 to 0.18) 0.29 (0.17 to 0.41)		(95% CI) (95% CI) 3.55 (2.57 to 4.89) 2.81 (2.32 to 3.41)
0.8	7 (0.82 to 0.92) 4 3 (2.01 to 2.20) 6i	4774 3839		0.81 (0.75 to 0.86) 1.69 (1.60 to 1.77)	185 1468	ł	1.90 (1.54 to 2.26) 3.22 (2.82 to 3.63)	• •	2.28 (2.10 1.88 (1.78
ars 4			0.81.6243.24 Event Rate		C	0 0.8 1.6 2.4 3.2 Event Rate per 100 Person-Year	⊢ 4 õ	0 2 4 6 8 1 Hazard Ratio (95% Cl)	6

5.3.4 Comparison with the ERICA cohort

In comparison with the ERICA cohort, UK Biobank participants were a median six years younger, and had a median 0.6 litre (1.9 vs. 1.3 litre and 16% predicted (69% vs. 53%) higher FEV_1 (**Table 5.4**, page 146). In the UK Biobank there were fewer men (55% vs. 61%) and more current smokers (43% vs. 31%). Body mass index, biochemical measures (i.e. white cell count, neutrophils, and haemoglobin), resting heart rate and systolic blood pressure values were similar between the two cohorts.

Age-standardised all-cause mortality rates were higher for both sexes in the ERICA cohort (Figure 5.7, page 147). Cardiac death rates were higher for men, and slightly higher for both sexes in the ERICA cohort. Namely, cardiac death rates in the UK Biobank cohort were 0.11 (95% CI 0.04-0.18) per 100 person-years compared to 0.17 (95% CI 0.00-0.41) in the ERICA cohort, for women. Cardiac death rates in the UK Biobank cohort were 0.29 (95% CI 0.17-0.41) per 100 person-years compared to 0.31 (95% CI 0.01-0.67) in the ERICA cohort, for men. In the UK Biobank mortality rates were highest for cancer followed by cardiac and other causes of death. The lowest rate of death was due to pulmonary disease, whereas the ERICA cohort had the highest ratio of death due to pulmonary disease.

When comparing non-fatal CV disease event rates between the two cohorts, event rates for men were rather similar between the two cohorts. Rates in the UK Biobank cohort were 3.22 (95% CI 2.82-3.63) per 100 person-years, compared to 3.21 (95% CI 2.17-4.32) in the ERICA cohort (**Figure 5.8**, page 147). Event rates for women in the UK Biobank cohort were lower than those for women in the ERICA cohort.

Characteristic	Total, UK Biobank (COPD)	N (%)	Total, ERICA	N (%)
	BIODAIIK (COPD)		(COPD)	
Description				
Age, median (IQR), years	61(56-65)	9926 (100)	67 (62-73)	714 (100)
Male sex, No. $(\%)$	5428(55)	9926 (100)	434 (61)	714 (100)
BMI, median (IQR), kg/m^2	28 (25-31)	9926 (100)	27 (23-31)	707 (99)
Lung function				
FEV_1 , median (IQR), litre	1.9(1.5-2.3)	9926 (100)	1.3(0.9-1.7)	712 (100)
FEV_1 , median (IQR), % predicted	69 (60-75)	9926 (100)	53 (40-65)	712 (100)
Smoking status - current, n (%)	4287 (43)	9926 (100)	218 (31)	710 (99)
Ever smoker, n (%)	9926 (100)	9926 (100)	714 (100)	714 (100)
GOLD stage, \geq II	9926 (100)	9926 (100)	713 (100	713 (100)
Shortness of breath walking on	1031(10)	3321 (33)	146 (21)	709 (99)
level ground (MRC IV)				
Biochemical measures				
WCC (mcL)	7.8 (6.6-9.2)	9502(96)	7.1 (6.0-8.6)	704 (99)
Neutrophils (mm^3)	4.8(3.9-5.9)	9486(96)	4.5(3.6-5.6)	701 (98)
Haemoglobin (g/dL)	14.4 (13.6-15.3)	9502(96)	14.3(13.4-15.3)	703 (98)
Cardiovascular status				
Heart rate (bpm)	72 (64-80)	9317 (100)	74 (66-82)	702 (98)
SBP (mmHg)	142 (129-156)	9302 (94)	142 (131-154)	706 (99)
PWV (m/sec)	10.2 (8.1-12.1)	3283(33)	9.8 (8.4-11.8)	654 (92)
AIx $(\%)$	22 (17-30)	172 (2)	28 (20-34)	699 (98)

 Table 5.4: Comparison of baseline characteristics between the UK Biobank and ERICA cohorts.

Values are given as the medians and interquartile ranges (IQR), or No. of cases (%). *Abbreviations*: BMI, body mass index. FEV₁, forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease. MRC, Medical Research Council. WCC, white cell count. SBP, systolic blood pressure. MAP, mean arterial pressure. CIMT, carotid intima-media thickness. PWV, pulse wave velocity. AIx, augmentation index.

Figure 5.7: Age-standardised mortality rates and hazard ratios with 95% CI after nine years of follow-up, by sex and cohort study. Figures (A) presents all-cause and cause-specific mortality rates for women, by cohort. Figure (B) presents all-cause and cause-specific mortality ratios, by sex and cohort. Top rows indicate results from the selected UK Biobank cohort (U). Second rows indicate results from the ERICA cohort (E; coloured yellow).

Figure 5.8: Age-standardised non-fatal cardiovascular event rates and hazard ratios with 95% CI after nine years of follow-up, by sex. Top rows indicate results for women (F). Second rows indicate results for men (M; coloured yellow).

5.4 Discussion

This study evaluated age-standardised all-cause and cause-specific mortality, and non-fatal CV disease rates by COPD status and sex, and the associated risk of COPD with these outcomes. The main findings of this analysis were that despite the higher event rates for men, women with COPD were at higher risk of both fatal- and non-fatal CV disease. In addition, COPD in men was associated with a 2.7-fold higher risk of early mortality, including a 2.8-fold higher risk of cardiac-related death and 7.4-fold higher risk of pulmonary death. Whereas in women, COPD was associated with a threefold higher risk of early mortality including an 3.6-fold higher associated risk of cardiac-related death and 9.4-fold higher risk of pulmonary death. In addition, COPD in men was associated with a 1.9-fold higher risk of non-fatal CV disease, and 2.3-fold higher risk in women.

Mortality rates were higher in ERICA than in the UK Biobank, although cardiac-related death rates were similar. Non-fatal CV disease rates for women were higher in the ERICA cohort, yet for men these were similar. Pulmonary-related death was the primary cause of death in ERICA, indicating a population with more severe pulmonary disease.

Differences between findings in the UK Biobank and the ERICA cohort may be explained by the variation in populations, despite limiting analyses to individuals with COPD specific spirometry results aged forty years of age and over. The population in ERICA was specifically recruited because of their lung disease, and may have had more severe lung disease (i.e. worse FEV_1 and more shortness of breath) than individuals recruited in UK Biobank. Besides the larger proportion of males (61%) recruited in ERICA, there may have been differences in geographical distribution between cohorts. Most participants in the ERICA study were recruited in Cardiff followed by Nottingham, Edinburgh, Cambridge and London. Individuals from London were slightly healthier compared to other sites and individuals from Cardiff (52%) had more severe lung disease. Participants in the UK Biobank were primarily recruited in England/Wales with about 10% from Scotland. Overall, the UK Biobank cohort was younger, healthier and included more women compared to ERICA, and therefore the two cohorts may not have been that well comparable. Simultaneously in terms of the generalisability of the UK Biobank cohort, compared to nationally representative data sources, individuals enrolled in the UK Biobank were more likely to be female and older with higher socio-economic status than non-participants.⁹⁷ Hence, in terms of generalisability, it may be difficult to generalise findings to other populations. Findings need to be replicated in other and independent COPD cohorts to confirm findings.

For both cohorts, cause of death data were taken from death certificates provided by the UK ONS. In addition to ONS, UK Biobank is also linked to the Cancer Registry, whereas ERICA is not. However, this should have no impact on causes of death that were included in these analyses as both cohorts use the same ICD-10 coding provided by ONS. However, the reliability of classifying causes of death has been questioned and post-mortem analysis may show different underlying causes of death. A systematic problem, beyond the control of those analysing death data is that generally physicians completing death certificates usually know the patient's background, which may potentially lead to overestimation of individuals who died of pulmonary disease and miss cardiac death. The appointment of a clinical endpoint committee, similar to the TORCH study,¹⁷⁴ as an alternative method could have been more reliable but was not feasible.

In terms of comparing baseline CV status between the two cohorts, there were too few observations of objectives measures of arterial stiffness (i.e. augmentation index and pulse wave velocity), and carotid intima-media thickness to compare these. There were also too few observations to make a comparison in the experienced shortness of breath, being a symptomatic marker of disease impact. Considering other lung function measures were worse for ERICA participants, it is likely that individuals in ERICA would have experienced higher levels of breathlessness than those in UK Biobank.

This study has several potential limitations. Analyses were not adjusted for comorbidities,

therefore not addressing any competing risks of other diseases associated with early mortality than COPD. Apart from lung function measures and standard socio-demographics such as age and sex, both cohorts captured different baseline measures making the inclusion of additional covariates in the analyses difficult. In the UK Biobank, of the full white European ancestry cohort (n = 472 866), about 1200 cases had a technical failure when completing spirometry, another ~ 1250 cases had unknown reasons for not completing this test, and almost another 1000 individuals could not have their lung function measured. These individuals may have systematically differed from the population included in the analyses and may have had worse lung function. Analyses were neither adjusted for drug treatment or smoking status at baseline, potentially inducing bias. For example, the intake of drugs related to treating CV disease may be associated with either increasing or decreasing the risk of CV disease.^{79,228,233,243,295} At baseline 56% of individuals in the ERICA study were taking CV drugs indicating their CV risk was already being addressed before study enrolment and may explain the lower incidence of CV related disease. In addition, disease management such as maintenance medications has changed over time,²² and there are treatment differences between those with and without COPD when admitted to hospital for CV related events.²⁴⁹

Despite the literature indicating a third of deaths in COPD to be related to cardiac disease, age-standardised mortality rates do not support the high incidence of cardiac-related death in COPD. Leading causes of death in COPD were either cancer or pulmonary disease related, and did not differ that much from the non-COPD population, which had also cancer as the leading cause of death. Also, data from the UK Biobank evaluating cause-specific death in the general population found 25% of men died of causes related to CV disease with 53% of cancer and 6% of respiratory disease.¹⁰³ In women only 12% died of CV disease with death attributed to cancer (69%) as the main cause. About 4% died of respiratory disease. Besides reporting standardised event rates by sex, which are more useful and reliable when analysing these outcomes instead of proportions, and especially when comparing findings between studies, over the past few decades
cardiac-related death in the UK general population has halved for both sexes.²²⁴ The reduction in CV related death is primarily the result of prevention and improved heart disease treatment and management.^{16,76} Also, where CV disease hospitalisation increased, the number of cardiac deaths declined by nearly 70% between 1980-2013 with similar declines in coronary heart disease and stroke.²¹ Our data may indicate a similar reduction in CV related death in COPD. Finally, our results also add to the evidence of the importance of providing appropriate health care interventions with consideration of sex differences, including increasing the awareness of COPD in women and tailoring treatment strategies for prevention and treatment.¹³⁶

5.5 Conclusions

Findings in the UK Biobank indicate cancer to be the leading cause of death in COPD with a lower cardiac-death rate than expected. Our findings may reflect the downward trend in fatal CV disease incidence/ improved CV survival in COPD, and an increased prevalence of death from other causes especially cancer and respiratory disease (i.e. trumped by the speed of progression of these diseases). Chronic obstructive pulmonary disease is, however, associated with higher all-cause mortality, including cardiac-specific death. Differences in fatal and nonfatal CV disease event rates, and the associated risk by sex emphasises the importance of tailored COPD treatment and management.

6

Exercise capacity traits and their association with COPD exacerbations requiring hospital admission: UK ERICA cohort linked with national hospital statistics

Chapter summary

Background Acute exacerbations of chronic obstructive pulmonary disease (COPD) frequently result in hospitalisation. Few reliable predictors exist, the strongest being exacerbation history. Improving exercise capacity is known to reduce rate of hospitalisations. Our aim was to assess the associations between musculoskeletal measures and risk and duration of acute exacerbation of COPD requiring hospital admission.

Methods Clinical data from the Evaluation of the <u>R</u>ole of Inflammation in <u>Chronic Airways</u>

disease (ERICA) cohort were linked with hospital episode statistics capturing acute exacerbation of COPD-related admissions. Negative binomial regression was used to evaluate associations of musculoskeletal measures: six-minute walk distance, short physical performance battery and its components, and quadriceps muscle strength with hospitalised acute exacerbation of COPD and hospital length of stay for acute exacerbation of COPD.

Findings Of 714 individuals with COPD, 291 individuals experienced 762 hospitalised acute exacerbation of COPD during five-year follow up. Poorer performance of musculoskeletal measures was associated with rate or longer duration of acute exacerbation of COPD. Six-minute walk distance (incidence risk ratio (IRR) 1.67 per 30m decrements, 95% CI 1.42-1.97), lower short physical performance battery score (IRR 1.08 per 1 point decrease, 95% CI 1.01-1.14) and weaker quadriceps maximum voluntary contraction (IRR 1.02 per 1 kg decrease, 95% CI 1.00-1.03) were associated with rates of hospitalised acute exacerbation of COPD. Similar associations were observed for acute exacerbations of COPD-related hospital length of stay.

Interpretation Musculoskeletal measures were significantly associated with rate and duration of hospitalised acute exacerbation of COPD. Physical capacity should be considered an important treatable trait in reducing risk of hospitalised acute exacerbation of COPD, its assessment incorporated in risk indices evaluating future exacerbation risk, and its improvement should form a part of routine care for COPD.

6.1 Background

Acute exacerbations of COPD (AECOPD) are acute episodic flare-ups that often lead into hospital admission and are associated with high mortality and morbidity. According to 2016-17 statistics of the National Health Services (NHS) Digital, more than 128,000 individuals with a specific code for COPD exacerbation (ICD-10 J44.0, J44.1, J44.8, J44.9) in the United Kingdom were admitted to hospital, of which 97% were emergency admissions with a median hospital length of stay of three days.¹⁹⁷

Overall, there is a paucity of validated and reliable measures predicting risk of AECOPD. Prior exacerbation history is currently the strongest factor reliably predicting future risk of AECOPD including hospital admissions.^{131,234} Blood biomarkers such as fibrinogen¹⁷⁹ and white cell count,²⁶⁰ have been associated with a higher risk of AECOPD, but are not routinely used in clinical practice. It has been proposed to use predictive models to improve discriminative ability and identify high-risk individuals for AECOPD in an early stage. In 2017, a systematic review of published prediction models for AECOPD concluded that out of thirty prediction models none but two were validated; all but one failed to meet practical applicability.¹¹³

Exercise capacity is a promising marker of early deconditioning and is strongly associated with a higher risk of mortality.^{104,281} There is a possibility that such exercise traits may help identifying those people who have already started deconditioning at an early stage of disease and may experience accelerated disease progression. In particular, AECOPD also contributes to a decline in exercise capacity.¹²⁵ The relationship of shorter 6MW distance with a higher risk of mortality and exacerbation risk has been well-established.^{220,248} Further, there is a small body of evidence indicating that other musculoskeletal measures used in assessment of exercise capacity such as the short physical performance battery (SPPB) and the quadriceps maximum voluntary contraction (QMVC) are also associated with a higher risk of mortality^{216,259} and all-cause hospital readmission¹⁴⁸ in COPD. In particular, the four-metre gait speed (4MGS) test, a component of SPPB, was found to predict hospital readmission after AECOPD.¹⁴⁸ With the exception of the 6MW distance,²⁴⁸ to our knowledge, there is no evidence of studies that have examined the association between exercise capacity measures such as SPPB, QMVC, and AECOPD requiring hospital admission.

There are scientific and practical considerations for expanding our knowledge of musculoskeletal measures and their role in predicting COPD outcomes. Each of these measures tests different properties of exercise, including cardiovascular capacity, lower limb function or musculoskeletal weakness more specifically, coordination and balance. These different exercise capacity components may reflect the impact of co-morbidity in COPD beyond those traditionally captured. Practical applicability in routine practice is another important consideration of expanding the repository of exercise tests. Compared to the 6MW test, SPPB and its components are faster and easier to complete in clinical practice, requiring a four-metre flat surface, chair and stopwatch only. In addition, to facilitate generalisability of musculoskeletal measures in primary care, it is important to evaluate their associations with COPD outcomes in different COPD populations.

Our primary aim was to evaluate the relationship between exercise capacity assessed with musculoskeletal measures and risk of hospital admissions due to AECOPD. Further, we aimed to determine a relationship between musculoskeletal measures and length of hospital stay for initial AECOPD. To address these questions, we used a novel study design approach of combining routinely collected hospital electronic health record data with a prospective COPD disease cohort recruited in the Evaluation of the Role of Inflammation in Chronic Airways disease (ERICA) cohort.

6.2 Methods

6.2.1 Study design and participants

Observational data is reported according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement.²⁷⁵ Data were used from the ERICA cohort, a multi-centre observational, non-interventional, epidemiological study with a sample size of 729 stable COPD patients (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade II-IV).¹⁰⁷ Full study design and participant details are available in the published ERICA cohort protocol.¹⁸⁴ Patient level cohort data were linked to hospital admission data obtained from the NHS admitted patient care dataset, Hospital Episodes Statistics (HES) in England, Scotland and Wales, which captures all hospital admissions for AECOPD, since cohort baseline visit until November 2017. Analyses were limited to five years of follow-up. Baseline data were collected between December 2011 and January 2014. Demographic, clinical and patient reported measures and biomarkers including musculoskeletal measures were collected at baseline. Prior

exacerbation history was defined as self-reported antibiotics and/or steroids use in the previous year (twelve months before baseline). Body mass index (BMI) was categorised according to the World Health Organization.²⁹¹ Disease severity was defined by GOLD stage and estimated as described by the GOLD.¹⁰⁷ Productive cough (i.e. phlegm) was defined using questionnaire data and considered a surrogate marker of inflammation. Where there was missing data for productive cough, data from the phlegm question of the St. George Respiratory Questionnaire for COPD (SGRQ-C), and the COPD Assessment Test (CAT) were used. Productive cough was dichotomised (never vs. other).

6.2.2 Study outcomes

The primary outcome measure was hospital admission for AECOPD. These data were first cleaned for episode status and inpatient (i.e. hospitalised) AECOPD episodes were identified using validated criteria (**Table 6.1**, page 158).²³⁰ Acute exacerbations of COPD were extracted from both primary and secondary positions of international classification of diseases and related health problems 10th revision coding (ICD-10). Only so-called definite and possible hospitalised AECOPD were considered for this analysis (**Figure 6.1**, page 159). Priority was given to definite AECOPD. Only episodes during the study follow-up were evaluated. Admission and discharge dates were used to determine hospital length of stay (i.e. number of days) for initial AECOPD.

6.2.3 Potential predictor variables

All significant variables reported by Hurst *et al.*¹³² and musculoskeletal markers captured in the ERICA cohort were considered. A full list of predictor variables is shown in **Table 6.2**, page 159 including demographics, lung function measurements, blood markers, questionnaire data, and exercise capacity traits. Measures of particular interest were SPPB and its components (i.e. 4MGS, balance, chair stand), QMVC, and 6MW distance. Exacerbation history was dichotomised (0 vs. ≥ 1).

 Table 6.1: ICD-10 codes to ascertain acute exacerbation in COPD in the hospital episode statistics.

End point	ICD-10 codes	Disease/ Category	Use to ascertain AECOPD usage
J22	Lower respiratory tract infection	Possible	Use if COPD diagnosed in primary care data in First position of any finished
J41	Simple and mucopurulent chronic bronchitis	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J41.0	Simple chronic bronchitis	Possible	Use if COPD diagnosed in primary care data in First position of any finished
J41.1	Mucopurulent chronic bronchitis	Possible	consultant episode Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J41.8	Mixed simple and mucopurulent chronic bronchitis	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J42	Unspecified chronic bronchitis	Possible	Use if COPD diagnosed in primary care data in First position of any finished
J43	Emphysema	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J43.0	MacLeod's syndrome	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J43.1	Panlobular emphysema	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J43.2	Centrilobular emphysema	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J43.8	Other emphysema	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant epicode
J43.9	Emphysema, unspecified	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant episode
J44	Other chronic obstructive pul-	Possible	Use if COPD diagnosed in primary care data in First position of any finished consultant epicode
J44.0	Chronic obstructive pulmonary dis- ease with acute lower respiratory in- faction	Definite	Any position of any finished consultant episode as per validation study
J44.1	chronic obstructive pulmonary dis- ease with acute exacerbation, un-	Definite	Any position of any finished consultant episode as per validation study
J44.8	Other specified chronic obstructive	Possible	Ditto
J44.9	Chronic obstructive pulmonary dis- ease, unspecified	Possible	First position of any finished consultant episode as per validation study
J45	Asthma	Potential	If increased sensitivity required, use if COPD diagnosed in primary care data in First position of any finished consultant episode
J45.0	Predominantly allergic asthma	Potential	If increased sensitivity required, use if COPD diagnosed in primary care
J45.1	Nonallergic asthma	Potential	If increased sensitivity required, use if COPD diagnosed in primary care data in First position of any finished consultant episode
J45.8	Mixed asthma	Potential	If increased sensitivity required, use if COPD diagnosed in primary care
J45.9	Asthma, unspecified	Potential	If increased sensitivity required, use if COPD diagnosed in primary care
J45	Asthma	Potential	If increased sensitivity required, use if COPD diagnosed in primary care
J46	Status asthmaticus	Potential	If increased sensitivity required, use if COPD diagnosed in primary care
J47.0	Bronchiectasis with acute lower res-	Potential	If increased sensitivity required, use if COPD diagnosed in primary care data in First position of any finished consultant apisode
J47.1	Bronchiectasis with (acute) exacer-	Potential	If increased sensitivity required, use if COPD diagnosed in primary care data in First position of any finished consultant episode
J47.9	Bronchiectasis, uncomplicated	Potential	If increased sensitivity required, use if COPD diagnosed in primary care data in First position of any finished consultant episode
J96.0	Acute respiratory failure	Potential	If increased sensitivity required, use if COPD diagnosed in primary care data in First position of any finished consultant apisode
J96.2	Acute and chronic respiratory fail- ure	Potential	Use to ascertain AECOPD usage

Abbreviations: ICD-10, international disease classification tenth edition. AECOPD, acute exacerbation of chronic obstructive pulmonary disease.

Figure 6.1: Type of acute exacerbation of COPD, by recruitment centre. Hospital admission data obtained from the National Health Service (NHS) Digital, NHS Wales, and NHS Scotland.

Description	Lung func-	Biochemical	Cardiovascular	Questionnaires	Musculoskeletal
	tion	measures	status		measures
Age	FEV_1	Glucose	Resting heart rate	SGRQ-C	6MW distance
Sex BMI	Smoking status Exacerbation history	Fibrinogen CRP		CAT	SPPB 4MGS
	Phlegm	GFR Neutrophils Haemoglobin Total choles- terol			Balance Chair stand QMVC

Table 6.2: Covariates considered

White cell count and Medical Research Council dyspnoea score were omitted due to collinearity with musculoskeletal measures. *Abbreviations*: BMI, body mass index. FEV₁, forced expiratory volume in one second. CRP, C-reactive protein. GFR, glomerular filtration rate. SGRQ-C, St. George respiratory questionnaire for COPD. CAT, COPD assessment test. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

6.2.4 Statistical analysis

Missing values were present. Only complete cases were considered. Negative binomial regression was used to examine the association between musculoskeletal measures and (i) the rate of AECOPD within the study period, and (ii) length of hospital stay (per day). Analyses were adjusted for exposure times (time between baseline visit date and earliest of death, or end of study period). Regression estimates are presented as incidence-rate ratios (IRR). Markers transformed on the natural log scale were exponentiated by a factor of 0.736 to represent a two-fold increase in risk.

Relationships between baseline variables were quantified using Spearman's pair-wise correlations; values <0.30 were considered weak, 0.30-0.50 as moderate, and >0.50 as strong (**Figure 3.30**, page 83).⁵¹ All analyses were stratified by recruitment site, and adjusted for age and sex. Further analyses were adjusted for BMI, smoking status, and covariates found to be of significance in the main multivariate model by Hurst *et al.*,¹³² namely exacerbation history (previous year), forced expiratory volume in one second (FEV₁) measured in litres, and productive cough. Covariates were tested for collinearity resulting in the omission of Medical Research Council (MRC) dyspnoea score and white cell count (WCC). Predictors for the final analyses were derived sequentially, firstly estimating the association of each individual variable fully adjusted, following stepwise regression including the significance level above α 0.1 for backward selection and α 0.05 for forward stepwise selection were considered. For each stepwise regression model, likelihood ratio tests were conducted to determine if independent variables should remain in the model or not, and the maximum number of variables considered in each model were based on the least number of events.²⁶⁶

As sex and exacerbation history can act as effect modifiers, in sensitivity analyses, we explored analysis stratified by these factors and tested for interactions.

6.3 Findings

6.3.1 Missing data

Missing values were present and described in Figures 6.2 6.3, pages 161-162. Those with missing values for 6MW distance (n = 31) had a higher rate of AECOPD-related hospital admission (p = 0.047).

Figure 6.2: Percentage of missing values. *Abbreviations*: GFR, glomerular filtration rate. 6MW, six-minute walk. QMVC, quadriceps maximum voluntary contraction. CRP, C-reactive protein. HR, heart rate. CAT, COPD assessment test. SPPB, short physical performance battery. BMI, body mass index. FEV₁, forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease.

6.3.2 Descriptive statistics

The mean number of acute exacerbations for COPD were 1.3 vs. 0.6 with a variance of 6.2 vs. 2.6 for those with an exacerbation history compared to those without, indicating over-dispersed count data. In total, 714 individuals with stable COPD were included in the analysis, of whom 291 (41%) experienced at least one hospital admission for AECOPD during the study follow-up; 159 (22%) had multiple events (**Figure 3.4**, page 64). The resulting event rate for hospitalised AECOPD was 11 events (95% CI 10-13) per 100 person-years (**Figure 6.4**, page 163). Overall,

Figure 6.3: Missing data patterns. *Abbreviations*: SGRQ, St. George respiratory questionnaire for COPD. QMVC, quadriceps maximum voluntary contraction. 6MW, six-minute walk. GFR, glomerular filtration rate.

127 (18%) individuals died and, of these, the majority 103 (81%) had died following hospitalised AECOPD. At baseline, the mean age of the cohort was 67 ± 8 years with 61% males. A third of the cohort was overweight, another third obese. Exacerbations during the year prior to baseline were reported by 67% individuals with a corresponding mean of 2 (interquartile range (IQR; 1-4) events per person-year. Mean FEV₁ was 1.3 ± 0.5 litre with third current smokers. About half of the cohort (51%) experienced breathlessness on exercise (MRC grade ≥ 3) and 46% had productive cough on most mornings (**Table 6.3**, page 165). Median length of hospital stay for initial AECOPD-related admission was 3 (IQR 1-7) days.

For those readmitted, the median time to hospital readmission was 179 (54-421) days, of whom 65 individuals (41%) were readmitted to hospital within 90 days after initial admission and had a median length of stay of 3 (2-7) days. Those with an exacerbation history at baseline were younger (p = 0.027), male (p < 0.001), had lower forced expiratory volume in one second (p < 0.001), worse dyspnoea scores (p = 0.002), and higher inflammatory levels of fibrinogen (p = 0.001) and C-reactive protein (p = 0.019) compared to those without. Shorter walking

Figure 6.4: Yearly event rates, frequency and duration of AECOPD-related hospital admission. Figures display (A) mean event rates with 95% confidence intervals per 100 person-years during study period, (B) AECOPD frequency, and (C) AECOPD duration. Depth of blue indicates the cumulative number of individuals with first AECOPD during the study period: 1 year (n = 86), 2 years (n = 160), 3 years (n = 213), 4 years (n = 266) and 5 years of follow-up (n = 291). Red dashed line indicates the median number of hospital admissions for AECOPD amongst those experienced an AECOPD. Abbreviations: N, indicates the number of participants. AECOPD, acute exacerbation of chronic obstructive pulmonary disease.

distance (p <0.001), lower SPPB scores (p = 0.003), or the components 4MGS (p <0.001) and chair stand (p = 0.003) but not balance (p = 0.630), and QMVC (p <0.001) were also reported for those with an exacerbation history at baseline.

6.3.3 Factors associated with rate of AECOPD-related hospital admission

Musculoskeletal measures of 6MW distance, SPPB and its 4MGS, and chair stand components, and QMVC were associated with the risk of AECOPD-related hospital admission (**Figure 6.5** and **Table 6.4**, pages 167-166). Balance was not associated with the outcome. Six-minute walk distance (IRR 1.13 per 30 metre decrease, 95% CI 1.08 to 1.17, p <0.001), FEV₁ (IRR 0.84 per 100 ml increase, 95% CI 0.81 to 0.86, p <0.001) or disease severity measured by GOLD (IRR 2.51 per increase to next stage, 95% CI 2.04 to 3.10, p <0.001), and males (IRR 2.41, 95% CI 1.77 to 3.29, p <0.001) had the highest associated IRRs. Stepwise regression, including variables fully adjusted and significantly associated with AECOPD-related hospital admission rate only, retained the following predictors: males (IRR 2.14, 95% CI 1.55 to 2.96, p <0.001), FEV₁, (IRR 0.88 per 100 ml increase, 95% CI 0.85 to 0.91, p <0.001), exacerbation history \geq 1 (IRR 1.96, 95% CI 1.39 to 2.76, p <0.001), CAT (IRR 1.03 per 1 point increase, 95% CI 1.01 to 1.05, p = 0.010), resting heart rate (IRR 1.01 per 1 bpm increase, 95% CI 1.00 to 1.03, p = 0.025), and 6MW distance (IRR 1.08 per 30 metre decrease, 95% CI 1.04 to 1.12, p <0.001; **Table 6.5**, page 167).

6.3.4 Factors associated with AECOPD-related hospital stay

Including data from individuals admitted to hospital only (n = 291), multivariable analysis identified multiple markers to be associated with AECOPD-related hospital stay (**Figure 6.6** and **Table 6.8**, pages 169-170). All musculoskeletal measures, except for QMVC were associated with longer AECOPD-related hospital stay (**Table 6.4** and **Figure 6.5**, pages 166-167). Age (IRR 1.83 per 10 year increase, 95% CI 1.48 to 2.26, p <0.001), 6MW (IRR 1.14 per 30 metre decrease, 95% CI 1.08 to 1.20, p <0.001), and SPPB (IRR 1.18 per 1 point decrease, 95% 1.10

Table 6.3: 1	Baseline	characteristics.
20010 0101 1	D cub chilit c	0110110000011001000

Characteristic	Total	Without AECOPD	With AECOPD
Description	I	/Iedian (IQR) or n (%	6)
Age (years)	67 (62-73)	68 (62-74)	67 (63-72)
Sex, n (%)			
Male	434 (61)	262 (62)	172 (59)
Female	280 (39)	160 (38)	120 (41)
Body mass index (kg/m^2)	27 (23-31)	27 (24-31)	26 (23-31)
Musculoskeletal measures			· · · ·
6MW distance (metre)	366 (255-440)	398 (298-462)	326 (210-404)
SPPB (0-12)	10 (8-11)	10 (8-12)	10 (8-11)
No functional limitation, >10 , n (%)	414 (58)	254 (61)	160 (55)
Functional limitation <10 , n (%)	292 (41)	163 (39)	129 (45)
- 4MGS score (0-4)	4 (3-4)	4 (3-4)	4 (3-4)
- Balance points (0-4)	4 (4-4)	4 (4-4)	4 (4-4)
- Chair stand score (0-4)	3 (1-4)	3 (1-4)	2(1-3)
QMVC peak (kg), median (IQR)	30 (22-39)	31 (23-40)	28 (20-35)
Lung function			
$\widetilde{\mathrm{FeV}}_1$	1.3 (0.9-1.7)	1.5(1.1-1.9)	1.1 (0.8-1.4)
Smoking status, n (%)			
Current	218 (31)	131 (31)	87 (30)
Former	492 (69)	291 (69)	201 (70)
GOLD, n (%)			
Grade II	406 (57)	291 (69)	115 (40)
Grade III	240 (34)	112 (27)	128 (44)
Grade IV	68 (10)	19 (5)	48 (16)
Exacerbation history, 1 year (≥ 1)	473 (66)	247 (59)	226 (79)
Phlegm, n (%)			
Never	46 (7)	237 (57)	144(50)
Other	662 (94)	181 (43)	146(50)
Biochemical measures			
$\log \text{ Glucose (mmol/L)}$	1.59(1.50-1.69)	4.9(4.5-5.3)	4.9(4.5-5.4)
$\log { m Fibrinogen} \left({ m g/dL} ight)$	1.22(1.06-1.36)	1.19(1.03-1.36)	1.25(1.10-1.39)
$\log \text{C-reactive protein} (\text{mg/L})$	$1.21 \ (0.47-2.00)$	1.10(0.48-1.85)	1.39(0.43-2.19)
$ m GFR~(mL/min/1.73~m^2)$	87 (76-101)	87 (77-100)	88 (76-102)
Neutrophils (mm^3)	4.5(3.6-5.6)	4.3(3.5-5.5)	4.8(3.7-5.7)
Haemoglobin (g/dL)	14.3 (13.4-15.3)	14.3 (13.4-15.2)	14.4 (13.4-15.4)
Total cholesterol $(mmol/L)$	5.0(4.3-5.8)	5.0(4.2-5.7)	5.0(4.3-5.9)
Cardiovascular status			
Heart rate (bpm)	74 (66-82)	72 (65-81)	77 (67-84)
Questionnaires			
SGRQ-C (0-100)	51 (34-66)	43 (29-61)	57 (45-71)
CAT (0-40)	20 (13-26)	18 (12-24)	22 (17-28)

Values are given as the median and interquartile range (IQR), or No. of cases (%). Baseline data of study participants are included. *Abbreviations*: MRC, Medical Research Council. GOLD, global initiative for obstructive lung disease. WCC, white cell count. SGRQ-C, St George's respiratory questionnaire for COPD. CAT, COPD assessment test. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

	om 291 had AECOPD)			
Baseline Characteristics	Incidence risk ratio	Р	Incidence risk ratio	Р
	(95% CI). Adjusted	value $^{\rm c}$	(95% CI). Multivari-	value $^{\rm c}$
	for age and sex $^{\rm a}$		able adjusted ^b	
Description				
Age - per 10 year increase	$0.97 \ (0.81 \text{ to } 1.17)$	0.773	$0.88 \ (0.74 \ \text{to} \ 1.04)$	0.126
Sex - male	$1.01 \ (0.74 \ \text{to} \ 1.39)$	0.932	2.41 (1.77 to 3.29)	$<\!0.001$
Body mass index - per 1 point increase	$0.96 \ (0.94 \ \text{to} \ 0.98)$	0.002	$1.00 \ (0.98 \text{ to } 1.02)$	0.947
Lung function				
FEV_1 - per 100 ml increase	$0.83 \ (0.80 \ \text{to} \ 0.85)$	$<\!0.001$	$0.84 \ (0.81 \text{ to } 0.86)$	$<\!0.001$
Smoking status - current	$1.25 \ (0.89 \text{ to } 1.76)$	0.192	$1.15 \ (0.84 \ to \ 1.57)$	0.382
GOLD stage - per increase to next stage	$2.71 \ (2.21 \text{ to } 3.33)$	$<\!0.001$	$2.51 \ (2.04 \text{ to } 3.10)$	$<\!0.001$
Exacerbation history (1 year), ≥ 1	2.52 (1.79 to 3.53)	$<\!0.001$	1.94 (1.40 to 2.67)	$<\!0.001$
Productive cough - yes	1.90 (1.00 to 3.61)	0.049	$1.04 \ (0.79 \ to \ 1.38)$	0.768
Biochemical measures				
Glucose - per 1 log unit increase	$1.43 \ (0.53 \text{ to } 3.87)$	0.477	1.77 (0.69 to 4.53)	0.231
Fibrinogen - per 1 log unit increase	3.43 (1.71 to 6.88)	0.001	1.95 (1.03 to 3.68)	0.04
CRP - per 1 log unit increase	1.18 (1.03 to 1.35)	0.018	$1.10 \ (0.98 \ to \ 1.25)$	0.116
GFR - per 1 unit increase	1.01 (1.00 to 1.02)	0.093	$1.00 \ (0.99 \ to \ 1.01)$	0.621
Neutrophils - per 1 unit increase	1.22 (1.12 to 1.33)	$<\!0.001$	1.14 (1.05 to 1.24)	0.001
Haemoglobin - per 1 unit increase	$0.98 \ (0.89 \text{ to } 1.09)$	0.722	$0.96 \ (0.88 \text{ to } 1.06)$	0.429
Total cholesterol - per 1 unit increase	$1.00 \ (0.87 \text{ to } 1.15)$	0.955	0.93 (0.82 to 1.06)	0.269
Cardiovascular status				
Heart rate - per 1 bpm increase	1.04 (1.02 to 1.05)	$<\!0.001$	1.02 (1.01 to 1.03)	$<\!0.001$
Questionnaire data				
SGRQ-C - per 4 point increase	1.13 (1.10 to 1.17)	$<\!0.001$	1.07 (1.03 to 1.10)	$<\!0.001$
CAT - per 1 point increase	1.09 (1.07 to 1.11)	$<\!0.001$	1.05 (1.03 to 1.07)	$<\!0.001$
Musculoskeletal measures				
Six-minute walk distance - per 30 metre	1.19 (1.15 to 1.24)	$<\!0.001$	1.13 (1.08 to 1.17)	$<\!0.001$
decrease				
SPPB score $(0-12)$ - per 1 point decrease	1.14 (1.07 to 1.22)	$<\!0.001$	1.08 (1.01 to 1.14)	0.019
Functional limitation (SPPB) - yes	1.68 (1.21 to 2.33)	0.002	$1.22 \ (0.91 \ \text{to} \ 1.64)$	0.179
4MGS score (0-4) - per 1 point decrease	1.46 (1.20 to 1.76)	$<\!0.001$	1.19 (1.00 to 1.41)	0.048
Balance score $(0-4)$ - per 1 point decrease	$1.11 \ (0.93 \ \text{to} \ 1.33)$	0.246	1.07 (0.91 to 1.25)	0.434
Chair stand score $(0-4)$ - per 1 point de-	1.25 (1.11 to 1.40)	$<\!0.001$	1.14 (1.02 to 1.26)	0.016
crease				
QMVC peak - per 1 kg decrease	1.05 (1.03 to 1.07)	$<\!0.001$	1.02 (1.00 to 1.03)	0.039

 Table 6.4:
 Adjusted multivariable associations with frequency of AECOPD-related hospital admission.

Incidence rate ratios were estimated based on negative binomial regression. All analyses were adjusted for recruitment site. ^a Adjusted for age and sex ^b Further adjusted for body mass index, smoking status, forced expiratory volume in one second, productive cough, and exacerbation history. ^c P values based on negative binomial regression.

Variables MRC dyspnoea score and white cell count were omitted due to collinearity. *Abbreviations*: CI, confidence intervals. FEV₁, forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease. GFR, glomerular filtration rate. SGRQ-C, St. George respiratory questionnaire for COPD. CAT, COPD assessment test. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

Figure 6.5: Associations of baseline musculoskeletal measures and rate of hospitalised acute exacerbation of chronic obstructive pulmonary disease in the ERICA cohort. Risk indicated as incidence risk ratios (IRR). Estimates derived using negative binomial regression. Analyses adjusted for recruitment site. Age, sex, body mass index, smoking status, forces expiratory volume in one second, productive cough, and exacerbation history were included as covariates. *Abbreviations*: Obs, number of observations included in analysis. IRR, incidence risk ratios. CI, confidence intervals. SD, standard deviation. 6MWD, six-minute walk distance. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

 Table 6.5: Factors associated with rate of AECOPD-related hospital admission in the stepwise multivariable model.

Factor	Stepwise selection $(n = 610)$ IBB (95% CI)	P value
		1 Value
Sex - male	2.14 (1.55 to 2.96))	< 0.001
FEV_1 - per 100 ml increase	$0.88 \ (0.85 \ to \ 0.91)$	$<\!0.001$
Exacerbation history, ≥ 1	1.96 (1.39 to 2.76)	< 0.001
CAT - per 1 point increase	1.03 (1.01 to 1.05)	0.010
Resting heart rate – per 1 bpm increase	$1.01 \ (1.00 \ \text{to} \ 1.03)$	0.025
6 MW distance – per 30 metre decrease	1.08 (1.04 to 1.12)	$<\!\!0.001$

Adjusted for recruitment site. *Abbreviations*: IRR, incidence risk ratios. CI, confidence intervals. FEV₁, forced expiratory volume in one second. CAT, COPD assessment test. 6MW, six-minute walk.

 Table 6.6: Factors associated with rate of AECOPD-related hospital admission, by exacerbation history.

	Exacerbation history $(n = 439)$		No exacerbation histor		
Factor	IRR (95% CI)	Р	IRR (95% CI)	Р	P-
		value		value	value
					ſ
Sex - male	2.03 (1.43 to 2.87)	$<\!0.001$	3.80 (1.75 to 8.26)	0.001	0.029
FEV_1 , – per 100 ml increase	$0.87 \ (0.83 \text{ to } 0.90)$	$<\!0.001$	$0.89 \ (0.83 \text{ to } 0.95)$	0.001	0.896
Exacerbation history, ≥ 1	N/A	N/A	N/A	N/A	N/A
CAT - per 1 point increase	$1.02 \ (1.00 \ \text{to} \ 1.05)$	0.029	$1.04 \ (1.00 \ \text{to} \ 1.09)$	0.051	0.865
Resting heart rate – per 1	$1.01 \ (1.00 \ \text{to} \ 1.03)$	0.07	$1.01 \ (0.99 \text{ to } 1.04)$	0.363	0.760
bpm increase					
6MW distance – per 30 me-	1.06 (1.02 to 1.11)	0.005	$1.14 \ (1.05 \text{ to } 1.23)$	0.002	0.174
tre decrease					

 \P P values of interaction with exacerbation history. Adjusted for recruitment site. *Abbreviations*: IRR, incidence risk ratios. CI, confidence intervals. FEV₁, forced expiratory volume in one second. CAT, COPD assessment test. 6MW, six-minute walk.

