
Definable Inapproximability:
New Challenges for Duplicator

Albert Atserias
Departament de Ciències de la Computació

Universitat Politècnica de Catalunya

Anuj Dawar
Department of Computer Science and Technology

University of Cambridge

Abstract

We consider the hardness of approximation of optimization problems from the
point of view of definability. For many NP-hard optimization problems it is known
that, unless P = NP, no polynomial-time algorithm can give an approximate solu-
tion guaranteed to be within a fixed constant factor of the optimum. We show, in
several such instances and without any complexity theoretic assumption, that no al-
gorithm that is expressible in fixed-point logic with counting (FPC) can compute an
approximate solution. Since important algorithmic techniques for approximation
algorithms (such as linear or semidefinite programming) are expressible in FPC,
this yields lower bounds on what can be achieved by such methods. The results are
established by showing lower bounds on the number of variables required in first-
order logic with counting to separate instances with a high optimum from those
with a low optimum for fixed-size instances.

1 Introduction

Twenty years ago, the PCP theorem [4] transformed the landscape of complexity theory.
It showed that if P 6= NP then not only is it impossible to efficiently solve NP-hard
problems exactly but for some of them it is also impossible to approximate the solution
to within a constant factor. Consider for instance the problem MAX 3SAT. Here we
are given a Boolean formula in 3CNF and we are asked to determine m∗, the maximum
number of clauses that can be simultaneously satisfied by an assignment of Boolean values
to its variables. It is a consequence of the PCP theorem that there is a constant c < 1 such
that, assuming P 6= NP, no polynomial-time algorithm can be guaranteed to produce an
assignment that satisfies at least cm∗ clauses, or indeed determine the value of m∗ up to a
factor of c. The proof of the PCP theorem introduced sophisticated new techniques into
complexity theory such as the probabilistically checkable proofs that gave the theorem its
name. Over the years, stronger results were proved, improving the constant c and, by
reductions, proving inapproximability results for a host of other NP-hard problems.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/227519387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A structural theory of hardness of approximation was introduced by Papadimitriou
and Yannakakis [26] who defined the class MAX SNP of approximation problems, with
a definition rooted in descriptive complexity theory. They showed that for every problem
in this class, there is a constant d and a polynomial-time algorithm can find approximate
solutions within a factor d of the optimum. At the same time, for all problems that
are MAX SNP-hard, under approximation-preserving reductions defined in [26], there
is a constant c such that no polynomial-time algorithm can approximate solutions within a
factor c. This makes it a challenge, for each MAX SNP-complete problem, to determine
the exact approximation ratio that is achievable by an efficient algorithm. In some cases,
this has been pinned down exactly. For instance, for MAX 3SAT we know that there
is a polynomial-time algorithm that will produce an assignment satisfying 7/8 of the
clauses in any formula but, unless P = NP, there is no polynomial-time algorithm that
is guaranteed to produce a solution within 7/8 + ε of the optimal, for any ε > 0 [19].
Another interesting case is MAX 3XOR, where we are given a formula which is the
conjunction of clauses, each of which is the XOR of three literals. Here, satisfiability
is decidable in polynomial time as the problem is essentially that of solving a system of
linear equations over the two-element field. However, determining, for an unsatisfiable
system, how many of its clauses can be simultaneously satisfied is MAX SNP-hard, and
the exact approximation ratio that is achievable efficiently is known: unless P = NP, no
polynomial-time algorithm can achieve an approximation ratio bounded above 1/2 [19].

To give a problem of another flavour, consider minimum vertex cover, the problem of
finding, in a graph G, a minimum set S of vertices such that every edge is incident on
a vertex in S. Let vc(G) denote the size of a minimum size vertex cover in G. There
are algorithms that are guaranteed to find a vertex cover no larger than 2vc(G) (this
being a minimization problem, the approximation ratio is expressed as a number c ≥ 1).
It has been proved, by means of rather sophisticated reductions starting at the PCP
theorem, that, unless P = NP, no polynomial-time algorithm can achieve a ratio better
than 1.36 [15]. Very recent results announced in [23] improve this lower bound to

√
2. It

is conjectured that indeed no such algorithm could achieve a ratio of 2− ε for arbitrarily
small ε > 0 but, as of our current knowledge, the right threshold constant could be
somewhere between

√
2 and 2.

We approach these questions on the hardness of approximability from the point of
view of definability. Our aim is to show that the tools of descriptive complexity can
be brought to bear in showing lower bounds on the definability of approximations and
that these definability lower bounds have consequences on understanding commonly used
techniques in approximation algorithms.

A reference logic in descriptive complexity is fixed-point logic with counting, FPC.
The class of problems definable in this logic form a proper subclass of the complexity
class P. However, FPC is very expressive and many natural problems in P are expressible
in this logic. For instance, any polynomial-time decidable problem on a proper-minor
closed class of graphs is expressible in FPC [18]. Also, problems that can be formulated
as linear programming or semidefinite programming problems are in FPC [2, 8, 14].
At the same time, for many problems we are able to prove categorically, i.e., without
complexity theoretic assumptions, that they are not definable in FPC. Among these
are NP-complete problems like 3SAT, graph 3-colourability and Hamiltonicity (see [11]).
We can also prove that certain problems in P are not in FPC, such as 3XOR [6, 10].

2

A particularly interesting class of problems is the class of optimization problems known
as MAX CSP or constraint maximization problems, where we are given a collection of
constraints and the problem is to find the maximum number of constraints that can be
simultaneously satisfied. When it comes to finding exact solutions, definability in FPC
turns out to be an excellent guide to the tractability of such problems. It is known that
each such problem is either in P and definable in FPC or it is NP-complete and provably
not definable in FPC [13]. We would like to extend such results also to the approximability
of such problems. This paper develops the methodology for doing so.

For MAX 3SAT, we prove, without any complexity theoretic assumption, that no
algorithm expressible in FPC can achieve an approximation ratio of 7/8 + ε. The ques-
tion seems ill-posed at first sight as FPC is a formalism for defining problems rather
than expressing algorithms. We return to the precise formulation shortly, but first note
that there is a sense in which FPC can express, say the ellipsoid method for solving
linear programs [2]. This is the basis for showing that many commonly used algorithmic
techniques for approximation problems, such as semidefinite programming relaxations,
are also expressible in FPC. Thus, on the one hand, reductions from MAX SNP-hard
problems show inapproximability by any polynomial-time algorithm, assuming P 6= NP.
On the other hand, our results show, without the assumption, inapproximability by the
most commonly used polynomial-time methods.

Undefinability of a class of structures C in FPC is typically established by showing
that structures in C cannot be distinguished from structures not in C in Ck—first-
order logic with counting and just k variables—for any fixed k. In the terminology
of [14], C has unbounded counting width. On the other hand, hardness of approximation
for a maximization problem is typically established by showing that every class that
includes all instances with an optimum m∗ and excludes all instances with an optimum
less than cm∗, is NP-hard. Our method combines these two. We aim to show that any
class separating instances with an optimum m∗ from instances with an optimum less
than cm∗ has unbounded counting width. In general, we not only show that counting
width is unbounded, but establish stronger bounds on how it grows with the size of
instances, as such bounds are directly tied to lower bounds on semidefinite programming
hierarchies [14, 8]. This methodology poses new challenges for Spoiler-Duplicator games
in finite model theory. Such games are typically played on pairs of structures that are
minimally different. In the new setting, we need to show Duplicator winning strategies
in games on pairs of structures that differ substantially, on some numeric parameters.

The PCP theorem is the fons et origo of results on hardness of approximation. It
established the first provably NP-hard constant gap between the fully satisfiable instances
of MAX 3SAT, i.e., those in which all clauses can be satisfied, and the less satisfiable
ones, those where no more than 1 − ε0 can be satisfied, for some explicit ε0 > 0. The
gap between 1 and 1 − ε0 was then amplified and also transferred to other problems by
means of reductions. For us, the starting point is the problem MAX 3XOR. We are
able to establish a definability gap between the satisfiable instances of this and instances
in which little more than 1/2 of the clauses can be satisified. The constant 1/2 is easily
seen to be optimal since in every 3XOR instance at least half of the equations can be
satisfied.

The methods for establishing this optimal initial gap are very different from that
for the PCP theorem. We construct a k-locally satisfiable instance of MAX 3XOR

3

which, by a random construction is at the same time highly unsatisfiable. We can then
combine this with a construction adapted from [6] to obtain an optimal gap that defeats
any fixed counting width. This shows that no algorithm that is expressible in FPC can
approximate MAX 3XOR within a constant above 1/2, even on satisfiable instances. It
should be pointed out that, although the inapproximability of MAX 3XOR above 1/2
matches algorithmic lower bounds and is tight, the type of definability gap that we obtain,
which applies to satisfiable instances, cannot have an analogue in the algorithmic setting.
The satisfiable instances of MAX 3XOR are distinguished from unsatisfiable ones by a
polynomial-time algorithm. To show inapproximability for any constant greater than 1/2
one has to show that it is the almost satisifable ones that are indistinguishable from those
that are highly unsatisfiable. This distinction supports our claim that our methods are
very different from that for the PCP theorem.

With such an optimal initial gap for MAX 3XOR in hand, we can then transfer it
to other problems by means of reductions, just as in classical inapproximability. Our
reductions have to preserve FPC definability and we mostly rely on first-order definable
reductions. For one, the standard direct reduction from 3XOR to 3SAT is trivially first-
order definable and gives an optimal undefinability gap for MAX 3SAT: no algorithm
expressible in FPC can achieve an approximation ratio of 7/8 + ε, even on satisfiable
instances. Again this matches known algorithm lower bounds and is tight. For other
problems we need to rely on more sophisticated constructions, without leaving the realm
of first-order definable reductions. It turns out that many of the reductions used in
the classical theory of approximability are first-order reductions but this requires close
examination and proof.

We show that the long-code reductions from [19] are definable in first-order logic.
Such reductions have the merit of providing different constructions of optimal gaps
for MAX 3XOR and MAX 3SAT starting at any initial gap whatsoever. In addition,
the techniques that are involved in them have applications elsewhere. For the vertex
cover problem, we are able to show that the reduction from [15], which is based on the
same long-code reduction techniques as in [19], is first-order definable, showing that FPC
cannot give an approximation better than 1.36. It is possible that this could be improved
to
√

2 using the recent breakthrough of [23] but we leave this to future work.

2 Preliminaries

We use F2 to denote the 2-element field. For any positive integer n, let [n] := {1, . . . , n}.

2.1 Logics and games

We assume familiarity with first-order logic FO. All our vocabularies are finite and
relational, and all structures are finite. For a structure A, we write A to denote its
universe, and we often write |A| and |A| interchangeably to mean the number of elements
in the universe. We refer to fixed-point logic FP and fixed-point logic with counting FPC
but the definitions of these are not required for the technical development in the paper.
For this it suffices to consider the bounded variable fragments of first-order logic.

For a fixed positive integer k, we write Lk to denote the fragment of first-order logic
in which every formula has at most k variables, free or bound. We also write ∃Lk,+ for

4

the existential positive fragment of Lk. This consists of those formulas of Lk formed using
only the positive Boolean connectives ∧ and ∨, and existential quantification. FOC is the
extension of first-order logic with counting quantifiers. For each natural number i, we have
a quantifier ∃i where A |= ∃ixφ if, and only if, there are at least i distinct elements a ∈ A
such that A |= φ[a/x]. While the extension of first-order logic with counting quantifiers
is no more expressive than FO itself, the presence of these quantifiers does affect the
number of variables that are necessary to express a query. Let Ck denote the k-variable
fragment of FOC in which no more than k variables appear, free or bound.

