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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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This paper describes the development of a new computational model to predict the desirability of decision consequences in an organization, and 
the development of a prototype tool to enable real-time interaction and decision support when changes occur simultaneously. A tool, called 
Decision Propagation System, is developed in response to the needs of BT Group plc in understanding the most effective set of interventions in 
the organization where the high degree of connectivity between system components and the uncertainty in connectivity data are two critical 
issues. Designed on a case study of the Fields Operations Engineering, this research demonstrates that a knowledge of overlapping decision 
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1. Introduction 

In order to improve the quality and speed of decisions, 
organizations need to pay more attention to what needs to be 
decided, by whom, and how quickly [1]. This is becoming 
ever-challenging as new connectivity technologies have trans-
formed the way by which individuals in an organization com-
municate and influence one other. Ideally, by providing the 
right people with the right information, they can formulate 
faster and well-informed decisions at the right time, but the 
reality is far more complicated.  

People involved in different roles have different targets and 
motivations which contribute to uncertainty between them. 
Furthermore, many decisions have to be made under uncertain 
circumstances, with incomplete, imprecise, or even conflict-
ing information. The consequence of a decision often goes 
beyond its local impact in the organization and might globally 
affect other decisions, sometimes without the initial decision-
maker necessarily being aware of the implications [2].  

In such situations, an agent’s decision (e.g., on performing 
a job) might affect and be affected by multiple consequences 
(such as customer satisfaction, productivity, and deployment 

cost) simultaneously, where in many cases there is a kind of 
overlapping impact between these consequences. Therefore, a 
dynamic tool is required to proactively quantify the desirabili-
ty of possible consequences when they mutually affect an 
agent’s decision. Such a tool should not only take account of 
the multiple channels of connectivity between decisions, but 
also compute the compound risk of change in elements based 
on the individual impact of multiple overlapping links.  

This paper presents the development of such a dynamic 
tool called Decision Propagation System (DPS) that is built 
reflecting the advancements in the fields of engineering 
design change, graph theory, and systems engineering. It aims 
to support decision-makers with predictive insights to direct 
decisions towards designing the most effective architecture in 
balance with the consequences; for example, where to make 
changes in the organization – in roles, targets, priorities – to 
achieve the best compromise between total cost and customer 
satisfaction?  

In the following, Sections 2 and 3 outline the research that 
led to the development of DPS. Section 4 introduces the 
proposed method and is followed by its implementation at BT 
Group (BT) in Section 5. The paper concludes in Section 6. 
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2. Research methodology 

Analogous to the actual engineering design processes [3], 
this research began with understanding the business challeng-
es in BT to identify the modelling requirements, over a time 
period of six months. The original aim was to understand how 
to mitigate the unintended consequences of decisions through 
understanding the decision dynamics. However, as the result 
of the initial studies, a number of more fundamental research 
questions were raised pertaining to the: 

 
• Visibility of connectivity: How to add semantic knowledge 

about the dependencies into the model (getting a more 
composite view of decisions)? 

• Nature of connectivity: How to populate a compound risk 
diagram showing the most critical elements (quantifying 
the influence of decisions)?  

• Implications of connectivity: What is the most efficient set 
of interventions in the organisation to achieve the desired 
set of outcomes (mitigating unintended consequences)? 
 
The next step was to develop a range of alternative models 

(solution space) to address these business challenges. 
Examples of such models can be found in the references [4] 
and [2]. The former model was based on the premise that one 
way to predict a system’s performance is to focus on the 
changeability of its critical elements. Therefore, the Change 
Prediction Method (CPM) approach [5] was used to identify 
the critical elements and combined with the System Dynamics 
to capture dynamics of those (critical) elements. In the latter 
research [2], a conceptual model of a Decision Propagation 
System was proposed, with the aim of obtaining a more 
composite view of decisions by focusing on multiple ways 
that decisions are connected to and can influence each other: 
for example, through their involving agents or consequences. 
In fact, a year of research in a close collaboration with the 
company was required to develop and discuss the concepts. 
This was an iterative process with a continuous refinement of 
the prototype models according to the research questions. A 
primary case of the Fields Force Engineering (FFE) problem 
was considered to assess the plausibility of the proposed 
models. Further investigation of the previous steps eventually 
led to the formulation of DPS algorithm. 

After selecting the concept, the next step was to elaborate 
the model formulation as well as its calibration and impleme-
ntation with respect to the practitioners’ feedback. Over a 
time period of nine months, the simulation results were 
reported back several times to the corresponding team in the 
company to ensure that the research questions were fully 
addressed by the model. This paper concentrates on the detail 
formulation and implementation of the method.  

3. Research case study 

The performance of Fields Force Engineering team is vital 
in delivering an optimal service to BT customers. In particul-
ar, the team is responsible for the forecasting, planning, 
scheduling, and allocation of jobs based on the customer’s 
demands. Therefore, there might be many foreseen (e.g., new 

business strategy) and unforeseen (e.g., customer demand, 
weather condition) issues whose changes can influence the 
performance of FFE. These sorts of frequent changes typically 
result in incomplete, imprecise, or even conflicting data when 
planning and re-planning the system.  