Table 6.7: Factors associated with rate of AECOPD-related hospital admission, by	sex.
--	------

Factor	Female (n = 257) IRR (95% CI)	P value	Male (n = 404) IRR (95% CI)	P value	P- value ¶
Sex – male	N/A	N/A	N/A	N/A	N/A
FEV_1 , – per 100 ml increase Exacerbation history. >1	3.48 (1.70 to 7.13)	< 0.001	1.38 (0.95 to 1.99)	< 0.001 0.087	0.030
CAT - per 1 point increase	$1.02 \ (0.99 \ \text{to} \ 1.06)$	0.125	1.03 (1.00 to 1.05)	0.034	0.905
Resting heart rate – per 1	1.03 (1.01 to 1.05)	0.014	1.00 (0.99 to 1.02)	0.567	0.193
bpm increase 6MW distance – per 30 me- tre decrease	1.06 (1.00 to 1.13)	0.057	1.09 (1.04 to 1.14)	$<\!0.001$	0.6743

 \P P values of interaction with sex. Adjusted for recruitment site. *Abbreviations*: IRR, incidence risk ratios. CI, confidence intervals. FEV₁, forced expiratory volume in one second. CAT, COPD assessment test. 6MW, six-minute walk.

to 1.27, p <0.001) were the strongest associated variables. Stepwise regression, including variables fully adjusted and significantly associated with hospital length of stay only, retained the following predictors: age (IRR 1.53 per 10 year increase, 95% CI 1.18 to 1.98, p = 0.001), BMI (IRR 0.93 per 1 point increase, 95% CI 0.90 to 0.96, p < 0.001), glucose (IRR 2.89 per twofold increase, 95% CI 1.18 to 7.05, p = 0.020), and SPPB (IRR 1.19 per 1 point decrease, 95% CI 1.10 to 1.30, p < 0.001; **Table 6.9**, page 171).

Figure 6.6: Associations of baseline musculoskeletal measures and hospital length of stay after admission for acute exacerbation of chronic obstructive pulmonary disease in the ERICA cohort. Risk indicated as incidence risk ratios (IRR). Estimates derived using negative binomial regression. Analyses adjusted for recruitment site. Age, sex, body mass index, smoking status, forces expiratory volume in one second, productive cough, and exacerbation history were included as covariates. *Abbreviations*: Obs, number of observations included in analysis. IRR, incidence risk ratios. CI, confidence intervals. SD, standard deviation. 6MWD, six-minute walk distance. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

6.3.5 Sensitivity analysis for rate of AECOPD-related hospital admission

Overall, IRRs were higher for men and 6MW distance for those with no exacerbation history (**Tables 6.6 6.10**, pages 168 and 172). Incidence risk ratios of exacerbation history were higher for women when stratifying by sex (**Tables 6.7 6.11**, pages 168 and 173). When testing for interactions, both exacerbation history and sex were significant.

Table 6.8:	Adjusted	multivariable	associations	with	AECOPD	length of sta	y.
------------	----------	---------------	--------------	------	--------	---------------	----

	5 year (n =	291 indivi	duals with AECOPD)	
Baseline characteristics	Incidence risk ratio	Р	Incidence risk ratio	Р
	(95% CI). Adjusted	value $^{\rm c}$	(95% CI). Multivari-	value $^{\rm c}$
	for age and sex $^{\rm a}$		able adjusted ^b	
Description				
Age - per 10 year increase	1.78 (1.45 to 2.20)	$<\!0.001$	1.83 (1.48 to 2.26)	< 0.001
Sex - male	0.84 (0.58 to 1.21)	0.354	0.84 (0.56 to 1.26)	0.399
Body mass index - per 1 point increase	0.96 (0.94 to 0.99)	0.011	0.96 (0.93 to 0.99)	0.009
Lung function				
FEV_1 - per 100 ml increase	$0.96 \ (0.91 \text{ to } 1.00)$	0.063	$0.97 \ (0.93 \text{ to } 1.02)$	0.269
Smoking status - current	$1.39 \ (0.93 \text{ to } 2.09)$	0.11	$1.2 \ (0.78 \text{ to } 1.87)$	0.409
GOLD stage - per increase to next stage	$1.14 \ (0.86 \ \text{to} \ 1.50)$	0.374	$1.15 \ (0.87 \ \text{to} \ 1.53)$	0.335
Exacerbation history (1 year), ≥ 1	0.63 (0.41 to 0.97)	0.035	$0.62 \ (0.39 \ \text{to} \ 0.97)$	0.037
Productive cough - yes	$0.75 \ (0.34 \text{ to } 1.66)$	0.483	$1.12 \ (0.77 \ \text{to} \ 1.62)$	0.559
Biochemical measures				
Glucose - per 1 log unit increase	7.89 (2.67 to 23.33)	$<\!0.001$	8.78 (2.81 to 27.49)	$<\!0.001$
Fibrinogen - per 1 log unit increase	2.50 (1.11 to 5.61)	0.027	3.14 (1.37 to 7.18)	0.007
CRP - per 1 log unit increase	1.07 (0.92 to 1.24)	0.407	$1.14 \ (0.97 \ \text{to} \ 1.35)$	0.107
GFR - per 1 unit increase	$0.99 \ (0.98 \text{ to } 1.00)$	0.05	$0.98 \ (0.97 \text{ to } 1.00)$	0.014
Neutrophils - per 1 unit increase	$1.07 \ (0.97 \text{ to } 1.18)$	0.164	$1.04 \ (0.93 \text{ to } 1.16)$	0.525
Haemoglobin - per 1 unit increase	$0.94 \ (0.83 \text{ to } 1.05)$	0.273	$0.91 \ (0.80 \text{ to } 1.03)$	0.134
Total cholesterol - per 1 unit increase	0.93 (0.81 to 1.08)	0.358	$0.93 \ (0.79 \text{ to } 1.09)$	0.349
Cardiovascular status				
Heart rate - per 1 bpm increase	$1.00 \ (0.99 \text{ to } 1.02)$	0.478	$1.00 \ (0.98 \text{ to } 1.01)$	0.665
Questionnaire data				
SGRQ-C - per 4 point increase	$1.00 \ (0.96 \text{ to } 1.03)$	0.857	$1.02 \ (0.97 \ \text{to} \ 1.06)$	0.449
CAT - per 1 point increase	$0.99 \ (0.97 \text{ to } 1.01)$	0.504	$1.00 \ (0.98 \text{ to } 1.03)$	0.892
Musculoskeletal measures				
Six-minute walk distance - per 30 metre	$1.11 \ (1.05 \text{ to } 1.16)$	$<\!0.001$	1.14 (1.08 to 1.20)	$<\!0.001$
decrease				
SPPB score $(0-12)$ - per 1 point decrease	1.15 (1.06 to 1.24)	$<\!0.001$	1.18 (1.10 to 1.27)	$<\!0.001$
Functional limitation (SPPB) - yes	1.84 (1.27 to 2.68)	0.001	2.01 (1.37 to 2.94)	$<\!0.001$
4MGS score $(0-4)$ - per 1 point decrease	1.29 (1.01 to 1.65)	0.045	$1.31 \ (1.03 \ to \ 1.67)$	0.029
Balance score $(0-4)$ - per 1 point decrease	1.44 (1.12 to 1.84)	0.004	1.45 (1.13 to 1.86)	0.003
Chair stand score $(0-4)$ - per 1 point de-	1.24 (1.09 to 1.40)	0.001	1.32 (1.16 to 1.49)	$<\!0.001$
crease				
QMVC peak - per 1 kg decrease	1.03 (1.01 to 1.05)	0.002	1.02 (1.00 to 1.04)	0.056

Incidence rate ratios were estimated based on negative binomial regression. All analyses were adjusted for recruitment site. ^a Adjusted for age and sex ^b Further adjusted for body mass index, smoking status, forced expiratory volume in one second, productive cough, and exacerbation history. ^c P values based on negative binomial regression.

Variables MRC dyspnoea score and white cell count were omitted due to collinearity. *Abbreviations*: CI, confidence intervals. FEV₁, forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease. GFR, glomerular filtration rate. SGRQ-C, St. George respiratory questionnaire for COPD. CAT, COPD assessment test. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

Table 6.9: Factors associated with AECOPD-related hospital admission length of stay in the stepwisemultivariable model.

Factor	Stepwise selection $(n = 233)$ IRR (95% CI)	P value
Age - per 10 year increase BMI - per 1 point increase Glucose - per twofold increase SPPB - per 1 point decrease	1.53 (1.18 to 1.98) 0.93 (0.90 to 0.96) 2.89 (1.18 to 7.05) 1.19 (1.10 to 1.30)	$egin{array}{c} 0.001 \\ < 0.001 \\ 0.020 \\ < 0.001 \end{array}$

Adjusted for recruitment site. *Abbreviations*: BMI, body mass index. SPPB, short physical performance battery. IRR, incidence risk ratio. CI, confidence interval.

5 year (n = 714, of whom 291 had AECOPD)					
	Exacerbation history (n = 473)	No exacerbation history $(n = 236)$		
Baseline characteristics	Incidence risk ratio	Р	Incidence risk ratio	Р	
	(95% CI). Multivari-	value $^{\rm b}$	(95% CI). Multivari-	value $^{\rm b}$	
	able adjusted ^a		able adjusted ^a		
Description					
Age - per 10 year increase	$0.90 \ (0.74 \text{ to } 1.09)$	0.283	$0.69 \ (0.47 \text{ to } 1.02)$	0.063	
Sex - male	2.05 (1.46 to 2.89)	$<\!0.001$	5.39 (2.55 to 11.41)	$<\!0.001$	
Body mass index - per 1 point increase	$0.98 \ (0.96 \ to \ 1.01)$	0.128	1.08 (1.02 to 1.15)	0.01	
Lung function					
FEV_1 - per 100 ml increase	0.85 (0.82 to 0.88)	$<\!0.001$	$0.80 \ (0.75 \text{ to } 0.86)$	$<\!0.001$	
Smoking status - current	$1.07 \ (0.75 \ to \ 1.52)$	0.723	$1.10 \ (0.58 \text{ to } 2.11)$	0.762	
GOLD stage - per increase to next stage	2.17 (1.73 to 2.74)	$<\!0.001$	3.74 (2.36 to 5.93)	$<\!0.001$	
Exacerbation history (1 year), ≥ 1					
Productive cough - yes	$1.14 \ (0.84 \ to \ 1.56)$	0.408	$1.23 \ (0.63 \text{ to } 2.42)$	0.539	
Biochemical measures					
Glucose - per 1 log unit increase	$1.71 \ (0.57 \ \text{to} \ 5.10)$	0.337	$2.50 \ (0.36 \text{ to } 17.33)$	0.353	
Fibrinogen - per 1 log unit increase	1.98 (0.99 to 3.97)	0.055	1.96 (0.44 to 8.60)	0.375	
CRP - per 1 log unit increase	1.18 (1.03 to 1.35)	0.018	$0.90 \ (0.66 \text{ to } 1.22)$	0.5	
GFR - per 1 unit increase	$1.00 \ (0.99 \ to \ 1.01)$	0.458	$0.99 \ (0.97 \text{ to } 1.01)$	0.264	
Neutrophils - per 1 unit increase	1.15 (1.06 to 1.26)	0.002	$1.07 \ (0.88 \text{ to } 1.30)$	0.518	
Haemoglobin - per 1 unit increase	$0.95 \ (0.86 \text{ to } 1.05)$	0.302	$1.12 \ (0.88 \ to \ 1.41)$	0.358	
Total cholesterol - per 1 unit increase	0.95 (0.83 to 1.10)	0.497	$1.01 \ (0.72 \text{ to } 1.40)$	0.969	
Cardiovascular status					
Heart rate - per 1 bpm increase	1.02 (1.01 to 1.03)	0.003	$1.02 \ (0.99 \text{ to } 1.05)$	0.122	
Questionnaire data					
SGRQ-C - per 4 point increase	1.07 (1.03 to 1.11)	0.001	1.07 (1.00 to 1.15)	0.037	
CAT - per 1 point increase	1.04 (1.02 to 1.06)	$<\!0.001$	1.07 (1.02 to 1.11)	0.004	
Musculoskeletal measures					
Six-minute walk distance - per 30 metre	$1.11 \ (1.06 \ to \ 1.16)$	$<\!0.001$	1.16 (1.06 to 1.26)	0.001	
decrease					
SPPB score $(0-12)$ - per 1 point decrease	$1.11 \ (1.04 \ to \ 1.19)$	0.003	$0.94 \ (0.80 \text{ to } 1.10)$	0.435	
Functional limitation (SPPB) - yes	1.40 (1.01 to 1.95)	0.046	$0.81 \ (0.43 \text{ to } 1.54)$	0.524	
4MGS score (0-4) - per 1 point decrease	1.28 (1.07 to 1.54)	0.008	$0.82 \ (0.48 \text{ to } 1.42)$	0.476	
Balance score $(0-4)$ - per 1 point decrease	$1.13 \ (0.95 \ \text{to} \ 1.35)$	0.175	$0.71 \ (0.45 \text{ to } 1.12)$	0.14	
Chair stand score $(0-4)$ - per 1 point de-	1.18 (1.05 to 1.33)	0.006	$1.02 \ (0.82 \text{ to } 1.28)$	0.827	
crease					

 Table 6.10:
 Adjusted multivariate associations with AECOPD frequency, by exacerbation history.

Incidence rate ratios were estimated based on negative binomial regression. All analyses were stratified by recruitment centre and exacerbation history. ^a Adjusted for age, sex, body mass index, smoking status, forced expiratory volume in one second, and productive cough. ^b P values based on negative binomial regression.

Variables MRC dyspnoea score and white cell count were omitted due to collinearity. *Abbreviations*: CI, confidence intervals. FEV₁, forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease. GFR, glomerular filtration rate. SGRQ-C, St. George respiratory questionnaire for COPD. CAT, COPD assessment test. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

	5 year (n = 714, of whom 291 had AECOPD)			
	Male $(n = 434)$ Female $(n = 280)$			
Baseline characteristics	Incidence risk ratio	Р	Incidence risk ratio	Р
	(95% CI) ^a	value $^{\rm b}$	(95% CI) $^{\rm a}$	value $^{\rm b}$
Description				
Age - per 10 year increase	$0.89 \ (0.72 \text{ to } 1.11)$	0.313	$0.77 \ (0.58 \text{ to } 1.02)$	0.073
Sex - male				
Body mass index - per 1 point increase	$1.02 \ (0.99 \text{ to } 1.06)$	0.237	$0.98 \ (0.95 \text{ to } 1.01)$	0.242
Lung function				
FEV_1 - per 100 ml increase	$0.84 \ (0.81 \text{ to } 0.87)$	$<\!0.001$	$0.81 \ (0.76 \ \text{to} \ 0.87)$	$<\!0.001$
Smoking status - current	0.87 (0.57 to 1.32)	0.502	$1.51 \ (0.96 \ \text{to} \ 2.36)$	0.073
GOLD stage - per increase to next stage	2.87 (2.21 to 3.73)	$<\!0.001$	2.01 (1.41 to 2.87)	$<\!0.001$
Exacerbation history (1 year), ≥ 1	1.50 (1.03 to 2.18)	0.033	3.45 (1.78 to 6.67)	$<\!0.001$
Productive cough - yes	1.05 (0.72 to 1.51)	0.81	$1.19 \ (0.78 \ \text{to} \ 1.82)$	0.409
Biochemical measures				
Glucose - per 1 log unit increase	$0.66 \ (0.19 \ \text{to} \ 2.31)$	0.516	6.67 (1.68 to 26.56)	0.007
Fibrinogen - per 1 log unit increase	$1.42 \ (0.61 \text{ to } 3.3)$	0.412	2.96 (1.08 to 8.14)	0.035
CRP - per 1 log unit increase	1.08 (0.92 to 1.26)	0.373	$1.18 \ (0.97 \ \text{to} \ 1.45)$	0.104
GFR - per 1 unit increase	1.00 (0.99 to 1.01)	0.69	1.00 (0.99 to 1.02)	0.947
Neutrophils - per 1 unit increase	$1.01 \ (0.90 \ \text{to} \ 1.13)$	0.899	1.30 (1.16 to 1.46)	$<\!0.001$
Haemoglobin - per 1 unit increase	$0.96 \ (0.86 \text{ to } 1.08)$	0.525	0.93 (0.78 to 1.10)	0.383
Total cholesterol - per 1 unit increase	0.93 (0.79 to 1.10)	0.403	$0.93 \ (0.76 \ \text{to} \ 1.13)$	0.469
Cardiovascular status				
Heart rate - per 1 bpm increase	1.01 (1.00 to 1.03)	0.082	1.03 (1.01 to 1.05)	0.001
Questionnaire data				
SGRQ-C - per 4 point increase	1.06 (1.02 to 1.11)	0.004	2.40 (1.54 to 3.74)	$<\!0.001$
CAT - per 1 point increase	1.05 (1.02 to 1.08)	$<\!0.001$	1.06 (1.01 to 1.11)	0.023
Musculoskeletal measures				
Six-minute walk distance - per 30 metre	1.12 (1.07 to 1.18)	$<\!0.001$	1.04 (1.01 to 1.08)	0.005
decrease				
SPPB score $(0-12)$ - per 1 point decrease	1.03 (0.94 to 1.12)	0.546	1.15 (1.05 to 1.26)	0.002
Functional limitation (SPPB) - yes	1.03 (0.71 to 1.50)	0.876	$1.70 \ (1.05 \ \text{to} \ 2.73)$	0.029
4MGS score $(0-4)$ - per 1 point decrease	1.09 (0.84 to 1.40)	0.527	1.40 (1.10 to 1.78)	0.007
Balance score $(0-4)$ - per 1 point decrease	0.95 (0.71 to 1.27)	0.732	$1.11 \ (0.91 \text{ to } 1.35)$	0.303
Chair stand score (0-4) - per 1 point de-	1.06 (0.93 to 1.21)	0.378	1.35 (1.13 to 1.61)	0.001
crease				

Table 6.11: Adjusted multivariate associations with AECOPD frequency, by sex.

Incidence rate ratios were estimated based on negative binomial regression. Analyses were stratified by recruitment centre and sex. ^a Adjusted for age, body mass index, smoking status, forced expiratory volume in one second, productive cough, and exacerbation history. ^b P values based on negative binomial regression.

¶Variables MRC dyspnoea score and white cell count were omitted due to colinearity. *Abbreviations*: CI, confidence intervals. FEV₁, forced expiratory volume in one second. GOLD, global initiative for obstructive lung disease. GFR, glomerular filtration rate. SGRQ-C, St. George respiratory questionnaire for COPD. CAT, COPD assessment test. 6MW, six-minute walk. SPPB, short physical performance battery. 4MGS, four-metre gait speed. QMVC, quadriceps maximum voluntary contraction.

6.4 Discussion

This is the first study demonstrating the potential use of SPPB in predicting AECOPD-related hospital admission. In addition, 6MW distance, known to predict mortality in individuals with COPD, was found to be associated with AECOPD-related hospital admission, after adjusting for common and known predictive covariates. Our findings show that multiple measures including multiple exercise capacity traits were associated with both AECOPD-related hospital admission rate and duration. The strongest associated measure for admission, however, was lung function measured as FEV₁, or GOLD stage as defined by FEV₁% predicted. For AECOPD-related hospital duration, both SPPB and 6MW distance, following age, were the strongest associated measures. Sensitivity analysis indicated that 6MW distance might potentially be more useful in predicting admission rate in males and those with no history of exacerbation. Exacerbation history is known to reliably predict future risk of AECOPD including hospital admissions. In our cohort, women had a significantly higher number of previous exacerbations at baseline compared to men. In addition, exacerbation history was stronger associated with AECOPDrelated admission for women than men and therefore may be more useful for future prediction of AECOPD-related hospital admission in women.

Over a study period of five years, over 40% had at least one admission with nearly one fifth of the cohort experiencing multiple visits. In addition, many individuals had readmissions within six months after initial admission, with an equal amount of time spent in hospital as the initial admission. Of those readmitted, about 20% died within the first year after initial admission. Unfortunately, the study was not designed to evaluate the associations between baseline variables and hospital readmission but considering the high number of readmissions and deaths following AECOPD-related admission, monitoring individuals at set intervals to identify those at highrisk could prove useful allowing timely intervention and preventing or minimising the number of readmission and premature mortality. Recently EDGE, for example, a mobile self-managing COPD platform has been introduced to monitor symptoms including heart rate to recognise and start treatment of exacerbations early.⁹⁰

The 6MW test is a reflection of cardiovascular status, in addition to lower limb function (i.e. musculoskeletal function), but perhaps also a good proxy measure of overall health. The 6MW test, however, has received limited adoption in clinical practice. The 4MGS – a test of lower limb function – being faster and more practical than the 6MW performed slightly less well than the 6MW, but might have more potential in clinical practice when considering the clinical practicalities.

This study has several limitations. Hospital episode statistics were obtained from the NHS Digital (England), NHS Scotland and NHS Wales. Apart from admission and discharge dates, we did not have spell data (i.e. total continuous stay and use of a hospital bed) available for individuals registered with the NHS Scotland and NHS Wales. The study period covered the time from study enrolment until the end of study, or death. Some individuals, however, may have been admitted to hospital for AECOPD shortly before study enrolment and these events will have not been electronically captured but potentially through self-reported exacerbation history. Although, self-reported data is known to suffer from recall bias.⁹⁶ Due to the limited number of events we were unable to stratify by GOLD stage (i.e. indicator of disease severity), exacerbation history, and sex to assess the association between baseline measures and AECOPDrelated hospital stay (i.e. duration) for those admitted to hospital. Also, we explored for nonlinearity of variables considered but had not enough power to identify any difference. For SPPB scores, a majority of individuals scored towards the highest possible score. Despite this, a high proportion of individuals with COPD had physical limitations but it may indicate that SPPB is not sensitive enough to discriminate sufficiently between those with and without the event. There were differences for most measures between recruitment sites. For example, individuals from London were slightly healthier compared to other sites, and individuals from Cardiff had more severe lung disease; however we caution that the departments at each of the five participating hospitals had variations in practice making analysis in difference in prognosis between sites of doubtful value. We addressed this by adjusting for recruitment site in our analyses. Even though the ERICA study included participants from centres throughout the UK, the cohort consisted primarily of individuals GOLD staged II-III. This limits generalising results to those with mild or advanced COPD. Future studies, using larger cohorts and/or different geographical populations, should replicate our findings. Missing data was present, reducing the overall sample size and statistical power limiting to make robust conclusions. In order to optimise the analysis, we included as many observations as possible and reported the number of observations included in each analysis. Analyses were adjusted for productive cough, believed to be an indicator of inflammation. A large proportion had productive cough on most mornings but there was no significant association with the outcomes in our cohort. According to Hurst and colleagues, WCC and MRC dyspnoea score were found to be significantly associated with AECOPD.¹³² We excluded these variables from the analysis due to collinearity, allowing us to evaluate the association of novel exercise capacity traits with the outcomes of interest.

This study has several strengths. Firstly, individuals were clinically stable upon recruitment. Secondly, event rates were stable throughout the study period, which is not only encouraging but also rates were comparable to those in large cohort studies including Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE).²⁷⁰ Hospital admissions were identified using validated criteria, and only definite and possible episodes were included in the analysis. In contrast to self-reported hospital admission, which may suffer from underreporting, ^{203,236} AECOPD episodes were captured using electronic health record data. Individuals had different observation periods. The use of study inclusion and admission (i.e. event) dates allowed to adjust for exposure time and therefore used the correct probability distributions.

Considering that both the SPPB and 6MW distance were associated with admission rate and duration, one potential scenario would include to use both tests to determine the physical capacity of an individual whilst assessing their risk of hospital admission rate within five years, and their hospital length of stay for initial AECOPD-related admission. It has been shown that exercise capacity can be improved through pulmonary rehabilitation, and is known to positively impact hospital utilisation. Exercise capacity traits such as the SPPB and 6MW may be good candidates for training purposes, in addition to assessing an individual's exercise capacity. Of these two, the SPPB is clinically more practical than 6MW, as there is often too little time available in clinic to perform a 6MW test and often patients are in need of additional oxygen. In addition, those who are very ill might have difficulty completing the 6MW test due to the intensity and physical impact. Our results show, however, no causality but merely an association between musculoskeletal strength and AECOPD admission and length of stay.

Future studies, using larger cohorts, should assess the predictive value of exercise capacity traits including SPPB and its component 4MGS, and the 6MW test, and demonstrate if physical training such as strengthening of the quadriceps improves pulmonary outcomes. In addition, evaluating these measures repeatedly at different time intervals would allow estimation of the association between AECOPD-related hospital admission rate, duration, and readmission at different time points.

6.5 Conclusions

There is potential for the use of SPPB in predicting AECOPD-related hospital admission and length of hospital stay within a COPD population with moderate to severe disease. The SPPB is a measure requiring low commitment that could be measured routinely.

Do arterial stiffness or carotid intima-media thickness improve on a Framingham approach when predicting cardiovascular disease in COPD?

Chapter summary

Background Individuals with chronic obstructive pulmonary disease (COPD) have increased risk of fatal and non-fatal cardiovascular disease. Cardiovascular risk is traditionally predicted using 'Framingham' risk factors (age, sex, smoking, high-density lipoprotein, total cholesterol, systolic blood pressure, diabetes, and the prescription of drugs to treat cardiovascular disease). However, newer measures, specifically arterial stiffness and carotid intimal thickness are thought to better capture systemic disease, and therefore may better identify high-risk individuals. Here we aimed to evaluate these measures against Framingham' risk factors for the prediction of cardiovascular events in a UK COPD population. Methods Clinical data from the <u>E</u>valuation of the <u>R</u>ole of <u>I</u>nflammation in <u>C</u>hronic <u>A</u>irways disease (ERICA) cohort were linked with UK National Health Services electronic health record data, with cardiovascular events identified using ICD-10 coding. Non-fatal cardiovascular events were obtained from the UK Office for National Statistics, and adjudicated by cardiovascular and respiratory physicians. Associations were estimated using stratified multivariable Cox regression, and assessed by C-indices with 10-fold cross-validation and replication.

Findings Out of 714 individuals, 237 (33%) had at least one cardiovascular event during median follow-up of 4.5 years. Of the Framingham risk factors, age (hazard ratio (HR) 1.40 per 10-year increase, 95% CI 1.16 to 1.70), systolic blood pressure (HR 0.92 per 10 mmHg increase, 95% CI 0.84 to 0.99), self-reported diabetes (HR 3.07, 95% CI 2.21 to 4.27), and self-report use of drugs to treat cardiovascular disease (HR 2.10, 95% CI 1.52 to 2.90) were significantly associated with mortality. Measures of arterial stiffness and carotid intima-media thickness were not associated with cardiovascular events. Measures of exercise capacity four-metre gait speed (HR 1.07 per one sec. increase; C = 0.717) and six-minute walk distance (HR 0.91 per 30 metre increase; C = 0.728) were significantly associated with cardiovascular diseased with cardiovascular disease and improved the discriminative ability when added to Framingham risk factors.

Interpretation Our data does not support the use of objective measures of arterial stiffness and carotid intima-media thickness in addition to Framingham risk factors for predicting cardiovascular events within COPD. Similarly, blood pressure measurement and smoking status do neither add to the predictive ability of Framingham within the ERICA cohort. Age, systolic blood pressure, diabetes and cardiovascular drugs, and exercise capacity measures four-metre gait speed and six-minute walk distance are predictive. Moreover, despite the presence of cardiovascular disease, cardiac death is not common in patients with COPD. This may reflect a downward trend in fatal cardiovascular disease incidence/ improved cardiovascular survival, or an increased prevalence of death from respiratory causes.

7.1 Background

Chronic obstructive pulmonary disease (COPD) leads to a higher risk of cardiovascular (CV) disease, increasing the risk of non-fatal CV disease 2.5 times and a third dying of cardiac causes.^{46,174} Reduced lung function is associated with systemic inflammation.²⁷⁶ The elevated CV risk in COPD may be explained by the increased inflammatory burden and consequential effects leading to aortic stiffness and increased arteriosclerosis load. Current CV disease risk prediction algorithms focus mostly on the classical Framingham risk factors: age, sex, smoking, high-density lipoprotein (HDL), total cholesterol, systolic blood pressure (SBP, diabetes, and the use of drugs to treat CV disease.⁶² The Framingham risk score predicts an individual's 10-year risk of coronary heart disease, peripheral artery disease, and heart failure and improves the prediction of CV events and premature death.¹⁵⁶

The predictive ability of the Framingham risk factors, the inclusion of alternative markers, and the comparison of the discriminative ability of Framingham with alternative measures has been evaluated in various population groups including elderly⁷⁰ and a multitude of comorbidities including diabetes,¹⁴³ metabolic syndrome,²⁷⁹ and chronic kidney disease.²⁸³ How Framingham risk factors and several other biomarkers for CV disease perform in a COPD population, however, is unclear.

Elevated pulse wave velocity (PWV), a measure of aortic stiffness, has been reported in patients with COPD,⁹⁴ but its predictive value is not known. Likewise, other proxy measures of arterial stiffness augmentation index (AIx) and carotid intima-media thickness (CIMT) are also predictors in some populations and have the potential of clinically predicting CV disease. Both arterial stiffness and CIMT are predictors of CV disease in the general population.^{119,162,258} Adding these to the Framingham Risk Score was found to provide, albeit minor, improvement in the predictive ability.⁷³ Using these alternative measures, in particular measures of arterial stiffness, is thought to identify high-risk patients in an early stage of disease, which in turn could lead to opportunities to slow disease progression and to support decision makers in their judgements regarding treatment planning and resource allocation. Evidence across several small studies, taken together, suggests that measures of arterial stiffness are worth further investigation but conclusive evidence is lacking.⁹¹

Thus, the aims of our study were firstly to determine incidence of fatal- and non-fatal CV disease, and evaluate the association of classical Framingham risk factors and with subsequent fatal and non-fatal CV events in stable Global initiative for chronic Obstructive Lung Disease (GOLD) stage II-IV¹⁰⁷ COPD patients using clinical data from the <u>E</u>valuation of the <u>Role</u> of <u>Inflammation in Chronic Airways disease (ERICA) cohort and UK electronic health record data.</u> Secondly, we aimed to determine the association of measures of arterial stiffness and CIMT, and incident CV disease, and assess their added value above and beyond Framingham risk factors. Lastly, we used the opportunity to determine the association of alternative measures including musculoskeletal function, thought to better capture systemic problems, and CV disease, and their added value above and beyond Framingham risk factors.

7.2 Methods

7.2.1 Study design and participants

The ERICA study is a multi-centre observational, non-interventional, epidemiological cohort study, with 729 stable GOLD stage II-IV¹⁰⁷ COPD patients, established to identify important CV and musculoskeletal biomarkers that could be targeted to improve the outcomes of COPD patients. Full details of the protocol have been provided elsewhere.¹⁸⁴ Data captured included demographics, pulmonary function measures, biochemical markers, measures of arterial stiffness (i.e. PWV, AIx, and CIMT), and measures of musculoskeletal function (i.e. four-metre gait speed (4MGS) and six-minute walk (6MW) test).

7.2.2 Clinical measures

After four hours of fasting, with no bronchodilators for six hours, and ten minutes of supine rest CV measures were taken using an SphygmoCor system. Pulse wave velocity (i.e. velocity of blood pressure pulse) was measured between the femoral and carotid arteries, and the average of two measurements was taken, as described by Wilkinson *et al.*,²⁸⁶ Carotid intima-media thickness (i.e. extend of arteriosclerotic process) of the common carotid arteries was measured using B-mode ultrasound at a distance of 1 cm from the carotid bulb with a 7–12 MHz linear probe to estimate the extent of atherosclerosis for each individual.⁶¹ For each artery 3 x 10 sec. loops were recorded. The thickest artery of the two was included in the analysis. Augmentation index was derived from the ascending aortic pressure waveform.

Diabetes status and use of drugs for CV disease treatment were self-reported and captured at baseline. Cardiovascular disease-related treatment included drugs such as simvastatin, warfarin, eplerenone, bendroflumethiazide, digoxin, and ramipril. Disease severity was defined according to GOLD classification.¹⁰⁷ Points for the BODE Index, which generates a composite score from the Body mass index (BMI), airflow Obstruction, Dyspnoea, and Exercise capacity, with the latter measured by the 6MW test, were assigned as described by Celli *et al.*⁴⁰

7.2.3 Cardiovascular events

Clinical data were linked to electronic healthcare records (i.e. admitted patient care data) obtained from the UK National Health Service (NHS) Digital, NHS Scotland, and NHS Wales. Non-fatal CV events were extracted from both primary and secondary international statistical classification of diseases and related health problems 10th revision coding (ICD-10) positions, and included diseases of the arteries, all stroke, and heart failure (**Table 7.1**, page 184). Atrial fibrillation and flutter, and hypertensive diseases were excluded. Fatal events were obtained from the UK Office for National Statistics (ONS) and cardiac deaths were adjudicated by CV and respiratory physicians.

	Table	7.1:	Definitions	of	diagnoses	by	ICD-10	coding.
--	-------	------	-------------	----	-----------	----	---------------	---------

End point	ICD-10 codes
All cardiovascular disease	E10.5, E11-E14, F01, G46.3-G46.7, G458, G459
	I11.0, I13.0, I13.2, I20.0-I20.1, I20.8-I21-I25, I50, I60, I61, I.62,
	I63, I64, I65-I69, I70.2, I71.3-I71.9, I72, I73.9-I79, R96 + cardiac
	death
Diseases of the arteries	I70.2, I72, I73.9-I79, E10.5, E11-E14
Peripheral arterial disease	I70.2, I73.9, E10.5, E11-E14
Diseases of arteries, arterioles and capillaries	172, 174-179
Coronary heart disease	I20.0-I20.1, I20.8-I21-I25
Angina	I20.1, I20.8-I20.9
Unstable angina	120.0, 124
Coronary heart disease not otherwise specified	I25
Acute myocardial infarction (MI), and certain cur-	I21, I23
rent complications following acute MI	
Subsequent myocardial infarction	I22
All stroke	I60, I61, I.62, I63, I64, I65-I69, F01, G46.3-G46.7, G458, G459
Subarachnoid haemorrhage	160
Intra-cerebral haemorrhage	I61
Cerebral infarction	I63
Stroke, not specified as haemorrhage or infarction	I64
Stroke syndromes	G46.3-G46.7
Transient ischaemic attack	G458, G459
Other stroke	I62, I65-I69, F01
Heart failure	I11.0, I13.0, I13.2, I50
Heart failure	150
Hypertensive heart disease with (congestive)	I11.0
heart failure	
Hypertensive heart and renal disease with (con-	I13.0
gestive) heart failure	
Hypertensive heart and renal disease with both	I13.2
(congestive) heart failure and renal disease	
Cardiac death	Adjudicated
Other vascular deaths	R96, I71.3-I71.9
Sudden death, cause unknown	R96
Abdominal aortic aneurysm	171.3-171.9

Atrial fibrillation and flutter (I48) and hypertensive diseases (I10-I15) were considered risk factors and therefore not included.

7.2.4 Outcomes and predictors of interest

The primary outcome measure was defined as the new occurrence (first event) of fatal or non-fatal CV disease. Time to event was calculated from the difference between the baseline visit date and either the date of death or first CV event up to November 2017, when follow-up discontinued. The association between Framingham risk factors (i.e. age, sex, smoking, HDL, total cholesterol, systolic blood pressure, diabetes, and the use of drugs to treat CV disease) and CV disease were evaluated. In addition, measures of arterial stiffness, CIMT and alternative measures thought to better capture systemic disease, and CV disease and their added value above and beyond Framingham risk factors were evaluated.

7.2.5 Statistical analysis

Hazard ratios (HRs) were estimated using Cox regression, stratified by recruitment centre, and adjusted for age and sex. In addition, PWV was adjusted for mean arterial pressure (MAP) and heart rate, and AIx was adjusted for heart rate and height. Further analyses included Framing-ham risk factors as covariates. Discrimination (i.e. Harrell's C-statistic)^{10,202} was assessed using 10-fold cross validation with 200 replications.²⁴⁵ Hazard ratios for log-transformed biomarkers represent a twofold increase in the biomarker. Associations between the clinical measures were quantified using Spearman's rank correlations, with values <0.30 considered as weak, 0.30-0.50 as moderate, and >0.50 as strong.⁵¹

There were missing values. Data were assessed for the level and type of missing data, and completion patterns (**Figures 3.1 3.2**, pages 61 and 62). There were about 10% missing values for variables CIMT (n = 66) and PWV (n = 60), with <5% missing values for other variables. Missing values were addressed using multiple imputations using chained equations (MICE). The time-to-event outcome was included using the non-parametric Nelson-Aalen estimator. Predictive mean matching was used for continuous variables, ordered logistic regression (as continuous) for ordinal variables, multinomial logistic regression for categorical variables, and logistic regression for binary variables. Derived variables such as the BODE Index (a composite score of BMI,

forced expiratory volume in one second (FEV₁), Medical Research Council dyspnoea score, and 6MW distance) and GOLD stage were estimated post MICE using passive imputation. Observational data is reported according to the Strengthening The Reporting of OBservational Studies in Epidemiology (STROBE) statement.²⁷⁵

7.3 Findings

7.3.1 Descriptive statistics

Of the 729 individuals included in the study, 714 were linkable with hospital admission and survival records, and included in the analysis (**Figure 3.4**, page 64). The mean age was 67 years old (range 43-89 years) and 434 (61%) individuals were male. A third of the cohort smoked, and 402 individuals (56%) were taking CV drugs at baseline. Median (interquartile range (IQR)) SBP was 142 mmHg (131-154), PWV 9.8 m/sec (8.4-11.8), CIMT 0.81 (0.71-0.96), and AIx 28% (20-34; **Tables 7.1 7.2 7.3**, pages 184-187). Baseline characteristics have been reported in **Figures 3.25 3.26 3.27**, pages 79-80.

7.3.2 Association of Framingham risk factors with CV events, and their predictive value

In total, six individuals had a fatal CV event and 231 individuals (33%) experienced a nonfatal CV event during median follow up for 4.5 years. The CV incidence rate was 8.8 (95% CI 7.7 to 10.0) per 100 person-years. Of the Framingham risk factors, only age, SBP, and selfreported diabetes and use of drugs to treat CV disease were significantly associated with CV events (**Figure 7.1** and **Table 7.2**, pages 189 and 187). Systolic blood pressure was negatively associated with CV disease; primarily for those with mild COPD (HR 0.88, 95% CI 0.78 to 0.99, p = 0.030; aged 70 years and above (HR 0.87, 95% CI 0.78 to 0.97, p = 0.012; taking CV drugs (HR 0.86, 95% CI 0.78 to 0.95, p = 0.003), and males (HR 0.87, 95% CI 0.79 to 0.96, p = 0.007).
Table 7.2: Hazard ratios for cardiovascular disease with measured baseline levels of risk factors.

	Median (IQR) or n (%)	HR (95% CI) $^{\rm a}$	P value	HR (95% CI) $^{\rm b}$	P value
Framingham risk factors					
Age - per 10 year increase	67 (62-73)	1.50 (1.26 to 1.78)	< 0.001	1.40 (1.16 to 1.70)	< 0.001
Sex - males	434 (61)	1.16 (1.02 to 1.06)	0.282	1.17 (0.88 to 1.56)	0.283
Smoking - current	218 (31)	0.93 (0.69 to 1.25)	0.641	0.93 (0.69 to 1.26)	0.654
HDL - per 1 mmol/L in-	1.4(1.2-1.7)	$0.61 \ (0.44 \ \text{to} \ 0.85)$	0.003	$0.94 \ (0.67 \ \text{to} \ 1.31)$	0.721
Total cholesterol - per 1 mmol/L increase	5.0 (4.3-5.8)	0.71 (0.63 to 0.81)	< 0.001	0.94 (0.82 to 1.08)	0.392
SBP - per 10 mmHg increase	142 (131-154)	0.92 (0.85 to 0.99)	0.023	0.92 (0.84 to 0.99)	0.031
Diabetes - yes	82 (12)	4.18 (3.11 to 5.63)	$<\!0.001$	3.07 (2.21 to 4.27)	$<\!0.001$
CV drug treatment - yes	402 (56)	2.61 (1.94 to 3.52)	< 0.001	2.10 (1.52 to 2.90)	< 0.001

Values are given as the median and interquartile range (IQR), or No. of cases (%). Baseline data of 714 patients are included. All models are stratified by recruitment site.

^a Adjusted for age and sex

^b Adjusted for Framingham risk factors: age, sex, smoking, high-density lipoprotein, total cholesterol, systolic blood pressure, diabetes, cardiovascular drug treatment. *Abbreviations*: CI, confidence interval. HDL, high-density lipoprotein. SBP, systolic blood pressure. CV, cardiovascular.

Table 7.3: Hazard ratios for cardiovascular disease with measured baseline levels of risk fa	actors
--	--------

	Median (IQR) or n (%)	HR (95% CI) $^{\rm a}$	P value	HR (95% CI) $^{\rm b}$	P value
MeasuresofarterialstiffnessPWV - per 1 m/sec increaseCIMT - per 1 mm increase	9.8 (8.4-11.8) 0.81 (0.71-0.96)	1.04 (0.98 to 1.10) 1.27 (0.62 to 2.60)	$0.171 \\ 0.512$	0.99 (0.93 to 1.06) 1.22 (0.58 to 2.54)	$0.843 \\ 0.602$
AIx - per 5% increase	28 (20-34)	0.85 (0.78 to 0.92)	$<\!0.001$	0.93 (0.85 to 1.02)	0.129

Values are given as the median and interquartile range (IQR), or No. of cases (%). Baseline data of 714 patients are included. All models are stratified by recruitment site.

^a Adjusted for age and sex

^b Adjusted for Framingham risk factors: age, sex, smoking, high-density lipoprotein, total cholesterol, systolic blood pressure, diabetes, cardiovascular drug treatment.

PWV further adjusted for mean arterial pressure and resting heart rate. AIx further adjusted for resting heart rate and height. *Abbreviations*: CI, confidence interval. PWV, pulse wave velocity. CIMT, carotid intima-media thickness. AIx, augmentation index.

The discriminative ability of all Framingham risk factors combined had a C-statistic of 0.701, 95% CI 0.695 to 0.706). Self-reported use of CV drugs (C = 0.638, 95% CI 0.630 to 0.647) and diabetes (C = 0.616, 95% CI 0.607 to 0.622) followed by age (C = 0.594, 95% CI 0.588 to 0.602) contributed most to the discriminative ability.