For two structures A and B, we write A ≡Ck B to denote that they are not distin-
guished by any sentence of Ck. All that we need to know about FPC is that for every
formula φ of FPC there is a k such that if A ≡Ck B then A |= φ if, and only if, B |= φ.
We also write A ⇒k B to denote that every sentence of ∃Lk,+ that is true in A is also
true in B. While ≡Ck is an equivalence relation, ⇒k is reflexive and transitive but not
symmetric. These relations have well established characterizations in terms of two-player
pebble games. The relation ⇒k is characterized by the existential k-pebble game [24]
and ≡Ck by the k-pebble bijective game [20].

Both versions of the game are played on a pair of structures A and B by two players,
Spoiler and Duplicator, using k pairs of pebbles (a1, b1), . . . , (ak, bk). In a game position,
some (or all) of the pebbles a1, . . . , ak are placed on elements of A while the matching
pebbles among b1, . . . , bk are placed on elements of B. Where it causes no confusion, we
do not distinguish notationally between the pebble ai (or bi) and the element on which
it is placed. In the existential k-pebble game, at each move Spoiler chooses a pebble ai
(which might or might not already be on an element of A) and places it on any element
of A. Duplicator has to respond by placing bi on an element of B. If the resulting partial
map from A to B given by ai 7→ bi is not a partial homomorphism, then Spoiler has
won the game. In the k-pebble bijective game Spoiler chooses a pair of pebbles (ai, bi)
and Duplicator has to respond by giving a bijection f : A → B which agrees with
the map aj 7→ bj for all j 6= i. Spoiler chooses a pair (a, f(a)) on which to place the
pebbles (ai, bi). Again, if the resulting partial map from A to B given by ai 7→ bi is not a
partial isomorphism, then Spoiler has won the game. In both games, we say Duplicator
has a winning strategy if, no matter how Spoiler plays, it can play forever without losing.
The following summarises the connection between these games and the relations ≡Ck ,
and ⇒k. For any two structures A and B, the following hold: A ⇒k B if, and only if,
Duplicator has a winning strategy in the existential k-pebble game played on A and B [24];
and A ≡Ck B if, and only if, Duplicator has a winning strategy in the k-pebble bijective
game played on A and B [20].

For undirected graphs, the relation ≡C2 has a simple combinatorial characterization
in terms of vertex refinement (see [22]). For any graph G, there is a coarsest parti-
tion C1, . . . , Cm of the vertices of G such that for each 1 ≤ i, j ≤ m there exists δij such
that each v ∈ Ci has exactly δij neighbours in Cj. Let H be another graph and D1, . . . Dm′

be the corresponding partition of H with constants γij. Then G ≡C2 H if, and only
if, m = m′ and there is a permutation h ∈ Symm such that |Ci| = |Dh(i)| and δij = γh(i)h(j)
for all i and j.

All classes of structures we consider in this paper are assumed to be closed under
isomorphism. Let C be such a class of structures and for any n ∈ N, let Cn denote the
structures in C with at most n elements. The counting width of C [14] is the function k :

5

N → N where k(n) is the smallest value such that for any A ∈ Cn and any B 6∈ C , we
have A 6≡Ck(n) B. Note that k(n) ≤ n. Because A 6≡C1 B whenever A and B have different
numbers of elements, k(n) is also the smallest value such that Cn is a union of ≡Ck(n)-
classes. In particular, it follows that the counting width of C is the same as that of its
complement. For k : N→ N, we say that two disjoint classes C and D are Ck-separable if
whenever A ∈ Cn and B ∈ Dn, then we have A 6≡Ck(n) B. Equivalently C and D are Ck-
separable if there is a class E of counting width k such that C ⊆ E and D ⊆ E . To see
that the two conditions are equivalent, first suppose that whenever A ∈ Cn and B ∈ Dn

we have A 6≡Ck(n) B. Then, if we define E to be the set that contains, for every n, all
structures of size n that are ≡Ck(n)-equivalent to some structure in A , it witnesses the
second condition. In the other direction, if for some n, we have A ∈ Cn and B ∈ Dn

and A ≡Ck(n) B, then any E with counting width k that contains A must also contain B.

2.2 Interpretations

Consider two vocabularies σ and τ . A d-ary FO-interpretation of τ in σ is a sequence of
first-order formulas in vocabulary σ consisting of: (i) a formula δ(x); (ii) a formula ε(x, y);
(iii) for each relation symbol R ∈ τ of arity k, a formula φR(x1, . . . , xk); and (iv) for each
constant symbol c ∈ τ , a formula γc(x), where each x, y or xi is a d-tuple of variables. We
call d the dimension of the interpretation. If d = 1, we say that the interpretaion is linear.
We say that an interpretation Θ associates a τ -structure B to a σ-structure A if there is
a map h from {a ∈ Ad | A |= δ[a]} to the universe B of B such that: (i) h is surjective
onto B; (ii) h(a1) = h(a2) if, and only if, A |= ε[a1, a2]; (iii) RB(h(a1), . . . , h(ak)) if, and
only if, A |= φR[a1, . . . , ak]; and (iv) h(a) = cB if, and only if, A |= γc[a]. Note that an
interpretation Θ associates a τ -structure with A only if ε defines an equivalence relation
on Ad that is a congruence with respect to the relations defined by the formulae φR and γc.
In such cases, however, B is uniquely defined up to isomorphism and we write Θ(A) = B.
It is also worth noting that the size of B is at most nd, if A is of size n. But, it may in
fact be smaller. We call an interpretation p-bounded, for a polynomial p, if |B| ≤ p(|A|),
and say the interpretation is linearly bounded if p is linear. Every linear interpretation is
linearly bounded, but the converse is not necessarily the case.

For a class of structures C and an interpretation Θ, we write Θ(C) to denote the
class {Θ(A) | A ∈ C }. We mainly use interpretations to define reductions between
classes of structures. These allow us to transfer bounds on separability, by the following
lemma.

Lemma 1. Let Θ be a p-bounded interpretation of dimension d and let t be the maximum
number of variables appearing in any formula of Θ. If C and D are two disjoint classes of
structures such that Θ(C) and Θ(D) are Ck(n)-separable, then C and D are Cdk(p(n))+t-
separable.

Proof. Let A ∈ Cn and B ∈ Dn be two structures. Then, since Θ(A) and Θ(B) have size
at most p(n), there is a formula φ ∈ Ck(p(n)) such that Θ(A) |= φ and Θ(B) 6|= φ. We
compose φ with the interpretation Θ to obtain φ′. That is to say, we replace every relation
symbol by its defining formula, including replacing all occurrences of equality by ε, and
we relativize all quantifiers to δ. Note that this involves replacing quantification over
elements with quantification over tuples. That is to say, we need assertions of the form

6

“there exist i tuples x such that . . . ”. It is well known that such counting quantifiers over
tuples can be replaced by a series of counting quantifiers over single elements without
increasing the total number of variables. Then A |= φ′ and B 6|= φ′. It is also easy to
check that φ′ has at most dk(p(n)) + t variables. The multiplicative factor d comes from
the fact that every variable in φ is replaced by a d-tuple and the additive t accounts for
any other variables that may appear in the formulas of Θ.

When we wish to define a reduction from a class C by a first-order interpretation, it
suffices to give an interpretation Θ for all structures in C with at least two elements (or,
indeed, at least k elements for any fixed k). This is because we can define an arbitrary map
on a finite set of structures by a first-order formula, so we just need to take the disjunction
of Θ with the formula that defines the required interpretation on the structures with one
element. With this in mind, we define the method of finite expansions which gives us
interpretations Θ that take a structure A with universe A to a structure with a universe
consisting of l labelled disjoint copies of S for some definable subset S of A. Note that Θ
would not, in general, be linear, but it is linearly bounded.

So, fix a value l, and let t be the least integer such that l ≤ 2t. In a structure A
with at least two elements, we say that a t + 1-tuple of elements (a1, . . . , at+1) codes an
integer i ∈ [2t] if b1 · · · bt is the binary representation of i − 1 and for all j ∈ [t] we
have bj = 1 if, and only if, aj+1 6= a1. For each i, we can clearly define a formula γi(y)
with t+ 1 free variables that defines those tuples that code i. Now, for any formula φ(x),
let δ(x, y) be the formula φ(x) ∧

∨
i≤l γi(y) and let ε(x1, y1, x2, y2) be the formula

x1 = x2 ∧
∨
i

γi(y1) ∧ γi(y2).

In other words, δ picks out those t + 2 tuples (s, a) where s satisfies φ and a codes an
integer in [l], and ε identifies distinct tuples which have the same s and the same integer l.
An interpretation using these can be seen to yield a structure with l disjoint copies of
the set of elements of A satisfying φ.

3 The Basic Gap Construction

The problems 3SAT and 3XOR both ask to decide if a formula consisting of the con-
junction of Boolean constraints each on exactly three Boolean variables is satisfiable.
In 3SAT the constraints are disjunctions of literals on three distinct variables. In 3XOR
the constraints are parities of three distinct variables. Both problems are known to have
unbounded counting width [6]: the class of satisfiable instances cannot be separated in Ck,
for bounded k, from the class of unsatisfiable ones. Our aim is to show that this result
can be strengthened to show that the class of satisfiable instances is not Ck-separable
from the class of instances that are highly unsatisfiable, meaning that no assignment to
the variables can satisfy more than a fraction s of the constraints for some fixed s ∈ (0, 1).
We give a basic construction for 3XOR, based on that in [6], that establishes this for
any s > 1/2, with a lower bound on the value of k that is linear in the number of variables
in the system. Then we use this construction to get one for 3SAT for any s > 7/8, also
for a value of k that is linear in the number of variables. In both cases, the constants 1/2
and 7/8 are known to be optimal.

7

3.1 Systems of constraints

Let Γ be a finite set of relations over a finite domain D, also called a constraint lan-
guage. Let I = {c1, . . . , cm} be a collection (multi-set) of constraints, each of the
form R(xi1 , . . . , xik), where R is a k-ary relation in Γ, and xi1 , . . . , xik are k distinct D-
valued variables from a set x1, . . . , xn of n variables. For c ∈ [0, 1], we say that the
system I is c-satisfiable if there is an assignment f : {x1, . . . , xn} → D that satisfies
at least cm constraints; i.e., that satisfies (f(xi1), . . . , f(xik)) ∈ R for at least cm con-
straints R(xi1 , . . . , xik) from I. Note that, as we are counting the number of satisfied
constraints, multiplicities matter and this is why we have multi-sets rather than sets of
constraints.

We think of a system I = {c1, . . . , cm} over the constraint language Γ as a finite
structure in two ways. In the first encoding, the universe is the disjoint union of x1, . . . , xn
and c1, . . . , cm. The vocabulary includes binary relations E1, E2, . . . such that Ei(x, c)
holds if the constraint c has arity i or more and x is the ith variable in c. The vocabulary
also includes a unary relation ZR for each relation R in Γ such that ZR(c) holds if c is an R-
constraint: a constraint of the form R(xi1 , . . . , xik) for some variables xi1 , . . . , xik , where k
is the arity of R. In the second encoding, the universe is just the set of variables x1, . . . , xn,
and the vocabulary includes a k-ary relation symbol R for each k-ary relation R in Γ,
such that R(xi1 , . . . , xik) holds if this is one of the constraints in the collection c1, . . . , cm.
Note that in this second encoding the collection of constraints is treated as a set. In
particular, the multiplicity of constraints is lost, which could affect its c-satisfiability.

The constraint language Γ is also encoded as a finite structure in two ways. In the first
encoding the domain is D≤r = D∪D2∪D3∪· · ·∪Dr, where r is the maximal arity of a re-
lation in Γ. The relations E1, E2, . . . are interpreted by the projections: Ei(b, (b1, . . . , bk))
holds for b ∈ D and (b1, . . . , bk) ∈ Dk if, and only if, i ≤ k and b = bi. The relations ZR are
interpreted by the relation R itself as a unary relation over the universe: ZR((b1, . . . , bk))
holds if k is the arity of R and (b1, . . . , bk) belongs to R. In the second encoding, the
universe is just D, and the relation symbol R is interpreted by R itself. Where it causes
no confusion, we do not distinguish between a constraint language Γ and the structure
that encodes it, and similarly between an instance I and its encoding structure.

It is easily seen that, in both encodings as finite structures, a system I over Γ is
satisfiable if, and only if, there is a homomorphism from the structure that encodes I to
the structure that encodes Γ. We say that the system is k-locally satisfiable if I ⇒k Γ.

For 3SAT, the constraint language is denoted Γ3SAT. It has domain D = {0, 1} and
the relations are the eight relations R1, . . . , R8 ⊆ {0, 1}3 defined by the eight possible
clauses on three variables. For 3XOR, the constraint language is denoted Γ3XOR. It also
has domain D = {0, 1} and the relations are the two relations R0, R1 ⊆ {0, 1}3 defined
by the two possible linear equations x+ y + z = b with three variables over F2 = {0, 1}.
Accordingly, 3XOR instances I can be identified with systems of linear equations Ax = b
over F2. In the following, A and b are referred to as the left-hand side matrix of I and
right-hand side vector of I, respectively.

It is probably useful to spell out, in simple words, what it means for a 3SAT or 3XOR
instance to be k-locally satisfiable. Intuitively, what this means is that every set of less
than k variables induces a satisfiable subformula and that, in addition, at least one of the
satisfying assignments that exists can be extended to any other variable, still satisfying the

8

resulting induced subformula, and itself satisfying the same type of extension property.
Strictly speaking this description is accurate only in the second encoding; in the first
encoding one has to consider sets of less than k variables and clauses, and then the
correspondence with satisfying assignments with the extension property is not as direct.
However, what is true and useful (and easy to see) is that if a 3SAT or 3XOR instance
is k-locally satisfiable in the first encoding then it is also k-locally satisfiable in the second
encoding, while if it is 3k-locally satisfiable in the second encoding, then it is also k-locally
satisfiable in the first encoding. We use the second of these claims in the proof of Lemma 5
below (where we also spell out the easy proof of it).

3.2 Gap construction

We now focus on 3XOR and hence on systems of linear equations over F2.
A starting point for us is the following construction which allows us to convert any k-

locally satisfiable system of equations into a pair of systems that are≡Ck-indistinguishable.
See [1, Prop. 32] for a related construction, which is inspired by the proof in [6] that sat-
isfiability of systems of linear equations over F2 is not invariant under ≡Ck for any k.

For any instance I of 3XOR we define another instance G(I) of 3XOR which has
two variables x0j and x1j for each variable xj of I. For each equation xj + xk + xl = b
in I, we have eight equations in G(I) given by the eight possible values of a1, a2, a3 ∈
{0, 1} in xa1j + xa2k + xa3l = b + a1 + a2 + a3. If I is the system Ax = b, then the
homogeneous companion of I is the system Ax = 0, which we denote I0. Note that
the system G(I0) is satisfiable for any I by setting each variable xaj to a. We show
that, despite this, as long as I is locally satisfiable, G(I) is hard to distinguish from its
homogeneous companion G(I0).

Lemma 2. For every 3XOR instance I and every integer k ≥ 3, if I is k-locally satisfi-
able, then G(I) ≡Ck G(I0).

Proof. We describe a strategy for Duplicator in the k-pebble bijective game played
on G(I) and G(I0), given a strategy in the existential k-pebble game on I and Γ = Γ3XOR.

Suppose we have a position in the existential k-pebble game on I and Γ with pebbles
on x1, . . . , xk′ , for some k′ ≤ k in I, and corresponding pebbles on v1, . . . , vk′ ∈ {0, 1}
in Γ. Suppose further that this is a winning position for Duplicator, i.e. she has a strategy
to play forever from this position. Then, we claim that the position in the bijective
game where the pebbles in G(I) are on xa11 , . . . , x

ak′
k′ , for some a1, . . . , ak′ ∈ {0, 1} and

the matching pebbles in G(I0) are on xa1+v11 , . . . , x
ak′+vk′
k′ is a winning position in the

bijective game on these two structures. To see this, note first that, if xr + xs + xt =
bi is an equation in I, for 1 ≤ r, s, t ≤ k′, then by assumption that the position is
winning in the existential game, vr + vs + vt = bi. Hence, xarr + xass + xatt = bi is an
equation in G(I) if, and only if, xarr + xass + xatt = 0 is an equation in G(I0) if, and only
if, xar+vrr + xas+vss + xat+vtt = vr + vs + vt is an equation in G(I0), but this last equation
is xar+vrr + xas+vss + xat+vtt = bi. Thus, the map from xa11 , . . . , x

ak′
k′ to xa1+v11 , . . . , x

ak′+vk′
k′

is a partial isomorphism. To see that Duplicator can maintain the condition, suppose
Spoiler moves the pebbles on (x

aj
j , x

aj+vj
j). By assumption, Duplicator has a response

in the existential game whenever Spoiler moves the pebble from xj to xl. This response

9

defines a function f from the variables in x to {0, 1}. We use this to define the bijection

taking xal to x
a+f(xl)
l . This is a winning move in the bijective game.

As far as the degree of satisfiability is concerned, the construction preserves a gap in
the following quantifiable terms:

Lemma 3. For every 3XOR instance I and every c, s ∈ [0, 1], the following hold:

1. if I is c-satisfiable, then G(I) is c-satisfiable,

2. if I is not s-satisfiable, then G(I) is not (1/2 + s/2)-satisfiable.

Proof. For proving 1, let h : {x1, . . . , xn} → {0, 1} be an assignment of values to the
variables of I that satisfies at least cm of the m equations in I. Define the assignment g
on the variables of G(I) by g(xa) = h(x) + a. For each equation e satisfied by h, all
eight equations arising from e are satisfied by g and so g satisfies at least 8cm of the 8m
equations in G(I).

For proving 2, suppose g is an assignment of values in {0, 1} to the variables xai
in G(I). Let h : {x1, . . . , xn} → {0, 1} be the assignment defined by h(xj) = g(x0j). We
claim that if ei is an equation xj + xk + xl = b in I that is not satisfied by h then at
least four of the eight equations in G(I) arising from ei are falsified by g. To see this,
consider two cases. First, suppose that g(x0t) = g(x1t) for some t ∈ {j, k, l}. Without loss
of generality, we assume t = j. Then consider the four pairs of equations

x0j + xa1j + xa2k = bi + a1 + a2,

x1j + xa1j + xa2k = bi + a1 + a2 + 1

obtained by taking the four possible values of a1 and a2. Since g(x0j) = g(x1j), if one
equation in a pair is satisfied by g the other is necessarily falsified. Thus, at least four
equations are falsified. For the second case, suppose that for each t ∈ {j, k, l} occurring
in ei we have g(x0t) 6= g(x1t). But then, since we assume that h falsifies ei, it follows that g
falsifies x0j +x0k +x0l = b and hence it falsifies all eight equations arising from ei. In either
case, g falsifies at least four of the equations arising from ei.

Now, suppose that g satisifes at least (1/2 + s/2) · 8m of the 8m equations in G(I).
We claim that h satisfies at least sm equations in I. Suppose for contradiction that h
falsifies a proportion ε > 1− s of the equations. By the above argument, then g falsifies
at least 4εm of the equations in G(I). But 4εm > (1/2 − s/2) · 8m contradicting the
assumption that g satisfies at least (1/2 + s/2) · 8m equations.

The extreme cases of Lemma 3 are given by c = 1 for point 1, and s = 1/2 + ε
with ε > 0 for point 2. Indeed, every 3XOR instance is 1/2-satisfiable, as witnessed
by the all-zero assignment, or the all-one assignment, whichever satisfies more equations.
Note also that point 1 of Lemma 3 preserves its extremality: if I is satisfiable, then so
is G(I). However, point 2 does not preserve its extremality, since even if I is not (1/2+ε)-
satisfiable, the best that can be claimed about G(I) is that it is not (3/4+ε/2)-satisfiable.
In the following we show that if the vector b is chosen uniformly at random, then both
instances Ax = b and G(Ax = b) are at most (1/2 + ε)-satisfiable, with high probability,
provided the matrix A has at least a constant-factor more rows than columns.

10

Lemma 4. For every two reals ε > 0 and δ > 0 there exists an integer c > 0 such that
for every sufficiently large integer n and every matrix A ∈ {0, 1}m×n, where m = cn
and each row of A has exactly three ones, if b is chosen uniformly at random in {0, 1}m
then, with probability at least 1− δ, both 3XOR instances Ax = b and G(Ax = b) are at
most (1/2 + ε)-satisfiable.

Proof. Fix ε > 0 and δ > 0 and let c be any integer bigger than 1/ε2. Let n be sufficiently
large, let m = cn, and let A ∈ {0, 1}U×V be any matrix with U = [m] and V = [n] that
has exactly three ones in each row. For each b = (bu)u∈U ∈ {0, 1}U , the instance Ax = b
has one variable xv for each v ∈ V and one equation eu : xv1(u) + xv2(u) + xv3(u) = bu
for each u ∈ U , where v1(u), v2(u), v3(u) ∈ V are the three columns of A that have
ones in row u. The instance G(Ax = b) has three variables xav for each v ∈ V and eight
equations ea1,a2,a3u for each u ∈ U .

For each assignment f : {xv : v ∈ V } → {0, 1} for the variables of Ax = b and each u ∈
U , let Xf,u be the indicator random variable for the event that f(xv1(u)) + f(xv2(u)) +
f(xv3(u)) = bu; i.e., for the event that f satisfies the equation xv1(u) + xv2(u) + xv3(u) = bu.
The probability of this event is 1/2, and all such events, as u ranges over U , are
mutually independent. Thus, setting Xf =

∑
u∈U Xf,u, we have that Xf is a bino-

mial random variable with expectation E[Xf] = m/2. By Hoeffding’s inequality, the
probability that Xf − E[Xf] ≥ t is at most e−2t

2/m. In particular, the probability
that Xf ≥ (1/2 + ε)m is at most e−2ε

2m. By the union bound, the probability that
some f satisfies Xf ≥ (1/2 + ε)m is at most 2ne−2ε

2m.
Similarly, for each assignment f : {xav : v ∈ V, a ∈ {0, 1}} → {0, 1} for the variables

of G(Ax = b) and each u ∈ U , let Yf,u ∈ [0, 1] be the fraction of equations of G(Ax = b)
among those that come from u that are satisfied by f ; i.e., precisely, Yf,u is 1/8-th of
the number of triples (a1, a2, a3) ∈ {0, 1}3 for which the equality f(xa1v1(u)) + f(xa2v2(u)) +

f(xa3v3(u)) = bu + a1 + a2 + a3 holds. We claim that the expectation of the random

variable Yf,u is 1/2. To see this, consider two cases: 1) f(x0vj(u)) 6= f(x1vj(u)) for all j ∈
{1, 2, 3}, and 2) f(x0vj(u)) = f(x1vj(u)) for some j ∈ {1, 2, 3}. In case 1), either all eight
equations that come from u are satisfied, or none is, and each possibility happens with
probability 1/2 according to the outcome of the random choice of bu. The expectation
of Yf,u is thus 1/2 in this case. In case 2), exactly half of the eight equations that come
from u are satisfied, and which half depends on the outcome of the random choice of bu.
The expectation of Yf,u is thus 1/2 also in this case. This shows that the expectation
of Yf,u is 1/2 in either case. Moreover, the random variables Yf,u, as u ranges over U ,
are mutually independent. Thus, setting Yf = (1/m)

∑
u∈U Yf,u, we have that Yf is

the average of m independent random variables with range in [0, 1]. By Hoeffding’s
inequality, the probability that Yf − E[Yf] ≥ t is at most e−2t

2m. In particular, the
probability that Yf ≥ 1/2 + ε is at most e−2ε

2m. By the union bound, the probability
that some f satisfies Yf ≥ 1/2 + ε is at most 2ne−2ε

2m.
Since m = cn and c > 1/ε2, twice 2ne−2ε

2m is at most 2n+1e−2n and is less than δ
for all sufficiently large values of n. Thus, for any large enough n, the probability that
both Ax = b and G(Ax = b) are at most (1/2 + ε)-satisfiable is at least 1− δ.