Risk factor	Median (IQR) or n (%)	HR (95% CI) ^a	HR (95% CI) ^b	C-statistic	
Framingham				0.701 [0.695 to 0.706]	
Age – per 10 year increase	67 (62–73)	1.50 (1.26 to 1.78)	1.40 (1.16 to 1.70)	0.594 [0.588 to 0.602]	Ū
Sex – male	434 (61)	1.16 (1.02 to 1.06)	1.17 (0.88 to 1.56)	0.551 [0.542 to 0.558]	Ē
Smoking – current	218 (31)	0.93 (0.69 to 1.25)	0.93 (0.69 to 1.26)	0.537 [0.528 to 0.544]	Ŧ
HDL - per 1 mmol/L increase	1.4 (1.2–1.7)	0.61 (0.44 to 0.85)	0.94 (0.67 to 1.31)	0.566 [0.559 to 0.573]	Ŧ
Cholesterol – per 1 mmol/L increase	5.0 (4.3–5.8)	0.71 (0.63 to 0.81)	0.94 (0.82 to 1.08)	0.616 [0.609 to 0.620]	•
SBP – per 10 mmHg increase	142 (131–154)	0.92 (0.85 to 0.99)	0.92 (0.84 to 0.99)	0.539 [0.531 to 0.544]	Ŧ
Diabetes - yes	82 (12)	4.18 (3.11 to 5.63)	3.07 (2.21 to 4.27)	0.616 [0.607 to 0.622]	₽
CV drugs – yes	402 (56)	2.61 (1.94 to 3.52)	2.10 (1.52 to 2.90)	0.638 [0.630 to 0.647]	Ē
				9	175 -0.05 0 0.05 C-index Change (95% CI)
Figure 7.1: Framingham risk	factors at baseline, the	eir hazard ratios	and discriminati	ve ability for cardiov	ascular disease. Values are

given as the median and interquartile range (IQR), or No. of cases (%). Baseline data of 714 patients are included. All models are stratified by recruitment site.

^a Adjusted for age and sex ^b Adjusted for Framingham risk factors: age, sex, smoking, high-density lipoprotein, total cholesterol, systolic blood pressure, diabetes, cardiovascular drug treatment. *Abbreviations*: CI, confidence interval. HDL, high-density lipoprotein. SBP, systolic blood pressure. CV, cardiovascular. There were <5% missing values for descriptive variables such as BMI and smoking status. Missing values were addressed using multiple imputations using chained equations.

7.3.3 Association of arterial stiffness measures with CV events, and their predictive value

Except for the AIx (HR 0.85 per 5% increase, 95% CI 0.78 to 0.92, p <0.001), none of the arterial stiffness measures were significantly associated with CV disease, after adjustment for age and sex (**Figure 7.2** and **Table 7.3**, pages 191 and 187). After further adjustment for Framingham risk factors neither was AIx. Arterial stiffness did not statistical significantly change discriminative ability of Framingham.

Risk factor	Median (IQR) or n (%)	HR (95% CI) ^a	HR (95% CI) ^b	C-statistic	
Framingham				0.701 [0.695 to 0.706]	•
+ PWV - per 1 m/sec increase	9.8 (8.4–11.8)	1.04 (0.98 to 1.10)	0.99 (0.93 to 1.06)	0.700 [0.694 to 0.705]	•
+ CIMT – per 1 mm increase	0.81 (0.71–0.96)	1.27 (0.62 to 2.60)	1.22 (0.58 to 2.54)	0.700 [0.693 to 0.705]	
+ Alx - per 5% increase	28 (20–34)	0.85 (0.78 to 0.92)	0.93 (0.85 to 1.02)	0.698 [0.692 to 0.703]	
				-0.175 C-index (-0.05 0 0.05 Change (95% CI)
Figure 7.2: Arterial stiff the median and interquart	ness at baseline, their ha	zard ratios and d of cases $(\%)$. Bas	liscriminative abil eline data of 714	ity for cardiovascular disease. Vapatients are included. All model	alues are given as ls are stratified by

recruitment site.

^a Adjusted for age and sex ^b Adjusted for Framingham risk factors: age, sex, smoking, high-density lipoprotein, total cholesterol, systolic blood pressure, diabetes, cardiovascular drug treatment. PWV further adjusted for mean arterial pressure and resting heart rate. Alx further adjusted for resting heart rate and height. *Abbreviations*: CI, confidence interval. PWV, pulse wave velocity. CIMT, carotid intima-media thickness. Alx, augmentation index. There were about 10% missing values for variables CIMT (n = 66) and PWV (n = 60). Missing values were addressed using multiple imputations using chained equations.

7.3.4 Association of alternative measures with CV events, and their predictive value

Multivariable analysis identified several alternative measures that were associated with CV events (Figure 7.3 and Table 7.4, pages 193 and 194). Inflammatory markers C-reactive protein (CRP; HR 1.11 per twofold increase, 95% CI 1.02 to 1.21, p = 0.013) and fibrinogen (HR 1.59 per twofold increase, 95% CI 1.07 to 2.39, p = 0.023), blood glucose (HR 1.94 per twofold increase, 95% CI 1.07 to 3.52, p = 0.030), BMI (HR 1.04 per 1 kg/m² increase, 95% CI 1.01 to 1.06, p = 0.002), and FEV₁ as GOLD stage (HR 1.27 per 1 stage increase, 95% CI 1.04 to 1.56, p = 0.021) were associated with a higher risk of CV events. Musculoskeletal measures 4MGS (HR 0.72 per 1 second increase, 95% CI 0.71 to 0.72, p = 0.009) and 6MW distance (HR 0.73 per 30 metre increase, 95% CI 0.72 to 0.73, p < 0.001) were associated with a lower risk of CV events. Predictive modelling indicated statistical significant improvement in risk discrimination when adding 4MGS (C = 0.717, 95% CI 0.712 to 0.722) or 6MW distance (C = 0.728, 95% CI 0.723 to 0.733) to the Framingham risk factors. Adding BMI, 4MGS, 6MW, and BODE all together to the Framingham risk factors resulted in a C-index of 0.731 (95% CI 0.727 to 0.737).

Risk factor	Median (IQR) or n (%)	HR (95% CI) ^a	HR (95% CI) ^b	C-statistic	
Framingham				0.701 [0.695 to 0.706]	
+ CRP - per twofold increase	1.21 (0.47 to 2.01)	1.13 (1.05 to 1.23)	1.11 (1.02 to 1.21)	0.703 [0.698 to 0.708]	Ŧ
+ Fibrinogen – per twofold increase	1.22 (1.06 to 1.36)	1.71 (1.15 to 2.56)	1.59 (1.07 to 3.52)	0.700 [0.694 to 0.705]	Ŧ
+ Glucose - per twofold increase	1.59 (1.46 to 4.59)	2.40 (1.33 to 4.33)	1.94 (1.07 to 3.52)	0.701 [0.693 to 0.706]	₽_
+ BMI – per 1 kg/m2 increase	27 (23–31)	1.07 (1.04 to 1.09)	1.04 (1.01 to 1.06)	0.712 [0.707 to 0.718]	Ť
+ GOLD - per 1 stage increase	1 (1–2)	1.19 (0.98 to 1.45)	1.27 (1.04 to 1.56)	0.701 [0.695 to 0.706]	
+ 4MGS - per 1 second increase	4.2 (3.5–5.2)	1.10 (1.05 to 1.16)	1.07 (1.02 to 1.13)	0.717 [0.712 to 0.722]	Ŧ
+ 6MW distance - per 30 meter increase	366 (255 to 440)	0.91 (0.88 to 0.94)	0.91 (0.89 to 0.95)	0.728 [0.723 to 0.733]	Ţ
+ BODE - per 1 point increase	3 (1–5)	1.12 (1.07 to 1.18)	1.13 (1.07 to 1.19)	0.714 [0.709 to 0.720]	I
+ BMI, 4MGS, 6MW, BODE - per 1 unit increase				0.731 [0.727 to 0.737]	Ţ
				L 0.0-	1 0 0.01 0.02 0.03 0.04 0.05 C-index Change (95% Cl)
Figure 7.3: Alternative measures at given as the median and interquartile stratified by recruitment site. ^a Adjusted for age and sex	baseline, their hazar range (IQR), or No.	1 ratios and dis of cases (%). B	rriminative abil aseline data of	ity for cardiovascular 714 patients are inclu	disease. Values are ided. All models are
^b Adjusted for Framingham risk facton cardiovascular drug treatment. <i>Abbrei</i> initiative for chronic obstructive lung obstruction, dyspnoea, exercise. There values were addressed using multiple i	rs: age, sex, smoking viations: CI, confiden disease. 4MGS, four- e were <5% missing v mputations using ch	, high-density li ce interval. CR metre gait spee values for bioche vined equations.	poprotein, total P, C-reactive pi d. 6MW, six-m ³ smical markers	cholesterol, systolic rotein. BMI, body m inute walk. BODE, b including fibrinogen	blood pressure, diabetes, ass index. GOLD, global ody mass index, und cholesterol. Missing

Table 7.4: Hazard ratios for cardiovascular disease with measured baseline levels of risk factors.

	Median (IQR) or n (%)	HR (95% CI) $^{\rm a}$	P value	HR (95% CI) $^{\rm b}$	P value
Other risk factors					
CRP - per twofold increase	1.21 (0.47 to 2.01)	1.13 (1.05 to 1.23)	0.002	1.11 (1.02 to 1.21)	0.013
Fibrinogen - per twofold in- crease	1.22(1.06 to 1.36)	1.71(1.15 to 2.56)	0.009	1.59 (1.07 to 2.39)	0.023
Glucose - per twofold in- crease	1.59 (1.50 to 1.69)	2.40 (1.33 to 4.33)	0.004	1.94 (1.07 to 3.52)	0.03
BMI - per 1 kg/m ² increase	27 (23-31)	1.07 (1.04 to 1.09)	< 0.001	1.04 (1.01 to 1.06)	0.002
GOLD - per 1 stage increase	1 (1-2)	1.19(0.98 to 1.45)	0.083	1.27 (1.04 to 1.56)	0.021
4MGS - per 1 second in-	4.2(3.5-5.2)	1.10 (1.05 to 1.16)	$<\!0.001$	1.07 (1.02 to 1.13)	0.009
crease					
$6\mathrm{MW}$ distance - per 30 me-	366 (255 to 440)	0.91 (0.88 to 0.94)	$<\!0.001$	0.91 (0.89 to 0.95)	$<\!0.001$
tre increase					
BODE - per 1 point increase	3 (1-5)	1.12 (1.07 to 1.18)	< 0.001	1.13 (1.07 to 1.19)	< 0.001

Values are given as the median and interquartile range (IQR), or No. of cases (%). Baseline data of 714 patients are included. All models are stratified by recruitment site.

^a Adjusted for age and sex

^b Adjusted for Framingham risk factors: age, sex, smoking, high-density lipoprotein, total cholesterol, systolic blood pressure, diabetes, cardiovascular drug treatment. *Abbreviations*: CI, confidence interval. CRP, C-reactive protein. BMI, body mass index. GOLD, global initiative for chronic obstructive lung disease. 4MGS, four-metre gait speed. 6MW, six-minute walk. BODE, body mass index, obstruction, dyspnoea, exercise.

7.4 Discussion

Four of the classical Framingham risk factors were shown to have prognostic power for the prediction of CV events, but contrary to our hypothesis predictive power was not improved by any of the measured biomarkers of CV function. The inverse relationship with SBP may be due to confounding and can possibly be explained by advancing age related to frailty.²⁰⁴ By examining other data from the ERICA dataset we show that several other measures, specifically CRP, fibrinogen, BMI, GOLD stage, 4MGS, and 6MW, were significantly associated with CV events above and beyond Framingham risk factors. The C-statistic of Framingham risk factors with BMI, 4MGS, 6MW and BODE Index combined, is similar to adding the 6MW only. This indicates 6MW is the main component driving the improvement of discriminative ability.

Tests such as the 4MGS and 6MW distance are proxy measures of overall mobility and

physical functioning including CV fitness.¹⁶¹ Exercise capacity and CV fitness are known to be associated with fatal and non-fatal CV disease.²⁰¹ Simultaneously, exercise-based cardiac rehabilitation reduces risk of heart disease.¹² GOLD stage (i.e. FEV₁) is a reflection of airflow limitation and also known to be associated with CV disease.¹⁹¹ For every 10% reduction in lung performance, fatal- and non-fatal CV disease were reported to increase by 28% and 20%, respectively.²⁴⁰ Fibrinogen is useful in identifying high risk individuals for COPD exacerbation and early mortality.⁸³ And although analysis of cross-sectional data from the ERICA study indicated no relationship between fibrinogen and CV manifestations in COPD,¹⁸³ analysis of the prospective data suggests fibrinogen to be associated with fatal- and non-fatal CV disease in COPD. That the associations between previously mentioned biomarkers and CV events remain significance after adjustment for Framingham risk factors indicate their potential value for identifying high risk individuals within a COPD population.

Age- and sex-adjusted Cox regression indicated a negative association between AIx and CV events. This association disappeared, however, after including other Framingham risk factors. There was also a negative association with smoking but this was not significant. About a third of the ERICA population were current smokers, yet all individuals had at least ten pack-years of smoking. Individuals with COPD and such a smoking history might already be at a higher risk for most diseases including CV disease, regardless of their smoking status, and therefore may explain why smoking status did not add any value in predicting CV events.

7.4.1 Strength and limitations

It could be argued that we did not have enough patients to detect any difference in arterial stiffness and CIMT measurements between high- and low-risk individuals. It should also be noted that while a systematic review including seventeen studies concluded that arterial stiffness was a strong predictor of CV disease,²⁷³ this was primarily the case for individuals at higher risk and more severe disease including renal failure, whom were not included in the ERICA study. Definitions of CV disease and arterial stiffness measurement differed amongst included studies

and most failed to adjust for height and MAP. Also, we excluded hypertension, atrial fibrillation and flutter as outcomes, since these are rather risk factors and not necessarily a CV event, and may therefore limit comparability with the studies included in the systemic review. Differences in baseline CV risk may also explain the absence of association between arterial stiffness and CV events.²⁷³ With the few number of events we were unable to examine this. The Framingham Risk Score has not yet been calibrated for the COPD population. The recalibration, an index of accuracy, allows to adapt the risk score to the COPD population, addressing potential overor underestimation, and therefore may return different risk estimates.

This study has potential limitations. There was no validated algorithm available to identify CV events in electronic health record data. Previously CV disease endpoints have been validated using the Clinical Practice Research Datalink (CPRD) classification algorithm¹²¹ combined with extensive clinical input.¹⁸ We did, however, not have access to CPRD data and defined CV disease based on classifications used by the Emerging Risk Factors Collaboration.⁸⁶ Efforts are being made to reach a consensus in the use of clinical CV endpoints.¹²³ We extracted CV events from both primary and secondary ICD-10 positions. Selecting the primary position only would indicate the underlying cause of diagnosis specifically but most CV events were recorded in secondary positions, indicating the primary admission might be related to something else than for cardiac reasons with CV disease seen as comorbidity. We did not have an independent validation cohort, which is commonly required when assessing the predictive ability of biomarkers. To address this, we used cross validation techniques (i.e. random partitioning of the dataset). In addition, we used replication in the cross validation to account for the relatively small number of observations aiming to prevent potential overfitting of the models.²⁴⁵ Baseline data varied amongst recruitment centres for most variables. We addressed this by stratifying by recruitment centre. Generalisability is limited to those with mild to moderate disease, as the majority of the cohort was GOLD staged II-III. Overall, the study had a relatively small sample size, which might have contributed to several Framingham risk factors not to be associated with CV events in COPD. We used multiple imputation techniques nonetheless to improve the statistical power

and precision. Missing data is common in clinical studies and epidemiological research. Ignoring missing data and analysing complete data only may introduce bias and provide misleading results.²⁵⁰ Multiple imputation replaces missing values with estimates based on the observed data. The correct and appropriate use of multiple imputation techniques is expected to improve the validity of clinical findings.

7.4.2 Significance of the findings

Cardiovascular disease is predicted to be accountable for a third of deaths globally.¹⁷² However, in the ERICA cohort only very few cardiac deaths were reported with most deaths related to pulmonary disease. This might be the result of biased death certificates, potentially leading to misclassification and underreporting of cardiac death.¹³⁸ Since the nineties, death rates for circulatory disease, primarily due to ischaemic heart disease, and cancer have both declined largely.²⁰⁹ Regardless, despite the recommendations of measuring arterial stiffness in clinical practice¹⁶⁴ we found no evidence in the ERICA cohort that would support screening for arterial stiffness in COPD. In addition, most missing values were present for measures of arterial stiffness, likely because producing high quality data is difficult and time consuming. Instead, our data supports the inclusion of musculoskeletal measures in predicting CV events in COPD. Both the 6MW test and 4MGS statistically improved the discriminative ability, with the 4MGS having more potential when considering clinical practicalities. It is faster and easier to complete than the 6MW test and requires only a stopwatch and a short flat walking surface. Moreover, despite the presence of CV disease, cardiac death is not common in patients with COPD. This may reflect a downward trend in fatal CV disease incidence/ improved CV survival, or an increased prevalence of death from respiratory causes.

7.5 Conclusions

We show that age, diabetes and taking drugs to treat CV disease are predictors of CV disease in a COPD population but measures of arterial stiffness and CIMT do not provide any additional value to predicting CV disease. In addition, alternative measures thought to better capture systemic problems, in particular the 6MW distance and the 4MGS test were significantly associated with CV events, and may improve the predictive ability above and beyond Framingham risk factors.

B General Discussion

Summary of the key findings

The overall aim of this doctoral research was to identify and evaluate the relationships between existing and novel biomarkers, and questionnaire data and electronic health record data, and determine if and how these biomarkers can predict common clinical outcomes (i.e. acute exacerbation of chronic obstructive pulmonary disease (COPD), hospitalisation, and mortality) within a COPD population.

Some of the key scientific questions in COPD at present relate to the evaluation of the usefulness of novel biomarkers such as cardiovascular (CV) and musculoskeletal measures in predicting common clinical outcomes. The six-minute walk (6MW) distance is by far the most studied biomarker in COPD. Before this research, evidence about the usefulness of alternative measures four-metre gait speed (4MGS), short physical performance battery (SPPB), quadriceps maximum voluntary contraction (QMVC), and sniff nasal inspiratory pressure (SNIP) in predicting clinical outcomes in COPD was limited. Similarly, there was little known about the associations of objective CV measures augmentation index (AIx), pulse wave velocity (PWV) and carotid intima-media thickness (CIMT), and clinical outcomes in COPD. This research aimed to fill this gap and contribute to the unmet need of evaluating extra-pulmonary manifestations in COPD.

Findings of this research indicate that regardless of the clinical outcome, the 6MW test is the superior test compared to any of the alternative measures in terms of discriminative ability. In the systematic review and meta-analysis (Chapter 2), alongside inflammatory marker Creactive protein, 6MW distance was also the only marker associated with mortality, exacerbation and hospitalisation. Nevertheless, analysis in Chapter 3 indicated that most of the missing data following CV measures were related to the 6MW test. Though, there are alternative measures that could potentially replace the 6MW test in predicting clinical outcomes in COPD. Analysis in Chapter 4 showed that the SPPB and its 4MGS and balance components, and the SNIP have potential to replace the 6MW component in the BODE (Body mass index, airflow Obstruction, Dyspnoea and Exercise) Index when predicting mortality without significant loss in discriminative ability. In addition to predicting mortality, analysis in Chapter 6 showed the SPPB to also have potential in predicting acute exacerbations of COPD-related hospital admission and length of stay. The QMVC, however, the exception of musculoskeletal measures, was found not to perform that well in predicting clinical outcomes in COPD. Despite the superior performance of the 6MW in predicting outcomes in COPD, it is encouraging that these alternative measures have the potential of replacing the 6MW in predicting clinical outcomes in COPD.

Moreover, analysis of the <u>Evaluating the Role of Inflammation in Chronic Airways disease</u> (ERICA) and UK Biobank cohorts in **Chapter 5** showed that despite the believe cardiac death is common in COPD, the primary cause of death is related to cancer and pulmonary disease. This may also explain findings in **Chapter 7**, where CV measures of interest were not predictive for clinical outcomes. Then again, alternative measures 4MGS and especially the 6MW test improved the predictive ability of a Framingham approach when predicting CV disease in COPD.

8.1 Strengths and limitations

The ERICA cohort is a well-phenotyped cohort. Despite ERICA being an observational cohort study, making it difficult to prove causality, the study was prospective by design which in turn reduces the likelihood of reversed causality and allowed to calculate risk estimates. Missing data is common in clinical observational studies as a result of e.g. failed recordings or measurement errors, study participants skipping visits, or individuals being lost to follow-up. Despite clear study protocols, there were missing data, in particular for CV measures and 6MW with evidence that some data were not missing at random. With sensitivity analysis we aimed to address this, comparing complete-case with imputed data but the presence of missing data was likely related to the difficulty of generating high quality data of these measures, and the physical intensity required to perform the 6MW test. Although there were missing data for baseline variables and follow-up questionnaire data, the greatest strength of this research is the linkage with electronic health record (EHR) data that indicate any hospital admission or death report for each study participant for the full study duration. Only fifteen individuals (2%) of all those recruited could not be included in the analysis because they were not followed-up. A comparison of self-reported CV events with EHR data showed almost perfect agreement (>80%) after the first year of followup. In addition, the use of EHR data allowed evaluation of the association between multiple biomarkers with multiple outcomes. Electronic health record data are better in capturing the heterogeneity of COPD than cohort studies relying on questionnaire data only. On the other hand, a large retrospective observational study evaluating the use of EHR data in predicting outcomes emphasised potential biases in using EHR data affecting the ability of predicting clinical outcomes.²

The ERICA study was conducted in multiple centres throughout the UK, increasing the diversity of study participants and facilitating the generalisation of findings. Baseline data differed though amongst the recruitment centres. The centre in London, for example, had slightly healthier individuals, whereas individuals from Cardiff had more severe disease. This was addressed by stratification of recruitment centre. Also, most individuals in the ERICA cohort were diagnosed with mild to moderate disease, making it difficult to generalise findings to those in early stage or the very advanced disease. There were no socio-economic details captured in the ERICA cohort, therefore analyses were not adjusted for this. Socio-economic status may affect the incidence rates of AECOPD and mortality.

The overall sample size of the ERICA study was relatively small, reducing statistical power and limiting the making of robust conclusions. The ERICA study was originally designed and powered on the basis of a tertile analysis of variables PWV and QMVC, based on an estimated sample size of 800 individuals with COPD.¹⁸⁴ However, this sample size is not sufficient when developing or evaluating multivariable prognostic models and may have resulted in failing to capture the significance of associations of specific biomarkers. In order to produce robust findings that are measurable and comparable, the sample size should preferably have been estimated based on the D or C-statistic.¹⁴⁰ In developing the modified BODE Indices based on alternative musculoskeletal measures we used multiple imputation to maximise the sample size, and used cross validation with replication to prevent model overfitting and to avoid relying on the availability of another independent dataset, but in essence findings rather generate new hypothesis and do require replication in larger and non-UK cohorts.

I have attempted to obtain access to alternative datasets including the UB Biobank, CPRD and US-based Million Veterans Program (MVP). Financial and time restrictions prevented obtaining access to at least CPRD and MVP data. To some extent we have been able to validate some of the findings in the UK Biobank. Using data from the UK Biobank we have tried to replicate findings related to CV disease incidence in COPD, in particular cardiac death. Both the ERICA and UK Biobank cohorts are likely a better representation on the UK than the TORCH trial, which was a highly selective population. We could not validate findings related to musculoskeletal weakness, since these biomarkers were not captured by the UK Biobank. For only a limited number of individuals CIMT and PWV were recorded. To identify CV disease, events were captured using ICD-10 coding based on the Emerging Risk Factors Collaboration. However, there was absence of a validated algorithm. Using a different set of codes would likely have resulted in a different number of individuals with defined CV disease. Despite these weaknesses, this research has many strengths in addition to having unique features, and serves as a great foundation for further analysis.

8.2 Public health implications

The hypothesis was that several new predictors would be useful in predicting clinical outcomes in COPD. Of all measures evaluated, age and the 6MW test were most predictive of the outcomes but findings in the ERICA cohort indicate several significant associations between musculoskeletal measures and common clinical outcomes in COPD. These novel biomarkers may have potential for inclusion in risk prediction in primary care settings, such as the BODE Index, aimed at identifying high-risk individuals in an earlier stage of disease when timely intervention is still possible. The BODE Index was introduced in 2004 but it has failed to be widely adopted clinically, likely due to space and time constraints relating to the 6MW. These alternative musculoskeletal measures require only low commitment allowing for routine measurement and thus may improve the uptake of risk prediction indices in clinical practice. For example, the chair stand component of the SPPB in particular could be useful as a standalone test in time-limited settings such as primary care. More importantly, no other study provides data suggesting that in patients with stable COPD, SPPB or the chair stand are associated with hospitalised AECOPD incidence as well as related length of stay, and this information further adds support for SPPB being used as a drug development tool and endpoint for clinical trials addressing AECOPD, especially since the European Medicines Agency (EMA) favours the SPPB as the measure of choice in the assessment of frailty.

Findings also indicate that the assessment of physical capacity and its improvement should form a part of routine care for COPD in order to, for example, reduce acute exacerbation of COPD (AECOPD) risk. We demonstrated that simple and amenable to routine care exercise capacity test, SPPB or its components like chair stand have similar associations with a higher risk of AECOPD requiring hospital admission as the 6MW test. These specific musculoskeletal markers are modifiable traits, in particular chair stand and balance are modifiable measures, making them ideal for training and testing purposes, and could be incorporated in physical rehabilitation programs, in addition for usage in predicting clinical outcomes. Not only is effective treatment lacking, prevention of these clinical outcomes is much more efficient and has a lower cost associated for healthcare systems. The SPPB, and in particular its chair stand component, are usable in both primary and secondary care, for evaluating risk of mortality, and hospital admission and stay in COPD. The SPPB can aid in decision making and prioritising healthcare resources. In addition, most notably pulmonary rehabilitation can increase physical capacity.²⁶³ Although the available data are mixed, some reports suggest that novel strategies can reduce hospital admission rates by early application of telemedicine techniques. However, these interventions have costs and thus in terms of prioritising patients who will derive most benefit it is suggested that SPPB is a useful too.

These exercise capacity traits can also easily be combined with wearables and other electronic devices. Technological advancement has allowed for capturing a wealth of information at increased accuracy through, for example, monitoring physical activity. Evidence shows that even simple pedometers can improve physical activity,¹⁷⁶ and smartphone-based physical activity is well received by both patients and providers.¹⁶⁰. In 2013, EDGE a mobile self-managing COPD platform was introduced aimed at monitoring symptoms including oxygen levels and heart rate to recognise and start treatment of exacerbations early.⁹⁰ Medopad, another recent development, allows in addition to recording symptoms and disease related questions, individuals to perform a standardised 6MW test. These and other wearables and devices could in turn be linked to EHR data and primary care data to feed data allowing to monitor disease progression, and warn patients and health care providers timely when intervention is needed.⁸⁴

To facilitate the adoption of newly developed risk models, including the BODE Index based on the SPPB, interactive platforms such as Shiny – an R package for building interactive web applications – could prove useful to clinicians and promote uptake of the Index. When communicating the clinical utility of risk models, decision curve analysis would an appropriate method, which would in turn also facilitate the adoption of risk prediction models in clinical practice.²⁷¹

If fatal- and non-fatal major CV events in COPD are less common, reflected through a downward trend in CV disease incidence/ improved CV survival and an increased prevalence of death from other causes especially respiratory and cancer, it is important to update clinical guidelines. Considering the limited resources available and increasing healthcare expenditure it is important to avoid unnecessary diagnostic testing, for example, measuring arterial stiffness in COPD when they are not predictive of clinical outcomes.

8.3 Future research

Future investigations could focus on evaluating and validating the predictive ability of biomarkers in larger studies with longer follow-up times. Emphasis should be placed on ensuring biomarkers are generalisable (i.e. more diversity in ethnicity and comorbidities) and practical for clinical use. Most studies on COPD are conducted in the developed world, particularly in Europe where clinical guidelines are already in place with good diagnostic facilities. Many studies have too small sample sizes and/or too short follow-up periods, are cross-sectional in design resulting in over-estimation of effect sizes, or lack generalisability to a 'real world population' limiting generalisability or even preventing the estimation of the predictive value of a risk factor.^{47,102} Especially with the increasing interest of including genetic data in risk prediction models, large sample sizes are required. Future investigations could focus on the external validation of existing risk models or perhaps combined models, ideally tailored to the individual with potentially adding novel predictors such as genetic variants aimed at maximising patient benefit. The use of genetic data may improve prediction accuracy, and potentially identify novel genetic causes that e.g. play a role in the development of lung disease and lifestyle behaviour.¹ Recommended techniques include Mendelian randomisation (MR) analysis – a method using genetic variants to confirm causality between risk factor and outcome. Alternative techniques that may further improve prediction accuracy, and are particularly well suited for genetic data, include machine learning (ML) techniques such as random forest and neural networks.²⁸⁴ The basic principle of ML relates to data inference; using estimates from past samples to predict new data using statistical, probabilistic and optimisation tools.¹⁸² Moreover, ML allows predicting risks and outcomes for alternative populations based on minimal datasets requiring population sociodemographic characteristics only.¹⁶³ For example, these models can potentially be applied to understudied populations where the number of deaths due to COPD is the highest such as in India and Bangladesh. Studies like the Bangladesh Risk of Acute Vascular Events study (BRAVE) – a 16,000-person case-control study of CV disease – and BangladEsh Longitudinal Investigation of Emerging Vascular Events (BELIEVE) – a 100,000-person prospective cohort study in Bangladesh – could provide opportunities to study this and capture lung function measurements in addition to CV related ones. These datasets contain phenotypic and genotypic data including lung function test results and clinical outcomes.

More specifically, I propose future research directions related to assessing frailty and multiorgan tissue loss in COPD, assessing the clinical impact of risk prediction, estimating years of life lost (YLL) due to COPD, including genetic data in risk prediction, and I highlight the importance of considering the cost implications of risk prediction for the healthcare system.

8.3.0.1 Frailty and multi-organ tissue loss

Other areas of particular importance in COPD relate to frailty and predicting related events such falls and fractures using hospital admission data. In 2012, Gale *et al.* linked increased physical impairment and frailty in COPD patients.¹⁰⁰ Maddocks *et al.* assessed the prevalence of frailty in COPD and its effect on pulmonary rehabilitation completion.¹⁶⁶ Frailty was found in 25% of patients and resulted in non-completion of the program. Frailty is common in COPD, and there is increasing interest in assessing this within the COPD population.²⁴ Moreover, Lahouse and colleagues assessed frailty in COPD and the risk of mortality, and found increased

frailty with severe airflow limitation, shortness of breath, and frequent exacerbations.¹⁵³ As a result of osteoporosis – one of the clinical features of frailty – fractures are common in COPD patients and is characterised by decreased skeletal resistance.^{37,110} The use of steroids in COPD is thought to contribute to these fractures but this has not been studied well. In addition, systemic inflammation is believed to prolong fracture healing time and increase complication rates.⁵⁰

Frailty, also known as age-related physical disability (ICD-10 R54), can be defined using modified Fried criteria.¹⁴⁵ Although there is overlap, the difference between sarcopenia and frailty is that sarcopenia refers to muscle mass atrophy related to ageing, and frailty relates to a geriatric syndrome linked with a higher risk of falls, fractures and hospitalisation.⁴⁴ According to the European working group on sarcopenia in older people, sarcopenia (i.e. ICD-10 M62.84) is defined as low muscle mass and weakness measured by the fat free mass index (FFMI) and 4MGS with cut-off points of FFMI $< 8.5 \text{ kg/m}^2$ for men and $< 5.75 \text{ kg/m}^2$ for woman, and < 0.8m/s respectively.⁶⁰ Modified Fried criteria include (i) self-reported unintentional weight loss, (ii) muscle weakness derived through predicted quadriceps strength estimated using Seymour's equation, ²³⁷ (iii) exhaustion measured by the COPD assessment test (CAT) [item $8 \ge 3$] or St. George's respiratory questionnaire for COPD (SGRQ-C) [Q10.f], (iv) self-reported slowness of walking (<3 mph), slowness while walking measured by the SGRQ-C [Q12.c] or a score of <4in 4MGS, and (v) low levels of activity measured by CAT [Q5] or SGRQ-C [Q13 or Q14]. A frailty score of 0 would be considered not frail, 1-2 pre-frail, and >2 as being frail. Preliminary findings in the ERICA and evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE) cohorts show disease progression to be associated with increasing tissue loss, both pulmonary and extra-pulmonary.⁴¹ Future research could examine the association of musculoskeletal markers and clinical outcomes in those with a so-called multi-organ loss of tissue COPD phenotype.

8.3.0.2 Net reclassification index

No significant loss in discriminative ability does not necessarily mean there is no meaningful difference. The C-index is a well-known model performance measure but merely an indicator of discriminative ability. Despite its popularity it has been argued that this metric has limitations such as limited clinical relevance, and when changes are marginal its interpretation becomes difficult. This was indeed the case when comparing the C-indices of the different models, based on the 6MW, SPPB or other measures. The net reclassification improvement (NRI) is a quantitative method – focussing on clinical outcomes rather than model performance – to estimate the number of individuals that are correctly or incorrectly reclassified. For example, when comparing the BODE based on 6MW with BODE based on SPPB the C-index may have no significant difference but the NRI may actually indicate the number of individuals that are being reclassified into a lower or higher BODE Index quartile. Despite NRI is popular and may indicate the potential public health implications, simultaneously it has been suggested to provide misleading results with high NRI statistics actually being a result of poorly fitted models.²¹⁷ In addition, clear risk thresholds are required that do currently not exist for the BODE Index, and with >3risk categories, which is the case with the BODE Index, NRI may therefore potentially not be suitable.¹⁴⁶

Alternatively, having a risk index with good discriminative ability and/or high NRI that is unlikely to be widely adopted in clinical practice, it might be worthwhile to make a trade-off between model performance and clinical practicality. Using indirect methods such as discrete choice experiments to elicit preferences of various stakeholders (e.g. clinicians and statisticians) may provide useful insights in how much discriminative ability stakeholders are willing to trade for improved clinical uptake (i.e. benefit-risk assessment).²⁶⁹

8.3.0.3 Years of life lost

Beyond standardised mortality rates, estimating YLL quantifies reduced life expectancy due to disease. It is a measure of premature mortality and considers the number of years an individual would have lived without the disease. Years of life lost takes the age of death into account, providing bigger weights at younger age. Years of life lost can be estimated by sex and based on the number of deaths at different age categories and multiplied by the remaining years of life expected. It enables healthcare planners to set priorities in addressing disease interventions at a population level. Proposed analysis includes estimating sex-specific potential YLL due to premature all-cause and cause-specific mortality caused by COPD in both the ERICA and UK Biobank cohorts.

8.3.0.4 Genetic risk prediction

Conventional diagnostics rely primarily on spirometry. However, more recently there is increasing interest in stratifying individuals based on their genetic make-up and determine their risk for future events. Single gene testing provides information of a single gene function, whereas whole-genome sequencing (WGS) provides information about the full genetic makeup of the individual organism at a single point in time. It is believed that WGS will benefit patients through identifying individuals at high risk for common clinical outcomes such as early mortality and CV events including heart attacks and stroke. Genetic risk scores, where genomic data is integrated with conventional risk factors are increasingly being developed, as evidence indicates the inclusion of genetic data in risk prediction to outperform models based on traditional predictors only.¹⁴⁷

Findings in the ERICA cohort indicated only very few cardiac deaths. Evidence indicates the possible involvement of a genetic component in COPD. Those affected could potentially benefit from individual risk profiling based on genetic or genomic sequencing – collectively referred to as next generation sequencing (NGS).¹⁹⁴ A possible causal factor could be a genetic determinant such as MMP-12 – a gene known to play a role in lung damage and associated with COPD onset.¹³⁰ Mendelian randomisation analysis suggest that increased levels of MMP-12 may protect patients from coronary heart disease but increases COPD susceptibility.²⁵⁷ MMP-12 and other genetic activity can be measured using the appropriate gene arrays. Future research could include

to develop and validate a prediction model using, for example, ML techniques including genetic and other risk factors identified through MR analysis, in order to stratify COPD patients and identify those who are at high risk for clinical outcomes in an early stage of disease. Proposed analysis include to determine which stratifiers could identify those who are likely to have clinical outcomes, determine the association between selected biomarkers and their relationship with clinical outcomes, and if genetic markers such as MMP-12 protects patients from coronary heart disease but increase COPD susceptibility. Other analysis could include developing, validating and comparing the predictive ability of genetic and non-genetic risk models, assess the predictive ability of these models comparing population data of different cohorts, ideally from different countries, assess the feasibility of applying the risk models to understudied populations using ML techniques, and estimate the effectiveness of the different models.

8.3.0.5 Healthcare system

The number of people who could be saved, for example, if AECOPD could be diagnosed earlier depends highly on the ability of a healthcare system to identify high-risk individuals in an early stage of disease. Population-based screening programs allow screening at a single point in time or sequentially – depending on set risk thresholds an individual might require additional testing (e.g. genetic sequencing following spirometry) or may support improving lifestyle behaviour.²⁸⁷ The impact of risk prediction, however, is often limited. Risk models frequently fail widespread clinical adoption due to their impracticalities, methodological shortcomings or associated costs.^{67,113,267} In addition, providing individuals with personalised risk information has so far not shown to improve lifestyle or screening adherence.²⁶⁴ With healthcare becoming increasingly complex and challenging, there is a need for a multidisciplinary approach. Epidemiology and health economics each consider different areas of evidence and can enhance the analysis, providing healthcare policy makers with more robust and comprehensive data. Whilst healthcare expenditure continues to rise, high emphasis is placed on the economic evaluation of healthcare innovation. Despite clear guidelines on evaluating clinical and cost effectiveness exist,¹⁹⁹ a majority of published studies lack any health economic assessment.²⁶⁸ For NGS this is partly attributed to the lack of clinical trials.²⁸⁸ There is no current evidence on the additional health benefits produced by the extra information from NGS, or whether the analysis plus clinical action based on additional findings provides value for money to the healthcare system. Policy makers are unclear about the clinical utility of NGS and are concerned it could be an expensive addition to existing diagnostics.¹¹⁷ In order to estimate the full impact of risk prediction, the clinical applicability and cost implications of genomic risk prediction needs to be evaluated.

Future research could assess the impact of genetic and genomic data, and the use of EHR data in predicting clinical outcomes whilst considering the clinical practicalities and cost implications. The objectives could be to develop a decision analytical framework for the economic evaluation (i.e. cost-effectiveness and budget impact analysis), calculate the costs of using conventional and genetic-based risk prediction, and estimate the incremental cost and effects of a genetic-based model to determine the clinical utility and health economic impact of risk prediction in COPD, and provide health policy recommendations for healthcare improvement.

Appendix A: research items authored during the PhD

Publications

- Schwarze et al. (2019). "The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom." In: Genetics in Medicine. DOI: 10.1038/s41436-019-0618-7
- Fermont *et al.* (2019). "Biomarkers and clinical outcomes in COPD a systematic review and meta-analysis." In: *Thorax.* DOI: 10.1136/thoraxjnl-2018-211855.
- Fermont *et al.* (2017). "The EQ-5D-5L is a valid approach to measure health related quality of life in patients undergoing bariatric surgery." In: *PLOS ONE* 12.12, pp. 1-13. DOI: 10.1371/journal.pone.0189190.
- Fermont *et al.* (2017). "Clinical applicability and cost of a 46-gene panel for genomic analysis of solid tumours: Retrospective validation and prospective audit in the UK National Health Service." In: *PLOS Medicine* 14.2, pp. 1-26. DOI: 1key71/journal.pmed.1002230.

Conference proceedings

- Fermont *et al.* (2018). "OA2141 The value of short physical performance battery as an alternative component of the BODE Index in predicting death in COPD in the ERICA cohort." In Proceedings of the European Respiratory Society International Congress: vol. 52. Suppl 62. European Respiratory Journal. DOI: 10.1183/13993003.congress-2018.OA214.
- Fermont *et al.* (2017). "P78 Cardiovascular and musculoskeletal phenotypes and the clinical outcomes in COPD: a systematic review and meta-analysis." In Proceedings of

the British Thoracic Society Winter Meeting: vol. 72. Suppl 3. Thorax, A125-A126. DOI: 10.1136/thoraxjnl-2017-210983.220.

Fermont *et al.* (2017). "P96 Death related to cardiovascular disease in chronic obstructive pulmonary disease." In Proceedings of the British Thoracic Society Winter Meeting: vol. 72. Suppl 3. Thorax, A135-A135. DOI: 10.1136/thoraxjnl-2017-210983.238.

Protocols

- Fermont *et al.* (2017). "Preferences of patients and clinicians for genomic diagnostic technologies in healthcare: a systematic review protocol." In: *PROSPERO*. CRD: 42017062294.
- Fermont *et al.* (2016). "Cardiovascular and musculoskeletal phenotypes and the clinical outcomes in chronic obstructive pulmonary disease: a systematic review and meta-analysis protocol." In: *PROSPERO*. CRD: 42016052075.

Submitted

- Fermont *et al.* (2019). "Can simpler measures substitute for the 6-minute walk component of the BODE Index?"
- Fermont *et al.* (2019). "Risk assessment for hospital admissions in patients with COPD; multi-centre prospective study in the UK."

In preparation

- Fermont *et al.* (2019). "Predicting fatal and non-fatal cardiovascular disease in COPD; do arterial stiffness or carotid intima-media thickness improve on a Framingham approach?"
- Fermont et al. (2019). "Causes of death in COPD using the UK Biobank Resource."
- Fermont *et al.* (2019). "The cost-effectiveness and budget impact of tumour profiling in lung cancer."

- Fermont et al. (2019). "Providers' hidden cost of preauthorization: a cost model."
- Fermont *et al.* (2019). "Preferences of patients and clinicians for genomic diagnostic technologies in healthcare: A systematic review."

Appendix B: data completion form meta-analysis

UNIVERSITY OF CAMBRIDGE Department of Medicine TITLE: STUDY ID:

Longitudinal outcomes of selected cardiovascular and musculoskeletal phenotypes in chronic obstructive pulmonary disease (COPD)

DATA COMPLETION FORM

META-ANALYSIS / META-REGRESSION

GUIDANCE

- This questionnaire is designed to collect data on selected cardiovascular and musculoskeletal markers in clinically stable patients diagnosed with COPD measured at baseline for the outcome measures mortality, exacerbation and hospitalisation.

- For each outcome measure we are collecting the sample size, mean and standard deviation (SD), by those with and those without the event, for the variables 6MWD (sixminute walk distance), WBC (white blood cell count), log-CRP (C-reactive protein), IL-6 (interleukin-6), IL-8 (interleukin-8), fibrinogen, TNF-alpha, leukocytes, resting heart rate, QMVC (quadriceps maximal voluntary contraction) and SNIP (sniff nasal inspiratory pressure). - Those with the event are defined as those with any number of exacerbations or hospitalisation. Those without the event are defined as those with no exacerbation or hospitalisation during the study period. - In addition, for mortality we are collecting the unadjusted and adjusted (i.e. age, sex, BMI and smoking status) hazard ratio with 95% confidence interval (95% CI) for each variable. We will ask for which confounders you have been able to adjust for. - If data were obtained from your publication it will already be completed but please check the values and correct if necessary. If you have not collected a particular outcome or variable please leave it blank.

- Please provide estimates in the indicated units. Also, note the preferred magnitude of effect.

- After completing please return to: jmf88@medschl.cam.ac.uk

Longitudinal outcomes of selected cardiovascular and musculoskeletal phenotypes in chronic obstructive pulmonary disease (COPD)

_	
-	
-	
-	
_	
_	
-	
_	
_	
-	
	_
_	
_	
	_
_	
_	
_	
	_

DESIGN

Indicate the study type

Cohort

Case-control

Other, (e.g. nested case-control or RCT): please describe study design

LENGTH OF FOLLOW-UP

Indicate the minimum length of follow-up in months

Minimum: 36 months

0

Longitudinal outcomes of selected cardiovascular and musculoskeletal phenotypes in chronic obstructive pulmonary disease (COPD)

OUTCOM	E: MORT	ALITY										
Marker		Survivors			Non-survi	vors		Units used for effect measure	Unadjusted Ratio	Hazard	Adjusted Ha	zard Ratio
	Units	Sample size	Mean	SD	Sample size	Mean	SD		Estimate	95% CI	Estimate	95% CI
6MWD	meter	u	mean	SD	п	mean	SD	per 50 meter	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
WBC	mc/L	п	mean	SD	n	mean	SD	mc/L	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
log-CRP	mg/L	п	mean	SD	u	mean	SD	mg/L	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
IL-6	pg/ml	п	mean	SD	n	mean	SD	pg/ml	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
IL-8	pg/ml	n	mean	SD	n	mean	SD	pg/ml	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
Fibrinogen	g/dL	u	mean	SD	п	mean	SD	g/dL	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
TNF-alpha	pg/ml	n	mean	SD	n	mean	SD	pg/ml	Unadjust ed HR	Lower – upper	Adjusted HR	Lower – upper
Leukocytes	x 10 ⁹	n	mean	SD	п	mean	SD	x 10 ⁹	Unadjust	Lower –	Adjusted	Lower –

ŝ

Longitudinal outcomes of selected cardiovascular and musculoskeletal phenotypes in chronic obstructive pulmonary disease (COPD)

	cells/L							cells/L	ed HK	upper	HK	upper	
Resting	mud	2	исен	CDS	2	ube tu	CD S	nar 10 hnm	Unadjust	Lower –	Adjusted	Lower –	
heart rate	mdo	=	шсан	70	Ξ	IIICall	70		ed HR	upper	HR	upper	
UNNO	~1	2	100 M	CD	2	1400 M	CD S	nor 5 lea	Unadjust	Lower -	Adjusted	Lower -	
	λΩ Ω	=	шсан	10	Ξ	IIICAII	ΠC	ga c rod	ed HR	upper	HR	upper	
CNID	OTHWO	2	NUCH	CD	ç	NOUN	CUS	per 10	Unadjust	Lower -	Adjusted	Lower -	
TINIC	CIIII12O	=	шсан	10	=	IIICall	70	cmH_2O	ed HR	upper	HR	upper	
													_

ADJUSTMENT VARIABLES

Select the variables you have adjusted for in the estimation of adjusted hazard ratios

□Age □Sex □BMI □Smoking status

4

Longitudinal outcomes of selected cardiovascular and musculoskeletal phenotypes in chronic obstructive pulmonary disease (COPD)

XACERBATION	Exacerbat	Units Samp	meter	mc/L I	mg/L I	pg/ml r	pg/ml	g/dL r	pg/ml I	x 10 ⁹ cells/L	ppm mqd	kg	cmH ₂ O
	ors	le size	c	_	_	-	U		_	U.	U		υ
		Mean	mean	mean	mean	mean	mean	mean	mean	mean	mean	mean	mean
		SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
	Non-exacerbators	Sample size	u	u	п	u	u	u	u	u	u	n	n
		Mean	mean	mean	mean	mean	mean	mean	mean	mean	mean	mean	mean
		SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD

S
CAMBRIDGE Department of Medicine

Longitudinal outcomes of selected cardiovascular and musculoskeletal phenotypes in chronic obstructive pulmonary disease (COPD)

IOSPITALISATION Hospitalisation	Non-hospitalisation	SD Sample size Mean	SD n mean	SD n mean	SD n mean	SD n mean							
	lisation	nple size Mean	n mean	n mean	n mean	n mean	n mean	n mean	n mean	n mean	n mean	n mean	n mean
	Hospita	Units Sam	meter	mc/L	mg/L	pg/ml	pg/ml	g/dL	pg/ml	x 10 ⁹ cells/L	bpm	kg	cmH ₂ O
1E: H											rt rate		

This is the end of the data completion form. Thank you for your input! Please return the form to: jmf88@medschl.cam.ac.uk

9

Appendix C: ERICA protocol

ORIGINAL RESEARCH

Evaluating the Role of Inflammation in Chronic Airways Disease: The ERICA Study

Divya Mohan,¹ Nichola S. Gale,² Carmel M. McEniery,³ Charlotte E. Bolton⁴, John R. Cockcroft,² William MacNee,⁵ Jonathan Fuld,³ David A. Lomas,⁶ Peter M.A. Calverley,⁷ Dennis J. Shale,² Bruce E. Miller,⁸ Ian B. Wilkinson,³ Ruth Tal-Singer,⁸ and Michael I. Polkey,¹ on behalf of the ERICA Consortium

COPD Downloaded from informathealthcare.com by Imperial College London on 09/22/14 For personal use only.

1

- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, UK
- 2 Department of Cardiology, Wales Heart Research Institute, Cardiff University, Cardiff, UK
- 3 Clinical Pharmacology Unit, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- 4 Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
- 5 MRC Centre for Inflammation, University of Edinburgh, Edinburgh, UK
- 6 Faculty of Medical Sciences, University College London, London, UK
- 7 School of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- 8 Respiratory Therapy Area Unit, GlaxoSmithKline, King of Prussia, PA, USA

Keywords: inflammation, muscle, Cardiovascular,

Correspondence to: Dr Divya Mohan, Muscle Laboratory, Level 1 Fulham wing, Royal Brompton Hospital, London, SW3 6NP, United Kingdom, phone:

0207 351 8029. email: d.mohan@rbht.nhs.uk

extrapulmonary, fibrinogen, arterial stiffness

Abstract

Extrapulmonary manifestations are recognized to be of increasing clinical importance in Chronic Obstructive Pulmonary disease. To investigate cardiovascular and skeletal muscle manifestations of COPD, we developed a unique UK consortium funded by the Technology Strategy Board and Medical Research Council comprising industry in partnership with 5 academic centres. ERICA (Evaluating the Role of Inflammation in Chronic Airways disease) is a prospective, longitudinal, observational study investigating the prevalence and significance of cardiovascular and skeletal muscle manifestations of COPD in 800 subjects. Six monthly follow up will assess the predictive value of plasma fibrinogen, cardiovascular abnormalities and skeletal muscle weakness for death or hospitalization.

informa

healthcare

As ERICA is a multicentre study, to ensure data quality we sought to minimise systematic observer error due to variations in investigator skill, or adherence to operating procedures, by staff training followed by assessment of inter- and intra-observer reliability of the four key measurements used in the study: pulse wave velocity (PWV), carotid intima media thickness (CIMT), quadriceps maximal voluntary contraction force (QMVC) and 6-minute walk distance (6MWT). This report describes the objectives and methods of the ERICA trial, as well as the inter- and intra-observer reliability of these measurements.

Introduction

Although COPD is primarily a lung disease, it is now widely recognised that COPD is a heterogeneous condition with a range of extra-pulmonary manifestations including cachexia (1), peripheral muscle dysfunction (2, 3), cardiovascular disease (4, 5) and osteoporosis (5, 6) that have an effect on the severity of the condition.

Two of these extrapulmonary manifestations, namely cardiovascular and skeletal muscle dysfunction, represent a key unmet need in patients with COPD that require the development of new therapies. Cardiovascular disease is the second-leading cause of death in patients with COPD (7), and even subjects with mild spirometric abnormalities have an increased risk of admission or death from cardiovascular causes (8). Similarly skeletal muscle weakness (2, 3) and biopsy abnormalities (9) exist even in patients with mild airflow obstruction and are associated with an increased risk of death (10).

A combination of systemic and local factors such as physical inactivity, oxidative stress, cachexia, exposure to cigarette smoke and inflammation are thought

The ERICA Study 553

to contribute towards the skeletal muscle dysfunction seen in COPD (11). Since pulmonary rehabilitation is a highly effective therapy in COPD that increases quadriceps strength (12), targeting this abnormality is likely to translate into patient benefit. Objectively measured physical activity relates to muscle mass (3), especially in mild disease, and in a survival analysis by Waschki and co-workers (13), the combination of physical activity measurement and assessment of vascular status predicted mortality better than either alone, suggesting that the cardiovascular and skeletal muscle phenotypes are not identical.

Persistent systemic inflammation has been linked with poorer outcomes in COPD and has been identified as a novel COPD phenotype (14). Recent data suggest that fibrinogen is a promising, stable biomarker of systemic inflammation, and that elevated fibrinogen levels relate to frequent exacerbations and mortality in COPD (15-17). Previous studies have suggested that almost a third of COPD patients suffer from 2 or more exacerbations per year, with a fifth of COPD patients requiring hospitalizations over the course of 1 year (18). For these reasons, the COPD Biomarkers Qualification Consortium (CBQC) has submitted fibrinogen for consideration for qualification as a drug development tool by the Food and Drug Administration (FDA). CBQC was established in 2010 with the aim of collating anonymised data from clinical and observational trials (Figure 1).

Trials such as ECLIPSE (19), GSK-supported investigator-sponsored eclipse extension study NTR3221, ARCADE (20), PROactive (Clinicaltrials.gov number NCT01388218) and MRC/ABPI WP4 (Clinicaltrials.gov number NCT01620645) will contribute data towards ERICA, thus allowing a sufficiently large dataset to conclusively establish the value of biomarkers or drug development tools (DDTs) as stratification tools (21). Nevertheless there remains a paucity of data to assess whether fibrinogen will also be a satisfactory biomarker for extrapulmonary manifestations of COPD.

Plasma fibrinogen independently predicts cardiovascular risk in the general, healthy population (22), however, the value of fibrinogen in the prediction of the cardiovascular and skeletal muscle manifestations of COPD, and in the interplay between these phenotypes, requires further evaluation. For this reason we conceived the ERICA (Evaluating the Role of Inflammation in Chronic Airways disease) study. The study has three specific aims. First, to determine how effectively plasma fibrinogen predicts the cardiovascular and/or skeletal muscle manifestations of COPD. Second, to determine how fibrinogen and other specific measures of cardiovascular and muscle function predict longerterm outcomes including death, disability and hospital admission, and third, to determine the extent to which subsets of COPD patients with cardiovascular or muscle manifestations overlap. For this purpose, a cardiovascular manifestation is defined as an abnormally raised aortic pulse wave velocity and a skeletal muscle manifestation is defined as quadriceps muscle weakness.

The current report describes the objectives and methods of the ERICA trial, and the standardisation procedures undertaken with the objective to improve inter- and intra-observer reliability of measurements used in the study.

Methods

Subjects

A maximum of 800 COPD patients are to be recruited over a period of 2 years. The study is powered on the basis of a tertile analysis of the two key cardiovascular and muscular biomarkers, systemic arterial stiffness as measured by aortic pulse wave velocity (PWV) and skeletal muscle function, measured as quadriceps maximal voluntary contraction (QMVC). Assuming an average PWV of 10 (SD 1.0) m/s and a minimal clinically relevant difference of 0.4 m/s, 230 patients per tertile will provide 90%

Figure 1. Clinical and Observational studies contributing data towards the COPD Biomarker Qualification Consortium (CBQC) and their sources of funding.

www.copdjournal.com

....

COPD JOURNAL OF CHRONIC OBSTRUCTIVE

Table 1. Inclusion and exclusion criteria for study participants	
nclusion	Exclusion
Clinical diagnosis of COPD	Inability to provide written, informed consent
Baseline post-bronchodilator Forced expiratory volume in the first second (FEV,) of 80% or ess of their predicted value, a baseline FEV,/forced vital capacity (FVC) ratio of < 0.7	A known diagnosis of $\alpha 1\mbox{-}antitrypsin$ deficiency, known neurological or skeletal muscle disease
Age > 40 years	Pregnancy
A smoking history of at least 10 pack years	Ongoing participation in a trial of an experimental drug
Clinical stability for at least 4 weeks, without any hospitalisations or exacerbations equiring treatment at the time of study measurements	

power at p < 0.01 to detect this difference between the top and bottom quartiles. For QMVC, assuming an average QMVC of 32 (SD 8) kg, 220 patients per tertile will provide 90% power at a significance of p < 0.01 in order to detect the minimum clinical difference of 3 kg between the top and bottom tertiles. Allowing for a 10% dropout rate and incomplete datasets, approximately 800 patients were calculated to be required. Recruitment is on target to finish in autumn 2013. Table 1 describes the inclusion and exclusion criteria for subject participation in the study. All participants provided written, informed consent.

Study design

ERICA is an on-going longitudinal, observational, prospective study being conducted at 5 centres in the UK, which is presently funded for 2 years by the UK Technology Strategy Board/MRC. As the study was not a trial, the study is registered with the UK Clinical Research Network Study Portfolio with UKCRN ID 11101 (http://public.ukcrn.org.uk/Search/StudyDetail. aspx?StudyID=11101); the UKCRN is a publically searchable database.

Following baseline visits to perform study measurements, participants are followed up at 6 monthly intervals for 2 years with telephone or postal questionnaires to assess the frequency of COPD exacerbations. For this study, we have defined exacerbations as self-reported increase in COPD symptoms that required treatment with antibiotics and/or steroids and severe exacerbations as those that require hospital admission. The development of cardiac co-morbidity is assessed through new self-reported cardiac symptoms such as exertional chest pain or ankle swelling, physician diagnoses of angina, myocardial infarction, stroke or hypertension and the introduction of new concomitant cardiac medication since the last patient visit or questionnaire.

To assess the impact of COPD on the patient, we used Medical Research Council (MRC) dyspnoea scores, COPD Assessment Tool and the St George's Respiratory COPD Questionnaire, whilst physical activity is selfreported. There are no prohibited medications in the study. All subjects continued their routine prescribed medications throughout the study and the patient's physician may offer treatments (e.g. medication change, rehabilitation) in line with the patients' needs. These treatment changes are captured at the 6 monthly calls/

COPD JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE questionnaires. The study is being conducted in accordance with the Declaration of Helsinki and good clinical practice guidelines.

The research was given a favourable opinion by the Cambridge South East Research Ethics Committee and the local research and development departments at each participating site. The trial steering committee comprises physicians and scientists from five UK academic centres, two academic physicians independent of the recruiting centres and representatives from GlaxoSmithKline.

Outcome measurements

Study assessments are performed at baseline over two visits. Standardised procedures are used in all centres as defined in the study procedure manual. Measurements that are of primary interest are plasma fibrinogen, aortic PWV, carotid intima media thickness (CIMT), 6-minute walk distance (6MWT) and QMVC. Methods for these 5 procedures are described here, but all study parameters are listed in Table 2. For all study procedures a Standard Operating Procedure (an SOP) was generated to which all partners adhered. Patients will be registered for long-term health outcomes through Hospital Episode Statistics (HES), a central UK database recording all admissions to National Health Service (NHS) hospitals, and the NHS Information Centre from the Office for National Statistics (previously the Medical Research Information Service), which can report on the status of study participants and provide follow up data for longitudinal studies within the UK.

Fibrinogen

For determination of plasma fibrinogen, whole blood is collected into a vacutainer tube (sodium citrate as the anticoagulant) by venepuncture from a peripheral vein after a 4-hour fast. Plasma is prepared by centrifugation at $2000 \times g$ for 10 min. Plasma fibrinogen is measured in fresh plasma samples using an automated, modified Clauss method [HemosIL Fibrinogen-C XL, Instrumentation Laboratories(23)]. The assay method is a direct measurement of functional fibrinogen and is the method most commonly used in clinical laboratories. Daily testing on a fibrinogen calibrator was carried out at the Royal Brompton and Harefield NHS hospital laboratory and Addenbrookes hospital laboratory to assess inter-assay variability.

Copyright © 2014 Informa Healthcare USA, Inc

Assessment	Description	Existing studies contributing data from assessments towards ERICA
Post bronchodilator Spirometry: FEV ₁ and FVC	Performed within one hour of administration of patient's own bronchodilators	ARCADE, ECLIPSE extension, PROactive, Longitudinal determination of skeletal muscle dysfunction in COPD, MRC WP4 consortium
Cardiovascular Assessments		
Blood Pressure	Average of final 2 out of 3 measurements, taken after 10 minutes of rest	ARCADE, ECLIPSE extension, Longitudinal determination of skeletal muscle dysfunction in COPD, MRC WP4 consortium
12-lead Electrocardiogram (ECG)	A standard 12 lead (10 electrode) ECG recorded with the patient in a supine position and at a recording speed of 25 mm/sec	ARCADE, PROactive, MRC WP4 consortium
Arterial Stiffness	Assessments of carotid-femoral pulse wave velocity (PWV) and aortic augmentation index (Alx) via Sphygmocor device after 4 hours of fasting and 6 hours without bronchodilators.	ARCADE, Longitudinal determination of skeletal muscle dysfunction in COPD
Carotid Intima Media Thickness (CIMT)	B-mode ultrasound measurement of bilateral common carotid intima media thickness to assess subclinical atherogenesis (25)	ARCADE
Skeletal muscle assessments		
Quadriceps Maximal Volitional Contraction (QMVC)	Best effort from 6 volitional, isometric quadriceps contractions of the right leg as described by Edwards et al. (27). Predicted QMVC was calculated according to Seymour et al. (2)	PROactive, Longitudinal determination of skeletal muscle dysfunction in COPD, MRC WP4 consortium
Sniff Nasal Inspiratory Pressure (SNIP)	A non-invasive measure of inspiratory muscle strength using a hand-held MicroRPM (respiratory pressure meter). The most negative of a minimum 3 efforts will be used for data analysis	PROactive
Exercise/ Physical performance assessments		
6-minute walk test (6MWT)	Supervised walking test as per American Thoracic Society guidelines (26), but without a practice test	ARCADE, ECLIPSE extension, PROactive, MRC WP4 consortium
Short Physical Performance Battery	A composite assessment of lower extremity function comprising standing balance, 4 meter gait speed and sitting-to-standing speed (35)	MRC WP4 consortium
Anthropometrics	Height, weight, body mass index (BMI).	ARCADE, ECLIPSE extension, PROactive, Longitudinal determination of skeletal muscle dysfunction in COPD, MRC WP4 consortium
Bioimpedance and Fat-free mass	Estimated using single-frequency (50 kHz) bioelectrical impedance analysis via TANITA BC 418 MA (Tanita Corporation, Tokyo, Japan).	ARCADE, ECLIPSE extension, PROactive, Longitudinal determination of skeletal muscle dysfunction in COPD, MRC WP4 consortium
Health Outcomes		
Health status and symptom assessment	COPD specific St George's COPD respiratory questionnaire (SGRQ-C) and COPD assessment tool (CAT)	ARCADE, ECLIPSE extension, PROactive, Longitudinal determination of skeletal muscle dysfunction in COPD, MRC WP4 consortium
Breathlessness, exacerbation frequency and treatment, physical activity and smoking habit	Medical Research Council (MRC) dyspnoea score and postal questionnaire at baseline and repeated at 6 monthly intervals for 2 years	
Biomarkers		
Blood samples	Taken after 4 hours of fasting. Samples stored for plasma, serum and DNA and analysed for plasma fibrinogen, urea and electrolytes, full blood count, high sensitivity C-reactive protein, glucose, Hba1c and lipid profile.	
Urine	Spot urine sample: taken after 4 hours of fasting	

Pulse wave velocity

www.copdjournal.com

Following 10 minutes of supine rest, brachial blood pressure was measured three times, and an average of the final two readings was used for analysis. Aortic PWV is measured via the SphygmoCor device (AtCor, West Ryde, Australia), between the carotid and femoral arteries, using a piezoelectric tonometer placed over the artery and ECG gating, as previously described in detail (24). The path length is calculated by subtracting the distance between the carotid pulse and supra-sternal notch, from the femoral artery supra-sternal notch distance. Measurements are made following 4 hours of fasting, and 6 hours without bronchodilator use.

Carotid intima media thickness

Carotid intima media thickness (25) was measured via B-mode ultrasound, using a 7-12 MHz linear probe. Measurements were taken after 10 minutes of supine rest. Both

COPD JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

556 Mohan et al.

the right and left common carotid arteries are scanned at a distance of 1 cm from the carotid bulb. Images are not ECG gated, and three 10 second loops are recorded for each carotid artery. Images are then transferred in DICOM format to be analysed via Vascular Tools 5 software (Medical Imaging Application LLC, Coralville, USA).

Six-minute walk test

Six-minute walk distance is measured in accordance with the guidelines of the American Thoracic Society (26) except that a practice walk was not performed due to time constraints. Although subjects could set their own walking pace, it was emphasized that they cover as many laps as possible over a standard 30 m, level track during the 6 minutes. Subjects were permitted to use their usual medications prior to the test, and were given standardised encouragement only at the end of each minute during the walking test. Where oxygen was required during the walking test, an additional researcher carried the oxygen cylinder for the patient, but behind the patient in order not to influence the patient's pace.

Quadriceps maximal volitional contraction

QMVC force was measured using the technique of Edwards et al. (27) and expressed as a percentage of predicted values using the equations developed by Seymour and co-workers (2). Patients were verbally encouraged to make a maximal contraction by pushing out (i.e. extension) against an inextensible strap placed above the ankle. The manoeuvre is repeated six times with a minimum 20-second interval between efforts. We used the highest value of contraction which could be sustained for 1 second for analysis.

Harmonising inter-site data collection

Prior to study recruitment, all centres participated in centralised training, individual site training and standardisation visits. Amongst study measurements, QMVC, 6MWT, PWV and CIMT were identified as most prone to systematic error due to variability in equipment and expertise across sites. Intra- observer reliability measurements were therefore carried out using 10 volunteer subjects at each site. Additionally, unlike the 6MWT, QMVC measurement was novel to most sites, and requires the observer to verbally encourage as well as correct patient technique, therefore inter-observer reliability measurements were carried out on 10 volunteers at each site. Intra-class correlation coefficients were used to measure inter- and intra-user reliability. Statistical analysis was carried out using IPB SPSS v 19.

Results

Inter-assay %CV values based on a fibrinogen calibrator tested daily are 6.7% for Royal Brompton Hospital and 9.4% for Cambridge University Hospital.

Intra- and inter-observer variability are shown in Table 3. The initial intra-class correlation coefficient

COPD JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE Table 3. Intra-observer reliability for Pulse Wave Velocity (PWV), 6-minute walk test (6MWT) and quadriceps maximal volitional contraction (QMVC) and interobserver reliability measurements for QMVC in 10 volunteers as measured by final intra-class correlation coefficients

		Inter-observer reliability (n = 10)							
Site	PWV (m/s)	6MWT (m)	QMVC (kg)	CIMT (mm)	QMVC (kg)				
1	0.99	0.98	0.97	0.98	0.99				
2	1.00	0.92	0.90	0.99	0.88				
3	1.00	0.98	0.98	0.97	0.98				
4	0.99	0.99	0.96	0.89	0.92				
5	0.96	0.99	0.96	0.94	0.98				
Overall	1.00	0.99	0.95	0.98	0.98				
Intra-clas	Intra place correlation coefficients for intra phoencer reliability of Dulco Ways Valasity								

(PWV), 6 minute walk test (6MWT), Quadriceps Maximal Volitional Contraction (QMVC) and Carotid infima media thickness (CMT), and inter-observer reliability for QMVC measurements, measured on 10 volunteers at each of the 5 participating sites.

(ICC) at one centre for QMVC was entered erroneously; a repeat set revealed an ICC of 0.60. As this was less than the agreed target of 0.85, recommendations were implemented and a final intra-observer repeatability ICC of 0.96 was observed.

Once a site demonstrated competency in all relevant research techniques, they were allowed to recruit study participants. Table 4 reports the baseline characteristics of the first 10 subjects recruited at each site, in order to provide an example of the likely eventual type of patients who will be recruited to the cohort.

Discussion

The main conclusions drawn from setting up ERICA are first that technically demanding measurements, like PWV, carotid media thickness and maximal voluntary contraction force can be made in patients with COPD. Secondly, with relatively little training measurements can be made with good repeatability and low interobserver variability. Finally, participants recruited to the trial so far appear representative of a typical convenience cohort for COPD trials and there does not appear to be a great deal of variance between individual sites.

Harmonising inter-site data collection is essential in multi-centre studies for the production of valid, reliable results. Centralised training followed by individual site visits has enabled standardisation of techniques, and collection of inter- and intra-observer reliability allowed identification of problems prior to the commencement of study recruitment. We would therefore endorse the current practice that researcher competency in performing novel techniques should be formally evaluated in multi-site trials prior to subject recruitment to ensure good quality data.

Currently if planning a large trial of either an anabolic or cardiovascular therapeutic that addresses extrapulmonary disease manifestations in COPD, an investigator would be hampered by insufficient detail regarding subsets of patients who are most likely to

Table 4.	Baseline characteristics	s of the first 50 study	recruits at participating sites
----------	--------------------------	-------------------------	---------------------------------

	Centre 1 n = 10	Centre 2 n = 10	Centre 3 n = 10	Centre 4 n = 10	Centre 5 n = 10	Overall $n = 50$
Age (years)	68.6 (12.2)	65.9 (7.2)	68.1 (9.0)	67.1 (6.3)	71.8 (5.9)	68.3 (8.3)
Male: Female	10:0	4:6	5:5	6:4	9:1	34:16
Height (m)	173.3 (10.2)	165.8 (10.8)	165.5 (7.6)	170.8 (9.7)	172.2 (5.4)	169.5 (9.2)
Weight (kg)	85.2 (22.4)	72.8 (16.9)	66.4 (15.1)	80.0 (19.6)	78.1 (16.2)	76.5 (18.7)
Fat-free Mass (kg)	59.2 (11.9)	48.9 (12.2)	45.4 (9.8)	53.9 (14.1)	55.8 (6.9)	52.6 (11.9)
BMI (kg/m ²)	27.9 (5.4)	26.3 (4.8)	24.2 (5.3)	27.2 (5.5)	26.3 (5.1)	26.4 (5.1)
Smoking (pack-years)	52 (29)	32 (14)	39 (23)	66 (31)	53 (31)	48 (28)
Current smokers (%)	10	10	60	10	10	20
FEV ₁ (% predicted)	47.4 (18.5)	57.8 (10.5)	59.7 (18.3)	60.1 (15.5)	44.3 (17.2)	53.9 (17.0)
FEV ₁ (L)	1.34 (0.53)	1.43 (0.39)	1.43 (0.51)	1.61 (0.43)	1.26 (0.54)	1.41 (0.48)
FVC (L)	3.29 (1.09)	2.50 (0.58)	3.02 (0.80)	3.10 (0.87)	3.50 (0.63)	3.08 (0.85)
FEV ₁ / FVC	0.42 (0.13)	0.57 (0.08)	0.47 (0.10)	0.53 (0.13)	0.34 (0.12)	0.47 (0.14)
6MW distance (m)	354 (113)	324 (100)	425 (112)	352 (97)	384 (118)	368 (109)
Fibrinogen (g/L)	3.5 (0.72)	3.89 (0.95)	3.44 (0.44)	3.24 (0.59)	3.5 (0.42)	3.51 (0.66)
Seated Systolic BP (mm Hg)	140 (15)	140 (18)	142 (21)	133 (14)	147 (18)	140 (17)
Seated Diastolic BP (mm Hg)	77 (6)	77 (13)	80 (12)	79 (5)	83 (10)	79 (12)
PWV (m/s)	10.5 (1.8)	9.3 (3.9)	11.7 (3.9)	7.5 (2.8)	11.8 (3.1)	10.2 (3.5)
QMVC (kg)	35.4 (12.6)	31.7 (15.0)	29.1 (7.7)	34.5 (8.6)	36.0 (9.4)	33.4 (10.8)
QMVC (% predicted)	71.5 (16.5)	73.9 (26.6)	74.8 (16.3)	77.5 (15.3)	79.3 (18.6)	75.4 (18.5)
SNIP (cm H ₂ 0)	70.9 (12.1)	59.1 (22.6)	72.7 (18.7)	72.4 (16.6)	55.4 (19.7)	66.1 (19.0)
SPPB score (of 12)	9.8 (1.87)	9.9 (2.33)	10.4 (1.78)	10.7 (1.25)	10.6 (1.71)	10.3 (1.78)
MRC score (of 5)	2.8 (0.92)	2.8 (1.03)	2.1 (0.74)	2.1 (0.74)	2.9 (1.29)	2.54 (0.99)
SGRQ-C score	48.8 (16.4)	59.3 (20.2)	39.4 (13.6)	47.5 (20.8)	45.7 (21.7)	48.1 (19.1)
CAT score	17.8 (6.9)	19.5 (9.0)	17.7 (6.7)	17.5 (9.5)	16.5 (7.7)	17.8 (7.8)

benefit. Although cardiovascular and skeletal muscle dysfunction are serious and common co-morbidities in COPD, they are not observed in all patients diagnosed with the disease. At this time it is also unclear whether there is an association between manifestations of skeletal muscle or cardiovascular dysfunction in COPD and

the knowledge of their functional consequences is limited. It would be particularly attractive to have a blood biomarker which permitted selection of patients with these disease manifestations for clinical trials assessing efficacy as large all comer trials are likely to fail (28).

More data are available for cardiovascular disease than skeletal muscle weakness, but in both cases the evidence is that these extra-pulmonary manifestations of COPD are present only in a minority of patients. In a review of approximately 46,000 case records of patients managed in a Kaiser Permanante program several cardiovascular co-morbidities were identified in a minority of patients (at most 25%) though the group as a whole had a 2-3-fold increased risk of subsequent cardiovascular-related admission (8). In relation to the measures used in this study only very small data sets exist; in the study of Maclay et al. (29) roughly half the participants were above the threshold of 10 m/s considered to represent increased future cardiovascular risk. Skeletal muscle dysfunction, while common, is present in only a minority of patients with COPD whether judged by weakness (2) or muscle size (3). Interestingly the prevalence of skeletal muscle weakness, probably around 30% of patients, is not greatly influenced by disease severity judged by FEV_1 (3). We have previously discussed the difficulties of developing an anabolic agent for patients with COPD elsewhere (28).

Fibrinogen is attractive as a biomarker, as it is a commonly available test, acceptable, relatively inexpensive and easy measure in clinical practice. Inflammatory markers such as TNF-alpha, IL-6, CRP and p-selectin have been shown to relate to disease severity in some studies, however individual variability for these markers is high (30). A panel of 34 inflammatory markers was recently assessed in the ECLIPSE study, with plasma fibrinogen emerging as the most repeatable biomarker in stable patients with COPD. Although other inflammatory markers such as C-reactive protein and interleukin-6 were also raised in COPD patients as compared to healthy controls, these biomarkers displayed wide variability in stable subjects with COPD over 3 months. Fibrinogen has additionally been shown to relate to

disease severity and is predictive of death both in COPD and other conditions (15,31).

However it is largely unknown to what extent fibrinogen has a predictive value to diagnose cardiovascular dysfunction and especially skeletal muscle dysfunction in COPD. Data from very large studies have demonstrated that COPD patients with a self-reported history of cardiovascular disease have higher fibrinogen levels (16), but the relationship between fibrinogen and other measures with predictive value for future cardiovascular disease, such as pulse wave velocity and carotid intima media thickness used in ERICA, is unknown. Eickhoff and colleague used a third detailed and predictive measure, flow mediated dilatation, and found no relationship with fibrinogen, but their cohort was limited to 60 patients (32). Several studies that have investigated fibrinogen and cardiovascular disease in COPD have often excluded those with severe cardiovascular disease (15), which runs the risk of biasing results, and also leaves a data gap for patients most at risk from cardiovascular death. Importantly therefore pre-existing cardiovascular disease is not an exclusion criterion for our study.

Although both quadriceps strength, measured as QMVC and fibrinogen were related to lower physical activity in COPD patients measured by accelerometry in a prior smaller report (33), its relationship to skeletal muscle strength has not been examined before in a large cohort of patients. Our study additionally measures several aspects of muscle function, specifically QMVC, Sniff Nasal Inspiratory Pressure (SNIP) (34), Short Physical Performance Battery (SPPB) (35) and 6-minute walk distance. The short physical performance battery may prove to be of particular interest from a regulatory perspective since it is widely used in academic gerontology. The 4-metre gait speed, which is a component of the SPPB predicts death in elderly people and is reproducible in COPD (36).

Conclusions

In conclusion, ERICA is the first large prospective study to examine the interplay between fibrinogen, skeletal muscle and cardiovascular manifestations of COPD, as well as their relation to exacerbations and mortality. At the conclusion of the study we will be able to determine whether cardiovascular and muscle dysfunction phenotypic "sets" commonly overlap and to what extent fibrinogen is a useful marker of these sets. Identification of the relationship between co-morbidities and potential predictive biomarkers of COPD will help the development of future therapies, and may be useful diagnostically.

Acknowledgments

Authors Mohan, Wilkinson, Singer, and Polkey contributed equally to this work.

With special thanks to Sridevi Nagarajan and, Mellone Marchong and Jessica Middlemiss from the Cambridge Clinical Trials Unit, Addenbrookes Hospital,

COPD JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE Cambridge, CB2 2QQ, the research teams at the participating centres and Suresh Chahwala from the Technology Strategy Board, North Star House, North Star Avenue, Swindon, SN2 1UE.

This work was supported by the NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College who part fund the salaries of MIP and DM. IBW and CMM are funded by the British Heart Foundation and the Cambridge Biomedical Research Centre, and receive support for the East Anglian CLRN. All 5 study centres are supported by the NIHR Clinical Research Network.

Declaration of Interest Statement

The authors have no conflicts of interest. Michael Polkey, Divya Mohan, Nichola Gale, Carmel McEniery and Ian Wilkinson have had grants paid to their institute by the Technology Strategy Board. Charlotte Bolton was paid for an educational, non-promotional lecture in 2011 and her institute received consultancy fees from an advisory board in 2012. John Cockcroft has received consultancy fees from Merck, Forest Pharmaceuticals and GlaxoSmithKline (GSK), lecturing fees from Menarini and Sanofi, and his institute has received grants from the Technology Strategy Board and Medical Research Council. William MacNee has received royalties from Health Press Ltd, Hodder & Stoughton Ltd, People's Medical Publishing House, Imperial College Press Ltd, consultancy fees from Pfizer, GSK, Novartis, Almirall, Janssen and received payments from GSK, Novartis and Pfizer and their institute has received money from the Technology Strategy Board. David Lomas has received board membership, lecture, travel expenses and consultancy fees from GSK, consultancy fees from Talecris/ Grifols and travel expenses from Boehringer Ingelheim (BI), and his institute has received grants from Glaxo-SmithKline. Peter Calverley has received travel expenses from the Medical Research Council, board membership fees from Nycomed, BI, consultancy fees from Novartis, expert testimony fees from Forest, payment for lectures from GSK, Astrazeneca, Takeda and travel expenses from BI, and his institute has received lecture fees from Novartis and Pfizer. Bruce Miller is an employee of GSK, and is married to a GSK employee and shareholder. Ruth Tal-Singer is employed by GSK and owns shares in GSK. Michael Polkey has received consulting fees from Novartis and Philips, travel support from GSK Almirall and BI and his institute has received consulting fees from BI, Lilly, Regeneron and GSK, lecture fees from Chiesi as well as grants from Technology Strategy Board, AstraZeneca and GSK. The authors alone are responsible for the writing and the content of the paper.

References

1. Schols AM, Slangen J, Volovics L, Wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructive

Copyright © 2014 Informa Healthcare USA, Inc

pulmonary disease. Am J Respir Crit Care Med 1998; 157(6 Pt 1):1791–1797.

- Seymour JM, Spruit MA, Hopkinson NS, Natanek SA, Man WD, Jackson A, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Euro Respir J 2010; 36(1):81–88.
- Shrikrishna D, Patel M, Tanner RJ, Seymour JM, Connolly BA, Puthucheary ZA, et al. Quadriceps wasting and physical inactivity in patients with COPD. ERJ 2012; 40(5):1115–1122.
- McAllister DA, Maclay JD, Mills NL, Mair G, Miller J, Anderson D, et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 176(12):1208–1214.
- Sabit R, Bolton CE, Edwards PH, Pettit RJ, Evans WD, McEniery CM, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175(12):1259–1265.
- Bolton CE, Ionescu AA, Shiels KM, Pettit RJ, Edwards PH, Stone MD, et al. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170(12):1286–93.
- Mannino DM, Doherty DE, Sonia Buist A. Global Initiative on Obstructive Lung Disease (GOLD) classification of lung disease and mortality: findings from the Atherosclerosis Risk in Communities (ARIC) study. Respir Med 2006; 100(1):115–122.
- Sidney S, Sorel M, Quesenberry CP, Jr., DeLuise C, Lanes S, Eisner MD. COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente Medical Care Program. Chest 2005; 128(4):2068–2075.
 Natanek SA, Gosker HR, Slot IG, Marsh GS, Hopkinson NS,
- Natanek SA, Gosker HR, Slot IG, Marsh GS, Hopkinson NS, Man WD, et al. Heterogeneity of quadriceps muscle phenotype in chronic obstructive pulmonary disease (COPD); implications for stratified medicine? Muscle Nerve 2013; 48(4):488–497.
- Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 2007; 62(2):115–120.
- Gea J, Agusti A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Appl Physiol 2013; 114(9):1222–1234.
- Troosters T, Gosselink R, Decramer M. Short- and long-term effects of outpatient rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Am J Med 2000; 109(3):207–212.
- Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest 2011; 140(2):331–342.
- Agusti A, Edwards LD, Rennard SI, MacNee W, Tal-Singer R, Miller BE, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PloS One 2012; 7(5):e37483.
- Duvoix A, Dickens J, Haq I, Mannino D, Miller B, Tal-Singer R, et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax 2013; 68:670–676.
- Valvi D, Mannino DM, Mullerova H, Tal-Singer R. Fibrinogen, chronic obstructive pulmonary disease (COPD) and outcomes in two United States cohorts. Int J Chron Obstruct Pulmon Dis 2012; 7:173–182.
- Thomsen M, Dahl M, Lange P, Vestbo J, Nordestgaard BG. Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186(10):982–988.
- Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in

www.copdjournal.com

chronic obstructive pulmonary disease. N Engl J Med 2010; 363(12):1128–1138.

- Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). European Respir J 2008; 31(4):869–873.
- Gale NS, Munnery M, Albarrati A, Munnery I, Shale DJ, Cockcroft JR. Assessment of risk factors in chronic airways disease evaluation (ARCADE). Artery Res 2012; 6(4):158.
- Casaburi R, Celli B, Crapo J, Criner G, Croxton T, Gaw A, et al. The COPD Biomarker Qualification Consortium (CBQC). J COPD. 2013; 10(3):367–377.
- Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012; 367(14):1310–1320.
- Clauss A. [Rapid physiological coagulation method in determination of fibrinogen]. Acta Haematol 1957; 17(4):237– 246.
- Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 1998; 16(12 Pt 2):2079–2084.
- Csanyi A, Egervari A. Simple clinical method of average intimamedia thickness measurement in the common carotid artery. VASA Zeitschrift fur Gefasskrankheiten 1996;25(3):242–248.
- ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166(1):111–117.
- Edwards RH, Young A, Hosking GP, Jones DA. Human skeletal muscle function: description of tests and normal values. Clin Sci Mol Med 1977; 52(3):283–290.
- Steiner MC, Roubenoff R, Tal-Singer R, Polkey MI. Prospects for the development of effective pharmacotherapy targeted at the skeletal muscles in chronic obstructive pulmonary disease: a translational review. Thorax 2012; 67(12):1102–1109.
- Maclay JD, McAllister DA, Mills NL, Paterson FP, Ludlam CA, Drost EM, et al. Vascular dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009; 180(6):513–520.
- MacNee W. Systemic inflammatory biomarkers and co-morbidities of chronic obstructive pulmonary disease. Ann Med 2013; 45(3):291–300.
- Dickens JA, Miller BE, Edwards LD, Silverman EK, Lomas DA, Tal-Singer R. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respir Res 2011; 12:146.
- Eickhoff P, Valipour A, Kiss D, Schreder M, Cekici L, Geyer K, et al. Determinants of systemic vascular function in patients with stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 178(12):1211–1218.
- Waschki B, Spruit MA, Watz H, Albert PS, Shrikrishna D, Groenen M, et al. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study. Respir Med 2012; 106(4):522–530.
- Moore AJ, Soler RS, Cetti EJ, Amanda Sathyapala S, Hopkinson NS, Roughton M, et al. Sniff nasal inspiratory pressure versus IC/TLC ratio as predictors of mortality in COPD. Respir Med. 2010; 104(9):1319–1325.
- Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with selfreported disability and prediction of mortality and nursing home admission. J Gerontol 1994; 49(2):M85–94.
- Kon SS, Patel MS, Canavan JL, Clark AL, Jones SE, Nolan CM, et al. Reliability and validity of the four metre gait speed in COPD. ERJ 2013; 42(2):333–340.