The next step is to show that an appropriate choice of the matrix A will give a
locally satisfiable instance Ax = b for any right-hand side b. Entirely analogous claims
have been known and proved in the context of the proof complexity of propositional

11

resolution; indeed, our proof builds on the methods for resolution width [9], and their
relationship to existential pebble games from [5, 7].

In the proof, we need the notion of a graph G that is a bipartite unique-neighbour
expander graph with parameters (m,n, d, s, β) where m,n, d and s are integer parameters
with s < n and β is a positive real number. What this means is that G is a bipartite
graph with parts U and V with m and n vertices respectively; each u ∈ U has exactly d
neighbours in V ; and for every T ⊆ U with |T | ≤ s we have |∂T | ≥ β|T |, where ∂T
denotes the set of vertices in V that are unique neighbours of T ; i.e., they are neighbours
of a single vertex in T .

Lemma 5. For every integer r > 0 there is a real γ > 0 such that for every sufficiently
large integer n there is a matrix A ∈ {0, 1}m×n, where m = rn, such that each row of A
has exactly three ones and, for every vector b ∈ {0, 1}m, the 3XOR instance Ax = b
is k-locally satisfiable for k ≤ γn.

Proof. Fix an integer r > 0 and reals α > 0 and β > 0, and let n0 be sufficiently
large that for every n ≥ n0 there exists a graph G that is a bipartite unique-neighbour
expander graph with parameters (rn, n, 3, αn, β). For the existence of such graphs with
these parameters see [29, Chapter 4]. Let A ∈ {0, 1}U×V be the incidence matrix of G,
where U = [m] and V = [n] are the two sides of G, for m = cn. For each b = (bu : u ∈
U) ∈ {0, 1}U , the 3XOR instance Ax = b has one variable xv for each v ∈ V , and one
equation eu : xv1(u) + xv2(u) + xv3(u) = bu for each u ∈ U , where v1(u), v2(u), v3(u) are the
three neighbours of u in G. We claim that every choice of b ∈ {0, 1}U gives that Ax = b
is k-locally satisfiable for k ≤ γn with γ = αβ/9.

Claim 6. For every b ∈ {0, 1}U , every set of at most αn equations from Ax = b is
satisfiable.

Proof. For each T ⊆ U , let eT be the set of equations that are indexed by vertices in T ,
and let vT be the set of variables that appear in eT . We prove, by induction on t ≤ αn,
that if T ⊆ U and |T | = t, then there exists an assignment that sets all the variables in vR
and that satisfies all the equations in eT . For t = 0 the claim is obvious. Assume now
that 1 ≤ t ≤ αn and let T be a subset of U of cardinality t. Then |∂T | ≥ β|T | > 0. Let v0
be some element in ∂T and let u0 ∈ T be the unique neighbour of v0 in T . The induction
hypothesis applied to S = T \ {u0} gives an assignment g that sets all the variables in vS
and satisfies all the equations in eS. The assignment g may assign some of the variables
of the equation eu0 , but not all, since v0 is not a neighbour of any vertex in S. Let f be
the unique extension of g that first sets all the variables in vT \ (vS ∪ {xv0}) to 0, and
then sets xv0 to the unique value that satisfies the equation eu0 . This assignment sets all
the variables in vT and satisfies all the equations in eT . The proof is complete.

Claim 7. For every b ∈ {0, 1}U and k ≤ γn, the instance I is k-locally satisfiable.

Proof. If I is satisfiable, then Duplicator certainly has a winning strategy and there
is nothing to prove. Assume then that I is unsatisfiable and let I ′ be a minimally
unsatisfiable subsystem; a subset of the equations of I that is unsatisfiable and every
proper subset of it is satisfiable. For each equation eu : xv1(u) + xv2(u) + xv3(u) = bu of I,

let Fu be the four clauses {x(a1)v1(u)
, x

(a2)
v2(u)

, x
(a3)
v3(u)
} with a1, a2, a3 ∈ F2 with a1 + a2 + a3 = bu,

12

where z(a) stands for the negative literal ¬z if a = 0 and the positive literal z if a = 1.
Let F be the 3CNF formula that is the union of all the Fu as u ranges over U . Observe
that F is an unsatisfiable 3CNF. We intend to apply Theorem 5.9 from [9] to it.

Let A be the collection of all Boolean functions fu : {0, 1}V → {0, 1} defined by

fu(xv : v ∈ V) = xv1(u) + xv2(u) + xv3(u) + bu mod 2,

for u ∈ U . Each function in A is sensitive in the sense of Definition 5.5 from [9], and
compatible with F in the sense of Definition 5.3 from [9]. Moreover, if A0 ⊆ A is the set
of functions that corresponds to the minimally unsatisfiable subsystem I ′ of I, then its
cardinality m0 satisfies m0 > αn by Claim 6. It follows that the expansion e(A) in the
sense of Definition 5.8 from [9] is at least αβn/3. By Theorem 5.9 in [9], every resolution
refutation of F requires width at least eαn/3, and hence at least 3k since k ≤ γn = eαn/9.
By Theorem 2 in [7], Duplicator has a winning strategy for the existential 3k-pebble game
played on the structures F and the constraint language Γ3SAT of 3SAT, in the second
encoding discussed in Section 3.1. We use this winning strategy to design a winning
strategy for Duplicator in the existential k-pebble game played on I and Γ3XOR.

While playing the game on I, Duplicator plays the game on F on the side and keeps
the invariant that each pebbled variable in the game on I is also pebbled in the side
game, and each pebbled equation in the game on I has its three variables pebbled in the
side game. Whenever a new variable is pebbled in the game on I, Duplicator pebbles the
same variable in the side game, and copies the answer from its strategy on it. Whenever
a new equation is pebbled in the game on I, Duplicator pebbles its three variables in the
side game, and answers the pebbled equation accordingly from its strategy. Since at each
position of the game on I there are no more than k pebbles on the board, at each time
during the simulation the side game has no more than 3k pebbles on the board. This
shows that the simulation can be carried on forever and the proof is complete.

This completes the proof of Lemma 5.

We can now prove our first two gap theorems.

Theorem 8. For every real ε > 0, if C is the collection of 3XOR instances that are
satisfiable and D is the collection of 3XOR instances that are not (1/2 + ε)-satisfiable,
then C and D are not Ck-separable for any k = k(n) such that k(n) = o(n).

Proof. By combining Lemma 5 with Lemma 4, there is a family of systems (Sk)k≥1
with O(k) variables and equations such that G(Sk) is not (1/2 + ε)-satisfiable but Sk
is k-locally satisfiable. Let I1k = G(Sk) and I0k = G(S0

k). Then I0k ≡Ck I1k by Lemma 2.
Moreover, by the first part of Lemma 3, the instance I0k is satisfiable while, by choice,
the instance I1k is not (1/2 + ε)-satisfiable. Since I0k and I1k have two variables for each
variable in Sk and eight equations for each equation in Sk, they also have O(k) variables
and equations and the result follows.

Theorem 9. For every real ε > 0, if C is the collection of 3SAT instances that are
satisfiable and D is the collection of 3SAT instances that are not (7/8 + ε)-satisfiable,
then C and D are not Ck-separable for any k = k(n) such that k(n) = o(n).

13

Proof. Consider the reduction Θ from 3XOR to 3SAT that translates each equation into
a conjunction of four clauses. Thus x + y + z = d becomes four clauses {x(a), y(b), z(c)}
with a, b, c ∈ F2 and a + b + c = d, where z(e) stands for the negative literal ¬z if e = 0
and the positive literal z if e = 1. This is easily defined in first-order logic. As the set of
variables in I is the same as in Θ(I), it is linearly bounded. We claim that applying Θ to
Theorem 8 with ε reset to ε/4 gives the theorem through Lemma 1. First, it is clear that
if I is a 3XOR instance that is satisfiable, then Θ(I) is also satisfiable. Now, suppose
that I is a system of m equations that is not (1/2 + ε/4)-satisfiable, and let g be an
assignment of truth values to the variables X of Θ(I). Applied to I, the assignment g
falsifies at least (1/2− ε/4)m of the equations. For each equation, g must falsify at least
one of the four corresponding clauses in Θ(I). Thus, g falsifies at least (1/2 − ε/4)m
clauses in Θ(I) and so satisfies at most 4m − (1/2 − ε/4)m = (7/8 + ε) · 4m of the 4m
clauses.

To formulate the consequences of these two theorems for FPC definability, it is useful
to introduce some terminology. Say that a term η of FPC δ-approximates MAX 3XOR,
where 0 < δ ≤ 1, if whenever I is an instance of 3XOR in which a maximum of m∗

clauses are simultaneously satisfiable, then the interpretation of ηI of η in I is a value
such that m∗ ≥ ηI ≥ δm∗. The notion of a term of FPC δ-approximating MAX 3SAT
is defined similarly.

Corollary 10. For any ε > 0,

1. there is no term of FPC that (1/2 + ε)-approximates MAX 3XOR; and

2. there is no term of FPC that (7/8 + ε)-approximates MAX 3SAT.

Proof. If there were such a term in case (1), we would obtain an FPC sentence defining
a class E of counting width bounded by a constant which separates the class of 3XOR
instances that are satisfiable from those that are not (1/2 + ε)-satisfiable, constradicting
Theorem 8. The analogous situation holds in case (2) and Theorem 9.

4 Long Code Reductions

In this section we show that certain reductions from the theory of inapproximability
of MAX 3XOR and MAX 3SAT can be expressed as FO-interpretations. While no
reduction can provide an improvement on the already optimal inapproximability results
that are implied by Theorems 8 and 9, these FO-interpretations have the merit of pro-
viding optimal gap pairs starting at any initial gap pair, provided the initial gap pair
exhibits any constant gap separation whatsoever. In addition, the details of the FO-
interpretations that we work out here will also be useful when we discuss the reductions
to the vertex-cover problem in the next section.

4.1 Parallel repetition

We begin by defining the LABEL COVER problem, a standard problem in the study
of hardness of approximation. Indeed, it is described in the textbook [3, p. 494] as being

14

“ubiquitous” in the PCP literature. For a full discussion of the problem, see [3, Chap. 22],
where it is called 2CSPW with the projection property.