Appendix D: data dictionary

ERICA DATABASE SPECIFICATION DOCUMENT BASELINE AND FOLLOW UP QUESTIONNAIRES

GENERIC					Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)	,	date etc)	etc)	labelling in STATA)	,
Trial	trial	Pre-filled by			
		application			
Site	site	Text: n01=Cambridge,	Drop down:	n01=Cambridge,	Only one option
		n02=Edinburg,	Cambridge,	n02=Edinburg,	possible
		n03=Cardiff,	Edinburgh, Cardiff,	n03=Cardiff,	
		n04=Nottingham,	Nottingham, London	n04=Nottingham,	
		n05=London	-	n05=London	
Label	label	Pre-filled by	Person ID, date of		
		application	birth, status		
Subject ID	personid	Assigned by database			
Visit cycle	visitcycle	Assigned by database			
Form cycle	formcycle	Assigned by database			
Repeat number	repeatnumber	Assigned by database			
Site ID	siteid	Text: 1=N01, 2=N02,	Drop down:	1=N01, 2=N02,	Only one option
		3=N03, 4=N04, 5=N05	Cambridge,	3=N03, 4=N04, 5=N05	possible
			Edinburgh, Cardiff,		
			Nottingham, London		
Visit date	visitdate	Date	dd/mm/yyyy		
Date of birth	edob	Date	dd/mm/yyyy		
Sub ID	subid	Assigned by database			
Macro ID	macroid	Assigned by database			
Gender	eligsex	Number: 1=Female,	Drop down: Female,	1=Female, 2=Male	Only one option
	-	2=Male	Male		possible
Informed consent	consent1	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible
Informed consent	consall	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible
Date of informed	consentdate	Date	dd/mm/yyyy		Should be ≤ visitdate
consent					
Age	ageeligibility	Number	nn yrs		Must be ≥40
Ethnicity	ethinicity	Number: 1=Black/	Drop down: Black/	1=Black/ African-	Only one option
		African-Caribbean/	African-Caribbean/	Caribbean/ Sub-	possible
		Sub-Saharan,	Sub-Saharan, White,	Saharan, 2=White,	ľ
		2=White, 3=Asian,	Asian, Other	3=Asian, 4=Other	
		4=Other			
Sort ID	sortid	Number	nnn		Only one option
					nossible

TABLE: Baseline data

ANTHROPOMETRY	a				Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something meaningful relating to what's on CRF)	(name used in database)	(text, numerical, drop down with options, date etc)	(Y/N, drop down menu with options, free text etc)	(for stats purposes – used for variable labelling in STATA)	(Details of ALL validation)
Height	height	Number	nnn cm		Must be in range 130- 200
Fatmass	fatmass_anthro	Number	nn.n kg		Must be in range 0-100
Weight (Tanita)	weight	Number	nn.n kg		Must be in range 0-200
Fat free mass:	fatfreemas_antr	Number	nn.n kg		Must be in range 0-130
					(~70% of weight)

Body fat (Tanita)	bodyfat	Number	nn.n %	Must be in range 0-100
Total body water	totalbodywater	Number	nn.n kg	Must be in range 0-130 (~70% of <i>weight</i>)
Impedance, whole	impedence	Number	nnn Ω	Must be in range 0- 1500
Date of anthropometry	anthrdate	Date	dd/mm/yyyy	Should be ≥ visitdate

TABLE: Baseline data

SPIROMETRY	Home				
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Spirometry undertaken	spirothisvisit	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
at this visit?					possible
Date of spirometry	spirodate	Date	dd/mm/yyyy		Should be ≥ visitdate
Previous spirometry	prevspirometry	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
undertaken?					possible
Previous FEV ₁	prevfev1	Number	nn L		Must be <3.5
Previous FEV ₁ /FVC	prevfevfvcratio	Number	n.n %		Must be < 0.7
ratio					
Date of previous	prevdatespir	Date	dd/mm/yyyy		Should be < spirodate
spirometry					
FVC	fvc	Number	n.nn L		Must be <4.5
FVC percentage	fvcpercent	Number	nn %predicted		Must be in range 5-160
FEV ₁	fev1	Number	n.nn L		Must be in range 0-4
FEV ₁ percentage	fev1percent	Number	nn %predicted		Must be ≤80%
FEV ₁ /FVC ratio	fev_fvcratio	Number	n.nn %		Must be < 0.7
ECG undertaken?	ecgundertaken	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible
Date of ECG	ecgdate	Date	dd/mm/yyyy		Should be ≥ visitdate
ECG signed by a	ecgsignci	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
clinician?					possible

TABLE: Baseline data

SHORT PHYSICAL PERFORMANCE BATTERY (SPPB) Home								
CRF field name	short field name	Field type	Description	Format	Validation rules			
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL			
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)			
what's on CRF)		date etc)	etc)	labelling in STATA)				
SPPB undertaken?	sppbdone	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible			
Date of SPPB	sppbdate	Date	dd/mm/yyyy		Should be ≥ visitdate			
Balance side-by-side, time	sidebysidetime	Number	n.n sec.		Must be ≤10			
Correction - Balance side-by-side, time	re_sidebysidetime	Number	n.n sec.		Must be ≤10			
Balance side-by-side, points	balancesidepts	Number	n		Must be in range 0-1			
Correction - Balance side-by-side, points	re_balancesidepts	Number	n		Must be in range 0-1			
Balance side-by-side, not done	spsidbyside_nd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option possible			
Correction - Balance side-by-side, not done	re_spsidbyside_nd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option possible			
Balance semi-tandem, time	balasemitantime	Number	n.n sec.		Must be ≤10. Variable <i>sidebysidetime</i> must be ≥10			

Correction - Balance	re balasemitantime	Number	n.n sec.		Must be ≤10. Variable
semi-tandem time					sidebysidetime must
					be >10
Balance semi-tandem	halasemitandots	Number	n		Must be in range 0-1
points	barasermanopis	Number			Widst be in range of r
Correction - Balance	re balasemitandpts	Number	n		Must be in range 0-1
semi-tandem, points					Ŭ
Balance semi-tandem,	spsemitand nd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option
not done					possible
Correction - Balance	re spsemitand nd	Number: 1=?. 2=?	Drop down; ?, ?	1=?.0=?	Only one option
semi-tandem, not done				,	possible
,					
Balance tandem time	baltandemtime	Number	n n sec		Must be ≤10. Variables
Balanco tanaoni, amo	bartandonnanno				sidebysidetime and
					balasemitantime must
					be >10
					00 = 10
Correction Polonee	ra baltandamtima	Number	n n 000		Must be <10 Mariables
tondom time		Number	11.11 Sec.		viust be ≤10. variables
tanuem, time					sidebysideume and
					be≥iu
Balance tandem,	baltandempts	Number	n		Must be in range 0-2.
points					One additional point if
					3-9.99 seconds. Zero
					points if <3 seconds.
Correction - Balance	re_baltandempts	Number	n		Must be in range 0-2.
tandem, points					One additional point if
					3-9.99 seconds. Zero
					points if <3 seconds.
Balance tandem, not	spbaltand_nd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option
done					possible
Correction - Balance	re_spbaltand_nd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option
tandem, not done					possible
Sum points of balance	sumbalancepts	Number	n		Must be in range 0-4
Correction - Sum	re_sumbalancepts	Number	n		Must be in range 0-4
points of balance					
Effort 1 of 4m gait	gaitspedef1time	Number	n.n sec.		Must be in range 0-60
speed test					-
Effort 2 of 4m gait	gaitspedef2time	Number	n.n sec.		Must be in range 0-60
speed test					-
Best time of effort 1	re gaitsped besttime	Number	n.n sec.		Must be in range 0-60
and 2 of 4m gait speed					Ŭ
test					
Converted points 4m	bestgaitspeed	Number	n		Must be in range 0-4.
aait speed test	0				One point if > 8.70
3					sec.: two points if 6.21-
					8.70 sec.: three points
					if 4.82-6.20 sec.; four
					points if <4.82 sec.
Correction -	re hestaaitsneedats	Number	n		Must be in range 0-4
Converted points 4m			· '		One point if > 8.70
nait sneed test					sec : two points if 6 21
guir opeen teor			1		8 70 sec : three points
					if 4 82 6 20 coo · form
			1		11 + .02 - 0.20 Sec., IOUI
Coit append to at used	an mitana-ded	Number 1-0.0-0	Dues devices 0.0	1-2.0-2	
Gait speed test, not	sp_gaitspeedind	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Unly one option
	no on activity and	Number 1-0.0-0	Dran day	1-2.0-2	possible
Correction - Gait	re_sp_ganspeednd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Unly one option
speed test, not done	- la - ince te constituer en	Ni washi av			possible
Chair stand, time	chairstandtime	INUMBER	n.n sec.		iviust be in range 0-120

Correction - Chair	re_chairstandtime	Number	n.n sec.		Must be in range 0-120
stand, time					
Chair stand, points	chairstandpts	Number	n		Must be in range 0-4.
					One point if 16.70-60
					sec.; two points if
					13.70-16.69 sec.; three
					points if 11.20-13.69
					sec.; four points if
					<11.20 sec.
Correction - Chair	re_chairstandpts	Number	n		Must be in range 0-4.
stand, points					One point if 16.70-60
					sec.; two points if
					13.70-16.69 sec.; three
					points if 11.20-13.69
					sec.; four points if
					<11.20 sec.
Chair stand test, not	sp_chairstandnd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option
done					possible
Correction - Chair	re_sp_chairstandnd	Number: 1=?, 2=?	Drop down: ?, ?	1=?, 0=?	Only one option
stand test, not done					possible
Total sum of SPPB	totalsumsppb	Number	n		Must be in range 0-12.
					Summation of
					variables
					sumbalancepts,
					bestgaitspeed and
					chairstandpts
Correction - Total sum	re_totalsumsppb	Number	n		Must be in range 0-12.
of SPPB					Summation of
					variables
					sumbalancepts,
					bestgaitspeed and
					chairstandpts
All 3 SPPB	re_all_3_sppb_comps	Text: Yes, No	Drop down: Yes, No	Yes, No	Only one option
components					possible
completed?					

6 MINUTE WALK TE	S MINUTE WALK TEST (6MWT) Home					
CRF field name	short field name	Field type	Description	Format	Validation rules	
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL	
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)	
what's on CRF)		date etc)	etc)	labelling in STATA)		
6MWT undertaken?	walktestdone	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible	
Date of 6MWT	walktestdate	Date	dd/mm/yyyy		Should be ≥ visitdate	
Distance walked	distancewalked	Number	nnn metres		Must be in range 0-999	
Pre-walk O ₂	prewalk02satur	Number	nn %		Must be in range 50-	
saturations					100	
Post-walk O ₂	postwalk02satur	Number	nn %		Must be in range 50-	
saturations					100	
Pre-walk borg rating	prewalkborgrate	Number	nn		Must be in range 0-10	
Post-walk borg rating	postwalkborgrat	Number	nn		Must be in range 0-10	
Did the patient require	o2supplerecd	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option	
O ₂ supplementation?					possible	
Did the patient require	o2requiredIts	Number	nL		Must be in range 0-10	
O ₂ supplementation?						

TABLE: Baseline data	
VENEPUNCTURE/URINE SAMPLE	

VENEPUNCTURE/URINE SAMPLE Home					
CRF field name	short field name	Field type	Description	Format	Validation rules
-					

(something	(name used in	(text numerical drop	(Y/N drop down menu	(for stats nurnoses -	(Details of ALL
meaningful relating to	(name used in database)	down with ontions	with ontions free text	used for variable	validation)
what's on CRF)	ualabase)	date etc)	atc)	labelling in STATA)	vandadonj
Blood sample taken?	bloodsmoletaken	Number: 1=Yes 0=No	Drondown: Yes No	1=Yes 0=No	Only one option
biood barnpic taken.	bioodompiotation			1 100, 0 110	possible
Date of blood sample	bloodsmpledate	Date	dd/mm/yyyy		Should be ≥ visitdate
taken					
Sodium	sodium	Number	nnn mEq/L		Must be in range 115-
Deterreturn		Newsleav	ана на Г а ()		146
Potassium	potassium	Number	n.n meq/L		6.0
Creatinine	creatinine	Number	nn mg/dL		Must be in range 50-
Glucoso	ducoso	Numbor	n n mmol/l		Must be in range 3.0
Glucose	giucose	Number	11.11111110I/L		9.0
Glycated haemoglobin	hba1c	Number	nn mmol/mol		Must be in range 30-
(HBA1c)					100
Correction - Glycated	re_hba1c	Number	nn mmol/mol		Must be in range 30-
haemoglobin (HBA1c)					100
Glomerular filtration	gfr	Number	nn.nn		Must be in range 0-130
rate					
Fibrinogen	fibrinogen	Number	n.n g/dL		Must be in range 1.0- 7.0
High-sensitivity c-	hscrp	Number	n.nn mg/L		Must be in range 0-200
reactive protein			0		ů,
(HSCRP)					
White blood cell count	wbc	Number	n.n mcL		Must be in range 3-
					20x10 ⁹
Haemoglobin	haemoqlobin	Number	nnn g/L		Must be in range 6-20
Correction -	re haemoglobin	Number	nnn a/L		Must be in range 6-20
Haemoglobin	_ 0		0		ů,
Platelets	platelets	Number	nnn mcL		Must be in range 0-
					800x10 ⁹
Neutrophils	neutrophils	Number	n n mm3		Must be in range 1-
rioda oprino	nouu opinio				15x10 ⁹
Total cholesterol	totalcholestrol	Number	n n mmol/l		Must be < 10.0
I DL cholesterol	Idicholestrol	Number	n n mmol/l		Must be <5.0
HDL cholesterol	hdlcholestrol	Number	n n mmol/l		Must be <5.0
Tridvcerides	trialycerides	Number	n n ma/dl		Must be <5.0
Urine sample	urinesmpletaken	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes. 0=No	Only one option
collected?			.,		possible
Date of urine sample	urinesmpledate	Date	dd/mm/yyyy		Should be ≥ visitdate
collected	· · · · · · · · · · · · · · · · · · ·		.,,,,,		
Serum stored	serumstoredone	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible

TABLE: Baseline data

BLOOD PRESSURE	Home				
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Date of blood pressure	bpartstifdat	Date	dd/mm/yyyy		Should be ≥ visitdate
and arterial stiffness					
Seated brachial blood	seatedsysbp	Number	nnn mmHg		Must be in range 50-
pressure (systolic)					250
Seated brachial blood	seateddiabp1	Number	nn mmHg		Must be in range 40-
pressure (diastolic)					150
Seated central blood	seatcentsysbp	Number	nnn mmHg		Must be in range 50-
pressure (systolic)					250
Seated central blood	seatcentbpdia	Number	nn mmHg		Must be in range 40-
pressure (diastolic)					150

Seated heart rate	seathr	Number	nn bpm	Must be in range 40-
(SphygmoCor)				200
Seated mean arterial	seatedmap	Number	nn mmHg	Must be in range 40-
pressure				200
Seated augmentation	seatedaugindex	Number	nn %	Must be in range -10-
index				60
Supine pulse wave	notchcarotidp	Number	nn mm	Must be in range 30-
velocity – notch-				200
carotid (proximal)				
Supine pulse wave	notchfemorald	Number	nnn mm	Must be in range 300-
velocity – notch-				1000
femoral (distal)				
Supine blood pressure	supinesysbp	Number	nn mmHg	Must be in range 50-
(systolic)				250
Supine blood pressure	supinediabp1	Number	nn mmHg	Must be in range 40-
(diastolic)				150
Pulse wave velocity	pwv1	Number	n.n m/sec	Must be in range 4-20
Supine heart rate	suphr	Number	nn bpm	Must be in range 40-
(SphygmoCor)				200

TABLE: Baseline data CAROTID INTIMA-MEDIA THICKNESS (CIMT)

CAROTID INTIMA-MEDIA THICKNESS (CIMT) Home							
CRF field name	short field name	Field type	Description	Format	Validation rules		
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL		
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)		
what's on CRF)		date etc)	etc)	labelling in STATA)			
CIMT done	imtdone	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible		
Date of CIMT	imtdate	Date	dd/mm/yyyy		Should be ≥ visitdate		
Right CIMT diameter	imt_diam_r	Number	n.nn mm		Must be in range 3.0- 15		
Left CIMT diameter	imt_diam_l	Number	n.nn mm		Must be in range 3.0- 15		
Right CIMT test	imt_cimt_r	Number	n.nn mm		Must be in range 0.0- 2.0		
Left CIMT test	imt_cimt_l	Number	n.nn mm		Must be in range 0.0- 2.0		

TABLE: Baseline data

SNIFF NASAL INSPIRATORY PRESSURE (SNIP) Home						
CRF field name	short field name	Field type	Description	Format	Validation rules	
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL	
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)	
what's on CRF)		date etc)	etc)	labelling in STATA)		
SNIP undertaken?	snipdone	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible	
Date of SNIP	snipdate	Date	dd/mm/yyyy		Should be ≥ visitdate	
SNIP right nostril	rightnostsnip	Number	nn cmH2O		Must be in range 0-200	
(highest value)						

TABLE: Baseline data QUADRICEPS MAXIMAL VOLUNTARY CONTRACTION (QMVC)

QUADRICEPS MAXIMAL VOLUNTARY CONTRACTION (QMVC) Home						
CRF field name	short field name	Field type	Description	Format	Validation rules	
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL	
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)	
what's on CRF)		date etc)	etc)	labelling in STATA)		
QMVC undertaken?	qmvcdone	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option	
					possible	
Date of QMVC	qmvcdate	Date	dd/mm/yyyy		Should be ≥ visitdate	
Highest/best effort	besteffort_qmvc	Number	nn.n kg		Must be in range 0-100	

TABLE: ERICA PARTICPIANT'S QUESTIONNAIRE GENERIC

Home

CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
ERICA questionnaire	ericquescompdat	Date	dd/mm/yyyy		Should be ≥ visitdate
completion date					
Age derived	agederied	Number	nn yrs		Must be ≥40
Birth weight	birthweight	Number	n.n kg		Must be in range 0.2-7
Are you employed?	employ	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible
Have you had any jobs	job	Number: 0=No,	Drop down: No, Coal,	0=No, 1=Coal,	Multiple options
involving work with		1=Coal, 2=Asbestos,	Asbestos, Chemicals,	2=Asbestos, 3=	possible
any of these?		3= Chemicals, 4=Dust	Dust	Chemicals, 4=Dust	
Have you had any jobs	jobyn	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Multiple options
involving work with					possible
any of these?					
If yes, please specify	joblong	Number	nn		Must be in range 0-999
approximately how					-
long for					
If yes, please specify	jobunit	Number: 1=Days, 2=	Drop down: Days,	1=Days, 2= Weeks,	Multiple options
approximately how		Weeks, 3=Months,	Weeks, Months, Years	3=Months, 4=Years	possible
long for		4=Years			
Are you married or	marr	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
cohabiting?					possible
If not married/ co-	ntmarr	Number: 1=Single /	Drop down: Single /	1=Single / never	Only one option
habiting, are you:		never married,	never married,	married, 2=Widowed,	possible
		2=Widowed,	Widowed, Divorced,	3=Divorced,	
		3=Divorced,	Separated	4=Separated	
		4=Separated			
If widowed/ divorced	marryr	Date	уууу		Should be ≤ visitdate
or separated, what					
year?					

LUNG HEALTH	Home				
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Do you get short of	srtbreath	Number: 0=No, 1=All	Drop down: No, All the	0=No, 1=All the time,	Only one option
breath?		the time, 2=Worse at	time, Worse at certain	2=Worse at certain	possible
		certain times of the	times of the day, With	times of the day,	
		day, 3=With exercise	exercise only, Night	3=With exercise only,	
		only, 4=Night only	only	4=Night only	
Do you cough?	eqcough	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible
If you cough, do you	eqphlegm	Number: 0=Never,	Drop down: Never,	0=Never, 1=Yes, most	Only one option
produce phlegm		1=Yes, most	Yes, most mornings,	mornings, 2=At least	possible
(sputum)?		mornings, 2=At least	At least three months	three months per year,	
		three months per year,	per year, Only with	3=Only with	
		3=Only with	exacerbations,	exacerbations,	
		exacerbations,	Occasionally	4=Occasionally	
		4=Occasionally			
When were you	copdage	Number	nn yrs		Must be in range 30-
diagnosed with			-		100
COPD?					
When were you	copddiayear	Date	уууу		Should be ≤ visitdate
diagnosed with					
COPD?					
Can you climb a flight	eqstairs	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
of stairs without					possible
stopping?					
	•	•		•	•

Which statement best	descbreath	Number: 1=I only get	Drop down: I only get	1=I only get breathless	Only one option
describes your		breathless with	breathless with	with strenuous	possible
breathlessness?		strenuous exercise,	strenuous exercise, l	exercise, 2=1 get short	
		2=I get short of breath	get short of breath	of breath when	
		when hurrying on the	when hurrying on the	hurrying on the level or	
		level or walking up a	level or walking up a	walking up a slight hill,	
		slight hill, 3=I walk	slight hill, I walk	3=I walk slower than	
		slower than people on	slower than people on	people on the	
		the level/stop for	the level/stop for	level/stop for breath	
		breath when walking at	breath when walking at	when walking at own	
		own pace. 4=1 stop for	own pace. I stop for	pace. 4=1 stop for	
		breath after walking	breath after walking	breath after walking	
		about 100 vards or	about 100 vards or	about 100 vards or	
		after a few minutes on	after a few minutes on	after a few minutes on	
		the lovel 5-1 am too	the lovel I am too	the lovel 5-1 am too	
		broathloss to loave the	broathloss to loave the	broathloss to loave the	
		breathess to leave the	breathess to leave the	breathess to leave the	
		breathless when	breathless when	breathiess when	
		dressing	dressing	dressing	
Have you ever	smoked	Number: 0=No, 1=	Drop down: No, Yes - I	0=No, 1= Yes - I	Only one option
smoked cigarettes?		Yes - I currently	currently smoke, Yes -	currently smoke, 2=	possible
		smoke, 2= Yes - but I	but I have given up	Yes - but I have given	
		have given up		up	
If you smoke or have	smokenum	Number	n per day		Must be in range 1-999
smoked, how many					-
cigarettes did vou					
smoke each dav?					
If you smoke or have	smokevrs	Number	n vrs		Must be in range 1-100
smokod bow many	Shiokoyio	T GITIBOI	ii yi o		wast be in range 1 100
voore was this for?					
What ago did you start	smokozao	Numbor	n vrs old		Must be in range 7, 100
what age ulu you start	SITUKeaye	Number	n yrs olu		wust be in range 7-100
Smoking?	om else sissen	Numebox			Must be in serve 0, 100
n you nave given up,	smokegiven	Number	n yrs ago		wust be in range 0- 100
now many years ago?	-1	Numerican de Versión No	Duran davina Mar. Na	4-X 0-N	Outrans anti-
Have you been a cigar	cigar	Number: 1=Yes, 0=No	Drop down: Yes, No	1= Yes, 0=No	Only one option
smoker?					possible
If yes, how many	cigarnum	Number	n per day		Must be in range 1-999
	-1	Ni, washi aw			Musthalia anno 0,400
How many years have	cigaryrs	Number	n yrs		Must be in range 0-100
you smoked cigars?					
Have you ever	drug	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
regularly smoked					possible
social drugs, for e.g.					
cannabis?					
Total pack years	totalpackyears	Number	nn yrs		Must be ≥10
Have you ever	steroids	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
required steroids?					possible
Have you ever	antibi	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
required antibiotics for					possible
your chest?					
If yes, how many	stcourse	Number	n coure(s)		Must be in range 0-999
courses of steroids			. ,		-
have you required in					
the last 12 months?					
If yes, how many	abcourse	Number	n course(s)		Must he in range 0.000
courses of antibiotics			1.000.00(0)		maar be mitange 0-999
the lest 12 menth- 2					
	1	Ni, mala an			Musthalia 0.000
when was your last	lascousestds	Number	n wks ago		Must be in range 0-999
course of steroids/					
antibiotics?		1	1	1	

Do you have oxygen at	oxygen	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
nome?		Ni washi su	a haa (daa)		possible
If yes, now many	oxynrs	Number	n hrs/day		Must be in range 0-24
hours a day, have you					
been advised to use it?					
Do you snore?	snore	Number: 1=Yes, 0=Nc	Drop down: Yes, No	1=Yes, 0=No	Only one option
					possible
Do you have sleep	apnoea	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
apnoea (OSA)?					possible
How likely are you to	doze	Number: 1=Sitting and	Drop down: Sitting and	1=Sitting and reading,	
doze off or fall asleep		reading, 2=Watching	reading, Watching TV,	2=Watching TV,	
in the following		TV, 3=Sitting inactive	Sitting inactive in a	3=Sitting inactive in a	
situations in contrast to		in a public place, 4=As	public place, As	public place, 4=As	
just feeling tired?		passenger in a car for	passenger in a car for	passenger in a car for	
		an hour without break,	an hour without break,	an hour without break,	
		5=Lying down to rest	Lying down to rest	5=Lying down to rest	
		during the day when	during the day when	during the day when	
		circumstances permit,	circumstances permit,	circumstances permit,	
		6=Sitting and talking to	Sitting and talking to	6=Sitting and talking to	
		someone, 7=Sitting	someone, Sitting	someone, 7=Sitting	
		quietly after lunch	quietly after lunch	quietly after lunch	
		without alcohol. 8=In a	without alcohol. In a	without alcohol. 8=In a	
		car while stopped for	car while stopped for	car while stopped for	
		a few minutes in traffic	a few minutes in traffic	a few minutes in traffic	
Chance of dozing	dozescale	Number: 0=Would	Drop down: Would	0=Would never doze,	Only one option
		never doze, 1=Slight	never doze, Slight	1=Slight chance of	possible
		chance of dozing,	chance of dozing,	dozing, 2=Moderate	
		2=Moderate chance of	Moderate chance of	chance of dozing,	
		dozina. 3=Hiah chance	dozing. High chance of	3=High chance of	
		of dozing	dozing	dozing	
Have you ever done	pulrehab	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
pulmonary					possible
rehabilitation?					
If yes, did you	pulrehabcomp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
complete the whole	· ·	,			possible
course?					
How long ago was the	pulrehabvrs	Number	n vrs		Must be in range 0-100
course?			5		
What limits your	pulrehablim	Number:	Drop down:	0=Breathlessness,	Only one option
walking?	-	0=Breathlessness,	Breathlessness, Legs,	1=Legs,	possible
-		1=Legs,	Nothing/other	2=Nothing/other	
		2=Nothing/other	J. J	Ũ	
Have you lost or	eqweight	Number: 0=Stayed	Drop down: Stayed	0=Stayed about same.	Only one option
gained any weight in		about same, 1=Lost	about same. Lost	1=Lost weight.	possible
the last 12 months?		weight, 2=Gained	weight, Gained weight	2=Gained weight	
		weight			

ACTIVITIES	Home				
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
How often do you take	sport	Number: 1=Mildly	Drop down: Mildly	1=Mildly energetic,	Multiple options
part in sport or		energetic,	energetic, Moderately	2=Moderately	possible
activities that are		2=Moderately	energetic, Vigorous	energetic, 3=Vigorous	
mildly energetic,		energetic, 3=Vigorous			
moderately energetic					
or vigorous?					

How often do you take	sportscale	Number: 0=Never/	Drop down: Never/	0=Never/hardly ever,	Multiple options
part in sport or		hardly ever, 1=Three	hardly ever, Three	1=Three times a	possible
activities that are		times a week, 2=Once	times a week, Once or	week, 2=Once or	
mildly energetic,		or twice a week,	twice a week, About	twice a week, 3=About	
moderately energetic		3=About once or three	once or three times a	once or three times a	
or vigorous?		times a month	month	month	
Please give the	sportav	Number: 1=Mildly	Drop down: Mildly	1=Mildly energetic,	Multiple options
average number of		energetic,	energetic, Moderately	2=Moderately	possible
hours per week that		2=Moderately	energetic, Vigorous	energetic, 3=Vigorous	
you spend in such		energetic, 3=Vigorous			
activities					
Please give the	sporthrs	Number	n hrs/week		Must be in range 0-140
average number of					
hours per week that					
you spend in such					
activities					
In the past week, on	walkweekdayeq1	Text	nn.nn.nn hrs/min		Must be in range 0-24
average, for how long					
did you walk outside					
your home/workplace					
on each weekday?					
In the past week, on	walkweekendeq1	Text	nn.nn.nn hrs/min		Must be in range 0-24
average, for how long					
did you walk outside					
your home/workplace					
on each weekend day?					
Walking, not recorded	walknoeq1	Number: 1=Yes	Drop down: Yes	1=Yes	Only one option
					possible
In the past, on average,	cycleweekdayeq1	Text	nn.nn.nn hrs/min		Must be in range 0-24
for how long did you					
cycle on each					
weekday?					
In the past, on average,	cycleweekendeq1	Text	nn.nn.nn hrs/min		Must be in range 0-24
for how long did you					
cycle on each					
weekend day?					
Cycling, not recorded	cyclenoeq1	Number: 1=Yes	Drop down: Yes	1=Yes	Only one option possible
How would you	walkpace	Number: 1=Slow pace	Drop down: Slow pace	1=Slow pace	Only one option
describe your usual		(<3mph), 2=Steady	(<3mph), Steady	(<3mph), 2=Steady	possible
walking pace?		average pace, 3=Brisk	average pace, Brisk	average pace, 3=Brisk	
		pace, 4=Fast pace	pace, Fast pace	pace, 4=Fast pace	
		(>4mph)	(>4mph)	(>4mph)	

AST MEDICAL HISTORY Home							
CRF field name	short field name	Field type	Description	Format	Validation rules		
(something meaningful relating to what's on CRF)	(name used in database)	(text, numerical, drop down with options, date etc)	(Y/N, drop down menu with options, free text etc)	(for stats purposes – used for variable labelling in STATA)	(Details of ALL validation)		
Have you ever been told by your doctor that you have high blood pressure?	highbp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible		
If high blood pressure, in what year?	highbpyr	Date	уууу		Should be ≤ <i>visitdate</i>		
If high blood pressure, are you on therapy for it?	bpther	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible		

If high blood pressure	bptheryr	Date	уууу		Should be ≤ visitdate
therapy, in what year?					
Please specify the	bpdrug	Max characters 50	Free text		
drug name.					
Have you ever been	highchol	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
told by your doctor that					possible
you have high					
cholesterol?					
If high cholesterol, in	highcholyr	Date	VVVV		Should be ≤ visitdate
what year?	0 1				
If high cholesterol, are	cholther	Number: 1=Yes. 0=No	Drop down: Yes. No	1=Yes. 0=No	Only one option
you on therapy for it?				,	possible
If high cholesterol	cholthervr	Date	VVVV		Should be < visitdate
therapy in what year?	on or a lor y l	D GRO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Please specify the	choldrug	Max characters 50	Free text		
drug name	cholalag	Wax characters 50	I TOO IONI		
Have you ever been	nvd	Number: 1-Ves, 0-No	Drop down: Yos, No	1-Voc 0-No	Only one option
told by you'r doctor that	pvu		Drop down. 163, 140	1-103, 0-110	
					possible
you have periprieral					
vascular disease?					
If peripheral vascular	pvdyr	Date	уууу		Should be ≤ visitdate
disease, in what year?					
If peripheral vascular	pvdther	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
disease, are you on					possible
therapy for it?					
If peripheral vascular	pvdtheryr	Date	уууу		Should be ≤ visitdate
disease therapy, in					
what year?					
Please specify the	pvddrug	Max characters 50	Free text		
drug name.					
Have you ever been	afib	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
Have you ever been told by your doctor that	afib	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Have you ever been told by your doctor that you have atrial	afib	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation?	afib	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in	afib afibvr	Number: 1=Yes, 0=No Date	Drop down: Yes, No	1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year?	afib afibyr	Number: 1=Yes, 0=No Date	Drop down: Yes, No	1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are	afib afibyr afibther	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it?	afib afibyr afibther	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation	afib afibyr afibther afibthervr	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date	Drop down: Yes, No yyyy Drop down: Yes, No yyyy	1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy. in what year?	afib afibyr afibther afibtheryr	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date	Drop down: Yes, No yyyy Drop down: Yes, No yyyy	1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the	afib afibyr afibther afibtheryr afibdrug	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text	1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the druin name	afib afibyr afibther afibtheryr afibdrug	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text	1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been	afib afibyr afibther afibtheryr afibdrug diab	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i>
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that	afib afibyr afibther afibtheryr afibdrug diab	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes?	afib afibyr afibther afibtheryr afibdrug diab	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes?	afib afibyr afibther afibtheryr afibdrug diab	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes?	afib afibyr afibther afibtheryr afibdrug diab	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be \leq <i>visitdate</i> Only one option possible Should be \leq <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what yoar?	afib afibyr afibther afibtheryr afibdrug diab	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year?	afib afibyr afibther afibtheryr afibdrug diab diabyr	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which have?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabype	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 0=T, 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had everies?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No	Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Should be ≤ <i>visitdate</i> Only one option possible Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No	Only one option possible Should be \leq visitdate Only one option possible Should be \leq visitdate Only one option possible Should be \leq visitdate Only one option possible Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina? If angina, in what year?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1 anginayear	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No Date	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No	Only one option possible Should be \leq visitdate Only one option possible Should be \leq visitdate Only one option possible Should be \leq visitdate Only one option possible Only one option possible Should be \leq visitdate
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina? If angina, in what year?	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1 anginayear	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No Date	Drop down: Yes, No yyyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No yyyy	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be \leq <i>visitdate</i> Only one option possible Should be \leq <i>visitdate</i> Only one option possible Should be \leq <i>visitdate</i> Only one option possible Only one option possible Should be \leq <i>visitdate</i> Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina? Has a doctor told you Has a doctor told you	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1 anginayear heartattack_eq1	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No yyyy Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be \leq visitdate Only one option
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina? If an in what year? Has a doctor told you that you have had a	afib afibyr afibther afibtheryr afibdrug diab diabyr diabyr diabtype angina_eq1 anginayear heartattack_eq1	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No yyyy Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be \leq visitdate Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina? If angina, in what year? Has a doctor told you that you have had a heart attack?	afib afibyr afibther afibtheryr afibdrug diabyr diabyr diabtype angina_eq1 anginayear heartattack_eq1	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 0=Don't know, 1=Type I, 2=Type II Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No yyyy Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be \leq visitdate Only one option possible Should be \leq visitdate Only one option possible Should be \leq visitdate Only one option possible Only one option possible Should be \leq visitdate Only one option possible
Have you ever been told by your doctor that you have atrial fibrillation? If atrial fibrillation, in what year? If atrial fibrillation, are you on therapy for it? If atrial fibrillation therapy, in what year? Please specify the drug name. Have you ever been told by your doctor that you have diabetes? If diabetes, in what year? If diabetes, which type? Has a doctor told you that you have had angina? If angina, in what year? Has a doctor told you that you have had angina? If angina, in what year? Has a doctor told you that you have had a heart attack? If heart attack, in what	afib afibyr afibther afibtheryr afibdrug diab diabyr diabtype angina_eq1 anginayear heartattack_eq1 heartattackyear	Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Max characters 50 Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No Date Number: 1=Yes, 0=No	Drop down: Yes, No yyyy Drop down: Yes, No yyyy Free text Drop down: Yes, No yyyy Drop down: Don't know, Type I, Type II Drop down: Yes, No yyyy Drop down: Yes, No	1=Yes, 0=No 1=Yes, 0=No 1=Yes, 0=No 0=Don't know, 1=Type I, 2=Type II 1=Yes, 0=No 1=Yes, 0=No	Only one option possible Should be \leq visitdate Only one option possible

Has a doctor told you	stroke_eq1	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
that you have had a					possible
stroke or transient					
attack?					
If stroke or TIA, in	strokeyear	Date	уууу		Should be ≤ visitdate
what year?					
If stroke or TIA what	stroketype_eq1	Number: 1=Stroke,	Drop down: Stroke,	1=Stroke, 2=TIA,	Only one option
type?		2=TIA, 3=Other,	TIA, Other, specify	3=Other, specify	possible
		specify			
If other, please	otherstroke	Max characters 50	Free text		
specify?					
Any other heart trouble	eq_hrtrouble	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
suspected or					possible
confirmed?					
If any other heart	eq_hrtrobother	Max characters 50	Free text		
trouble, please specify					

FAMILYHISTORY					Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Was your father ever	fatherhighbp	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
diagnosed with high		1=Yes, 2=Don't know	Don't know	know	possible
blood pressure?					-
If father high blood	fathyoung60bp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
pressure, younger than					possible
60 when diagnosed?					
Was your father ever	fatheangina	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
diagnosed with	°,	1=Yes, 2=Don't know	Don't know	know	possible
angina?					
If father angina,	fathyng60angna	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
younger than 60 when					possible
diagnosed?					
Was your father ever	fatherheartatk	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
diagnosed with a heart		1=Yes, 2=Don't know	Don't know	know	possible
attack?					
If father heart attack,	dadyng60hrtatk	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
younger than 60 when					possible
diagnosed?					
Was your father ever	fatherstroke	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
diagnosed with a		1=Yes, 2=Don't know	Don't know	know	possible
stroke?					
If father stroke,	fathyng60stroke	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
younger than 60 when					possible
diagnosed?					
Was your father ever	fatherpvd	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
diagnosed with		1=Yes, 2=Don't know	Don't know	know	possible
peripheral vascular					
disease?					
If father peripheral	fathyng60pvd	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
vascular disease,					possible
younger than 60 when					
diagnosed?					
Was your father ever	fatherdiabetes	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
diagnosed with		1=Yes, 2=Don't know	Don't know	know	possible
diabetes?					
If father diabetes,	fathyoung60diab	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
younger than 60 when					possible
diagnosed?					
-					

Was your father ever diagnosed with	fatherasthma	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If father asthma, younger than 60 when	fathyng60asthma	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your father ever diagnosed with COPD?	fathercopd	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If father COPD, younger than 60 when diagnosed?	fathyng60copd	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with high blood pressure?	motherhighbp	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother high blood pressure, younger than 60 when diagnosed?	mumyoung60bp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with angina?	motherangina	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother angina, younger than 60 when diagnosed?	mumyng60angina	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with a heart attack?	mumheartattack	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother heart attack, younger than 60 when diagnosed?	mumyng60hrtatk	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with a stroke?	motherstroke	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother stroke, younger than 60 when diagnosed?	mumyng60stroke	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with peripheral vascular disease?	motherpvd	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother peripheral vascular disease, younger than 60 when diagnosed?	mumyng60pvd	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with diabetes?	motherdiabetes	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother diabetes, younger than 60 when diagnosed?	mumyng60diabe	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with asthma?	motherasthma	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother asthma, younger than 60 when diagnosed?	mumyng60asthma	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Was your mother ever diagnosed with COPD?	mothercopd	Number: 0=No, 1=Yes, 2=Don't know	Drop down: No, Yes, Don't know	0=No, 1=Yes, 2=Don't know	Only one option possible
If mother COPD, younger than 60 when diagnosed?	mumyng60copd	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible

Do you have any sibling?	anysibling	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
Were your	siblinghighbp	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
brother(s)/sister(s)		1=Yes, 2=Don't know	Don't know	know	possible
ever diagnosed with					
nign blood pressure?					o
If brother(s)/sister(s)	siblingyng60bp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
high blood pressure,					possible
younger than 60 when					
diagnosed?					
Were your	siblingangina	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes, 2=Don't	Only one option
brother(s)/sister(s)		1=Yes, 2=Don't know	Don't know	know	possible
ever diagnosed with					
angina?					
If brother(s)/sister(s)	sibyng60angina	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
angina, younger than					possible
60 when diagnosed?	11 I. I. I. I. I.				o
vvere your	siblinghrtattk	Number: U=No,	Drop down: No, Yes,	U=No, 1=Yes, 2=Don't	Only one option
brother(s)/sister(s)		1= Yes, 2= Don t know	Don t know	KNOW	possible
ever diagnosed with a					
					o
If brother(s)/sister(s)	sibyng60hrtatk	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, U=No	Only one option
heart attack, younger					possible
than 60 when					
diagnosed?					o
vvere your	siblingstroke	Number: U=No,	Drop down: No, Yes,	U=No, 1=Yes, 2=Don't	Only one option
brother(s)/sister(s)		1=Yes, 2=Don't know	Don't know	know	possible
ever diagnosed with a					
stroke?					
If brother(s)/sister(s)	sibyng60stroke	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, U=No	Only one option
stroke, younger than					possible
60 when diagnosed?	aiblingsoud	Numerican O-No	Dren deurs No. Vee	O-No. 1-Veo. 2-Den't	Only one ention
vvere your	sibiingpva	Number: U=NO,	Drop down: No, Yes,	U=INO, I=Yes, Z=DOITU	Only one option
Di Oli lei (S)/Sistei (S)		I- Tes, 2-DUITT KNOW	DOITTKIIOW	KIIOW	possible
poriphoral vascular					
disease?					
lf brothor(c)/sistor(c)	sibung60pvd	Number: 1-Ves 0-No	Drop down: Yos, No.	1-Voc 0-No	Only one option
noriphoral vascular	sibyrigoopvu		Drop down. res, No	1-165, 0-110	
disease younger than					possible
60 when diagnosed?					
Were your	siblinadiabetes	Number: 0=No	Drop down: No. Yes	0=No 1=Ves 2=Don't	Only one option
brother(s)/sister(s)	Sibiliguiabetes	1=Ves 2=Don't know	Dop't know	know	nossible
ever diagnosed with		1-103, 2-DOITTRIOW	DOITCRIOW	KI IOW	possible
diabetes?					
If brother(s)/sister(s)	sibvna60diaba	Number: 1=Yes ()=No	Drop down: Yes, No.	1=Ves 0=No	Only one option
diabetes vounder than	Sibyrigoodiabe	Number: 1-163, 0-140	Drop down. Tes, No	1-163, 0-110	nossible
60 when diagnosed?					possible
Were your	siblingasthma	Number: 0=No	Drondown: No. Yes	0=No 1=Yes 2=Don't	Only one option
brother(s)/sister(s)	olomigaotima	1=Yes 2=Don't know	Don't know	know	possible
ever diagnosed with		,			
asthma?					
If brother(s)/sister(s)	sibyng60asthma	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes. 0=No	Only one option
asthma, younger than					possible
60 when diagnosed?					
Were your	siblingcopd	Number: 0=No,	Drop down: No, Yes.	0=No, 1=Yes, 2=Don't	Only one option
brother(s)/sister(s)	0.00	1=Yes, 2=Don't know	Don't know	know	possible
ever diagnosed with		,			
COPD?					
If brother(s)/sister(s)	sibyng60copd	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
COPD, younger than	, , , , , , , , , , , , , , , , , , ,				possible
60 when diagnosed?					

MEDICATION Home						
CRF field name	short field name	Field type	Description	Format	Validation rules	
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL	
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)	
what's on CRF)		date etc)	etc)	labelling in STATA)		
Inhaler medications	inhoth	Max characters 50	Free text			
How many times per	inhaler	Number	n		Must be in range 0-20	
day?						
Do you have a	nebyn	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option	
nebuliser?					possible	
If so, please let us	neboth	Max characters 50	Free text			
know what drugs you						
regularly use in your						
nebuliser						
How many times per	nebuliser	Number	n		Must be in range 0-20	
day?						
Are there any other	othdrugyn	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option	
medications you have					possible	
not mentioned to us in						
question 17 or above?						
Name other	othermedname	Max characters 50	Free text			
medications						
How many times per	othermedtype	Number	n		Must be in range 0-20	
day?						
Other medications	otherdrg1	Max characters 50	Free text			
Other medications	otherdrg2	Max characters 50	Free text			
Other medications	otherdrg3	Max characters 50	Free text			
Other medications	otherdrg4	Max characters 50	Free text			

TABLE: ERICA PARTICPIANT'S QUESTIONNAIRE

OTHER INFORMATIO	Home				
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
On average, how	alcohol	Number	n units		Must be in range 0-999
much alcohol do you					
consume in a week?					