An instance I of the LABEL COVER problem is given by two disjoint sets of
variables U and V with domains of values A and B, respectively, a predicate P :
U × V × A × B → {0, 1}, and an assignment of weights W : U × V → N. If all the
non-zero weights W (u, v) are equal, then the instance is said to have uniform weights. If
for all u ∈ U the sums W (u) :=

∑
v∈V W (u, v) of incident weights are equal, then the

instance is called left-regular. A right-regular instance is defined analogously in terms
of W (v) :=

∑
u∈U W (u, v). The instance is a projection game if for every (u, v) ∈ U × V

with W (u, v) 6= 0 it holds that for every a ∈ A there is exactly one b ∈ B satisfy-
ing P (u, v, a, b) = 1. It is called a unique game if |A| = |B| and it is a projection
game both ways: from A to B, and from B to A. The instance is said to have parame-
ters (m,n, p, q) if |U | = m, |V | = n, |A| = p and |B| = q. Its domain size is p+ q.

A value-assignment for an instance I is a pair of functions f : U → A and g : V → B.
The weight v(f, g) of the value-assignment (f, g) is the total weight of the pairs (u, v) ∈
U × V satisfying the constraint P (u, v, f(u), g(v)) = 1; i.e.,

v(f, g) =
∑

(u,v)∈U×V

W (u, v)P (u, v, f(u), g(v)). (1)

For c ∈ [0, 1], we say that the instance is c-satisfiable if there is a value-assignment whose
weight is at least c ·W0, where W0 =

∑
(u,v)∈U×V W (u, v) is the maximum possible weight.

We call it satisfiable if it is 1-satisfiable.
The bipartite reduction takes an instance I of 3XOR and produces a projection game

instance L(I) of LABEL COVER defined as follows. The sets U and V are the set of
equations in I and the set of variables in I, respectively. The weight W (u, v) is 1 if v is
one of the variables in the equation u, and 0 otherwise. The domains of values associated
to U and V are A = {(a1, a2, a3) ∈ F3

2 : a1 + a2 + a3 = 0} and B = F2, respectively.
The predicate P associates to the pair (u, v), where u is the equation v1 + v2 + v3 = b
and v = vi for i ∈ {1, 2, 3}, the set of pairs ((a1, a2, a3), a) ∈ A×B satisfying a = ai + b.
In other words, P (u, v, (a1, a2, a3), a) = 1 if, and only if, v appears in the equation u,
and if u is v1 + v2 + v3 = b and v = vi, then the (partial) assignment {v1 7→ a1 + b, v2 7→
a2 + b, v3 7→ a3 + b}, which satisfies the equation v1 + v2 + v3 = b by construction, agrees
with the (partial) assignment {vi 7→ a}. Clearly, this defines a projection game.

Lemma 11. For every instance I of 3XOR and every c, s ∈ [0, 1], the following hold:

1. if I is c-satisfiable, then L(I) is c-satisfiable,

2. if I is not s-satisfiable, then L(I) is not (s+ 2)/3-satisfiable.

Moreover, L(I) is a left-regular projection game that has uniform weights.

Proof. Let m be the number of equations in I, so L(I) has exactly 3m pairs (u, v) of
unit weight. Such pairs are called constraints. For proving 1, let h be an assignment
for I that satisfies at least cm of the m equations in I. For each equation u in I,
say v1+v2+v3 = b, define f(u) = (h(v1)+b, h(v2)+b, h(v3)+b) if h satisfies v1+v2+v3 = b,
and define f(u) = (0, 0, 0) otherwise. For each variable v in I, define g(v) = h(v). Each
equation in I gives rise to exactly three constraints in L(I), and if the equation is satisfied

15

by h, then all three constraints associated to it in L(I) are satisfied by (f, g). Thus (f, g)
satisfies at least 3cm of the 3m constraints in L(I), so L(I) is c-satisfiable. For proving 2,
let (f, g) be an assigment for L(I) that satisfies at least (s + 2)m of the 3m constraints
in L(I). For each variable v in I, define h(v) = g(v). Let t be the number of equations of I
that are satisfied by h. In terms of t, the assignment (f, g) satisfies at most 3t+ 2(m− t)
of the 3m constraints of L(I). Thus t ≥ sm, so I is s-satisfiable.

The parallel repetition reduction takes an instance I of LABEL COVER, and an
integer t ≥ 1, and produces another instance R(I, t) of LABEL COVER defined as
follows. Let U and V be the sets of variables in I and let W : U × V → N be the weight
assignment. The sets of variables of R(I, t) are U t and V t. For u = (u1, . . . , ut) ∈ U t

and v = (v1, . . . , vt) ∈ V t, the weight W (u, v) is defined as
∏t

i=1W (ui, vi). If A and B
are the domains of values associated to U and V , then the domains of values associated
to U t and V t are At and Bt respectively. For u = (u1, . . . , ut) ∈ U t, v = (v1, . . . , vt) ∈
V t, a = (a1, . . . , at) ∈ At and b = (b1, . . . , bt) ∈ Bt, the predicate P (u, v, a, b) is defined
as
∏t

i=1 P (ui, vi, ai, bi). Observe that this definition guarantees that if I is a projection
game, then so is R(I, t).

Theorem 12 (Parallel Repetition Theorem [27, 21]). There exists a constant α > 0
such that for every instance I of LABEL COVER with domain size at most d ≥ 1,
every s ∈ [0, 1] and every t ≥ 1 the following hold:

1. if I is satisfiable, then R(I, t) is satisfiable,

2. if I is not s-satisfiable, then R(I, t) is not (1− (1− s)3)αt/d-satisfiable.

Moreover, if I is a projection game, left-regular, right-regular, or has uniform weights,
then so is R(I, t).

Although it is the case that the bipartite and the parallel repetition reductions are
both FO-interpretations, we do not need to formulate this. Instead, we show the FO-
definability of the composition of these reductions with the long-code reductions that we
discuss next.

4.2 First long-code reduction

The first long-code reduction takes a projection game instance I of LABEL COVER and
a rational ε ∈ [0, 1] and produces an instance C(I, ε) of 3XOR defined as follows. Let U
and V be the sets of variables of sizes m and n, respectively, with associated domains
of values A = [p] and B = [q], let W : U × V → N be the weight assignment, let P :
U×V ×A×B → {0, 1} be the predicate of I, and for each (u, v) ∈ U×V with W (u, v) 6= 0
and each a ∈ A let πu,v(a) be the unique value b ∈ B that satisfies P (u, v, a, b) = 1.
The existence of such a function πu,v : A → B is guaranteed from the assumption
that I is a projection game. The set of variables of C(I, ε) includes one variable u(a) for
each u ∈ U and a ∈ Fp−12 , and one variable v(b) for each v ∈ V and b ∈ Fq−12 , for a total
of m2p−1 + n2q−1 variables. Before we are able to define the set of equations of C(I, ε)
we need a piece of notation. For a vector z = (z1, . . . , zd) ∈ Fd2 of dimension d ≥ 2, we
write S(z) = zd and F (z) = (z1 + S(z), . . . , zd−1 + S(z)). Note that S(z) is a single field
element, and F (z) is a vector of dimension d−1. With this notation, the set of equations

16

of C(I, ε) includes W (u, v) ·M q ·εD ·(1−ε)q−D copies of the equation v(F (x))+u(F (y))+
u(F (z)) = S(x) + S(y) + S(z) for each (u, v) ∈ U × V , each x ∈ Fq2 and each y, z ∈ Fp2,
where M is the denominator of ε = N/M reduced to lowest terms, D is the number of
positions i ∈ [p] such that zi 6= xπ(i) + yi, and π = πu,v if W (u, v) 6= 0.

Theorem 13 (H̊astad 3-Query Linear Test [19]). For every s, ε ∈ [0, 1] with ε > 0
and s > 0 and every projection game instance I of LABEL COVER, the following
hold:

1. if I is satisfiable, then C(I, ε) is (1− ε)-satisfiable,

2. if I is not s-satisfiable, then C(I, ε) is not (1/2 + (s/ε)1/2/4)-satisfiable.

The proof of Theorem 13 follows from Lemmas 5.1 and 5.2 in [19]. In order to see this,
we need to explain how our notation matches the one in [19]. Besides the obvious and
minor correspondance between multiplicative and additive notation for F2, with −1 ↔
1 and +1 ↔ 0, there are three other noticeable differences between the statement of
Theorem 13 and the statements of Lemmas 5.1 and 5.2 in [19].

The first difference is that Theorem 13 applies to arbitrary projection game instances
of LABEL COVER, while the statements in [19] are phrased only for the special cases
of the problem that result from applying the parallel repetition construction to a suitable
bipartite reduction applied to a 3SAT instance. We chose to formulate Theorem 13
in this more general and modular form because this is what the proofs of Lemmas 5.1
and 5.2 in [19] show, and also because this is how more recent expositions of these results
are presented (see, e.g., [3]).

The second difference is that the conclusion of our statement is phrased in terms of
the c-satisfiability of a 3XOR instance, while the statements of Lemmas 5.1 and 5.2 in [19]
are phrased in terms of the acceptance rate of a probabilistic test that has the following
form: given access to certain tables Au and Av, with F2 entries {Au(x)}x∈I and {Av(y)}y∈J
for certain index sets I and J , respectively, choose a random 3-variables parity test on
the Au(x) and Av(y) entries under a well-designed special-purpose distribution, and check
if it is satisfied. This difference is only notational and minor: our instance of XOR is built
by viewing the Au(x) and Av(y) entries as variables u(x) and v(y), and assigning weight
to each 3-variable parity equation on these variables proportionally to the probability
that it is checked by the probabilistic test on the Au and Av tables. With this change, c-
satisfiability of the instance translates into the probability of acceptance of the test being
at least c, and vice-versa.

The third difference in the notation is that our variables u(x) and v(y), and the corre-
sponding entries Au(x) and Av(y) of the tables Au and Av, are indexed by Fp−12 and Fq−12

instead of the more natural Fp2 and Fq2, respectively. This is due to the fact that we
implement the operations of folding over true and conditioning upon h from [19] directly
in our construction. In other words, our tables Au and Av are what [19] calls AW,h,true
and AU,true , respectively. Folding over true as in AU,true is achieved for Av through the
notation S(z) and F (z) defined above: we chose to partition Fp2 into 2p−1 pairs of the
form (z, 0), (F ((z, 1)), 1), as z ranges over Fp−12 , and view an arbitrary Av : Fp−12 → F2

as representing the function A′v : Fp2 → F2 defined by A′v(z) = Av(F (z)) + S(z) for ev-
ery z ∈ Fp2. It is straightfoward to see that A′v is folded over true, in the definition of [19],
by construction.

17

Conditioning upon h as in AW,h,true for Au is achieved through the same mechanism
as folding over true with the additional observation that the operation of conditioning
upon h is necessary only if the instance of LABEL COVER fails to satisfy the property
that for every (u, v) ∈ U × V and every a ∈ A there is at least one b ∈ B that satisfies
the predicate P (u, v, a, b). When this is the case, one defines h = hu,v : A → {0, 1}
as the predicate indicating if a given a has at least one b that satisfies P (u, v, a, b), and
conditions the table Au upon h. In our case we do not require this since the given instance
of LABEL COVER is a projection game instance, and, in particular, for every a there
is exactly one b, and hence at least one b, such that P (u, v, a, b) = 1; i.e., h = hu,v is the
constant 1 predicate. It should be added that the reason why we can assume that I is a
projection game instance is that our bipartite reduction is designed in such a way that the
values a in A are partial assignments that always satisfy the corresponding constraints u
in U . In constrast, in [19] the values are taken as arbitrary truth assignments to the
variables of a collection of clauses, and not all such assignments satisfy all the clauses.
Our exposition is again more modular and also matches more recent expositions of the
results in [19] (again, see, e.g., [3]).