COPD ASSESSMENT TEST (CAT) Home					
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Date of CAT	catdate	Date	dd/mm/yyyy		Should be ≥ visitdate
Q1 – cough	cough	Number: 0-5			Only one option possible
Q2 – phlegm	phlegm	Number: 0-5			Only one option possible
Q3 – chest	chest	Number: 0-5			Only one option possible
Q4 – stairs	stairs	Number: 0-5			Only one option possible
Q5 – activity	activity	Number: 0-5			Only one option possible
Q6 – confident	confident	Number: 0-5			Only one option possible
Q7 – sleep	sleep	Number: 0-5			Only one option possible

Q8 – energy	energy	Number: 0-5	Only one option
			possible
Total score of CAT	totscore	Number	Must be in range 0-40
			Summation of
			variables cough,
			phlegm, chest, stairs,
			activity, confident,
			sleep and energy

CDE field name	about field nems	Ciald from a		Course of	Velidetien miler
URF TIEID Name	SHORT TIELD NAME	riela type	Description	rormat	
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	o
Date of SGRQ-C	sgdate	Date	dd/mm/yyyy		Should be ≥ visitdate
Please select one box	curhealth	Number: 0=Very good,	Drop down: Very good,	0=Very good, 1=Good,	Only one option
to show how you		1=Good, 2=Fair,	Good, Fair, Poor, Very	2=Fair, 3=Poor,	possible
describe your current		3=Poor, 4=Very poor	poor	4=Very poor	
health					
Q1 – cough	sgcough	Number: 1=Most days	Drop down: Most days	1=Most days a week,	Only one option
		a week, 2=Several	a week, Several days	2=Several days a	possible
		days a week, 3=Only	a week, Only with	week, 3=Only with	
		with chest infections,	chest infections, Not at	chest infections, 4=Not	
		4=Not at all	all	at all	
Q1: cough – score	sgcoughscore	Number	0, 28.1, 46.3, 80.6		Only one option
-					possible
					Derived from variable
					sącough
Q2: phlegm	sgphlegm	Number: 1=Most days	Drop down: Most days	1=Most days a week,	Only one option
		a week, 2=Several	a week, Several days	2=Several days a	possible
		days a week, 3=Only	a week, Only with	week, 3=Only with	
		with chest infections,	chest infections, Not at	chest infections, 4=Not	
		4=Not at all	all	atall	
02 [.] phleam – score	sappleamscore	Number	0 30 2 47 76 8		Only one option
de priogra oboro	ogpinogino con o	i tamboi	0,0012,11,1010		nossible
					Derived from variable
					sanhleam
Q3: shortness of	sabreath	Number: 1=Most davs	Drop down: Most davs	1=Most davs a week.	Only one option
breath	-9	a week. 2=Several	a week. Several davs	2=Several davs a	possible
		davs a week. 3=Not at	a week. Not at all	week. 3=Not at all	
		all			
Q3: shortness of	sgbreathscore	Number	0, 50.3, 87.2		Only one option
breath – score					possible
					Derived from variable
					sgbreath
	sgwheez	Number: 1=Most days	Drop down: Most days	1=Most days a week,	Only one option
Q4: attacks of	÷		a wook Sovoral days	2=Several days a	possible
Q4: attacks of wheezing	ľ	a week, 2=Several	a week, Several days		pooorbro
Q4: attacks of wheezing		a week, 2=Several days a week, 3=A few	a week, A few days a	week, 3=A few days a	pocolaio
Q4: attacks of wheezing	-	a week, 2=Several days a week, 3=A few days a month, 4=Only	a week, A few days a month, Only with chest	week, 3=A few days a month, 4=Only with	pocorbio
Q4: attacks of wheezing		a week, 2=Several days a week, 3=A few days a month, 4=Only with chest infections,	a week, A few days a month, Only with chest infections, Not at all	week, 3=A few days a month, 4=Only with chest infections, 5=Not	

		I			
Q4: attacks of	sgwheezscore	Number	0, 36.4, 45.6, 71, 86.2		Only one option
wheezing - score					possible
-					Derived from variable
					sawheez
05: How many attacks	snattack	Number: 1=Three or	Dron down: Three or	1=Three or more	Only one ontion
GO. HOW Many diducto	Sydildon		mana attacka. One ar	attacks 2=One er two	only one option
of chest trouble did you		more attacks, 2=One	more attacks, One or	attacks, 2=One or two	possible
have during the last		or two attacks,	two attacks, None	attacks, 3=None	
year?		3=None			
Q5: How many attacks	sgattackscore	Number	0, 52.3, 80.1		Only one option
of chest trouble did you					possible
have during the last					
year? - score					Derived from variable
					sgattack
Q6: How often do you	sggood	Number: 1=No good	Drop down: No good	1=No good days, 2=A	Only one option
have good days (with	00	days 2=A few good	days A few good days	few good days	possible
little aboat trauble)?		dayo, 2-Most dayo ara	Most days are good	2=Most days are good	pooolbio
inue chest trouble)?		uays, 3-iviusi uays are	Niost days are good,	3-Most days are good,	
		good, 4=Every day is	Every day is good	4=Every day is good	
		good			
Q6: How often do you	sggoodscore	Number	0, 38.5, 76.7, 93.3		Only one option
have good days (with					possible
little chest trouble)? -					Derived from variable
score					sagood
	ogmorping	Number: 1-Vee, 0-Ne	Dron down: Yoo, No.	1-Voc 0-No	Oply one option
	symoning	Number. 1- res, 0-110	Drop down. res, No	1- res, 0-110	
wneeze, is it worse in					possible
the morning?					
Q7: If you have a	sgmorningscore	Number	0, 62		Only one option
wheeze, is it worse in					possible
the morning? - score					Derived from variable
-					samornina
Q8: How would you	sachest	Number: 1=Causes	Drop down: Causes	1=Causes me a lot of	Only one option
describe your chest	- 5	me a lot of problems	me a lot of problems	problems or is the	possible
condition?		or is the most	or is the most	most important	podolbie
condition:				most important	
		Important problem I	Important problem I	problem I nave,	
		have, 2=Causes me a	have, Causes me a	2=Causes me a few	
		few problems,	few problems, Causes	problems, 3=Causes	
		3=Causes no problem	no problem	no problem	
Q8: How would you	sggchestconscor	Number	0, 34.6, 82.9		Only one option
describe your chest	01				possible
condition? - score					Derived from variable
					archeot
				4 T 0 F 1	sychest
Q9: Getting washed or	sgwasn	Number: 1=1rue,	Drop down: True,	1= I rue, 0=Faise	Only one option
dressed		0=False	False		possible
Q9: Getting washed or	sgwashscore	Number	0, 82.8		Only one option
dressed – score					possible
					Derived from variable
					sawash
Q9 [.] Walking around	sahome	Number: 1=True	Drop down: True	1=True 0=False	Only one option
the home		0=False	False		possible
OQ: Walking around	sabomoscoro	Numbor			Only one option
the home	synomescore	Number	0, 00.2		
ule nome – score					
					Derived from variable
					sghome
Q9: Walking outside	sgwalklev	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
on the level		0=False	False		possible
Q9: Walking outside	sgwalklevscore	Number	0, 81.4		Only one option
on the level – score					possible
	•				

					Derived from variable sgwalklev
Q9: Walking up a flight of stairs	sgwlkst	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option
Q9: Walking up a flight of stairs – score	sgwlkstscore	Number	0, 76.1		Only one option possible Derived from variable saw/kst
Q9: Walking up hills	sgwlkhill	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q9: Walking up hills – score	sgwlkhillscore	Number	0, 75.1		Only one option possible Derived from variable saw/khill
Q10: My cough hurts	sgchurts	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q10: My cough hurts – score	sgchurtsscore	Number	0, 81.1		Only one option possible Derived from variable <i>sgchurts</i>
Q10: My cough makes me tired	sgctired	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q10: My cough makes me tired – score	sgctiredscore	Number	0, 79.1		Only one option possible Derived from variable sactired
Q10: I am breathless when I talk	sgbrtlk	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q10: I am breathless when I talk – score	sgbrtlkscore	Number	0, 84.5		Only one option possible Derived from variable sabrtlk
Q10: I am breathless when I bend over	sgbrbend	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option
Q10: I am breathless when I bend over – score	sgbrbendscore	Number	0, 76.8		Only one option possible Derived from variable sqbrbend
Q10: My cough or breathing disturbs my sleep	sgcsleep	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q10: My cough or breathing disturbs my sleep – score	sgcsleepscore	Number	0, 87.9		Only one option possible Derived from variable sacsleep
Q10: I get exhausted easily	sgexhaus	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q10: I get exhausted easily – score	sgexhausscore	Number	0, 84		Only one option possible Derived from variable sgexhaus
Q11: My cough or breathing is embarrassing in public	sgcembarras	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible
Q11: My cough or breathing is embarrassing in public – score	sgcembarrscore	Number	0, 74.1		Only one option possible Derived from variable sgcembarras
Q11: My chest trouble is a nuisance to my family, friends or neighbours	sgfamily	Number: 1=True, 0=False	Drop down: True, False	1=True, 0=False	Only one option possible

Q11: My chest trouble	sgfamilyscore	Number	0, 79.1		Only one option
is a nuisance to my					possible
family, friends or					
neighbours - score					Derived from variable
					sgfamily
Q11: I get afraid or	sgpanic	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
panic when I cannot		0=False	False		possible
get my breath					
Q11: I get afraid or	sgpanicscore	Number	0, 87.7		Only one option
panic when I cannot					possible
get my breath – score					Derived from variable
					sgpanic
Q11: I feel that I am not	sgcontrol	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
in control of my chest		0=False	False		possible
problem					
Q11: I feel that I am not	sgcontrolscore	Number	0, 90.1		Only one option
in control of my chest					possible
problem – score					Derived from variable
044.16	a official	Normalian di Trova	Duran daring Taur	4-T	sgcontrol
Q11: I have become	sgirali	Number: 1= I rue,	Drop down: True,	1= I rue, 0= Faise	Only one option
Irall of an Invalid		0=False	False		possible
O11: L bave become	safrailscoro	Numbor	0.80.0		Only one option
frail or an invalid	synanscore	Number	0, 09.9		possible
hecause of my chest -					Derived from variable
score					safrail
Q11: Exercise is not	saexsafe	Number: 1=True	Drop down: True	1=True 0=False	Only one option
safe for me	ogonoalo	0=False	False	1 1100,0 1 000	possible
Q11: Exercise is not	saexsafescore	Number	0. 75.7		Only one option
safe for me – score			-, -		possible
					Derived from variable
					sgexsafe
Q11: Everything	sgeffort	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
seems too much of an		0=False	False		possible
effort					
Q11: Everything	sgeffortscore	Number	0, 84.5		Only one option
seems too much of an					possible
effort – score					Derived from variable
					sgeffort
Q12: I take a long time	sgwashtime	Number: 1= I rue,	Drop down: True,	1= I rue, 0=⊢alse	Only one option
to get washed or		0=⊢alse	⊦alse		possible
dressed		Ni wala an	0.74.0		Outre and anti-
Q12: I take a long time	sgwasntimescore	Number	0, 74.2		Only one option
to get washed or					possible Derived from veriable
ulesseu – scole					Deriveu ironi variable
012: Leannot take a	sabath	Numbor: 1-Truo	Drop down: Truo	1-True 0-Ealee	Only one option
bath or shower or l	Syball	Number. 1– True,	Ealso	I-TTUE, U-T alse	possible
take a long time					pooolbie
Q12 [.] I cannot take a	sabathscore	Number	0.81		Only one option
bath or shower, or I	ogsaalooolo	1 tambol	0, 01		possible
take a long time -					Derived from variable
score					sgbath
Q12: I walk slower	sgwlkslow	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
than other people, or I	-	0=False	False		possible
stop for rests					
Q12: I walk slower	sgwlkslowscore	Number	0, 71.7		Only one option
than other people, or I					possible
stop for rests – score					Derived from variable
					sgwlkslow

			-		-
Q12: Jobs such as	sgjobs	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
housework take a long		0=False	False		possible
time, or I have to stop					
for rests					
012: Jobs such as	saiobsscore	Number	0.70.6		Only one ontion
bousowork tako a long	ogjobooolo	i tumboi	0, 70.0		possiblo
time, or I have to stop					possible
time, or mave to stop					Derived from variable
for rests – score					sgjobs
Q12: If I walk up one	sgstslow	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
flight of stairs, I have to		0=False	False		possible
go slowly or stop					-
Q12: If I walk up one	sastslowscore	Number	0. 71.6		Only one option
flight of stairs. I have to			., .		possible
an slowly or stop -					Derived from variable
scoro					sastelow
O12: If I burry or wolk	oghurny	Number: 1-True	Dron down: Truo	1-True 0-Edee	Only one ontion
	sgnun y		Drop down. True,	I-TIUE, U-Faise	
tast, I have to stop or		0=⊢aise	Faise		possible
slow down					
Q12: If I hurry or walk	sghurryscore	Number	0, 72.3		Only one option
fast, I have to stop or					possible
slow down-score					Derived from variable
					sghurry
Q12: My breathing	sgdiffgolf	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
makes it difficult to do		0=False	False		possible
things such as walk up					
hills etc					
Odo Masharathian		Nicorale en	0.745		Outure outer
Q 12: Wy breathing	sganigonscore	Number	0, 74.5		Only one option
makes it difficult to do					possible
things such as walk up					Derived from variable
hills, etc. – score					sgdiffgolf
Q12: My breathing	sgdiffswim	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
makes it difficult to do	-	0=False	False		possible
things such as carry					·
heavy loads, etc.					
O12: My broathing	eadiffewimecoro	Numbor	0.71.4		Only one ontion
Q 12. Wry bieau ing	sguillswilliscore	Number	0, 71.4		
					possible
things such as carry					Dentine of Generation in the late
heavy loads, etc. –					Derived from variable
score					sgdiffswim
Q13: I cannot play	sgsports	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
sports or games		0=False	False		possible
Q13: I cannot play	sgsportsscore	Number	0, 64.8		Only one option
sports or games -					possible
score					Derived from variable
					sasports
Q13 [.] I cannot go out for	saenter	Number: 1=True	Drop down: True	1=True 0=False	Only one option
optortainmont or	ogenier	0-Ealso	Ealso	1 1140, 0 1 4100	possible
reareation		0-1 8136	1 0136		possible
		Numebox	0.70.0		Only one ontion
Cannot go out for	sgenierscore	Number	0, 79.0		Unity one option
entertainment or					possible
recreation – score					Derived from variable
					sgenter
Q13: I cannot go out of	sgshop	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
the house to do the		0=False	False		possible
shopping					
Q13: I cannot go out of	sgshopscore	Number	0, 81		Only one option
the house to do the			, i i i i i i i i i i i i i i i i i i i		possible
shonning - score					Derived from variable
suppling source					eachon
013: Looppot do	sabousowork	Numbor: 1-True	Drop down: Truc	1-True O-Felec	Only one ortion
Geno, i Gannol do	Syn Dusew Of K		Drop down: True,	I-TIUE, U=Faise	only one option
HOUSEWORK		u-raise	raise		possible

Q13: I cannot do	sghseworkscore	Number	0, 79.1		Only one option
housework – score					possible
					Derived from variable
					sghousework
Q13: I cannot move far	sgbed	Number: 1=True,	Drop down: True,	1=True, 0=False	Only one option
from my bed or chair		0=False	False		possible
Q13: I cannot move far	sgbedscore	Number	0, 94		Only one option
from my bed or chair -					possible
score					Derived from variable
					sgbed
Q14: How does your	sgaffect	Number: 0=It does not	Drop down: It does not	0=It does not stop me	Only one option
chest trouble affect		stop me doing anything	stop me doing anything	doing anything I would	possible
you?		I would like to do, 1=It	I would like to do, It	like to do, 1=It stops	
		stops me doing one or	stops me doing one or	me doing one or two	
		two things I would like	two things I would like	things I would like to	
		to do, 2=It stops me	to do, It stops me doing	do, 2=It stops me	
		doing most of the	most of the things I	doing most of the	
		things I would like to	would like to do, It	things I would like to	
		do, 3=It stops me	stops me doing	do, 3=It stops me	
		doing everything I	everything I would like	doing everything I	
		would like to do	to do	would like to do	
Q14: How does your	sgaffectscore	Number	0, 42, 84.2, 96.7		Only one option
chest trouble affect					possible
you? – score					Derived from variable
					sgaffect

TABLE: Follow Up Questionnaire - 6, 12, 18, 24 and 32 months

CARDIAC HEALTH					Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes -	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Follow up date	fupvisitdate	Date	dd/mm/yyyy		Should be ≥ visitdate
	fupvisitdate1				
	fupvisitdate2	999=missing			
	fupvisitdate3				
	fupvisitdate4				
Since we last saw you,	fupangina	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
has a doctor told you	fupangina1				possible
that you have had	fupangina2				
angina?	fupangina3				
-	fupangina4				
If yes, did you go to	anghosp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
hospital?	anghosp1				possible
	anghosp2				
	anghosp3				
	anghosp4				
If you did go to	angover	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
hospital, did you stay	angover1				possible
overnight?	angover2				
	angover3				
	angover4				
Angina – date of	angaddate	Date	dd/mm/yyyy		Should be ≥ visitdate
admission	angaddate1				
	angaddate2				
	angaddate3				
	angaddate4				
Since we last saw you,	fuphattack	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
has a doctor told you	fuphattack1				possible
that you have had a	fuphattack2				
heart attack?	fuphattack3				
	fuphattack4				

	1	1	1	r	1
If yes, when	hattackwhn	Date	dd/mm/yyyy		Should be ≥ visitdate
	hattackwhn1				
	hattackwhn2				
	hattackwhn3				
	hattackwhn4				
If yes, did you go to	hattackhosp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
hospital?	hattackhosp1				possible
	hattackhosp2				
	hattackhosp3				
	hattackhosp4				
If you did go to	hattackover	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
hospital, did you stay	hattackover1		•		possible
overnight?	hattackover2				
Ŭ	hattackover3				
	hattackover4				
Since we last saw you.	fuphyperten	Number: 0=No. 1=Yes	Drop down: No. Yes	0=No. 1=Yes. new	Only one option
have you been told by	fuphyperten1	new diagnosis 2=Was	new diagnosis Was	diagnosis 2=Was	possible
a doctor that you have	funhyperten?	already diagnosed	already diagnosed	already diagnosed	poconsio
high blood pressure?	funhyperten3	an oddy diagnoood	an oddy diagnoood	an oddy alagnoodd	
nigh blood probbare.	funhyperten/				
If you have been newly	hypertendiag	Max characters 50	Free text		
diagnood are you on	hypertending	Wax characters 50	I TOO IONI		
treatment if as which	hypertendiag?				
u eaurrent, il so which	hypertendiag2				
	hypertendiags				
<u>o:</u>	nypertendiag4			0 NL 4 M	
Since we last saw you,	tupnyperchol	Number: U=No, 1=Yes	Drop down: No, Yes	U=No, 1=Yes, new	Only one option
have you been told by	tupnyperchol1	new diagnosis, 2=Was	new diagnosis, was	diagnosis, 2=vvas	possible
a doctor that you have	tuphyperchol2	already diagnosed	already diagnosed	already diagnosed	
high cholesterol?	tuphyperchol3				
	fuphyperchol4				
If you have been newly	hypercholdiag	Max characters 50	Free text		
diagnosed, are you on	hypercholdiag1				
treatment, if so which	hypercholdiag2				
	hypercholdiag3				
	hypercholdiag4				
Since we last saw you,	fupstroke	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
have you been told by	fupstroke1				possible
a doctor that you have	fupstroke2				
had a stroke or	fupstroke3				
transient attack?	fupstroke4				
If yes, which type?	stroketype	Number: 1=Stroke,	Drop down: Stroke,	1=Stroke, 2=Transient	Only one option
	stroketype1	2=Transient Ischemic	Transient Ischemic	Ischemic Attack,	possible
	stroketype2	Attack, 999=Other	Attack, Other	999=Other	
	stroketype3				
	stroketype4				
If other, specify	stroketypeoth	Max characters 50	Free text		
	stroketypeoth1				
	stroketypeoth2				
	stroketypeoth3				
	stroketypeoth4				
If yes, when?	strokewhen	Date	dd/mm/yyyy		Should be ≥ visitdate
	strokewhen1				
	strokewhen2				
	strokewhen3				
	strokewhen4				
If yes, did you go to	strokehosp	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
hospital?	strokehosp1				possible
	strokehosp2				
	strokehosp3				
	strokehosp4				
If you did go to	strokeover	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
hospital, did you stay	strokeover1				possible

overnight?	strokeover2				
Ŭ	strokeover3				
	strokeover4				
Since we last saw you.	fundiab	Number: 0=No. 1=Yes	Drop down: No. Yes	0=No. 1=Yes. new	Only one option
have you been told by	fundiab1	new diagnosis 2=Was	new diagnosis Was	diagnosis 2=Was	possible
a doctor that you have	fundiah?	already diagnosed	already diagnosed	already diagnosed	F
diabetes?	fundiab3	an oddy diagnoood	anoday alagnooda	an oddy diagnoood	
diabetes :	fundiab4				
If you have been newly	diabtreat	Max characters 50	Free text		
diagnosed are you on	diabtreat1				
treatment if so which	diabtreat?				
	diabtreat3				
	diabtreat4				
Sinco wo saw you last	chostoain	Number: 1-Vec. 0-No	Drop down: Yos, No	1-Voc 0-No	Only one option
bayo you bad any pain	chestpain1		Drop down. Tes, No	1-165, 0-110	
or discomfort in your	chestpain?				possible
of disconnort in your	chestpain2				
Chest?	chestpairio				
16	cnestpain4	Numerican de Versi Oe Nis	Duran daring Mar. Na	4-X 0-N	Outra and and a
if yes, do you get pain	waikhurry	Number: 1=Yes, 0=No	Drop down: Yes, No	T=Yes, U=INO	Only one option
or discomfort when	waikhurry				possible
you walk uphill or	walkhurry2				
hurry?	walkhurry3				
	walkhurry4				
If yes, do you get it	walkord	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
when you walk at an	walkord1				possible
ordinary pace on the	walkord2				
level?	walkord3				
	walkord4				
If yes, when you get	pain	Number: 0=Stop,	Drop down: Stop, Slow	0=Stop, 1=Slow down,	Only one option
any pain or discomfort	pain1	1=Slow down,	down, Continue at the	2=Continue at the	possible
in your chest, what do	pain2	2=Continue at the	same pace	same pace	
you do?	pain3	same pace			
-	pain4				
If yes, does it go away	standstill	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
when you stand still?	standstill1		•		possible
	standstill2				
	standstill3				
	standstill4				
If ves, how soon?	howsoon	Number: 0=In ten	Drop down: In ten	0=In ten minutes or	Only one option
	howsoon1	minutes or less.	minutes or less. More	less. 1=More than ten	possible
	howsoon2	1=More than ten	than ten minutes	minutes	
	howsoon3	minutes			
	howsoon4	minutoo			
Where do you get this	nainsite	Max characters 50	Free text		
nain or discomfort?	nainsite1		1100 10/1		
	nainsite?				
	painsite2				
	painsited				
Since we caw you last	pamsne4	Number: 1-Vec. 0-No	Drop down: Yoo, No.	1-Voc 0-No	Only one option
Since we saw you last,	sevpain1		Drop down. Tes, No	1-165, 0-110	
nave you nau a severe	sevpairi sovpairi?				possible
pain across the ironit of	sevpain2				
your criest lasting hall	sevpains				
an nour or more?	sevpain4				
If yoo did you tally to -	talkdaa	Number: 1-Ves. 0-N-	Drop down: Ves. N-	1-Voc 0-N-c	Only one ortige
Il yes, did you talk to a	talkdoc	Number: 1= res, 0= No	Drop down: Yes, No	I= res, 0=NO	Only one option
uocior about it?	talk0001				possible
	Laikdocz				
	talkdoc3				
	talkdoc4				
vvnat did he/she say	doccom	Max characters 50	⊢ree text		
about it?	doccom 1				
	doccom2				
1	doccom3	1		1	1
	doccom4				
--------------------------	--------------	---------------------	--------------------	-------------	------------------------
How many of these	attacknum	Number	n		Must be in range 0-999
attacks have you had?	attacknum1				
	attacknum2				
	attacknum3				
	attacknum4				
Have you at any time	nightbreath	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
since we last saw you	nightbreath1				possible
been awoken at night	nightbreath2				
by an attack of	nightbreath3				
breathlessness?	nightbreath4				
Have you ever had	ankswell	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
noticeable swelling of	ankswell1				possible
your ankles for at least	ankswell2				
one week?	ankswell3				
	ankswell4				
Do you get pain in	legpain	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
either leg on walking?	legpain1				possible
	legpain2				
	legpain3				
	legpain4				

TABLE: Follow Up Questionnaire – 6, 12, 18, 24 and 32 months RESPIRATORY HEALTH AND COPD

RESPIRATORY HEA	LTH AND COPD	·			Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
Since we last saw you,	fuppulrehab	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
have you been on a	fuppulrehab1				possible
pulmonary	fuppulrehab2				
rehabilitation course?	fuppulrehab3				
	fuppulrehab4				
If yes, did you	rehabcomp	Number: 0=No,	Drop down: No, Yes,	0=No, 1=Yes,	Only one option
complete it?	rehabcomp1	1=Yes, 2=Ongoing	Ongoing	2=Ongoing	possible
	rehabcomp2				
	rehabcomp3				
	rehabcomp4				
Since we last saw you,	smokehab	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
have you changed your	smokehab1				possible
smoking habit?	smokehab2				-
-	smokehab3				
	smokehab4				
Stopped	fupsmkhabstop	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
	fupsmkhabstop1				possible
	fupsmkhabstop2				
	fupsmkhabstop3				
	fupsmkhabstop4				
When?	fupskhabstpwhen	Number	n months ago		Must be in range 0-250
	fupskhabstpwhen1				
	fupskhabstpwhen2				
	fupskhabstpwhen3				
	fupskhabstpwhen4				
Started	fupsmkhabstart	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
	fupsmkhabstart1				possible
	fupsmkhabstart2				-
	fupsmkhabstart3				
	fupsmkhabstart4				
How many / day?	fupshabstarnu	Number	n per day		Must be in range 0-999
	fupshabstarnu1				-
	fupshabstarnu2				
	fupshabstarnu3				
	fupshabstarnu4				

Tried to stop but	fupskhbrestart	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
restarted	fupskhbrestart1				possible
	fupskhbrestart2				
	fupskhbrestart3				
	fupskhbrestart4				
Changed amount	fupskhbchngeamt	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
-	fupskhbchngeamt1				possible
	fupskhbchngeamt2				-
	fupskhbchngeamt3				
	fupskhbchngeamt4				
How many / day?	fupshbchgeamt	Number	n per day		Must be in range 0-999
	fupshbchgeamt1				
	fupshbchgeamt2				
	fupshbchgeamt3				
	fupshbchgeamt4				
Other – e.g. cigars	fupsmkhabothers	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option
	fupsmkhabothers1				possible
	fupsmkhabothers2				
	fupsmkhabothers3				
	fupsmkhabothers4				
Which statement best	fupdescbreath	Number: 1=I only get	Drop down: I only get	1=I only get breathless	Only one option
describes your	fupdescbreath1	breathless with	breathless with	with strenuous	possible
breathlessness? -	fupdescbreath2	strenuous exercise,	strenuous exercise, l	exercise, 2=I get short	
MRC dyspnea score	fupdescbreath3	2=I get short of breath	get short of breath	of breath when	
	fupdescbreath4	when hurrying on the	when hurrying on the	hurrying on the level or	
		level or walking up a	level or walking up a	walking up a slight hill,	
		slight hill, 3=I walk	slight hill, I walk	3=I walk slower than	
		slower than people of	slower than people of	people of the same age	
		the same age on the	the same age on the	on the level because	
		level because of	level because of	of breathlessness or	
		breathlessness or	breathlessness or	have to stop for breath	
		have to stop for breath	have to stop for breath	when walking at my	
		when walking at my	when walking at my	own pace on the level,	
		own pace on the level,	own pace on the level,	4=I stop for breath	
		4=I stop for breath	I stop for breath after	after walking about 100	
		after walking about 100	walking about 100	yards or after a few	
		yards or after a few	yards or after a few	minutes on the level,	
		minutes on the level,	minutes on the level, I	5=I am too breathless	
		5=I am too breathless	am too breathless to	to leave the house or I	
		to leave the house or I	leave the house or I	am breathless when	
		am breathless when	am breathless when	dressing	
		drossing	drossing	4. 14	o
Which statement best	breathyn	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, U=NO	Only one option
describes your	breathyn1				possible
breathlessness? -	breathyn2				
MRC dyspnea score	breathyn3				
Have you had any	Dreaunyn4	Number: 1-Vec. 0-No	Drop down: Voc. No.	1-Voc 0-No	Only one option
	sterbrooth1	Number. 1- res, 0-110	Drop down. res, No	1- res, 0-100	
courses or steroids	ster breath?				possible
for your breathing?	sterbreath2				
for your breathing?	ster breath4				
If yoo hayy many	sterbreat 4	Numerow			Must be in serve 0.000
il yes, now many	sterbreyn	Number	n courses		wust be in range 0-999
courses	sterbreyni				
	sterbreynz				
	sterbreyn3				
	sterbreyn4			4. 14	o
Have you had any	antibreath	Number: 1=Yes, 0=No	Drop down: Yes, No	1= res, U=NO	Unity one option
courses of antibiotics	antibreath1				possible
since we last saw you	antibreath2				
ior your preathing?	antibreath3				
16	anubreath4	Ni, una la sur			Mustika in service 0,000
IT yes, now many	antibreyn	Number	n courses	1	IVIUST DE IN RANGE 0-999

courses	antibrevn1			
000.000	antibrevn?			
	antibrevn3			
	antibrevn4			

TABLE: Follow Up Questionnaire – 6, 12, 18, 24 and 32 months

GENERAL HEALTH					Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something	(name used in	(text, numerical, drop	(Y/N, drop down menu	(for stats purposes –	(Details of ALL
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)
what's on CRF)		date etc)	etc)	labelling in STATA)	
How many times have	gp	Number	n		Must be in range 0-999
you consulted your GP	gp1				
since we last saw	gp2				
you?	gp3				
	gp4				
Compared to 6 months	fuphealth	Number: 1=Much	Drop down: Much	1=Much better now	Only one option
ago, how would you	fuphealth1	better now than six	better now than six	than six months ago,	possible
rate your health in	fuphealth2	months ago,	months ago,	2=Somewhat better	
general now?	fuphealth3	2=Somewhat better	Somewhat better than	than six months ago,	
	fuphealth4	than six months ago,	six months ago, About	3=About the same as	
		3=About the same as	the same as six	six months ago,	
		six months ago,	months ago,	4=Somewhat worse	
		4=Somewhat worse	Somewhat worse than	than six months ago,	
		than six months ago,	six months ago, Much	5=Much worse than	
		5=Much worse than	worse than six months	six months and	
Since we last saw you,	weightch	Number: 0=No	Drop down: No	0= No change, 1=Lost	Only one option
have you noticed that	weightch1	change, 1=Lost weight	change, Lost weight	weight intentionally,	possible
your weight has	weightch2	intentionally, 2=Lost	intentionally, Lost	2=Lost weight	
changed?	weightch3	weight unintentionally,	weight unintentionally,	unintentionally,	
	weightch4	3=Gained weight	Gained weight	3=Gained weight	
On average, how	alchunit	Number	n units		Must be in range 0-999
much alcohol do you					
consume in a week?	alchunit1				1 unit = 1 small glass
	alchunit2				of wine (125mL) = 1⁄2
	alchunit3				pint of beer/ lager/
	alchunit4				cider = 25 ml pub
					measure of spirit

TABLE: Follow Up Questionnaire – 6, 12, 18, 24 and 32 months

HOSPITAL ADMISSIO	ON	5, 24 and 52 months			Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something meaningful relating to what's on CRF)	(name used in database)	(text, numerical, drop down with options, date etc)	(Y/N, drop down menu with options, free text etc)	(for stats purposes – used for variable labelling in STATA)	(Details of ALL validation)
For your breathing or COPD, have you been admitted to hospital (including A&E or admitted) since we last saw you?	copdhosp copdhosp1 copdhosp2 copdhosp3 copdhosp4	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
If yes, please specify the number of times in the last 6 months	copdnum copdnum 1 copdnum 2 copdnum 3 copdnum 4	Number	n		Must be in range 1-999
If yes, did you need to go to intensive care?	copdinten copdinten1 copdinten2 copdinten3 copdinten4	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option possible
Have you been	hosprea	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Only one option

admitted to hospital	hosprea1	1	1	1	possible
(including A&E, day	hosprea2				
case or admitted) for	hosprea3				
any other reason since	hosprea4				
we last saw you?					
If yes, please specify	hospnum	Number	n		Must be in range 1-999
the number of times	hospnum 1				
	hospnum2				
	hospnum3				
	hospnum4				
Please specify the	cause	Max characters 50	Free text		
reason for	cause1				
hospitalization(s)	cause2				
	cause3				
	cause4				
Please specify the	causemonth	Date	mm		Should be ≤ visitdate
dates (month)	causemonth1				
	causemonth2				
	causemonth3				
	causemonth4				
Please specify the	causeyear	Date	уууу		Should be ≤ visitdate
dates (year)	causeyear1				
	causeyear2				
	causeyear3				
	causevear4				

TABLE: Follow Up Questionnaire – 6, 12, 18, 24 and 32 months

MEDICATION					Home		
CRF field name	short field name	Field type	Description	Format	Validation rules		
(something (name used in (text, numerical, dro			(Y/N, drop down menu	(for stats purposes –	(Details of ALL		
meaningful relating to	database)	down with options,	with options, free text	used for variable	validation)		
what's on CRF)		date etc)	etc)	labelling in STATA)			
Please list below your	meds	Max characters 50	Free text				
medication	meds1						
	meds2						
	meds3						
	meds4						
Is this a new	newpres	Number: 1=Yes, 0=No	Drop down: Yes, No	1=Yes, 0=No	Multiple responses		
prescription since we	newpres1				possible		
last saw you?	newpres2						
	newpres3						
	newpres4						

TABLE: Follow Up Questionnaire – 6, 12, 18, 24 and 32 months

ACTIVITIES		o, 1 i and 01 include			Home
CRF field name	short field name	Field type	Description	Format	Validation rules
(something meaningful relating to what's on CRF)	(name used in database)	(text, numerical, drop down with options, date etc)	(Y/N, drop down menu with options, free text etc)	(for stats purposes – used for variable labelling in STATA)	(Details of ALL validation)
How often do you take part in sports or activities that are mildly energetic, moderately energetic	sportdr sportdr1 sportdr2 sportdr3 sportdr4	Number: 1=Mildly energetic, 2=Moderately energetic, 3=Vigorous	Drop down: Mildly energetic, Moderately energetic, Vigorous	1=Mildly energetic, 2=Moderately energetic, 3=Vigorous	Multiple options possible
How often do you take part in sports or activities that are mildly energetic, moderately energetic or vigorous?	sportscaledr sportscaledr1 sportscaledr2 sportscaledr3 sportscaledr4	Number: 0=Never/ hardly ever, 1=Three times a week, 2=Once or twice a week, 3=About once or three times a month	Drop down: Never/ hardly ever, Three times a week, Once or twice a week, About once or three times a month	0=Never/ hardly ever, 1=Three times a week, 2=Once or twice a week, 3=About once or three times a month	Multiple options possible
On average, for how	weekwalkhr	Number	n hrs		Must be in range 0-24

long did you walk	weekwalkhr1			If not walked, enter '00'
outside your	weekwalkhr2			
home/workplace on	weekwalkhr3			
each weekday?	weekwalkhr4			
On average, for how	weekwalkmin	Number	n min	Must be in range 0-60
long did you walk	weekwalkmin1			If not walked, enter '00'
outside your	weekwalkmin2			
home/workplace on	weekwalkmin3			
each weekday?	weekwalkmin4			
On average, for how	wnkdwalkhr	Number	n hrs	Must be in range 0-24
long did you walk	wnkdwalkhr1			If not walked, enter '00'
outside your	wnkdwalkhr2			
home/workplace on	wnkdwalkhr3			
each weekend day?	wnkdwalkhr4			
On average, for how	wnkdwalkmin	Number	n min	Must be in range 0-60
long did you walk	wnkdwalkmin1			If not walked, enter '00'
outside your	wnkdwalkmin2			
home/workplace on	wnkdwalkmin3			
each weekend day?	wnkdwalkmin4			

Appendix E: causes of death

Category	Category Cancer	Pulmonary Other	Pulmonary Pulmonary Cancer Cancer	Cancer Other Cardiac	Fulmonary Pulmonary Other	Pulmonary Cardiac	Cancer	Pulmonary Cancer Other	Pulmonary	Pulmonary Pulmonary Pulmonary	Pulmonary Pulmonary Pulmonary Cancer	Cardiac Cancer Pulmonary Cancer
Description	Description 4 Type II diabetes; COPD;	AF COPD; chronic nephritic syndrome		COPD				Severe COPD		Type 2 respiratory failure Ischaemic heart disease;	hypertension Severe COPD	COPD Multiple meloma
Description 3	Description 3 Bladder cancer; ischaemic	heart disease Angina; atrial fibrillation Diverticular disease	Polymyalgia rheumatica Bronchiectasis Lung Cancer	COPD Diabetes mellitus; hyper- tension Essential hypertension	Cigarette smoking Suicide	Abdominal aortic aneurysm; bladder cancer;	COPD Type 2 diabetes	Severe COPD Cerebral lymphoma COPD; pneumothorax	Severe pulmonary hyper- tension	Congestive cardiac failure Severe COPD	End stage COPD Influenza A Bronchopneumonia COPD	COPD Bronchopneumonia Follicular non-hodgkins lymphoma
Description 2	Description 2 Metastatic renal carcinoma	Colovesical fistula	Unknown Unknown Metastatic cancer - unknown	origin Lung cancer Aortic stenosis, COPD; type two diabetes Cerebrovascular accident	transtent ischaemic attack; right femoral fracture COPD COPD	COPD	Metastatic gastric adenocarci-	noma Infective exacerbation of COPD Exact cause of death unknown, post mortem results showed bullous emphysema and moder-	ate coronary artery disease Severe COPD	Fractured neck of femur-right COPD	Infective exacerbation COPD Severe COPD	Ischeamic heart disease Chronic lymphocytic leukemia COPD COPD
Description 1	Description 1 Carcinomatosis	Infective exacerbation of COPD Haemorrhage Per Urethra	End stage COPD Infective exacerbation of COPD Bronchopneumonia Pulmonary haemorrhage Metastatic cancer	Carcinomatosis Caecal volvulus with large bowel ischaemia Aspiration pneumonia	Aspiration pneumonia Pneumonia COPD Mixed drug Intoxication (mor-	phine and tramadol) Bronchopneumonia Myocardial infarction	Pneumonia	Infective exacerbation of COPD Cerebral lymphoma Pulmonary embolus	Respiratory failure	Hospital acquired pneumonia Type 2 respiratory failure Pneumonia	End stage COPD Multi-organ failure Bronchopneumonia Bronchial carcinoma	Myocardial infarction Aspiration pneumonia Bronchopneumonia Multiple myeloma
ID	1 D	$^{12}_{20}$	39 76 230 279	416 450 487	576 576 584 607	$645 \\ 661$	685	$841 \\ 924 \\ 956$	964	$1093 \\ 1103 \\ 1147$	$1155 \\1171 \\1225 \\1250 \\1250 \\$	$\begin{array}{c} 1284 \\ 1346 \\ 1359 \\ 1368 \\ 1368 \end{array}$
#	$^{\#}$	03 M	450678	$\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	13 + 13 12	$16 \\ 17$	18	$ \begin{array}{c} 19 \\ 20 \\ 21 \end{array} $	22	$^{23}_{25}$	$^{26}_{29}$	$33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 32 \\ 33 \\ 32 \\ 33 \\ 32 \\ 33 \\ 33 \\ 32 \\ 33 \\ 32 \\ 33 \\ 32 \\ 33 \\$

Table 1: Cause of death (n = 149)

Category	Pulmonary Other	Cancer Other	Pulmonary	Cardiac Cancer	Pulmonary	Cardiac Pulmonary	Pulmonary	Cardiac Pulmonary Cardiac	Cancer Other Cancer	Cancer	Cancer	Cardiac Pulmonary	Cancer	Cardiac Pulmonary	Pulmonary	Cancer Pulmonary Pulmonary	Cardiac Cancer Pulmonary	Dulmonary	Other Dulmonany	Other Pulmonary	Pulmonary Pulmonary
Description 4		COPD			Bilateral bronchopneumo-	nia						Chronic obstructive airway	arsease								
Description 3		COPD E859	Atrial fibrillation	Coplications of metastatis	melanoma Left ventricular heart fail-	ure COPD Sacral insufficiency frac-	ture Cancer of the jaw (oper-	auea) Ischaemic heart disease			Sarcomatoid carcinoma of	COPD				COPD COPD	Previous pulmonary em-	bolism; carcinoma colon	Sepsis	Bile leak	Ischemic heart disease
Description 2		Amyloidosis		Ischaemic heart disease	Diabetes	COPD	COPD	Congestive heart failure Bronchopneumonia		Lung cancer		Ventilatory failure		COPD	COPD	Chest					COPD; metastatic bladder can- cer
Description 1	Presumed COPD Possible ruptured abdominal	aortıc aneurysm Right bronchopneumonia Septic shock	Probable exacerbation of COPD	Myocardial infarction Complications of metastatic	melanoma COPD	Ischaemic heart disease Pneumonia	Pneumonia	Congestive cardiac failure Sepsis Ischaemic heart disease	Oesophageal carcinoma Urosepsis Metastatic lung carcinoma	Metastatic adenocarcinoma of left lung	Bronchopneumonia	Cardiac arrest (in hospital) Ventilatory failure	Metastatic adenocarcinoma of	lung Coronary artery atheroma Community acquired pneumo-	nia Infective exacerbation of COPD	Acture inversion reusaerina Bilateral pneumonia Hospital acquired pneumonia	Ischaemic heart disease Rectal carcinoma COPD	COPD	Multi organ failure Bronchonnannia	Sepsis Infective exacerbation of COPD	Infective exacerbation of CUPD Chest infection
Ð	$1386 \\ 1420$	$\begin{array}{c} 1436\\ 1476\end{array}$	1516	$\begin{array}{c} 1543\\ 1610 \end{array}$	1714	$\begin{array}{c} 1768\\ 1826\end{array}$	1860	$1890 \\ 1925 \\ 1983$	2007 2120 2144	2172	2198	$2206 \\ 2239$	2263	$2312 \\ 2336$	2352	2379 2379 2468	$2534 \\ 2554 \\ 2573 \\ $	2668	2684 2684	2737	2825 2909
#	$35 \\ 35$	$36 \\ 37$	38	$^{39}_{40}$	41	$42 \\ 43$	44	45 46 47	$^{48}_{50}$	51	52	5354	55	56 57	58	60 61	$62 \\ 63 \\ 64 \\ 64 \\ 62 \\ 62 \\ 64 \\ 64 \\ 64 \\ 64$	65	66 67	8969	02 12

Category	Pulmonary Pulmonary	Cancer	Pulmonary Cancer	Cardiac	Cancer	Pulmonary	Cardiac	Pulmonary Pulmonary	Pulmonary	Cardiac Pulmonary Cardiac	Pulmonary Cancer Cancer	Cancer Pulmonary Pulmonary	Cancer	Pulmonary	Cauteer Pulmonary Pulmonary	Pulmonary Pulmonary	Other Cardiac Pulmonary	Pulmonary	Other	Cardiac	r umonary Pulmonary	Pulmonary	Cancer Pulmonary	Pulmonary Pulmonary
Description 4													COPD; hypertension											
Description 3	Large ovarian cystic mass Chronic cardiac failure			Ischaemic heart disease	COPD	COPD; sigmoid lesion (op-	erated) Ischaemic and valvular heart disease	COPD	Chronic congestive cardiac failure		Metastatic lung cancer	COPD	Chronic obstructive airway	disease Atrial fibrillation	Bronchiectasis		ischaemic bowel		High grade brain tumour	Atrial fibrillation	COPD; pulmonary embo-	lus	Severe aortic stenosis (op-	COPD
Description 2	COPD Severe COPD	Lung adenocarcinoma	COPD	Chest/heart	~	Pneumonia			COPD	Aortic dissection		COPD		COPD							CUPD	COPD	COPD	
Description 1	Respiratory sepsis Tvpe two respiratory failure	Bronchopneumonia	Kecurrent pneumonia Metastatic pancreatic cancer	Cardiomegaly	Metastatic carcinoma colon	Sepsis	Acute pulmonary oedema	Infective exacerbation of COPD Community acquired pneumo-	nia Pneumonia	Haemopericardium COPD Coronary artery thrombosis	Bronchopneumonia Carcinomatosis Pancreatic cancer with metas-	tases Metastatic oesophageal cancer Type II respiratory failure Type II respiratory failure	Metastatic lung cancer	Aspiration pneumonia	Diffuence carcinoma Infective exacerbation of COPD End stage COPD	End stage COPD COPD	Bowel perforation Ischaemic heart disease	Acute exacerbation COPD	Intracerebral naemorrnage End stage dementia	Cerebrovascular accident	respiratory failure Pneumonia	Cardiomegaly	Mevasuanc cancer or stomacn Hospital acquired pneumonia	End stage severe COPD Pneumonia
ID	$2997 \\ 3025$	3033	3042 3070	3137	3245	3314	3402	$3663 \\ 3719$	3727	$3768 \\ 3901 \\ 3929 \\ 4000 \\ $	4000 4056 4064	$\begin{array}{c} 4149 \\ 4321 \\ 4329 \\ 4329 \\ 4328 \end{array}$	4450	4474	$4502 \\ 4592 \\ 4643 \\ $	4661 4684	4744 4757 4790	4829	4840	4910	, 495 <i>(</i>) 4962	1983	5103	5120 5128
#	42 73	74	92 92	77	78	79	80	81 82	83	$^{86}_{10}$	88 88 89	$\begin{array}{c} 90 \\ 92 \\ 92 \\ 03 \end{array}$	94 94	95	06 280	99 100	$101 \\ 102 \\ 103 $	104	105	107	105	110	112	$113 \\ 114$

. #	Ð	Description 1	Description 2	Description 3	Description 4	Category
115	5152 5167	Lung cancer Bone and cerebral metastasis	Cancer	Mixed large cell and small cell carcinoma of lung		Cancer Cancer
117	5192	Respiratory failure Henatocellular carcinoma	Unknown	Severe COPD	Unknown	Pulmonary Cancer
119	5288	Heart attack		Pancreatitis		Cardiac
121	5340 5340	Pancreatic cancer Community acquired pneumo-				Cancer Pulmonary
122	5402	nia Metastatic adenocarcinoma of	Renal Failure			Cancer
123	5460	the lung End stage COPD Multiorgan failure		Chest sepsis on a back-		Pulmonary Pulmonary
125	5643	Acute kidney failure		ground of severe COPD COPD end stage		Pulmonary
126	5703 5735	Bronchopneumonia Hospital acquired pneumonia;	Severe COPD	Hypertension		Pulmonary Pulmonary
128	5761	pulmonary embolism Aspiration pneumonia	Oesophageal adenocarcinoma	Lung cancer		Cancer
129	5876 5892	Metastatic breast carcinoma Chest sepsis	Severe COPD on long term oxy-			Cancer Pulmonary
131 132 133 133	5905 6002 6135	Respiratory failure Infective exacerbation of COPD Pancreatic cancer	gen therapy	COPD Myelo dysplasia		Pulmonary Pulmonary Cancer
136 - 135 136 - 136	$0140 \\ 6156 \\ 6168 \\ 0168 \\ 0168 \\ 0168 \\ 0140 \\ $	Acute exacerbation of COPD Pneumonia	Infective exacerbation of COPD Haemorrhagic pancreatitis	Gallstones	Diabetes type II	r unnonary Pulmonary Other
137 138	6200 6224 5254	COPD Hospital acquired pneumonia	Exacerbation of COPD	End stage COPD		Pulmonary Pulmonary
139 140 141	$\begin{array}{c} 0234 \\ 6382 \\ 5398 \end{array}$	Broncnopneumonia Unascertained Chest Infection		Ubstructive airway disease Open conclusion COPD		r umonary Other Pulmonary
$142 \\ 143$	6463	Bronchopneumonia COPD	Infective exacerbation of COPD	COPD Cerebrovascular disease		Pulmonary Pulmonary
144	6531 6555	End stage COPD Type two respiratory failure		Severe COPD		Pulmonary Pulmonary
146	6581	Respiratory failure secondary to	Infective exacerbation of COPD			Pulmonary
147 148 149	$6589 \\ 6600 \\ 6615$	Acute left ventricular failure Metastatic lung cancer COPD		Ischaemic heart disease		Cardiac Cancer Pulmonary
Abbrev	iation	<i>us</i> : COPD, chronic obstructive I	pulmonary disease			

Bibliography

- Abraham, G., Havulinna, A. S., Bhalala, O. G., Byars, S. G., De Livera, A. M., Yetukuri, L., Tikkanen, E., Perola, M., Schunkert, H., Sijbrands, E. J., Palotie, A., Samani, N. J., Salomaa, V., Ripatti, S., & Inouye, M. (2016). Genomic prediction of coronary heart disease. *European Heart Journal*, 37(43), 3267–3278. 205
- [2] Agniel, D., Kohane, I. S., & Weber, G. M. (2018). Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. *BMJ*, 361.
 201
- [3] Agusti, A. (2007). Systemic effects of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 4(7), 522–525.
- [4] Agusti, A., Bel, E., Thomas, M., Vogelmeier, C., Brusselle, G., Holgate, S., Humbert, M., Jones, P., Gibson, P. G., Vestbo, J., Beasley, R., & Pavord, I. D. (2016). Treatable traits: toward precision medicine of chronic airway diseases. *Eur Respir J*, 47(2), 410–419. 8, 11
- [5] Agusti, A., Edwards, L. D., Celli, B., Macnee, W., Calverley, P. M. A., Mullerova, H., Lomas, D. A., Wouters, E., Bakke, P., Rennard, S., Crim, C., Miller, B. E., Coxson, H. O., Yates, J. C., Tal-Singer, R., Vestbo, J., & ECLIPSE Investigators (2013). Characteristics, stability and outcomes of the 2011 GOLD COPD groups in the ECLIPSE cohort. *European Respiratory Society*, 42(3), 636–46. 21, 29
- [6] Agusti, A., Edwards, L. D., Rennard, S. I., MacNee, W., Tal-Singer, R., Miller, B. E., Vestbo, J., Lomas, D. A., Calverley, P. M., Wouters, E., Crim, C., Yates, J. C., Silverman, E. K., Coxson, H. O., Bakke, P., Mayer, R. J., Celli, B., & ECLIPSE Investigators (2012).

Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. *PLOS One*, 7(5), e37483. 12, 29

- [7] Agusti, A., Sobradillo, P., & Celli, B. (2011). Addressing the complexity of chronic obstructive pulmonary disease: from phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine. Am J Respir Crit Care Med, 183(9), 1129–37. 32
- [8] Ai-Ping, C., Lee, K. H., & Lim, T. K. (2005). In-hospital and 5-year mortality of patients treated in the ICU for acute exacerbation of COPD: a retrospective study. *CHEST*, 128(2), 518–24. 129
- [9] Altman, D. G. (1990). Practical statistics for medical research. CRC press. 102
- [10] Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. (2009). Prognosis and prognostic research: validating a prognostic model. *BMJ*, 338, b605. 10, 102, 185
- [11] American Thoracic Society and American College of Chest Physicians (2003). ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med, 167(2), 211–77.
 9
- [12] Anderson, L., Oldridge, N., Thompson, D. R., Zwisler, A. D., Rees, K., Martin, N., & Taylor, R. S. (2016). Exercise-based cardiac rehabilitation for coronary heart disease cochrane systematic review and meta-analysis. *Journal of the American College of Cardiology*, 67(1), 1–12. 195
- [13] Antonelli-Incalzi, R., Corsonello, A., Pedone, C., Trojano, L., Acanfora, D., Spada, A., Izzo, O., & Rengo, F. (2006). Drawing impairment predicts mortality in severe COPD. *CHEST*, 130(6), 1687–1694. 29, 34
- [14] ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories
 (2002). ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med, 166(1), 111–7. 58

- [15] Bafadhel, M., McKenna, S., Terry, S., Mistry, V., Reid, C., Haldar, P., McCormick, M., Haldar, K., Kebadze, T., Duvoix, A., Lindblad, K., Patel, H., Rugman, P., Dodson, P., Jenkins, M., Saunders, M., Newbold, P., Green, R. H., Venge, P., Lomas, D. A., Barer, M. R., Johnston, S. L., Pavord, I. D., & Brightling, C. E. (2011). Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med, 184(6), 662–71. 29
- [16] Bajekal, M., Scholes, S., Love, H., Hawkins, N., O'Flaherty, M., Raine, R., & Capewell, S. (2012). Analysing recent socioeconomic trends in coronary heart disease mortality in England, 2000–2007: A population modelling study. *PLOS Med*, 9(6), 1–14. 151
- [17] Barnes, P. J. & Celli, B. R. (2009). Systemic manifestations and comorbidities of copd.
 Eur Respir J, 33(5), 1165–1185. 3, 21
- [18] Bell, S., Daskalopoulou, M., Rapsomaniki, E., George, J., Britton, A., Bobak, M., Casas, J. P., Dale, C. E., Denaxas, S., Shah, A. D., & Hemingway, H. (2017). Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records. *BMJ*, 356, j909. 196
- [19] Ben-Shlomo, Y., Spears, M., Boustred, C., May, M., Anderson, S. G., Benjamin, E. J., Boutouyrie, P., Cameron, J., Chen, C.-H., Cruickshank, J. K., Hwang, S.-J., Lakatta, E. G., Laurent, S., Maldonado, J., Mitchell, G. F., Najjar, S. S., Newman, A. B., Ohishi, M., Pannier, B., Pereira, T., Vasan, R. S., Shokawa, T., Sutton-Tyrell, K., Verbeke, F., Wang, K.-L., Webb, D. J., Willum Hansen, T., Zoungas, S., McEniery, C. M., Cockcroft, J. R., & Wilkinson, I. B. (2014). Aortic pulse wave velocity improves cardiovascular event prediction. *Journal of the American College of Cardiology*, 63(7), 636. 13
- [20] Bernabeu-Mora, R., Medina-Mirapeix, F., & Llamazares-Herran, E. (2016). The short physical performance battery is a discriminative tool for identifying patients with COPD at risk of disability. *International Journal of COPD*, 11, 623–623. 58, 101

- [21] Bhatnagar, P., Wickramasinghe, K., Wilkins, E., & Townsend, N. (2016). Trends in the epidemiology of cardiovascular disease in the uk. *Heart*, 102(24), 1945–1952. 151
- [22] Blanchette, C. M., Gross, N. J., & Altman, P. (2014). Rising costs of COPD and the potential for maintenance therapy to slow the trend. Am Health Drug Benefits, 7(2), 98–106.
 150
- [23] Blumenthal, J. A., Smith, P. J., Durheim, M., Mabe, S., Emery, C. F., Martinu, T., Diaz, P. T., Babyak, M., Welty-Wolf, K., & Palmer, S. (2016). Biobehavioral prognostic factors in chronic obstructive pulmonary disease: Results from the INSPIRE-II trial. *Psychosomatic Medicine*, 78(2), 153–162. 29, 32, 34, 53
- [24] Bone, A. E., Hepgul, N., Kon, S., & Maddocks, M. (2017). Sarcopenia and frailty in chronic respiratory disease. *Chron Respir Dis*, 14(1), 85–99. 206
- [25] Bots, M. L., Grobbee, D. E., Hofman, A., & Witteman, J. C. (2005). Common carotid intima-media thickness and risk of acute myocardial infarction: the role of lumen diameter. *Stroke*, 36(4), 762–7. 13
- [26] Bots, M. L., Hoes, A. W., Koudstaal, P. J., Hofman, A., & Grobbee, D. E. (1997). Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam study. *Circulation*, 96(5), 1432–7. 13
- [27] Bouwmeester, W., Zuithoff, N. P., Mallett, S., Geerlings, M. I., Vergouwe, Y., Steyerberg,
 E. W., Altman, D. G., & Moons, K. G. (2012). Reporting and methods in clinical prediction research: a systematic review. *PLOS Med*, 9(5), 1–12. 10
- [28] Briggs, A., Spencer, M., Wang, H., Mannino, D., & Sin, D. D. (2008). Development and validation of a prognostic index for health outcomes in chronic obstructive pulmonary disease. *Arch Intern Med*, 168(1), 71–9. 100

- [29] British Thoracic Society and the Primary Care Respiratory Society UK (2012). IMPRESS Guide to the relative value of COPD interventions. Report, British Thoracic Society. 8, 20
- [30] Bu, X. N., Yang, T., Thompson, M. A., Hutchinson, A. F., & Irving, L. B. (2011). Changes in the BODE index, exacerbation duration and hospitalisation in a cohort of COPD patients. *Singapore Medical Journal*, 52(12), 894–900. 29
- [31] Budweiser, S., Hitzl, A. P., Joerres, R. A., Schmidbauer, K., Heinemann, F., & Pfeifer, M. (2007). Health-related quality of life and long-term prognosis in chronic hypercapnic respiratory failure: a prospective survival analysis. *Respiratory Research*, 8, 29, 34, 48
- [32] Burrows, B. & Earle, R. H. (1969). Course and prognosis of chronic obstructive lung disease.
 N Engl J Med, 280(8), 397–404. 129
- [33] Cano, N. J., Pichard, C., Roth, H., Court-Fortuné, I., Cynober, L., Gérard-Boncompain, M., Cuvelier, A., Laaban, J. P., Melchior, J. C., Raphaël, J. C., & Pison, C. M. (2004).
 C-reactive protein and body mass index predict outcome in end-stage respiratory failure. *CHEST*, 126(2), 540–546. 29, 34, 42
- [34] Carter, R., Nicotra, B., Blevins, W., & Holiday, D. (1993). Altered exercise gas exchange and cardiac function in patients with mild chronic obstructive pulmonary disease. *CHEST*, 103(3), 745–50. 3
- [35] Casanova, C., Cote, C., de Torres, J. P., Aguirre-Jaime, A., Marin, J. M., Pinto-Plata, V., & Celli, B. R. (2005). Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 171(6), 591–7. 124
- [36] Casanova, C., Cote, C., Marin, J. M., Pinto-Plata, V., de Torres, J. P., Aguirre-Jaime, A., Vassaux, C., & Celli, B. R. (2008). Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. *CHEST*, 134(4), 746–52. 29, 33

- [37] Cavaillès, A., Brinchault-Rabin, G., Dixmier, A., Goupil, F., Gut-Gobert, C., Marchand-Adam, S., Meurice, J.-C., Morel, H., Person-Tacnet, C., Leroyer, C., et al. (2013). Comorbidities of COPD. *European Respiratory Review*, 22(130), 454–475. 207
- [38] Celli, B., Tetzlaff, K., Criner, G., Polkey, M. I., Sciurba, F., Casaburi, R., Tal-Singer, R., Kawata, A., Merrill, D., Rennard, S., & Consortium, C. B. Q. (2016). The 6-minute walk test as a COPD stratification tool: insights from the COPD biomarker qualification consortium. *Am J Respir Crit Care Med.* 14
- [39] Celli, B., Vestbo, J., Jenkins, C. R., Jones, P. W., Ferguson, G. T., Calverley, P. M. A., Yates, J. C., Anderson, J. A., Willits, L. R., Wise, R. A., & TORCH Study Investigators (2011). Sex differences in mortality and clinical expressions of patients with chronic obstructive pulmonary disease the torch experience. Am J Respir Crit Care Med, 183(3), 317–322. 129
- [40] Celli, B. R., Cote, C. G., Marin, J. M., Casanova, C., Montes de Oca, M., Mendez, R. A., Pinto Plata, V., & Cabral, H. J. (2004a). The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med, 350(10), 1005–12. 10, 99, 100, 101, 183
- [41] Celli, B. R., Locantore, N., Tal-Singer, R., Riley, J., Miller, B., Vestbo, J., Yates, J. C., Silverman, E. K., Owen, C. A., Divo, M., Pinto-Plata, V., Wouters, E. F. M., Faner, R., Agusti, A., & ECLIPSE Investigators (2018). Emphysema and extrapulmonary tissue loss in COPD: a multi-organ loss of tissue phenotype. *Eur Respir J*, 51(2). 207
- [42] Celli, B. R., Locantore, N., Yates, J., Tal-Singer, R., Miller, B. E., Bakke, P., Calverley, P., Coxson, H., Crim, C., Edwards, L. D., Lomas, D. A., Duvoix, A., MacNee, W., Rennard, S., Silverman, E., Vestbo, J., Wouters, E., Agustí, A., Celli, B. R., & Locantore, N. (2012). Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 185(10), 1065–1072. 29, 32, 34, 38, 48, 49, 100, 124

- [43] Celli, B. R., MacNee, W., & Force, A. E. T. (2004b). Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. *Eur Respir* J, 23(6), 932–46. 3, 21
- [44] Cesari, M., Landi, F., Vellas, B., Bernabei, R., & Marzetti, E. (2014). Sarcopenia and physical frailty: two sides of the same coin. *Front Aging Neurosci*, 6, 192. 207
- [45] Chen, C. Z., Ou, C. Y., Yu, C. H., Yang, S. C., Chang, H. Y., & Hsiue, T. R. (2015a). Comparison of global initiative for chronic obstructive pulmonary disease 2013 classification and body mass index, airflow obstruction, dyspnea, and exacerbations index in predicting mortality and exacerbations in elderly adults with chronic obstructive pulmonary disease. J Am Geriatr Soc, 63(2), 244–50. 11
- [46] Chen, W., Thomas, J., Sadatsafavi, M., & FitzGerald, J. M. (2015b). Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. *Lancet Respir Med*, 3(8), 631–9. 129, 181
- [47] Chen, Y. W., Leung, J. M., & Sin, D. D. (2016). A systematic review of diagnostic biomarkers of COPD exacerbation. *PLOS One*, 11(7), e0158843. 21, 205
- [48] Chung, L. P., Lake, F., Hyde, E., McCamley, C., Phuangmalai, N., Lim, M., Waterer, G., Summers, Q., & Moodley, Y. (2016). Integrated multidisciplinary community service for chronic obstructive pulmonary disease reduces hospitalisations. *Intern Med J*, 46(4), 427–34. 8, 20
- [49] Cinarka, H., Kayhan, S., Gumus, A., Durakoglugil, M. E., Erdogan, T., Ezberci, I., Yavuz, A., Ozkaya, S., & Sahin, U. (2013). Arterial stiffness measured by carotid femoral pulse wave velocity is associated with disease severity in chronic obstructive pulmonary disease. *Respiratory Care.* 52
- [50] Claes, L., Recknagel, S., & Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. *Nature Reviews Rheumatology*, 8(3), 133–143. 207

- [51] Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Elsevier Science.
 60, 83, 160, 185
- [52] Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (tripod). Ann Intern Med, 162(10), 735–6. 9, 11, 101
- [53] Connors, A. F., J., Dawson, N. V., Thomas, C., Harrell, F. E., J., Desbiens, N., Fulkerson, W. J., Kussin, P., Bellamy, P., Goldman, L., & Knaus, W. A. (1996). Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (study to understand prognoses and preferences for outcomes and risks of treatments). Am J Respir Crit Care Med, 154(4 Pt 1), 959–67. 129
- [54] Cooper, C. B., Barjaktarevic, I., Curtis, J., Martinez, C., Bowler, R. P., O'Neal, W., Hoffman, E. A., Carretta, E. E., Qibrera, M., & Barr, R. (2017). A103. a novel debility score predicts future exacerbations and death in SPIROMICS. *Am Thoracic Soc*, 1073-449X, A2721–A2721. 54
- [55] Cote, C. G., Casanova, C., Marin, J. M., Lopez, M. V., Pinto-Plata, V., De Oca, M. M., Dordelly, L. J., Nekach, H., & Celli, B. R. (2008a). Validation and comparison of reference equations for the 6-min walk distance test. *Eur Respir J*, 31(3), 571–578. 29, 33
- [56] Cote, C. G., Dordelly, L. J., & Celli, B. R. (2007a). Impact of COPD exacerbations on patient-centered outcomes. *CHEST*, 131(3), 696–704. 29, 33
- [57] Cote, C. G., Pinto-Plata, V., Kasprzyk, K., Dordelly, L. J., & Celli, B. R. (2007b). The 6-min walk distance, peak oxygen uptake, and mortality in COPD. CHEST, 132(6), 1778–85.
 29, 32, 34, 38
- [58] Cote, C. G., Pinto-Plata, V. M., Marin, J. M., Nekach, H., Dordelly, L. J., & Celli, B. R. (2008b). The modified BODE index: validation with mortality in COPD. *Eur Respir J*, 32(5), 1269–74. 29, 100

- [59] Crisafulli, E., Costi, S., Luppi, F., Cirelli, G., Cilione, C., Coletti, O., Fabbri, L. M., & Clini, E. M. (2008). Role of comorbidities in a cohort of patients with COPD undergoing pulmonary rehabilitation. *Thorax*, 63(6), 487–92. 8, 20
- [60] Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J. P., Rolland, Y., Schneider, S. M., Topinkova, E., Vandewoude, M., Zamboni, M., & European Working Group on Sarcopenia in Older People (2010). Sarcopenia: European consensus on definition and diagnosis: Report of the european working group on sarcopenia in older people. Age Ageing, 39(4), 412–23. 207
- [61] Csanyi, A. & Egervari, A. (1996). Simple clinical method of average intima-media thickness measurement in the common carotid artery. Vasa-Journal of Vascular Diseases, 25(3), 242– 248. 183
- [62] D'Agostino, R. B., Vasan, R. S., Pencina, M. J., Wolf, P. A., Cobain, M., Massaro, J. M., & Kannel, W. B. (2008). General cardiovascular risk profile for use in primary care. *Circulation*, 117(6), 743–753. 181
- [63] Dahl, M., Tybjærg-Hansen, A., Vestbo, J., Lange, P., & Nordestgaard, B. G. (2001). Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 164(6), 1008–1011. 29
- [64] Dahl, M., Vestbo, J., Lange, P., Bojesen, S. E., Tybjaerg-Hansen, A., & Nordestgaard,
 B. G. (2007). C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 175(3), 250–255. 29
- [65] Dahl, M., Vestbo, J., Zacho, J., Lange, P., Tybjaerg-Hansen, A., & Nordestgaard, B. G. (2011). C reactive protein and chronic obstructive pulmonary disease: a mendelian randomisation approach. *Thorax*, 66(3), 197–204. 29, 42
- [66] Dajczman, E., Wardini, R., Kasymjanova, G., Prefontaine, D., Baltzan, M. A., & Wolkove, N. (2015). Six minute walk distance is a predictor of survival in patients with chronic obstruc-

tive pulmonary disease undergoing pulmonary rehabilitation. *Canadian Respiratory Journal*, 22(4), 225–9. 29, 33, 34

- [67] Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlussel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. *BMJ*, 353, i2416. 210
- [68] Davies, S. (2018). Annual report of the chief medical officer 2017. 7
- [69] De Martinis, M., Franceschi, C., Monti, D., & Ginaldi, L. (2005). Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. *FEBS Letters*, 579(10), 2035–2039. 3
- [70] de Ruijter, W., Westendorp, R. G., Assendelft, W. J., den Elzen, W. P., de Craen, A. J., le Cessie, S., & Gussekloo, J. (2009). Use of framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. *BMJ*, 338, a3083. 181
- [71] de Torres, J. P., Cote, C. G., Lopez, M. V., Casanova, C., Diaz, O., Marin, J. M., Pinto-Plata, V., de Oca, M. M., Nekach, H., Dordelly, L. J., Aguirre-Jaime, A., & Celli, B. R. (2009). Sex differences in mortality in patients with COPD. Eur Respir J, 33(3), 528–35. 129
- [72] de Torres, J. P., Pinto-Plata, V., Casanova, C., Mullerova, H., Cordoba-Lanus, E., de Fuentes, M. M., Aguirre-Jaime, A., & Celli, B. R. (2008). C-reactive protein levels and survival in patients with moderate to very severe COPD. *CHEST*, 133(6), 1336–1343. 29, 32, 34, 42
- [73] Den Ruijter, H. M., Peters, S. A. E., Anderson, T. J., Britton, A. R., Dekker, J. M., Eijkemans, M. J., Engström, G., Evans, G. W., de Graaf, J., Grobbee, D. E., Hedblad, B.,

Hofman, A., Holewijn, S., Ikeda, A., Kavousi, M., Kitagawa, K., Kitamura, A., Koffijberg,
H., Lonn, E. M., Lorenz, M. W., Mathiesen, E. B., Nijpels, G., Okazaki, S., O'Leary, D. H.,
Polak, J. F., Price, J. F., Robertson, C., Rembold, C. M., Rosvall, M., Rundek, T., Salonen,
J. T., Sitzer, M., Stehouwer, C. D. A., Witteman, J. C., Moons, K. G., & Bots, M. L. (2012).
Common Carotid Intima-Media Thickness Measurements in Cardiovascular Risk Prediction:
A Meta-analysisCarotid Intima-Media Thickness and Risk Prediction. JAMA, 308(8), 796–803. 181

- [74] Deng, Z. C., Zhao, P., Cao, C., Sun, S. F., Zhao, F., Lu, C. Y., & Ma, H. Y. (2014). Creactive protein as a prognostic marker in chronic obstructive pulmonary disease. *Experimental* and Therapeutic Medicine, 7(2), 443–446. 29
- [75] Department of Health (2011). An Outcomes Strategy for Chronic Obstructive Pulmonary Disease (COPD) and Asthma in England. Report, Department of Health. 8, 20
- [76] Department of Health (2013). Cardiovascular Disease Outcomes Strategy. Improving outcomes for people with or at risk of cardiovascular disease. Report, Cardiovascular Disease Team. 151
- [77] Donaldson, A. V., Maddocks, M., Martolini, D., Polkey, M. I., & Man, W. D. (2012).
 Muscle function in COPD: a complex interplay. Int J Chron Obstruct Pulmon Dis, 7, 523–35.
 13
- [78] Donaldson, G. C., Seemungal, T. A. R., Patel, I. S., Bhowmik, A., Wilkinson, T. M. A., Hurst, J. R., MacCallum, P. K., & Wedzicha, J. A. (2005). Airway and systemic inflammation and decline in lung function in patients with COPD. *CHEST*, 128(4), 1995–2004. 29
- [79] Dransfield, M. T., Rowe, S. M., Johnson, J. E., Bailey, W. C., & Gerald, L. B. (2008). Use of beta blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. *Thorax*, 63(4), 301–5. 150

- [80] Dreyse, J., Diaz, O., Repetto, P. B., Morales, A., Saldias, F., & Lisboa, C. (2015). Do frequent moderate exacerbations contribute to progression of chronic obstructive pulmonary disease in patients who are ex-smokers? *International Journal of COPD*, 10, 525–33. 30, 33, 34, 38, 42
- [81] Drummond, M. B., Wise, R. A., John, M., Zvarich, M. T., & McGarvey, L. P. (2010). Accuracy of death certificates in COPD: analysis from the TORCH trial. *COPD*, 7(3), 179– 85. 129
- [82] Durheim, M. T., Smith, P. J., Babyak, M. A., Mabe, S. K., Martinu, T., Welty-Wolf, K. E., Emery, C. F., Palmer, S. M., & Blumenthal, J. A. (2015). Six-minute-walk distance and accelerometry predict outcomes in chronic obstructive pulmonary disease independent of global initiative for chronic obstructive lung disease 2011 group. Annals of the American Thoracic Society, 12(3), 349–356. 30, 32
- [83] Duvoix, A., Dickens, J., Haq, I., Mannino, D., Miller, B., Tal-Singer, R., & Lomas, D. A. (2013). Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. *Thorax*, 68(7), 670–676. 195
- [84] Edan, N. M. (2018). Proposed prototype for multimedia protocol in m-health to support a communication between patient and hospital. *Tikrit Journal of Pure Science*, 22(6), 144–150.
 204
- [85] Edwards, R. H., Young, A., Hosking, G. P., & Jones, D. A. (1977). Human skeletal muscle function: description of tests and normal values. *Clin Sci Mol Med*, 52(3), 283–90. 58
- [86] Emerging Risk Factors Collaboration (2007). The emerging risk factors collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. *European Journal of Epidemiology*, 22(12), 839–869. 196

- [87] Esteban, C., Quintana, J. M., Aburto, M., Moraza, J., & Capelastegui, A. (2006). A simple score for assessing stable chronic obstructive pulmonary disease. *QJM*, 99(11), 751–9. 100
- [88] European Medicines Agency (2018). Reflection paper on physical frailty: instruments for baseline characterisation of older populations in clinical trials. Report, European Medicines Agency. 124
- [89] Faganello, M. M., Tanni, S. E., Sanchez, F. F., Pelegrino, N. R., Lucheta, P. A., & Godoy, I. (2010). BODE index and GOLD staging as predictors of 1-year exacerbation risk in chronic obstructive pulmonary disease. Am J Med Sci, 339(1), 10–4. 30, 32, 38
- [90] Farmer, A., Toms, C., Hardinge, M., Williams, V., Rutter, H., & Tarassenko, L. (2014). Self-management support using an internet-linked tablet computer (the EDGE platform)based intervention in chronic obstructive pulmonary disease: protocol for the EDGE-COPD randomised controlled trial. BMJ Open, 4(1). 175, 204
- [91] Fermont, J. M., Masconi, K. L., Jensen, M. T., Ferrari, R., Di Lorenzo, V. A. P., Marott, J. L., Schuetz, P., Watz, H., Waschki, B., Müllerova, H., Polkey, M. I., Wilkinson, I. B., & Wood, A. M. (2019). Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. *Thorax.* 182
- [92] Ferrari, R., Tanni, S. E., Caram, L. M. O., Correa, C., Correa, C. R., & Godoy, I. (2013). Three-year follow-up of interleukin 6 and c-reactive protein in chronic obstructive pulmonary disease. *Respiratory Research*, 14. 30, 32, 34, 42
- [93] Ferrari, R., Tanni, S. E., Caram, L. M. O., Naves, C. R., & Godoy, I. (2011). Predictors of health status do not change over three-year periods and exacerbation makes difference in chronic obstructive pulmonary disease. *Health and Quality of Life Outcomes*, 9, 112. 30, 33, 38
- [94] Fisk, M., McEniery, C. M., Gale, N., Maki-Petaja, K., Forman, J. R., Munnery, M., Woodcock-Smith, J., Cheriyan, J., Mohan, D., Fuld, J., Tal-Singer, R., Polkey, M. I., Cock-

croft, J. R., Wilkinson, I. B., & ERICA Consortium and ACCT Investigators (2018). Surrogate markers of cardiovascular risk and chronic obstructive pulmonary disease: a large case-controlled study. *Hypertension*, 71(3), 499–506. 52, 181

- [95] Folsom, A., Kronmal, R., Detrano, R., et al. (2008). Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: The multi-ethnic study of atherosclerosis (MESA). Archives of Internal Medicine, 168(12), 1333– 1339. 13
- [96] Frei, A., Siebeling, L., Wolters, C., Held, L., Muggensturm, P., Strassmann, A., Zoller, M., ter Riet, G., & Puhan, M. A. (2016). The inaccuracy of patient recall for COPD exacerbation rate estimation and its implications: Results from central adjudication. *CHEST*, 150(4), 860–868. 94, 175
- [97] Fry, A., Littlejohns, T. J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T., Collins, R., & Allen, N. E. (2017). Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. *Am J Epidemiol*, 186(9), 1026–1034. 149
- [98] Fuso, L., Incalzi, R. A., Pistelli, R., Muzzolon, R., Valente, S., Pagliari, G., Gliozzi, F., & Ciappi, G. (1995). Predicting mortality of patients hospitalized for acutely exacerbated chronic obstructive pulmonary disease. Am J Med, 98(3), 272–7. 129
- [99] Gaki, E., Papatheodorou, G., Pappa, I., Papiris, S., & Loukides, S. (2011). Correlation between frequency of hospitalization of patients with severe COPD and severity indices. *Pneu*mon, 24(2), 164–171. 30
- [100] Gale, N. S., Albarrati, A., Munnery, I., Munnery, M., Tal-Singer, R., Hubbard, R., Cockcroft, J. R., & Shale, D. (2012). P75 physical impairment and frailty in patients with chronic obstruction pulmonary disease (COPD). *Thorax*, 67(Suppl 2), A96–A96. 206

- [101] Gale, N. S., Albarrati, A. M., Munnery, M. M., Munnery, I. C., Irfan, M., Bolton, C. E., Rambaran, C. N., Singer, R. M. T., Cockcroft, J. R., & Shale, D. J. (2014). Assessment of risk in chronic airways disease evaluation (arcade): Protocol and preliminary data. *Chronic Respiratory Disease*, 11(4), 199–207. 15, 56
- [102] Gan, W. Q., Man, S., Senthilselvan, A., & Sin, D. (2004). Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a metaanalysis. *Thorax*, 59(7), 574–580. 205
- [103] Ganna, A. & Ingelsson, E. (2015). 5 year mortality predictors in 498103 UK Biobank participants: a prospective population-based study. *The Lancet*, 386(9993), 533–540. 150
- [104] Garcia-Aymerich, J., Lange, P., Benet, M., Schnohr, P., & Anto, J. M. (2006). Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. *Thorax*, 61(9), 772–778. 155
- [105] Ghobadi, H., Ahari, S. S., Kameli, A., & Lari, S. M. (2012). The relationship between COPD assessment test (CAT) scores and severity of airflow obstruction in stable COPD patients. *Tanaffos*, 11(2), 22–26. 59
- [106] Global Burden of Disease Chronic Respiratory Disease Collaborators (2017). Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the global burden of disease study 2015. *Lancet Respir Med*, 5(9), 691–706. 5, 8, 98
- [107] Global Initiative for Chronic Obstructive Lung Disease (2016). Global Strategy for the Diagnosis, Management and Prevention of COPD. Report, GOLD. 2, 7, 8, 31, 34, 58, 60, 101, 131, 156, 157, 182, 183
- [108] Goldstein, B. A., Navar, A. M., Pencina, M. J., & Ioannidis, J. P. (2017). Opportunities

and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc, 24(1), 198-208. 10

- [109] Gosselink, R., Troosters, T., & Decramer, M. (1996). Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med, 153(3), 976–80. 13
- [110] Graat-Verboom, L., van den Borne, B. E., Smeenk, F. W., Spruit, M. A., & Wouters, E. F. (2011). Osteoporosis in COPD outpatients based on bone mineral density and vertebral fractures. *Journal of Bone and Mineral Research*, 26(3), 561–568. 207
- [111] Groenewegen, K. H., Postma, D. S., Hop, W. C., Wielders, P. L., Schlösser, N. J., & Wouters, E. F. (2008). Increased systemic inflammation is a risk factor for COPD exacerbations. *CHEST*, 133(2), 350–357. 30, 42, 49
- [112] Grolimund, E., Kutz, A., Marlowe, R. J., Vogeli, A., Alan, M., Christ-Crain, M., Thomann, R., Falconnier, C., Hoess, C., Henzen, C., Zimmerli, W., Mueller, B., & Schuetz, P. (2015). Long-term prognosis in COPD exacerbation: Role of biomarkers, clinical variables and exacerbation type. *Journal of Chronic Obstructive Pulmonary Disease*, 12(3), 295–305. 30, 34, 42, 48
- [113] Guerra, B., Gaveikaite, V., Bianchi, C., & Puhan, M. A. (2017). Prediction models for exacerbations in patients with COPD. *Eur Respir Rev*, 26(143). 155, 210
- [114] Guevara, J. P., Berlin, J. A., & Wolf, F. M. (2004). Meta-analytic methods for pooling rates when follow-up duration varies: a case study. *BMC Medical Research Methodology*, 4(1), 17. 53
- [115] Guo, S. J., Sun, Z. T., Liu, E. S., Feng, J. H., Fu, M., Li, Y. C., & Wu, Q. (2014). Effect of bufei granule on stable chronic obstructive pulmonary disease: a randomized, double blinded, placebo-controlled, and multicenter clinical study. *Journal of Traditional Chinese Medicine*, 34(4), 437–444. 30

- [116] Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., Scherr, P. A., & Wallace, R. B. (1994). A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol, 49(2), M85–94. 14
- [117] Hamblin, A., Wordsworth, S., Fermont, J. M., Page, S., Kaur, K., Camps, C., Kaisaki, P., Gupta, A., Talbot, D., Middleton, M., Henderson, S., Cutts, A., Vavoulis, D. V., Housby, N., Tomlinson, I., Taylor, J. C., & Schuh, A. (2017). Clinical applicability and cost of a 46-gene panel for genomic analysis of solid tumours: Retrospective validation and prospective audit in the UK National Health Service. *PLOS Med*, 14(2), e1002230. 211
- [118] Hansell, A., Walk, J., & Soriano, J. (2003). What do chronic obstructive pulmonary disease patients die from? A multiple cause coding analysis. *Eur Respir J*, 22(5), 809–814. 129
- [119] Hansen, T. W., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Li, Y., Dolan, E., Thijs, L., Wang, J.-G., O'Brien, E., Ibsen, H., & Jeppesen, J. (2006a). Ambulatory arterial stiffness index predicts stroke in a general population. *Journal of Hypertension*, 24(11), 2247–2253.
 181
- [120] Hansen, T. W., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Thijs, L., Ibsen, H., & Jeppesen, J. (2006b). Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. *Circulation*, 113(5), 664–670. 13
- [121] Herrett, E., Thomas, S. L., Schoonen, W. M., Smeeth, L., & Hall, A. J. (2010). Validation and validity of diagnoses in the general practice research database: a systematic review. Br J Clin Pharmacol, 69(1), 4–14. 196
- [122] Hersh, C. P., DeMeo, D. L., Al-Ansari, E., Carey, V. J., Reilly, J. J., Ginns, L. C., & Silverman, E. K. (2004). Predictors of survival in severe, early onset COPD. *CHEST*, 126(5), 1443–51. 8, 20

- [123] Hicks, K. A., Mahaffey, K. W., Mehran, R., Nissen, S. E., Wiviott, S. D., Dunn, B., Solomon, S. D., Marler, J. R., Teerlink, J. R., Farb, A., Morrow, D. A., Targum, S. L., Sila, C. A., Hai, M. T. T., Jaff, M. R., Joffe, H. V., Cutlip, D. E., Desai, A. S., Lewis, E. F., Gibson, C. M., Landray, M. J., Lincoff, A. M., White, C. J., Brooks, S. S., Rosenfield, K., Domanski, M. J., Lansky, A. J., McMurray, J. J. V., Tcheng, J. E., Steinhubl, S. R., Burton, P., Mauri, L., O'Connor, C. M., Pfeffer, M. A., Hung, H. M. J., Stockbridge, N. L., Chaitman, B. R., Temple, R. J., & Standardized Data Collection for Cardiovascular Trials Initiative (2018).
 2017 Cardiovascular and stroke endpoint definitions for clinical trials. *Circulation*, 137(9), 961–972. 196
- [124] Higgins, J. P. & Green, S. (2011). Cochrane handbook for systematic reviews of interventions, volume 4. John Wiley and Sons. 24
- [125] Hillas, G., Perlikos, F., & Tzanakis, N. (2016). Acute exacerbation of COPD: is it the "stroke of the lungs"? Int J Chron Obstruct Pulmon Dis, 11, 1579–86. 155
- [126] Hogg, J. C., Chu, F., Utokaparch, S., Woods, R., Elliott, W. M., Buzatu, L., Cherniack, R. M., Rogers, R. M., Sciurba, F. C., Coxson, H. O., & Paré, P. D. (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med, 350(26), 2645–2653. 3
- [127] Holland, A. E., Spruit, M. A., Troosters, T., Puhan, M. A., Pepin, V., Saey, D., McCormack, M. C., Carlin, B. W., Sciurba, F. C., Pitta, F., Wanger, J., MacIntyre, N., Kaminsky, D. A., Culver, B. H., Revill, S. M., Hernandes, N. A., Andrianopoulos, V., Camillo, C. A., Mitchell, K. E., Lee, A. L., Hill, C. J., & Singh, S. J. (2014). An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. *Eur Respir J*, 44(6), 1428–46. 99
- [128] Hopkinson, N. S., Tennant, R. C., Dayer, M. J., Swallow, E. B., Hansel, T. T., Moxham,

J., & Polkey, M. I. (2007). A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease. *Respiratory research*, 8, 25. 30

- [129] Hosmer, D. W. & Lemeshow, S. (2000). Applied logistic regression (Wiley Series in probability and statistics). Wiley-Interscience Publication, 2nd edition. 10
- [130] Hunninghake, G. M., Cho, M. H., Tesfaigzi, Y., Soto-Quiros, M. E., Avila, L., Lasky-Su, J., Stidley, C., Melen, E., Soderhall, C., Hallberg, J., Kull, I., Kere, J., Svartengren, M., Pershagen, G., Wickman, M., Lange, C., Demeo, D. L., Hersh, C. P., Klanderman, B. J., Raby, B. A., Sparrow, D., Shapiro, S. D., Silverman, E. K., Litonjua, A. A., Weiss, S. T., & Celedon, J. C. (2009). MMP12, lung function, and COPD in high-risk populations. N Engl J Med, 361(27), 2599–608. 209
- [131] Hunter, L. C., Lee, R. J., Butcher, I., Weir, C. J., Fischbacher, C. M., McAllister, D., Wild, S. H., Hewitt, N., & Hardie, R. M. (2016). Patient characteristics associated with risk of first hospital admission and readmission for acute exacerbation of chronic obstructive pulmonary disease (COPD) following primary care COPD diagnosis: a cohort study using linked electronic patient records. *BMJ Open*, 6(1), e009121. 155
- [132] Hurst, J. R., Vestbo, J., Anzueto, A., Locantore, N., Mullerova, H., Tal-Singer, R., Miller, B., Lomas, D. A., Agusti, A., Macnee, W., Calverley, P., Rennard, S., Wouters, E. F., Wedzicha, J. A., & ECLIPSE Investigators (2010). Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med, 363(12), 1128–38. 30, 38, 48, 49, 157, 160, 176
- [133] Husebo, G. R., Bakke, P. S., Aanerud, M., Hardie, J. A., Ueland, T., Gronseth, R., Persson, L. J. P., Aukrust, P., & Eagan, T. M. (2014). Predictors of exacerbations in chronic obstructive pulmonary disease-results from the Bergen COPD cohort study. *PLOS One*, 9(10). 30, 34, 38, 42, 48
- [134] Institute Metrics and Evaluation (2013). Global Burden of Disease Compare. Chronic obstructive pulmonary disease. 5