With this notational correspondence, it is now easy to see that Lemma 5.1 in [19]
gives the first claim in Theorem 13, and Lemma 5.2 in [19] applied with δ = (s/ε)1/2/4
gives the second claim in Theorem 13.

Next, by composing Lemma 11, Theorem 12, and Theorem 13 with the appropriate
parameters we get the following:

Theorem 14. For every s, ε ∈ [0, 1] with 0 < s < 1 and ε > 0, there is an FO-
interpretation Θ that maps instances of 3XOR to instances of 3XOR in such a way
that, for every 3XOR instance I the following hold:

1. if I is satisfiable, then Θ(I) is (1− ε)-satisfiable,

2. if I is not s-satisfiable, then Θ(I) is not (1/2 + ε)-satisfiable.

Proof. First we define Θ(I) and then check that this definition is an FO-interpretation. In
anticipation for the proof, let t be a large enough integer so that the following inequality
holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ 16ε3, (2)

where α is the constant in Theorem 12. Such a t exists because s < 1 and ε > 0. Apply
the bipartite reduction to I to obtain the instance I ′ = L(I) from Lemma 11. Observe
that the domain size d of I ′ is |A|+ |B| = 6. Next apply the parallel repetition reduction
to I ′ with parameter t to obtain a new instance I ′′. Finally apply the long-code reduction
to I ′′ with parameter ε to obtain the system I ′′′. The parameters were chosen in a way
that the system I ′′′ satisfies properties 1 and 2, through Theorem 13.

It remains to argue that I ′′′ can be produced from I by an FO-interpretation. To
define I ′ from I there is no difficulty at all: the FO-interpretation is even linear. To
define I ′′ from I ′ we note that t is a constant, and that the weights W (u, v) of I ′ are 0
or 1, so again there is no difficulty. In this case the FO-interpretation has dimension t,
and it is nt-bounded. To define I ′′′ from I ′′ we note that the domain sizes p and q
of the instance I ′′ are constants, indeed p = 4t and q = 2t. This means that there
are |U | · 2p−1 variables of type u(a), and |V | · 2q−1 variables of type v(b), and these are
constant multiples of |U | and |V |, respectively. Such domains are FO-definable by the

18

method of finite expansions (see Section 2). Finally, since the weights W (u, v) of I ′′ are
still zeros or ones and both ε and q are constants, the multiplicities of the equations of I ′′′

are also constants, and hence FO-definable.

It is useful to compare Theorem 14 with Lemma 3. Both statements are reductions
that take 3XOR instances to 3XOR instances, and they both preserve gaps. But the
reductions differ in what happens to satisfiable instances. For statement 1, in which the
extreme case is c = 1, the reduction in Lemma 3 preserves this extremality exactly. In
contrast, the reduction in Theorem 14 incurs a vanishing ε loss as it produces instances
that are only (1− ε)-satisfiable.

4.3 Second long-code reduction

The second long-code reduction takes a projection game instance I of LABEL COVER
and a rational δ ∈ [0, 1] and produces an instance D(I, δ) of 3SAT defined as follows.
Before we define D(I, δ), let us define an intermediate instance D′(I, ε) of 3SAT that
takes a different parameter ε ∈ [0, 1]. Let U , V , m, n, A, B, p, q, W , P , and πu,v(a) be
as in the first long-code reduction. The set of variables of D(I, ε) is defined as in the first
long-code reduction: a variable u(a) for each u ∈ U and each a ∈ Fp−12 , and a variable v(b)
for each v ∈ V and each b ∈ Fq−12 . We also use the folding notation F (z) and S(z) from the
first long-code reduction. Now the instance D′(I, ε) includes W (u, v)·M q ·εD ·(1−ε)E−D ·H
copies of the clause {v(F (x))(S(x)), u(F (y))(S(y)), u(F (z))(S(z))} for each (u, v) ∈ U × V ,
each x ∈ Fq2 and each y, z ∈ Fp2, where M is the denominator of ε = N/M reduced to
lowest terms, E is the number of positions i ∈ [p] with xπ(i) = 1 and D is the number of
positions i ∈ [p] with xπ(i) = 1 and zi 6= yi for π = πu,v if W (u, v) 6= 0, while H ∈ {0, 1}
is the indicator for the event that in each position i ∈ [p] with xπ(i) = 0 we have zi 6= yi.
Finally, to define the instance D(I, δ), set t = dδ−1e and ε1 = δ, and εi+1 = δ712−35εi
for i = 1, . . . , t− 1, and let the instance be

⋃t
i=1D

′(I, εi).

Theorem 15 (H̊astad 3-Query Disjunction Test [19]). There exists s0 > 0 such that for
every s ∈ [0, 1] with 0 < s < s0 and every projection game instance I of LABEL COVER
the following hold:

1. if I is satisfiable, then C(I, ε) is satisfiable,

2. if I is not s-satisfiable, then C(I, ε) is not (7/8 + log2(1/s)
−1/2)-satisfiable.

For the proof of Theorem 15, see Lemmas 6.12 and 6.13 in [19]. As in the first long-code
reduction, some explanation is needed for seeing this.

Besides the notational differences that were already pointed out in the first long-code
reduction, the second long-code reduction adds the following. First, the constants 71
and 35 in the definition of εi+1 come from setting c = 1/35 in the definition of Test F3Sδ(u)
in [19]. According to Lemma 6.9 in [19], this is an acceptable setting of c. Second, the
constant s0 > 0 in Theorem 15 is meant to be chosen small enough so as to ensure that,
for each s satisfying s < s0, we have 2−64δ

−2/25 < 2−dδ
−1 log2(δ

−1) for δ = 8 log2(1/s)
−1/2/5,

where d is the constant hidden in the asymptotic O-notation of Lemma 6.13 in [19]. Such
an s0 exists because N log2(N) = o(N2) as N → +∞. With this notation, Lemma 6.12
in [19] gives point 1, and Lemma 6.13 in [19] with δ = 8 log2(1/s)

−1/2/5 gives point 2 in
Theorem 15.

19

By composing Lemma 11, Theorem 12, and Theorem 15 with the appropriate param-
eters we get the following:

Theorem 16. For every s, ε ∈ [0, 1] with 0 < s < 1 and ε > 0, there is an FO-
interpretation Θ that maps instances of 3XOR to instances of 3SAT in such a way that,
for every 3XOR instance I the following hold:

1. if I is satisfiable, then Θ(I) is satisfiable,

2. if I is not s-satisfiable, then Θ(I) is not (7/8 + ε)-satisfiable.

Proof. First we define Θ(I) and then check that this definition is an FO-interpretation.
Let t be a large enough integer so that the following inequality holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ min{2−1/ε2 , s0} (3)

where α is the constant in Theorem 12 and s0 > 0 is small enough as in Theorem 15. Such
a t exists because s < 1 and ε > 0 as well as s0 > 0. Apply the bipartite reduction to I
to obtain the instance I ′ = L(I) from Lemma 11. Observe that the domain size d of I ′

is |A| + |B| = 6. Next apply the parallel repetition reduction to I ′ with parameter t to
obtain a new instance I ′′. Finally apply the second long-code reduction to I ′′ to obtain the
system I ′′′. The parameters were chosen so that the system I ′′′ satisfies properties 1 and 2,
through Theorem 15. As in the proof of Theorem 14 this reduction is FO-definable.

This gives us another route to Theorem 9.

5 Vertex Cover

We investigate gap inexpressibility results for the vertex cover problem VC on graphs.
Recall that a set X ⊆ V of vertices in a graph G = (V,E) is a vertex cover if every
edge in E has at least one of its endpoints in X. If the graph comes with a weight
function w : V → R+, then the weight of X is the sum of the weights of the vertices
in X. If the weights of the vertices are omitted in the specification of the graph, then
all the vertices are assumed to have unit weight. The problem of finding the minimum
weight vertex cover in a graph is a classic NP-complete problem.

In the following we write vc(G) for the weight of a minimum weight vertex cover,
and vcd(G) := vc(G)/W0, where W0 :=

∑
v∈V w(v), for the vertex cover density. Analo-

gously, we write IS(G) for the weight of a maximum weight independent set, and isd(G) :=
IS(G)/W0. Clearly vcd(G) = 1− isd(G) holds for all weighted graphs.

5.1 Direct reductions

The standard reduction that proves the NP-completeness of the vertex cover problem
(see, e.g. [25, Thm. 9.4]) takes an instance I of 3SAT with n variables and m clauses and
gives a graph G with 3m vertices in which the minimum vertex cover has size exactly 2cm,
if cm is the maximum number of clauses in I that can be simultaneously satisfied. It
is also easy to see that this reduction can be given as an FO-interpretation. This
interpretation is linearly bounded and therefore it follows from Theorem 9 and Lemma 1

20

that for any ε > 0 the collection of graphs G with vcd(G) ≤ 7/12+ ε and the collection of
graphs G with vcd(G) ≥ 2/3 cannot be separated in Ck for any k = o(n). This has the
consequence that no approximation algorithm for the vertex cover problem expressible
in FPC can achieve an approximation ratio better than 8/7.

We can improve on this by considering instead the so-called FGLSS reduction (see
[16], and [17] for what by now became standard terminology) from 3XOR to vertex-cover,
which we describe next.

Theorem 17. There is a linearly-bounded first-order reduction G that takes an instance I
of 3XOR with m equations to a graph G(I) with 4m vertices so that if m∗ is the maximum
number of equations of I that can be simultaneously satisfied, then vc(G) = 4m−m∗.

Proof. For each equation x + y + z = b in I, the graph G(I) has a 4-clique of vertices,
each labelled with a distinct assignment of values to the three variables that make the
equation true. In addition, we have an edge between any pair of vertices that are labelled
by inconsistent assignments. It is easily seen that the largest independent set in G(I)
is obtained by taking an assignment g of values to the variables of I that satisfies m∗

equations and, for each satisfied equation, selecting the vertex in its 4-clique that is
the projection of g. This yields an independent set of size exactly m∗ and the result
follows.

From this, and Theorem 8, we immediately get the following result.

Corollary 18. For any ε > 0, if C is the collection of graphs G with vcd(G) ≤ 3/4 and D
is the collection of graphs G with vcd(G) ≥ 7/8− ε then C and D are not Ck-separable
for any k = k(n) such that k(n) = o(n).

This improves the FPC inapproximability ratio from 8/7 to 7/6. Better lower bounds
on the approximation ratio are known under the assumption that P 6= NP. One such
lower bound was achieved by Dinur and Safra [15] who showed that, under this as-
sumption, no polynomial-time algorithm for approximating vertex cover can achieve an
approximation ratio better than 1.36. In the next section we argue that this reduction
is also an FO-interpretation, so we get the same inapproximability ratio for algorithms
that are expressible in FPC, giving a strengthening of Corollary 18.

5.2 Dinur-Safra reduction

As in the long-code reductions from Section 4, this reduction is also composed of several
steps: we start with the bipartite reduction, continue with the parallel repetition reduc-
tion, then we apply an intermediate reduction to a technical variant of the independent
set problem, and end with a long-code reduction that is specially tailored for the vertex
cover problem.

The intermediate reduction takes a projection game instance I of LABEL COVER
as input and produces an undirected graph G(I) defined as follows. Let U , V , A, B, W
and πu,v determine the projection game instance I. The set of vertices of the graph G(I)
is U × A. There is an edge between (u1, a1) ∈ U × A and (u2, a2) ∈ U × A in G(I)
if, and only, if either u1 = u2 and a1 6= a2, or u1 6= u2 and there exists v ∈ V such
that W (u1, v) > 0 and W (u2, v) > 0 and πu1,v(a1) 6= πu2,v(a2). This defines G(I). In the

21

terminology of [15], the graph G(I) is (m, p)-co-partite: its edge-set is the complement
of an m-partite graph with all its parts of size p.

For an undirected (unweighted) graph G, recall that IS(G) denotes the size of a
largest independent set in G. For an integer h ≥ 2, let ISh(G) denote the size of a largest
subset of vertices of G that does not contain any h-clique. Note that ISh(G) ≥ IS(G),
and IS2(G) = IS(G).

Lemma 19. For every integer h ≥ 2, every s ∈ [0, 1] with s > 0 and every instance I
of LABEL COVER that is a left-regular projection game with uniform weights and
parameters (m,n, p, q), the following hold:

1. if I is satisfiable, then IS(G(I)) = m,

2. if I is not s-satisfiable, then ISh(G(I)) ≤ sh3m.

Moreover, G(I) is an (m, p)-co-partite graph.

Note that, in the statement of Lemma 19, the completeness case (point 1) is about IS(G)
but the soundness case (point 2) is about ISh(G). For the proof of Lemma 19, see the
proof of Theorem 2.1 in [15].

The vertex-cover long-code reduction inputs a graph G = (V,E), two rational pa-
rameters ε > 0 and p satisfying 0 < p < pmax := (3 −

√
5)/2, and two integer param-

eters h ≥ 2 and r ≥ 2, and, if G is an (m, r)-co-partite graph for some m, then it
produces a (weighted) graph H(G, ε, p, h; r) defined as follows. Let the vertex-set V of G
be [m]× [r], so that {(u, a) : a ∈ [r]} forms an r-clique for each u ∈ [m]. In abstract, the
set of vertices of H(G, ε, p, h; r) is

W := {(B,P(P≥l1(B))) : B ∈P=l(V)}, (4)

where l = 2l1 · r, and l1 is an integer that depends only on h, ε, and p, and is indepen-
dent of r, that is set as in Definition 2.3 of [15]. Here, and in the following, P=k(X)
and P≥k(X) denote the collections of subsets of X of size exactly k and size at least k,
respectively, and P(X) denotes the collection of all subsets of X. Thus, if n = mp is

the number of vertices of G, then H(G, ε, p, h; r) has
(
n
l

)
· 2

∑l
i=l1

(l
i) vertices. Since we

want to be able to show that for fixed r, h, ε and p the graph H(G, ε, p, h; r) can be
produced from G by an FO-interpretation, we give an alternative presentation of the set
of vertices W .

Let V l,6= denote the set of l-tuples of pairwise distinct elements from V . Formally,

V l, 6= := {(u1, . . . , ul) ∈ V l : ui 6= uj for i, j ∈ [l] with i 6= j}. (5)

For each u = (u1, . . . , ul) ∈ V l, 6=, let σu : {1, . . . , l} → {u1, . . . , ul} be the natural bijection
defined by σu(i) = ui for i = 1, . . . , l. The set

W ′ := V l,6= ×P(P≥l1([l])) (6)

is a good proxy for the set W through the identification of {1, . . . , l} and {u1, . . . , ul}
given by σu. Now, turning W ′ into a faithful copy of W is only a matter of taking a
quotient with the appropriate equivalence relation, as we do next.

22

Let ∼ be the equivalence relation on V l defined by (u1, . . . , ul) ∼ (v1, . . . , vl) if and
only if for each i ∈ [l] there exists j ∈ [l] with vj = ui and for each j ∈ [l] there exists i ∈ [l]
with ui = vj. Restricted to V l,6= ⊆ V l, this is still an equivalence relation. Moreover,
whenever u = (u1, . . . , ul) and v = (v1, . . . , vl) are ∼-equivalent tuples in V l,6=, there is
a unique permutation π ∈ Sl that sends u to v; i.e., that satisfies π · u = v, or uπ(i) = vi
for each i ∈ [l]. Now we extend this equivalence relation ∼ from the set V l, 6= to the
set V l,6= ×P(P≥l1([l])) as follows: (u, S) ∼ (v, T) if, and only if, u ∼ v and the unique
permutation π ∈ Sl that sends u to v also sends S to T ; i.e., it satisfies π · S = T ,
where π · S denotes the natural action of π on S. It is not hard to see that the set of
equivalence classes

W ′′ := (V l, 6= ×P(P≥l1([l])))/∼ (7)

is an alternative presentation of the same set W . This alternative presentation of W is
useful when we argue that the reduction is an FO-interpretation in Theorem 21 below.

We still need to define the vertex-weights and the edge-set of H(G, ε, p, h; r). The
weight of a vertex (B, S) in W is defined as

w(B, S) := M q · p|S| · (1− p)|P≥l1
(B)\S|, (8)

where M is the denominator of p = N/M reduced to lowest terms, and q = |P≥l1(B)|.
Next we define the edge-set: two vertices (B1, S1) and (B2, S2) in W are adjacent if, and
only if, either B1 = B2 and S1 ∩ S2 = ∅, or there exist an edge {v1, v2} ∈ E of G and
an (l − 1)-element subset B̂ of V such that B1 = B̂ ∪ {v1} and B2 = B̂ ∪ {v2} and, for
all (A1, A2) ∈ S1 × S2, either A1 ∩ B̂ 6= A2 ∩ B̂, or (v1, v2) ∈ A1 × A2.

Theorem 20 (Dinur-Safra Vertex-Cover Test [15]). For any two rationals ε and p sat-
isfying 0 < ε ≤ 1 and 0 < p < pmax = (3 −

√
5)/2, any small enough s0 > 0, any large

enough integer h, and any (m, r)-co-partite graph G, the following hold:

1. if IS(G) = m, then isd(H(G, ε, p, h; r)) ≥ p− ε,
2. if ISh(G) ≤ s0m, then isd(H(G, ε, p, h; r)) ≤ p• + ε, where p• = max(p2, 4p3 − 3p4).

For the proof of Theorem 20, see Theorem 2.2 in [15].
The reduction described above produces a weighted graphH(G, ε, p, h; r). The weights,

as defined in (8) are non-negative integers with a maximum value of M q. This value de-
pends on ε, p, h and r but is independent of the number of vertices of G. In other words,
fixing the other parameters, H gives us a traslation from G to a weighted graph, with
integer weights bounded by a constant. This can be easily modified to get an unweighted
graph. Indeed, let H = (V,E,W) be a graph with a weight function W : V → N. We
define from this an unweighted graph H ′ with vcd(H ′) = vcd(H). This is obtained by
replacing each vertex v by the set of vertices v∗ := {v} × [W (v)] and having an edge be-
tween (u, i) and (v, j) if, and only if, {u, v} ∈ E. To see that this has the right property,
it is sufficient to observe that S ⊆ V is a minimum weight vertex cover in H if, and only
if, S∗ :=

⋃
v∈S v

∗ is a minimum vertex cover of H ′. The direction from right to left is
obvious. For the other direction, suppose that H ′ has a minimum vertex cover X that is
not of this form. In particular, for some v ∈ V , v∗ ∩X 6= ∅ and v∗ 6⊆ X. But then X \ v∗
is still a vertex cover, contradicting the minimality of X.

By composing Lemma 11, Theorem 12 and Theorem 20 with the appropriate param-
eters and combining it with the observation above we get the following.

23

Theorem 21. For every s, ε, p with 0 < s, ε < 1, and 1/3 < p < pmax = (3 −
√

5)/2,
there is an FO-interpretation Θ that maps instances of 3XOR to undirected graphs in
such a way that, for every 3XOR instance I the following hold:

1. if I is satisfiable, then vcd(Θ(I)) ≥ 1− p+ ε,

2. if I is not s-satisfiable, then vcd(Θ(I)) ≤ 1− p•− ε, where p• = max(p2, 4p3− 3p4).

Proof. Firt we define Θ(I) and then check that it is an FO-interpretation. Let t be a
large enough integer so that the following inequality holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ s0/h
3 (9)

when s0 is small enough, and h is large enough, so that Theorem 20 applies. Such a t
exists because s < 1 and s0 > 0. Apply the bipartite reduction to I to obtain the
instance I ′ = L(I) from Lemma 11. The domain size of I ′ is 6. Apply the parallel
repetition reduction of Theorem 12 to I ′ with parameter t to get another instance I ′′.
Next apply the intermediate reduction of Lemma 19 to get a graph G. Finally, apply the
Dinur-Safra long-code reduction of Theorem 20 to get a weighted graph H and convert
it to an unweighted graph that is the output of Θ. The parameters were chosen in such
a way that the points 1 and 2 hold via the relationship vcd(H) = 1− isd(H).

We still need to check that Θ is an FO-interpretation. As in the proof of Theorem 14,
producing I ′ from I and I ′′ from I ′ is straightforward. Producing G = G(I ′′) from I ′′ is
equally straightforward: the definition of the intermediate reduction is explicit enough
that this can be checked directly, especially because the weights of I ′′ are still zeros
and ones. On the other hand, producing H = H(G, ε, p, h; r) from G requires some
explanation.

In the description of the vertex-cover long-code reduction we already described W ′′

as an alternative presentation (7) of W in (4). This alternative presentation suggests
that the vertex-set of H be defined by an FO-interpretation of dimension l through the
method of finite expansions from Section 2 to produce W ′ in (6), followed by a quotient
by an FO-definable equivalence relation. The method of finite expansions produces a set
of the form V l,6= × A for some bounded set A that codes P(Pl1([l])). The effect of the
quotient on V l,6= × A can be achieved through the equality-defining formula ε(x, y) of
the FO-interpretation, which in this case can be designed as follows. Let (u, a) and (v, b)
be two elements of the expanded domain V l,6=×A. We want ε(x, y) to tell if u and v involve
exactly the same elements from V and, in such a case, whether the unique permutation
that takes u to v also takes the set of subsets of [l] coded by a to the set of subsets of [l]
coded by b. The first part can be stated by means of a simple quantifier-free formula.
The second part can also be stated by a quantifier-free formula (that depends on l) by
taking a disjunction over all l! potential permutations of [l].

Once the domain is defined as W ′′ in equation (7), defining the edge-set is easy.
Defining the weights is also straightforward given that h, ε, p and l are all fixed constants
independent of G, and as noted above, we can replace the weights with sets of unweighted
vertices.

Now we can state the improved version of Corollary 18. Composing Theorem 8,
Theorem 21, and Lemma 1 we get the following.

24

Theorem 22. For any ε > 0 there is a δ > 0 such that if C is the collection of graphs G
with vcd(G) ≤ 1− 4p3max + 3p4max − ε and D is the collection of graphs G with vcd(G) ≥
1−pmax + ε then C and D are not Ck-separable for any k = k(n) such that k(n) = o(nδ),
where pmax = (3−

√
5)/2.

In terms of algorithms, Theorem 22 says that no algorithm that can be expressed in FPC,
or even Ck for k = no(1), can achieve an approximation ratio better than (1 − 4p3max +
3p4max)/(1 − pmax) ≈ 1.36. In particular, this means that nO(1) levels of the Lasserre
hierarchy are necessary to give an approximation algorithm for vertex cover with an
approximation better than 1.36. This result was previously known from the work of
Tulsiani [28].

5.3 Tight lower and upper bounds for C2

There are straightforward polynomial-time algorithms that yield a vertex cover in a graph
with guaranteed approximation ratio 2. It is conjectured that no polynomial-time algo-
rithm can achieve an approximation ratio of 2 − ε for any ε > 0; it is even conjectured
that achieving such an approximation ratio is NP-hard. It would be interesting to prove a
version of this conjecture for algorithms expressible in FPC, and without the assumption
that P 6= NP. This could be established by a strengthened version of Theorem 22 with
better ratios. We next show that we can at least do this for the special case of k = 2.