- [135] Iwamoto, H., Yokoyama, A., Kitahara, Y., Ishikawa, N., Haruta, Y., Yamane, K., Hattori, N., Hara, H., & Kohno, N. (2009). Airflow limitation in smokers is associated with subclinical atherosclerosis. Am J Respir Crit Care Med, 179(1), 35–40. 52
- [136] Jenkins, C. R., Chapman, K. R., Donohue, J. F., Roche, N., Tsiligianni, I., & Han, M. K.
 (2017). Improving the management of COPD in women. *CHEST*, 151(3), 686–696. 151
- [137] Jennings, J. H., Digiovine, B., Obeid, D., & Frank, C. (2009). The association between depressive symptoms and acute exacerbations of COPD. Lung, 187(2), 128–35. 30, 38, 42
- [138] Jensen, H. H., Godtfredsen, N. S., Lange, P., & Vestbo, J. (2006). Potential misclassification of causes of death from COPD. Eur Respir J, 28(4), 781–785. 129, 197
- [139] Jensen, M. T., Marott, J. L., Lange, P., Vestbo, J., Schnohr, P., Nielsen, O. W., Jensen, J. S., & Jensen, G. B. (2013). Resting heart rate is a predictor of mortality in COPD. *Eur Respir J*, 42(2), 341–349. 30, 34, 42
- [140] Jinks, R. C., Royston, P., & Parmar, M. K. (2015). Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol, 15, 82. 202
- [141] Johannessen, A., Nilsen, R. M., Storebo, M., Gulsvik, A., Eagan, T., & Bakke, P. (2013). Comparison of 2011 and 2007 global initiative for chronic obstructive lung disease guidelines for predicting mortality and hospitalization. Am J Respir Crit Care Med, 188(1), 51–9.
- [142] Jones, P. W., Quirk, F. H., & Baveystock, C. M. (1991). The St George's Respiratory Questionnaire. *Respir Med*, 85 Suppl B, 25–31; discussion 33–7. 59
- [143] Kannel, W. B. & McGee, D. L. (1979). Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham Study. *Diabetes Care*, 2(2), 120–126. 181
- [144] Kappen, T. H., van Klei, W. A., van Wolfswinkel, L., Kalkman, C. J., Vergouwe, Y.,

& Moons, K. G. M. (2018). Evaluating the impact of prediction models: lessons learned, challenges, and recommendations. *Diagnostic and Prognostic Research*, 2(1), 11. 10

- [145] Kennedy, C. C., Novotny, P. J., LeBrasseur, N. K., Wise, R. A., Sciurba, F. C., Benzo,
 R. P., & Group, N. R. (2018). Frailty and clinical outcomes in chronic obstructive pulmonary
 disease. Ann Am Thorac Soc. 207
- [146] Kerr, K. F., Wang, Z. Y., Janes, H., McClelland, R. L., Psaty, B. M., & Pepe, M. S. (2014). Net reclassification indices for evaluating risk prediction instruments a critical review. *Epidemiology*, 25(1), 114–121. 208
- [147] Knowles, J. W. & Ashley, E. A. (2018). Cardiovascular disease: The rise of the genetic risk score. PLOS Med, 15(3), e1002546. 209
- [148] Kon, S. S., Jones, S. E., Schofield, S. J., Banya, W., Dickson, M. J., Canavan, J. L., Nolan, C. M., Haselden, B. M., Polkey, M. I., Cullinan, P., & Man, W. D. (2015). Gait speed and readmission following hospitalisation for acute exacerbations of COPD: a prospective study. *Thorax*, 70(12), 1131–7. 52, 155
- [149] Kon, S. S., Patel, M. S., Canavan, J. L., Clark, A. L., Jones, S. E., Nolan, C. M., Cullinan,
 P., Polkey, M. I., & Man, W. D. (2013). Reliability and validity of 4-metre gait speed in
 COPD. Eur Respir J, 42(2), 333–40. 125
- [150] Kostianev, S. S., Hodgev, V. A., & Iluchev, D. H. (2008). Multidimensional system for assessment of COPD patients. comparison with BODE index. *Folia Med (Plovdiv)*, 50(4), 29–38. 100
- [151] Koutsokera, A., Stolz, D., Loukides, S., & Kostikas, K. (2012). Systemic biomarkers in exacerbations of COPD: the evolving clinical challenge. CHEST, 141(2), 396–405. 21, 95
- [152] Lacasse, M., Maltais, F., Poirier, P., Lacasse, Y., Marquis, K., Jobin, J., & LeBlanc,

P. (2005). Post-exercise heart rate recovery and mortality in chronic obstructive pulmonary disease. *Respiratory medicine*, 99(7), 877–86. 30, 34

- [153] Lahousse, L., Ziere, G., Verlinden, V. J., Zillikens, M. C., Uitterlinden, A. G., Rivadeneira, F., Tiemeier, H., Joos, G. F., Hofman, A., Ikram, M. A., et al. (2016). Risk of frailty in elderly with COPD: a population-based study. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 71(5), 689–695. 207
- [154] Lange, P., Celli, B., Agusti, A., Boje Jensen, G., Divo, M., Faner, R., Guerra, S., Marott, J. L., Martinez, F. D., Martinez-Camblor, P., Meek, P., Owen, C. A., Petersen, H., Pinto-Plata, V., Schnohr, P., Sood, A., Soriano, J. B., Tesfaigzi, Y., & Vestbo, J. (2015). Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med, 373(2), 111–22. 21
- [155] Laupacis, A., Sekar, N., & Stiell, l. (1997). Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA, 277(6), 488–494. 10
- [156] Lee, H. M., Lee, J., Lee, K., Luo, Y. T., Sin, D. D., & Wong, N. D. (2012). Relation between COPD severity and global cardiovascular risk in US adults. *CHEST*, 142(5), 1118– 1125. 181
- [157] Legrand, D., Vaes, B., Mathei, C., Adriaensen, W., Van Pottelbergh, G., & Degryse, J. M. (2014). Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. *Journal of the American Geriatrics Society*, 62(6), 1030–1038.
 99
- [158] Leuzzi, G., Galeone, C., Taverna, F., Suatoni, P., Morelli, D., & Pastorino, U. (2017).
 C-reactive protein level predicts mortality in COPD: a systematic review and meta-analysis.
 Eur Respir Rev, 26(143). 21, 95
- [159] Liu, S. F., Wang, C. C., Chin, C. H., Chen, Y. C., & Lin, M. C. (2011). High value of

combined serum C-reactive protein and BODE score for mortality prediction in patients with stable COPD. Archivos de Bronconeumologia, 47(9), 427–432. 30, 34, 38

- [160] Loeckx, M., Rabinovich, R. A., Demeyer, H., Louvaris, Z., Tanner, R., Rubio, N., Frei, A., De Jong, C., Gimeno-Santos, E., Rodrigues, F. M., Buttery, S. C., Hopkinson, N. S., Busching, G., Strassmann, A., Serra, I., Vogiatzis, I., Garcia-Aymerich, J., Polkey, M. I., & Troosters, T. (2018). Smartphone-based physical activity telecoaching in chronic obstructive pulmonary disease: Mixed-methods study on patient experiences and lessons for implementation. *JMIR Mhealth Uhealth*, 6(12), e200. 204
- [161] Lord, S. R. & Menz, H. B. (2002). Physiologic, psychologic, health predictors of 6-minute walk performance in older people. Archives of Physical Medicine and Rehabilitation, 83(7), 907–911. 195
- [162] Lorenz, M. W., Polak, J. F., Kavousi, M., Mathiesen, E. B., Völzke, H., Tuomainen, T.-P., Sander, D., Plichart, M., Catapano, A. L., Robertson, C. M., Kiechl, S., Rundek, T., Desvarieux, M., Lind, L., Schmid, C., DasMahapatra, P., Gao, L., Ziegelbauer, K., Bots, M. L., & Thompson, S. G. (2012). Carotid intima-media thickness progression to predict cardiovascular events in the general population (the prog-imt collaborative project): a metaanalysis of individual participant data. *The Lancet*, 379(9831), 2053–2062. 181
- [163] Luo, W., Nguyen, T., Nichols, M., Tran, T., Rana, S., Gupta, S., Phung, D., Venkatesh, S., & Allender, S. (2015). Is demography destiny? application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset. *PLOS One*, 10(5), 1–13. 206
- [164] Mackenzie, I. S., Wilkinson, I. B., & Cockcroft, J. R. (2002). Assessment of arterial stiffness in clinical practice. QJM, 95(2), 67–74. 197
- [165] MacNee, W. (2006). Pathology, pathogenesis, and pathophysiology. *BMJ*, 332(7551), 1202–1204.

- [166] Maddocks, M., Kon, S. S., Canavan, J. L., Jones, S. E., Nolan, C. M., Labey, A., Polkey, M. I., & Man, W. D. (2016). Physical frailty and pulmonary rehabilitation in COPD: a prospective cohort study. *Thorax*, 71(11), 988–995. 206
- [167] Man, S. F., Xing, L., Connett, J. E., Anthonisen, N. R., Wise, R. A., Tashkin, D. P., Zhang, X., Vessey, R., Walker, T. G., Celli, B. R., & Sin, D. D. (2008). Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD? Eur Respir J, 32(6), 1451–7.
 30
- [168] Mannino, D. M., Homa, D. M., Akinbami, L. J., Ford, E. S., & Redd, S. C. (2002). Chronic obstructive pulmonary disease surveillance–United States, 1971-2000. *Respiratory care*, 47 10, 1184–99. 96
- [169] Mannino, D. M., Valvi, D., Mullerova, H., & Tal-Singer, R. (2012). Fibrinogen, COPD and mortality in a nationally representative US cohort. COPD, 9(4), 359–66. 30, 33, 34, 38
- [170] Marino, D. M., Marrara, K. T., Arcuri, J. F., Candolo, C., Jamami, M., & Di Lorenzo, V. A. P. (2014). Determination of exacerbation predictors in patients with COPD in physical therapy - a longitudinal study. *Brazilian Journal of Physical Therapy*, 18(2), 127–136. 30, 38
- [171] Marquis, K., Debigaré, R., Lacasse, Y., LeBlanc, P., Jobin, J., Carrier, G., & Maltais, F. (2002). Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 166(6), 809–813. 14, 21
- [172] Mathers, C. D. & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. *PLOS Med*, 3(11), e442. 20, 123, 197
- [173] McEniery, C. M., Yasmin, Hall, I. R., Qasem, A., Wilkinson, I. B., & Cockcroft, J. R. (2005). Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity. *Journal of the American College of Cardiology*, 46(9), 1753. 13
- [174] McGarvey, L. P., John, M., Anderson, J. A., Zvarich, M., & Wise, R. A. (2007). Ascertainment of cause-specific mortality in COPD: operations of the TORCH clinical endpoint committee. *Thorax*, 62(5), 411–415. 21, 123, 129, 149, 181
- [175] Mehrotra, N., Freire, A. X., Bauer, D. C., Harris, T. B., Newman, A. B., Kritchevsky, S. B., Meibohm, B., & Health, A. B. C. S. (2010). Predictors of mortality in elderly subjects with obstructive airway disease: the pile score. Ann Epidemiol, 20(3), 223–32. 100
- [176] Mendoza, L., Horta, P., Espinoza, J., Aguilera, M., Balmaceda, N., Castro, A., Ruiz, M., Díaz, O., & Hopkinson, N. S. (2015). Pedometers to enhance physical activity in COPD: a randomised controlled trial. *European Respiratory Society*, 45(2), 347–354. 204
- [177] Metz, C. E. (1978). Basic principles of roc analysis. Semin Nucl Med, 8(4), 283–98. 10
- [178] Mieno, M. N., Tanaka, N., Arai, T., Kawahara, T., Kuchiba, A., Ishikawa, S., & Sawabe, M. (2016). Accuracy of death certificates and assessment of factors for misclassification of underlying cause of death. *J Epidemiol*, 26(4), 191–8. 129
- [179] Miller, B. E., Tal-Singer, R., Rennard, S. I., Furtwaengler, A., Leidy, N., Lowings, M., Martin, U. J., Martin, T. R., Merrill, D. D., Snyder, J., Walsh, J., & Mannino, D. M. (2016). Plasma fibrinogen qualification as a drug development tool in chronic obstructive pulmonary disease perspective of the chronic obstructive pulmonary disease biomarker qualification consortium. Am J Respir Crit Care Med, 193(6), 607–613. 12, 155
- [180] Miller, J., Edwards, L. D., Agusti, A., Bakke, P., Calverley, P. M. A., Celli, B., Coxson, H. O., Crim, C., Lomas, D. A., Miller, B. E., Rennard, S., Silverman, E. K., Tal-Singer, R., Vestbo, J., Wouters, E., Yates, J. C., Macnee, W., & ECLIPSE Investigators (2013). Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. *Respiratory medicine*, 107(9), 1376–84. 3, 30, 53
- [181] Mills, N. L., Miller, J. J., Anand, A., Robinson, S. D., Frazer, G. A., Anderson, D., Breen, L., Wilkinson, I. B., McEniery, C. M., Donaldson, K., Newby, D. E., & Macnee, W.

(2008). Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. *Thorax*, 63(4), 306–11. 13, 52

[182] Mitchell, T. M. (1997). Machine Learning. WCB McGraw-Hill. 206

- [183] Mohan, D., Forman, J. R., Allinder, M., McEniery, C. M., Bolton, C. E., Cockcroft, J. R., MacNee, W., Fuld, J., Marchong, M., Gale, N. S., Fisk, M., Nagarajan, S., Cheriyan, J., Lomas, D. A., Calverley, P. M. A., Miller, B. E., Tal-Singer, R., Wilkinson, I. B., & Polkey, M. I. (2018). Fibrinogen does not relate to cardiovascular or muscle manifestations in COPD: cross-sectional data from the ERICA study. *Thorax*, 73(12), 1182–1185. 195
- [184] Mohan, D., Gale, N. S., McEniery, C. M., Bolton, C. E., Cockcroft, J. R., MacNee, W., Fuld, J., Lomas, D. A., Calverley, P. M. A., Shale, D. J., Miller, B. E., Wilkinson, I. B., Tal-Singer, R., Polkey, M. I., & on behalf of the ERICA Consortium (2014). Evaluating the role of inflammation in chronic airways disease: The ERICA study. *COPD: Journal of Chronic Obstructive Pulmonary Disease*, 11(5), 552–559. 15, 57, 58, 93, 94, 101, 156, 182, 202
- [185] Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Group, P.-P., Altman, D. G., Booth, A., Chan, A.-W., Chang, S., Clarke, M., Clifford, T., Dickersin, K., Egger, M., Ghersi, D., Gotzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., Higgins, J., Lasserson, T., Lau, J., Liberati, A., Lohr, K., McGowan, J., Moher, D., Mulrow, C., Norton, M., Page, M., Petticrew, M., Sampson, M., Schunemann, H., Shamseer, L., Shekelle, P., Simera, I., Stewart, L. A., Summerskill, W., Tetzlaff, J., Trikalinos, T. A., Tovey, D., Turner, L., & Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4, 1. 22, 26
- [186] Monninkhof, E., van der Valk, P., van der Palen, J., van Herwaarden, C., & Zielhuis, G. (2003). Effects of a comprehensive self-management programme in patients with chronic obstructive pulmonary disease. *Eur Respir J*, 22(5), 815–820. 30, 33, 38, 42

- [187] Montgomery, P. S. & Gardner, A. W. (1998). The clinical utility of a six-minute walk test in peripheral arterial occlusive disease patients. J Am Geriatr Soc, 46(6), 706–11. 14
- [188] Moore, A. J., Soler, R. S., Cetti, E. J., Amanda Sathyapala, S., Hopkinson, N. S., Roughton, M., Moxham, J., & Polkey, M. I. (2010). Sniff nasal inspiratory pressure versus IC/TLC ratio as predictors of mortality in COPD. *Respiratory medicine*, 104(9), 1319–25. 30, 50, 99, 124
- [189] Moy, M. L., Teylan, M., Danilack, V. A., Gagnon, D. R., & Garshick, E. (2014). An index of daily step count and systemic inflammation predicts clinical outcomes in chronic obstructive pulmonary disease. *Annals of the American Thoracic Society*, 11(2), 149–57. 30, 42
- [190] Moy, M. L., Teylan, M., Weston, N. A., Gagnon, D. R., & Garshick, E. (2013). Daily step count predicts acute exacerbations in a US cohort with COPD. *PLOS One*, 8(4). 30
- [191] Mullerova, H., Agusti, A., Erqou, S., & Mapel, D. W. (2013). Cardiovascular comorbidity in COPD systematic literature review. *CHEST*, 144(4), 1163–1178. 195
- [192] Mullerova, H., Maselli, D. J., Locantore, N., Vestbo, J., Hurst, J. R., Wedzicha, J. A., Bakke, P., Agusti, A., Anzueto, A., Ivanov, Y., Kostov, K., Bourbeau, J., Fitzgerald, M., Hernandez, P., Killian, K., Levy, R., Maltais, F., O'Donnell, D., Krepelka, J., Wouters, E. F. M., Quinn, D., Kosnik, M., Feschenko, Y., Gavrisyuk, V., Yashina, L., MacNee, W., Singh, S. D., Braman, S., Casaburi, R., Celli, B., Giessel, G., Gotfried, M., Greenwald, G., Hanania, N., Mahler, D., Make, B., Rennard, S., Rochester, C., Scanlon, P., Schuller, D., Sciurba, F., Sharafkhaneh, A., Siler, T., Silverman, E., Wanner, A., Wise, R., & Wallack, R. Z. (2015). Hospitalized exacerbations of COPD: Risk factors and outcomes in the ECLIPSE cohort. *CHEST*, 147(4), 999–1007. 31, 32, 42, 48
- [193] Murray, C. J., Atkinson, C., Bhalla, K., Birbeck, G., Burstein, R., Chou, D., et al. (2013).

The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. *JAMA*, 310(6), 591–608. 3

- [194] Nabel, E. G. (2003). Cardiovascular disease. N Engl J Med, 349(1), 60–72. 209
- [195] Nambi, V., Chambless, L., Folsom, A. R., He, M., Hu, Y., Mosley, T., Volcik, K., Boerwinkle, E., & Ballantyne, C. M. (2010). Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (atherosclerosis risk in communities) study. J Am Coll Cardiol, 55(15), 1600–7. 13
- [196] National Health Services (2017). Chronic obstructive pulmonary disease (COPD) pathway.7
- [197] National Health Services Digital (2016). Hospital admitted patient care activity, 2016-17.all diagnoses: chronic obstructive pulmonary disease. 154
- [198] National Health Services Scotland (2013). European standard population 2013 by sex. 132
- [199] National Institute for Health and Care Excellence (2013). Guide to the methods of technology appraisal 2013. NICE. 211
- [200] National Institute for Health and Care Excellence (2018). Chronic obstructive pulmonary disease in over 16s: diagnosis and management (NG115). Technical report, NICE. 99
- [201] Newman, A. B., Simonsick, E. M., Naydeck, B. L., Boudreau, R. M., Kritchevsky, S. B., Nevitt, M. C., Pahor, M., Satterfield, S., Brach, J. S., Studenski, S. A., & Harris, T. B. (2006). Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA, 295(17), 2018–2026. 195
- [202] Newson, R. B. (2010). Comparing the predictive powers of survival models using Harrell's C or Somers' D. Stata Journal, 10(3), 339–358. 10, 102, 185
- [203] Norrish, A., North, D., Kirkman, P., & Jackson, R. (1994). Validity of self-reported hospital admission in a prospective study. Am J Epidemiol, 140(10), 938–42. 176

- [204] Odden, M. C., Beilby, P. R., & Peralta, C. A. (2015). Blood pressure in older adults: the importance of frailty. *Curr Hypertens Rep*, 17(7), 55. 194
- [205] Office for National Statistics (2015a). Expenditure on Healthcare in the UK: 2013. Report, Office for National Statistics. 5
- [206] Office for National Statistics (2015b). National statistics. Number of deaths where the underlying cause was chronic obstructive pulmonary disease by month of occurrence, England and Wales, deaths that occurred between 2001 and 2014. 20
- [207] Office for National Statistics (2018). National life tables, UK: 2015 to 2017. trends in the average number of years people will live beyond their current age measured by period life expectancy, analysed by age and sex for the UK and its constituent countries. 94
- [208] Ong, K. C., Earnest, A., & Lu, S. J. (2005). A multidimensional grading system (BODE index) as predictor of hospitalization for COPD. *CHEST*, 128(6), 3810–6. 11
- [209] Organisation for Economic Co-operation and Development (2017). Health at a Glance 2017. OECD. 197
- [210] Ozgur, E. S., Nayci, S. A., Ozge, C., & Tasdelen, B. (2012). An integrated index combined by dynamic hyperinflation and exercise capacity in the prediction of morbidity and mortality in COPD. *Respiratory care*, 57(9), 1452–9. 31, 33, 34
- [211] Palange, P. & Ward, S. A. (2007). Recommendations on the use of exercise testing in clinical practice. *Eur Respir J*, 29(5), 1066–1067. 9
- [212] Parker, D. R., Liu, J., Roberts, M. B., & Eaton, C. B. (2014). Is inflammatory chronic obstructive pulmonary disease a coronary heart disease risk equivalent? A longitudinal analysis of the third national health and nutrition examination survey (NHANES III), 1988-1994. *BMC Pulmonary Medicine*, 14(1), 195. 31

- [213] Patel, A. R., Kowlessar, B. S., Donaldson, G. C., Mackay, A. J., Singh, R., George, S. N., Garcha, D. S., Wedzicha, J. A., & Hurst, J. R. (2013). Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*, 188(9), 1091–9. 52
- [214] Patel, M. S., Mohan, D., Andersson, Y. M., Baz, M., Kon, S. S., Canavan, J. L., Jackson, S. G., Clark, A. L., Hopkinson, N. S., Natanek, S. A., Kemp, P. R., Bruijnzeel, P. L., Man, W. D., & Polkey, M. I. (2014a). Phenotypic characteristics associated with reduced short physical performance battery score in COPD. *CHEST*, 145(5), 1016–24. 59
- [215] Patel, M. S., Natanek, S. A., Stratakos, G., Pascual, S., Martínez-Llorens, J., Disano, L., Terzis, G., Hopkinson, N. S., Gea, J., Vogiatzis, I., Maltais, F., & Polkey, M. I. (2014b). Vastus lateralis fiber shift is an independent predictor of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 190(3), 350–352. 21
- [216] Pavasini, R., Guralnik, J., Brown, J. C., di Bari, M., Cesari, M., Landi, F., Vaes, B., Legrand, D., Verghese, J., Wang, C., Stenholm, S., Ferrucci, L., Lai, J. C., Bartes, A. A., Espaulella, J., Ferrer, M., Lim, J. Y., Ensrud, K. E., Cawthon, P., Turusheva, A., Frolova, E., Rolland, Y., Lauwers, V., Corsonello, A., Kirk, G. D., Ferrari, R., Volpato, S., & Campo, G. (2016). Short physical performance battery and all-cause mortality: systematic review and meta-analysis. *BMC Med*, 14(1), 215. 52, 58, 101, 155
- [217] Pepe, M. S., Fan, J., Feng, Z., Gerds, T., & Hilden, J. (2015). The net reclassification index (NRI): a misleading measure of prediction improvement even with independent test data sets. *Stat Biosci*, 7(2), 282–295. 208
- [218] Petty, T. L. (2002). COPD in perspective. CHEST, 121(5 Suppl), 116S-120S. 5
- [219] Pinto-Plata, V., Casanova, C., Mullerova, H., de Torres, J. P., Corado, H., Varo, N., Cordoba, E., Zeineldine, S., Paz, H., Baz, R., Divo, M., Cortopassi, F., & Celli, B. R. (2012).

Inflammatory and repair serum biomarker pattern: association to clinical outcomes in COPD. Respiratory Research, 13, 71. 31

- [220] Pinto-Plata, V. M., Cote, C., Cabral, H., Taylor, J., & Celli, B. R. (2004). The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. *European Respiratory Society*, 23(1), 28–33. 155
- [221] Pitta, F., Troosters, T., Probst, V. S., Spruit, M. A., Decramer, M., & Gosselink, R. (2006). Physical activity and hospitalization for exacerbation of COPD. CHEST, 129(3), 536–44.
- [222] Polkey, M. I., Kyroussis, D., Hamnegard, C. H., Mills, G. H., Green, M., & Moxham, J. (1996). Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 154(5), 1310–7. 124
- [223] Powrie, D. J., Wilkinson, T. M., Donaldson, G. C., Jones, P., Scrine, K., Viel, K., Kesten, S., & Wedzicha, J. A. (2007). Effect of tiotropium on sputum and serum inflammatory markers and exacerbations in COPD. *Eur Respir J*, 30(3), 472–8. 31
- [224] Public Health England (2017). Health profile for England 2017. Chapter 2: major causes of death and how they have changed. 151
- [225] Puhan, M. A., Garcia-Aymerich, J., Frey, M., ter Riet, G., Anto, J. M., Agusti, A. G., Gomez, F. P., Rodriguez-Roisin, R., Moons, K. G., Kessels, A. G., & Held, U. (2009). Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. *Lancet*, 374(9691), 704–11. 11, 100, 117, 122, 123
- [226] Puhan, M. A., Gimeno-Santos, E., Scharplatz, M., Troosters, T., Walters, E. H., & Steurer, J. (2011). Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. *Cochrane Database Syst Rev*, 1(10), CD005305. 8, 20

- [227] Quint, J., Donaldson, G., Hurst, J., Goldring, J., Seemungal, T., & Wedzicha, J. (2011). Predictive accuracy of patient-reported exacerbation frequency in COPD. Eur Respir J, 37(3), 501–507. 94
- [228] Raymakers, A. J. N., Sadatsafavi, M., Sin, D. D., De Vera, M. A., & Lynd, L. D. (2017). The impact of statin drug use on all-cause mortality in patients with COPD a populationbased cohort study. *CHEST*, 152(3), 486–493. 150
- [229] Riley, D. J., Thakker-Varia, S., Wilson, F. J., Poiani, G. J., & Tozzi, C. A. (2000). Role of proteolysis and apoptosis in regression of pulmonary vascular remodeling. *Physiol Res*, 49(5), 577–85. 3
- [230] Rothnie, K. J., Mullerova, H., Thomas, S. L., Chandan, J. S., Smeeth, L., Hurst, J. R., Davis, K., & Quint, J. K. (2016). Recording of hospitalizations for acute exacerbations of COPD in UK electronic health care records. *Clin Epidemiol*, 8, 771–782. 157
- [231] Rothnie, K. J., Yan, R., Smeeth, L., & Quint, J. K. (2015). Risk of myocardial infarction (MI) and death following mi in people with chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. *BMJ Open*, 5(9), e007824. 129
- [232] Royston, P., Moons, K. G., Altman, D. G., & Vergouwe, Y. (2009). Prognosis and prognostic research: developing a prognostic model. *BMJ*, 338, b604. 101
- [233] Salpeter, S. R., Ormiston, T. M., & Salpeter, E. E. (2004). Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis. CHEST, 125(6), 2309–21.
 150
- [234] Santibanez, M., Garrastazu, R., Ruiz-Nunez, M., Helguera, J. M., Arenal, S., Bonnardeux, C., Leon, C., & Garcia-Rivero, J. L. (2016). Predictors of hospitalized exacerbations and mortality in chronic obstructive pulmonary disease. *PLOS One*, 11(6), e0158727. 155

- [235] Seemungal, T., Harper-Owen, R., Bhowmik, A., Moric, I., Sanderson, G., Message, S., MacCallum, P., Meade, T. W., Jeffries, D. J., Johnston, S. L., et al. (2001). Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 164(9), 1618–1623. 31
- [236] Seidl, H., Meisinger, C., Kirchberger, I., Burkhardt, K., Kuch, B., & Holle, R. (2016). Validity of self-reported hospital admissions in clinical trials depends on recall period length and individual characteristics. *J Eval Clin Pract*, 22(3), 446–54. 176
- [237] Seymour, J. M., Spruit, M. A., Hopkinson, N. S., Natanek, S. A., Man, W. D., Jackson, A., Gosker, H. R., Schols, A. M., Moxham, J., Polkey, M. I., & Wouters, E. F. (2010). The prevalence of quadriceps weakness in COPD and the relationship with disease severity. *Eur Respir J*, 36(1), 81–8. 14, 207
- [238] Similowski, T., Yan, S., Gauthier, A. P., Macklem, P. T., & Bellemare, F. (1991). Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med, 325(13), 917–23. 124
- [239] Simpson, C. R., Hippisley-Cox, J., & Sheikh, A. (2010). Trends in the epidemiology of chronic obstructive pulmonary disease in England: a national study of 51 804 patients. Br J Gen Pract, 60(576), 277–84. 5
- [240] Sin, D. D. & Man, S. F. P. (2005). Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. *Proceedings of the American Thoracic Society*, 2(1), 8–11. 195
- [241] Sin, D. D. & Man, S. P. (2003). Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? *Circulation*, 107(11), 1514–1519. 3
- [242] Singh, D., Edwards, L., Tal-Singer, R., & Rennard, S. (2010). Sputum neutrophils as a biomarker in COPD: Findings from the ECLIPSE study. *Respiratory Research*, 11(77). 31

- [243] Singh, S., Loke, Y. K., & Furberg, C. D. (2008). Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA, 300(12), 1439–50. 150
- [244] Smith, C., Hill, S., & Amos, A. (2018). Stop Smoking Inequalities: A systematic review of socioeconomic inequalities in experiences of smoking cessation interventions in the UK. Report, University of Edinburgh. 8
- [245] Smith, G. C., Seaman, S. R., Wood, A. M., Royston, P., & White, I. R. (2014). Correcting for optimistic prediction in small data sets. Am J Epidemiol, 180(3), 318–24. 102, 185, 196
- [246] Soler-Cataluna, J. J., Martinez-Garcia, M. A., Sanchez, L. S., Tordera, M. P., & Sanchez, P. R. (2009). Severe exacerbations and BODE index: two independent risk factors for death in male COPD patients. *Respir Med*, 103(5), 692–9. 100, 124
- [247] Song, S., Yang, P. S., Kim, T. H., Uhm, J. S., Pak, H. N., Lee, M. H., & Joung, B. (2017). Relation of chronic obstructive pulmonary disease to cardiovascular disease in the general population. Am J Cardiol, 120(8), 1399–1404. 129
- [248] Spruit, M. A., Polkey, M. I., Celli, B., Edwards, L. D., Watkins, M. L., Pinto-Plata, V., Vestbo, J., Calverley, P. M. A., Tal-Singer, R., Agusti, A., Coxson, H. O., Lomas, D. A., MacNee, W., Rennard, S., Silverman, E. K., Crim, C. C., Yates, J., & Wouters, E. F. M. (2012). Predicting outcomes from 6-minute walk distance in chronic obstructive pulmonary disease. *Journal of the American Medical Directors Association*, 13(3), 291–297. 31, 32, 33, 99, 155
- [249] Stefan, M. S., Bannuru, R. R., Lessard, D., Gore, J. M., Lindenauer, P. K., & Goldberg, R. J. (2012). The impact of COPD on management and outcomes of patients hospitalized with acute myocardial infarction: a 10-year retrospective observational study. *CHEST*, 141(6), 1441–1448. 150

- [250] Sterne, J. A. C., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., Wood, A. M., & Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. *BMJ*, 339. 197
- [251] Steyerberg, E. W. (2008). Clinical prediction models: a practical approach to development, validation, and updating. Springer Science and Business Media. 101
- [252] Stolz, D., Kostikas, K., Blasi, F., Boersma, W., Milenkovic, B., Lacoma, A., Louis, R., Aerts, J. G., Welte, T., Torres, A., Rohde, G. G., Boeck, L., Rakic, J., Scherr, A., Hertel, S., Giersdorf, S., & Tamm, M. (2014). Adrenomedullin refines mortality prediction by the BODE index in COPD: the "BODE-A" index. *Eur Respir J*, 43(2), 397–408. 100
- [253] Stone, I. S., Barnes, N. C., & Petersen, S. E. (2012). Chronic obstructive pulmonary disease: a modifiable risk factor for cardiovascular disease? *Heart*, 98(14), 1055–62. 3
- [254] Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., Moher, D., Becker, B. J., Sipe, T. A., & Thacker, S. B. (2000). Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA, 283(15), 2008–12. 22
- [255] Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLOS Med*, 12(3), e1001779. 131
- [256] Suissa, S. (2014). Will SUMMIT reach the peak in COPD? Thorax, 69(5), 405–7. 123
- [257] Sun, B. B., Maranville, J. C., Peters, J. E., Stacey, D., Staley, J. R., Blackshaw, J., Burgess, S., Jiang, T., Paige, E., Surendran, P., Oliver-Williams, C., Kamat, M. A., Prins, B. P., Wilcox, S. K., Zimmerman, E. S., Chi, A., Bansal, N., Spain, S. L., Wood, A. M.,

Morrell, N. W., Bradley, J. R., Janjic, N., Roberts, D. J., Ouwehand, W. H., Todd, J. A., Soranzo, N., Suhre, K., Paul, D. S., Fox, C. S., Plenge, R. M., Danesh, J., Runz, H., & Butterworth, A. S. (2017). Consequences of natural perturbations in the human plasma proteome. *bioRxiv.* 209

- [258] Sutton-Tyrrell, K., Najjar, S. S., Boudreau, R. M., Venkitachalam, L., Kupelian, V., Simonsick, E. M., Havlik, R., Lakatta, E. G., Spurgeon, H., Kritchevsky, S., Pahor, M., Bauer, D., & Newman, A. (2005). Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. *Circulation*, 111(25), 3384–3390. 181
- [259] Swallow, E. B., Reyes, D., Hopkinson, N. S., Man, W. D., Porcher, R., Cetti, E. J., Moore, A. J., Moxham, J., & Polkey, M. I. (2007). Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. *Thorax*, 62(2), 115–20. 21, 31, 50, 99, 155
- [260] Thomsen, M., Ingebrigtsen, T. S., Marott, J. L., Dahl, M., Lange, P., Vestbo, J., & Nordestgaard, B. G. (2013). Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. *JAMA*, 309(22), 2353–61. 31, 38, 48, 155
- [261] Tonnesen, P. (2013). Smoking cessation and COPD. Eur Respir Rev, 22(127), 37–43.
 20
- [262] Touboul, P. J., Hennerici, M. G., Meairs, S., Adams, H., Amarenco, P., Bornstein, N., Csiba, L., Desvarieux, M., Ebrahim, S., Fatar, M., Hernandez Hernandez, R., Jaff, M., Kownator, S., Prati, P., Rundek, T., Sitzer, M., Schminke, U., Tardif, J. C., Taylor, A., Vicaut, E., Woo, K. S., Zannad, F., & Zureik, M. (2007). Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the advisory board of the 3rd and 4th watching the risk symposium, 13th and 15th european stroke conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. *Cerebrovasc Dis*, 23(1), 75–80. 13

- [263] Troosters, T., Bourbeau, J., Maltais, F., Leidy, N., Erzen, D., De Sousa, D., Korducki, L., & Hamilton, A. (2016). Enhancing exercise tolerance and physical activity in copd with combined pharmacological and non-pharmacological interventions: Physacto randomised, placebo-controlled study design. *BMJ Open*, 6(4). 204
- [264] Usher-Smith, J. A., Silarova, B., Sharp, S. J., Mills, K., & Griffin, S. J. (2018). Effect of interventions incorporating personalised cancer risk information on intentions and behaviour: a systematic review and meta-analysis of randomised controlled trials. *BMJ Open*, 8(1). 210
- [265] Valvi, D., Mannino, D. M., Mullerova, H., & Tal-Singer, R. (2012). Fibrinogen, chronic obstructive pulmonary disease (COPD) and outcomes in two United States cohorts. *International Journal of COPD*, 7, 173–82. 31, 34, 38
- [266] Van Belle, G. (2011). Statistical rules of thumb, volume 699. John Wiley and Sons. 60, 160
- [267] van Dijk, W. D., van den Bemt, L., van den Haak-Rongen, S., Bischoff, E., van Weel, C., in 't Veen, J. C. C. M., & Schermer, T. R. J. (2011). Multidimensional prognostic indices for use in COPD patient care. A systematic review. *Respiratory Research*, 12(1), 151–151. 124, 210
- [268] van Giessen, A., Peters, J., Wilcher, B., Hyde, C., Moons, C., de Wit, A., & Koffijberg, E.
 (2017). Systematic review of health economic impact evaluations of risk prediction models: Stop developing, start evaluating. Value in health, 20(4), 718–726. 211
- [269] Vass, C. M. & Payne, K. (2017). Using discrete choice experiments to inform the benefitrisk assessment of medicines: Are we ready yet? *PharmacoEconomics*, 35(9), 859–866. 208
- [270] Vestbo, J., Anderson, W., Coxson, H. O., Crim, C., Dawber, F., Edwards, L., Hagan, G., Knobil, K., Lomas, D. A., MacNee, W., Silverman, E. K., Tal-Singer, R., & ECLIPSE Investigators (2008). Evaluation of COPD longitudinally to identify predictive surrogate endpoints (ECLIPSE). Eur Respir J, 31(4), 869–73. 15, 56, 96, 176

- [271] Vickers, A. J. & Elkin, E. B. (2006). Decision curve analysis: a novel method for evaluating prediction models. *Med Decis Making*, 26(6), 565–74. 205
- [272] Vivodtzev, I., Tamisier, R., Baguet, J. P., Borel, J. C., Levy, P., & Pepin, J. L. (2014).
 Arterial stiffness in COPD. *CHEST*, 145(4), 861–75. 3, 4, 21
- [273] Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol, 55(13), 1318–27. 195, 196
- [274] Volpato, S., Cavalieri, M., Sioulis, F., Guerra, G., Maraldi, C., Zuliani, G., Fellin, R., & Guralnik, J. M. (2011). Predictive value of the short physical performance battery following hospitalization in older patients. J Gerontol A Biol Sci Med Sci, 66(1), 89–96. 99
- [275] von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gotzsche, P. C., Vandenbroucke, J. P., & Strobe Initiative (2008). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol, 61(4), 344–9. 103, 156, 186
- [276] Walter, R. E., Wilk, J. B., Larson, M. G., Vasan, R. S., Keaney, John F., J., Lipinska, I., O'Connor, G. T., & Benjamin, E. J. (2008). Systemic inflammation and COPD: the Framingham Heart Study. *CHEST*, 133(1), 19–25. 181
- [277] Wang, G., Liu, B., Cao, Y., Du, Y., Zhang, H., Luo, Q., Li, B., Wu, J., Lv, Y., Sun, J., Jin, H., Wei, K., Zhao, Z., Kong, L., Zhou, X., Miao, Q., Wang, G., Zhou, Q., & Dong, J. (2014a). Effects of two chinese herbal formulae for the treatment of moderate to severe stable chronic obstructive pulmonary disease: a multicenter, double-blind, randomized controlled trial. *PLOS One*, 9(8), 1–12. 31
- [278] Wang, M., Li, J., Li, S., & Xie, Y. (2014b). Effects of comprehensive therapy based on traditional chinese medicine patterns on older patients with chronic obstructive pulmonary

disease: a subgroup analysis from a four-center, randomized, controlled study. Fronteras en Medicina, 8(3), 368–75. 31

- [279] Wannamethee, S. G., Shaper, A. G., Lennon, L., & Morris, R. W. (2005). Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med, 165(22), 2644–50. 181
- [280] Warnier, M. J., Rutten, F. H., de Boer, A., Hoes, A. W., & De Bruin, M. L. (2014). Resting heart rate is a risk factor for mortality in chronic obstructive pulmonary disease, but not for exacerbations or pneumonia. *PLOS One*, 9(8). 31, 34
- [281] Waschki, B., Kirsten, A., Holz, O., Muller, K. C., Meyer, T., Watz, H., & Magnussen,
 H. (2011). Physical activity is the strongest predictor of all-cause mortality in patients with
 COPD: a prospective cohort study. *CHEST*, 140(2), 331–342. 31, 33, 34, 42, 48, 155
- [282] Wedzicha, J. A., Seemungal, T. A., MacCallum, P. K., Paul, E. A., Donaldson, G. C., Bhowmik, A., Jeffries, D. J., & Meade, T. W. (2000). Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. *Thrombosis and haemostasis*, 84(2), 210–5. 31, 38, 48
- [283] Weiner, D. E., Tighiouart, H., Elsayed, E. F., Griffith, J. L., Salem, D. N., Levey, A. S., & Sarnak, M. J. (2007). The Framingham predictive instrument in chronic kidney disease. Journal of the American College of Cardiology, 50(3), 217–224. 181
- [284] Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machinelearning improve cardiovascular risk prediction using routine clinical data? *PLOS One*, 12(4), 1–14. 206
- [285] Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., Leeflang, M. M., Sterne, J. A., Bossuyt, P. M., & QUADAS-Group (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med*, 155(8), 529–36. 24

- [286] Wilkinson, I. B., Fuchs, S. A., Jansen, I. M., Spratt, J. C., Murray, G. D., Cockcroft, J. R., & Webb, D. J. (1998). Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. *J Hypertens*, 16(12 Pt 2), 2079–84. 12, 58, 183
- [287] Wood, A. M., Kaptoge, S., Butterworth, A. S., Willeit, P., Warnakula, S., Bolton, T., Paige, E., Paul, D. S., Sweeting, M., Burgess, S., Bell, S., Astle, W., Stevens, D., Koulman, A., Selmer, R. M., Verschuren, W. M. M., Sato, S., Njolstad, I., Woodward, M., Salomaa, V., Nordestgaard., et al. (2018). Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. *Lancet*, 391(10129), 1513–1523. 210
- [288] Wordsworth, S., Doble, B., Payne, K., Buchanan, J., Marshall, D. A., McCabe, C., & Regier, D. A. (2018). Using "big data" in the cost-effectiveness analysis of next-generation sequencing technologies: Challenges and potential solutions. *Value Health*, 21(9), 1048–1053.
 211
- [289] World Health Organisation (2014). The top 10 causes of death. 20
- [290] World Health Organisation (2015). Mortality indicator database. Mortality indicators by67 causes of death, age and sex (Health for All-European Mortality Database). 5
- [291] World Health Organisation (2016). The international classification of adult underweight overweight and obesity according to BMI. 58, 157
- [292] Wust, R. C. & Degens, H. (2007). Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis, 2(3), 289–300. 14
- [293] Young, R. P. & Hopkins, R. J. (2013). Update on the potential role of statins in chronic obstructive pulmonary disease and its co-morbidities. *Expert Review of Respiratory Medicine*, 7(5), 533–544. 4

- [294] Young, R. P. & J. Hopkins, R. (2014). Primary and secondary prevention of chronic obstructive pulmonary disease: Where to next? Am J Respir Crit Care Med, 190(7), 839– 840. 3
- [295] Zhang, W., Zhang, Y., Li, C. W., Jones, P., Wang, C., & Fan, Y. (2017). Effect of statins on COPD: a meta-analysis of randomized controlled trials. *CHEST*, 152(6), 1159–1168. 150

role of inflammation in chronic airways disease