Theorem 23. For any ε > 0, if C is the collection of graphs G with vcd(G) ≤ 1/2 and D
is the collection of graphs G with vcd(G) ≥ 1− ε then C and D are not C2-separable.

Proof. Let (Gn)n∈N be a family of 3-regular expander graphs on n vertices, so that the
largest independent set in Gn has size o(n). For the existence of such graphs see [29,
Chapter 4]. It follows that the smallest vertex cover in Gn has size n− o(n). Hence, we
can choose a value m such that G2m has no vertex cover smaller than 2m(1− ε).

Let Hm be a 3-regular bipartite graph on two sets of m vertices. Now, each part of
a bipartite graph is a vertex cover, so Hm has a vertex cover of size m. However, it is
known that G ≡C2 H holds for any pair G and H of d-regular graphs with the same
number of vertices, for any d. Thus, G2m ≡C2 Hm and the result follows.

Essentially, Theorem 23 tells us that no algorithm that is invariant under ≡C2 can
determine vc(G) to an approximation better than 2, and Theorem 22 tells us that no
algorithm that is invariant under ≡Ck for constant or even slowly growing k can deter-
mine vc(G) to an approximation better than 1.36. A legitimate question at this point is
whether there is any algorithm that is invariant under≡Ck , such as one expressible in FPC
would be, that does achieve an approximation ratio of 2. The natural polynomial-time
algorithms that give a vertex cover with size at most 2vc(G) are not expressible in FPC.
Indeed, we cannot expect a formula of FPC to define an actual vertex cover in a graph G
as this is not invariant under automorphisms of G. We can only ask for an estimate of
the size, i.e. of vc(G), and this we can get up to a factor of 2. For this, it turns out
that k = 2 is enough, showing that the lower bound of Theorem 23 is tight:

Theorem 24. For any δ, if C is the collection of graphs G with vcd(G) ≤ δ and D is
the collection of graphs G with vcd(G) > 2δ then C and D are ≡C2-separable.

25

The proof of Theorem 24 proceeds through a series of lemmas.

Lemma 25. If G is a d-regular graph on n vertices, for any d ≥ 1, then vc(G) ≥ n/2.

Proof. Let S be any set of vertices in G. Then the number of edges incident on vertices
in S is at most d|S|. Since the number of edges in G is dn/2, if S is a vertex cover d|S| ≥
dn/2 and so |S| ≥ n/2.

Let G be a graph and C1, . . . , Cm be the partition of the vertices of G given by vertex
refinement. So, there are constants δij such that each v ∈ Ci has exactly δij neighbours
in Cj. Since the graph is undirected, the number of edges from Ci to Cj is the same as
in the other direction and so δij|Ci| = δji|Cj|, for all i and j. Also, δij = 0 if, and only
if, δji = 0.

Let X = {i | δii = 0} and Y = {i | δii > 0}. Consider the undirected graph XG with
vertices X and edges {(i, j) | δij > 0}. Consider the instance (XG, w) of weighted vertex
cover obtained by taking the graph XG and giving each vertex i the weight w(i) = |Ci|.
Let pG denote the value of the minimum weighted vertex cover of this instance. Also,
let qG =

∑
i∈Y |Ci|. Finally, define vG = pG + qG.

Lemma 26. If G ≡C2 H then vG = vH .

Proof. The value vG is determined entirely by the sizes of Ci in the vertex refinement of G
and the corresponding values of δij. Since G ≡C2 H, these values are the same for H.

Lemma 27. vc(G) ≤ vG.

Proof. Let Z ⊆ X be a minimum-weight vertex cover in (XG, w). Take the set S ⊆ V (G)
defined by S =

⋃
i∈Y ∪Z Ci. Note that the sets Y and Z are disjoint,

∑
i∈Y |Ci| = qG

by definition, and
∑

i∈Z |Ci| = pG by construction. So S has exactly vG vertices. We
claim that S is a vertex cover in G. Let e be any edge of G with endpoints in Ci and Cj.
If either i or j is in Y , then the corresponding endpoint of e is in S since Ci ⊆ S for
all i ∈ Y . If both i and j are not in Y then both are in X and δij > 0. Thus, since Z is
a vertex cover for the graph XG then one of i or j must be in Z and again at least one
endpoint of e is in S.

For the proof of the next lemma, we need the notion of a fractional vertex cover of
a graph G = (V,E). This is a function f : V → [0, 1] satisfying the condition that
for every (u, v) ∈ E, f(u) + f(v) ≥ 1. It is known that if f is a fractional vertex
cover of G, then

∑
v∈V f(v) ≥ vc(G)/2 (see [30, Thm. 14.2]). More generally, suppose

we have an instance of weighted vertex cover, i.e. G along with a weight function w :
V → N where vc(G,w) is defined as the value of the minimum weighted vertex cover.
Then

∑
v∈V f(v)w(v) ≥ vc(G,w)/2.

Lemma 28. vG ≤ 2vc(G).

Proof. Let S be any vertex cover of G. Let UX =
⋃
i∈X Ci and UY =

⋃
i∈Y Ci and note

that these sets are disjoint. We claim that |S ∩ UX | ≥ pG/2 and |S ∩ UY | ≥ qG/2, and
therefore |S| = |S ∩ UX |+ |S ∩ UY | ≥ vG/2, establishing the result.

First, consider S ∩ UY . Note that for any i ∈ Y , the subgraph of G induced by Ci
is δii-regular. Since δii > 0 by definition of Y , by Lemma 25 we have |S ∩ Ci| ≥ |Ci|/2
and therefore |S ∩ UY | ≥ qG/2.

26

Secondly, consider the function f : X → [0, 1] defined by f(i) = |S ∩ Ci|/|Ci|. We
claim that this is a fractional vertex cover of the graph XG. To verify this, we need to
check that f(i) +f(j) ≥ 1 whenever δij > 0. There are δij|Ci| edges between Ci and Cj.
Each element of S ∩ Ci can cover at most δij of these edges and similarly each element
of S∩Cj covers at most δji of them. Thus, since S is a vertex cover |S∩Ci|δij+|S∩Cj|δji ≥
δij|Ci|. Substituting for δji using the identity δij|Ci| = δji|Cj| gives |S ∩ Ci|δij + |S ∩
Cj|δij|Ci|/|Cj| ≥ δij|Ci|. Now dividing through by δij|Ci| gives f(i) + f(j) ≥ 1.

Thus, we have that the weighted vertex cover instance (Xg, w) admits the fractional
solution f whose total weight is∑

i∈X

f(i)|Ci| =
∑
i∈X

|S ∩ Ci| = |S ∩ UX |.

Since pG is the value of the minimum weight vertex cover of (Xg, w), we have |S ∩UX | ≥
pG/2, as was to be shown.

Proof of Theorem 24. Suppose for contradiction that there is a G ∈ C and H ∈ D such
that G ≡C2 H. Since G and H must have the same number of vertices, we have 2vc(G) <
vc(H). But, by Lemma 28 we have vG ≤ 2vc(G), by Lemma 27 we have vc(H) ≤ vH and
by Lemma 26 we have vG = vH , giving a contradiction.

6 Conclusions

This paper introduces a new method for studying the hardness of approximability of NP-
hard optimization problems by showing that the approximation cannot be defined in a
suitable logic such as FPC. This is done by showing that no class of bounded counting
width can separate instances of the problem with a high optimum from those with a low
one. This raises a large number of new challenges in the application of this method.
A clear demonstration of the power of this method would be to derive a lower bound
stronger than one for which NP-hardness is known. For instance, can we improve, in the
context of inexpressibility, on the

√
2-inapproximability for vertex cover from the NP-

hardness result of Khot et al. [23]? In other words, can we show that the class of graphs
that have a vertex cover of density δ is not separable from the class of graphs that do
not have a vertex cover of density cδ, for some δ ∈ (0, 1) and some constant c greater
than

√
2? If this were achieved for Ck, for unbounded k, it would have major consequences

in the study of semidefinite programming hierarchies of relaxations of vertex cover. A
version of this question, with δ being 1 − ε and c being 2 − ε for arbitrary small ε,
was stated as Open Problem 4.1 in [12]. Indeed, similar questions can be posed for
any optimization problem for which the exact inapproximability factor is not known,
including MAX CUT, sparsest cut, etc.

Acknowledgments. The research reported here was initiated at the Simons Institute for
the Theory of Computing during the programme on Logical Structures in Computation
in autumn 2016. The first author was partially funded by European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme,

27

grant agreement ERC-2014-CoG 648276 (AUTAR) and MICCIN grant TIN2016-76573-
C2-1P (TASSAT3). The second author was partially supported by a Fellowship of the
Alan Turing Institute under the EPSRC grant EP/N510129/1 and by the EPSRC grant
EP/S03238X/1

References

[1] S. Abramsky, A. Dawar, and P. Wang. The pebbling comonad in finite model theory.
In Proc. of the 32nd IEEE Symp. on Logic in Computer Science (LICS)., 2017.

[2] M. Anderson, A. Dawar, and B. Holm. Solving linear programs without breaking
abstractions. J. ACM, 62, 2015.

[3] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[5] A. Atserias. On sufficient conditions for unsatisfiability of random formulas. J. ACM,
51:281–311, 2004.

[6] A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting
infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

[7] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width.
J. Comput. Syst. Sci., 74:323–334, 2008.

[8] A. Atserias and J. Ochremiak. Definable ellipsoid method, sums-of-squares proofs,
and the isomorphism problem. arxiv 1802.02388.

[9] E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution made simple.
J. ACM, 48:149–169, 2001.

[10] J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[11] A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG
News, pages 8–21, 2015.

[12] A. Dawar, E. Grädel, Ph. G. Kolaitis, and T. Schwentick. Finite and Algorithmic
Model Theory (Dagstuhl Seminar 17361). Dagstuhl Reports, 7:1–25, 2018.

[13] A. Dawar and P. Wang. A definability dichotomy for finite valued CSPs. In 24th
EACSL Annual Conference on Computer Science Logic, CSL 2015, pages 60–77,
2015.

[14] A. Dawar and P. Wang. Definability of semidefinite programming and Lasserre lower
bounds for CSPs. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS, 2017.

28

[15] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162:439485, 2005.

[16] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. J. ACM, 43(2):268–292, March 1996.

[17] Oded Goldreich. Using the FGLSS-Reduction to Prove Inapproximability Results for
Minimum Vertex Cover in Hypergraphs, pages 88–97. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[18] Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory, volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017.

[19] J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[20] Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–
19, 1996.

[21] T. Holenstein. Parallel repetition: Simplifications and the no-signaling case. In
Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’07, pages 411–419, New York, NY, USA, 2007. ACM.

[22] N. Immerman and E. S. Lander. Describing graphs: A first-order approach to graph
canonization. In A. Selman, editor, Complexity Theory Retrospective. Springer-
Verlag, 1990.

[23] S. Khot, D. Minzer, and M. Safra. Pseudorandom sets in Grassmann graph have
near-perfect expansion. Technical Report TR18-006, Electronic Colloquium on Com-
putational Complexity (ECCC), 2018.

[24] Phokion G Kolaitis and Moshe Y Vardi. On the expressive power of Datalog: Tools
and a case study. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 61–71. ACM, 1990.

[25] Ch. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[26] Ch. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

[27] R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[28] M. Tulsiani. CSP gaps and reductions in the lasserre hierarchy. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, pages 303–312.
ACM, 2009.

[29] S. Vadhan. Pseudorandomness, volume 7:1–3 of Foundations and Trends in Theo-
retical Computer Science. Now Foundations and Trends, December 2012.

[30] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

29