An additional challenge for the organization is incorporat-
ing organizational dynamics into the planning system: in this 
case study, there are five different roles ranging from director 
at the strategic level to engineers at the operational level. Each 
role has a specific set of objectives as well as their own 
motivation and varying degrees of interaction with other roles. 
For example, while at the operational level, maintaining 
work-life balance is a priority for engineers to keep them 
motivated, at the strategic level, director is more concerned 
about the big picture of the right balance between number of 
successful jobs, total cost, and stakeholder satisfaction.  

The ideal case would presumably be when, making a 
decision, individuals satisfy both the local objectives of their 
own jobs and at the same time comply with the global 
objectives of the rest of the team and the entire system [6]. 
However, the evidence shows that the ideal case is very 
difficult to achieve, since there are many upstream decisions 
whose consequence affect the downstream decision-makers 
without them taking any control over the situation. For 
example, in the FFE case, the controller (who is responsible 
for prioritizing jobs) does not have any control over how 
many jobs are arrived, how many engineers are deployed, or 
how many jobs an engineer can perform per day. Therefore, 
the efficient management of decisions in such complex 
systems requires a tool to enable every decision-maker to be 
proactively aware of the consequences of his/her actions.  

3.1. Challenges in modelling Field Engineering Systems 

The need for such a tool was initially identified through a 
series of workshops at BT. However, a deeper investigation of 
the business case resulted into several challenges during the 
development of modelling concepts: 

 
Data elicitation. An initial study of the business case 

based on the company documents identified a set of 21 key 
elements which were categorized into an Multiple Domain 
Matrices (MDM) with three layers of agents, decisions, and 
consequences. This data was used to build and populate the 
initial model, and later refined by obtaining a more detailed 
data from the BT experts. Eliciting data from the experts, 
whilst providing more resolution of the business case, was a 
time-consuming and error-prone process which also generated 
different views of the system. This posed a challenge as to 
how much detail was needed to understand what was 
happening in reality. If a deeper set of data could be obtained 
from the experts, would this result in a better model or a 
simpler picture obtained from the documents be sufficient? 

 
Variation in expert views. during the implementation of 

DPS, three experts with an extensive knowledge of the case 
were asked to consider the entire FFE project and determine 
the proportional strength of the links between elements, based 
on a three-range scale: low, medium, and high. Three MDMs 
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were generated as the result (Fig. 1, b-d) representing different 
views of the case: expert 2 appears to score the links more 
highly than the others. This raised further concerning how to 
resolve variation in expert views? Should they be considered 
individually or as an aggregated view? Further challenge 
would be the mapping of scaled data into probability values, 
e.g., should a high-priority link be valued as 0,8 or 1,0?  

 
Density of links. experience of conducting workshops with 

the experts revealed that, when extending the modelling scope 
from a physical technical system to a digital-physical socio-
technical system and highlighting the mechanism by which 
elements influence each other (i.e., knowledge-sharing tools, 
organization’s hierarchy), the degree of connectivity within 
and across layers significantly increase: for this business case, 
a fully connected network. A key computational challenge is 
therefore how to resolve the algorithmic view of change 
propagation in dense matrix, without simplifying the reality? 
The most commonly used algorithms of change propagations 
such as CPM [5] are based on a sparse matrix and cannot 
accommodate this density. This would be more problematic in 
multi-layer networks as each layer infers a different meaning. 

 
Overlapping impact. it is also inferred that when making 

a decision, if there are two links coming to an individual (e.g., 
from consequences), it is more likely they are independent; 
but if an individual’s decision is influenced through multiple 
links, it is more likely that they are to some degree overlapped 
and there might be a dominant link amongst them (with more 
influence). As the result, the more links coming in, the lower 
probability of aggregated link which implies a kind of 
consolidation of independence. The question is then how to 
reflect the impact of overlapping between multiple paths 
(homogeneity between elements of the same layer) when a 
change propagates across the system?  

3.2. The need for a new approach 

From an engineering change perspective, quantifying the 
risk of decision propagation is essentially a multi-layer socio-
technical change propagation problem, which requires an 
explicit understanding of the interplay between non-technical 
(e.g., agents) and technical (e.g., decisions, consequences) 

elements. Accepting this view, it is discussed that addressing 
such a problem requires dealing with the tight connectivity 
and overlapping issues between heterogeneous elements.  

Reviewing the literature of change management represents 
that, despite a huge repository of models for analyzing change 
propagation (see [7] for an overview), there has been very 
little attention to the propagation between the interfacing 
organizational and technical changes. Moreover, the current 
body of change prediction algorithms, mainly focusing on 
identifying the most influential or influenced elements, does 
not accommodate the density and overlapping issues. Further-
more, current models consider change propagation at a project 
level where changes are typically tree-structure; but if 
changes occur in the middle of a project, the propagations are 
more likely to be cyclical, and successful completion of the 
project relies on the iterative refinement of decisions.  

In addressing these research gaps and the needs of industry 
sponsor, this paper introduces an alternative algorithm for 
predicting the compound risk of changes in a complex system 
where the overall system behavior depends on the 
changeability of the system elements and the extent to which 
they are connected. The proposed model should be able to 
accommodate the following aspects of connectivity: 

 
• The unavoidable subjectivity and variation in expert views; 
• Both unity and proportional data within and across layers; 
• Both tree-like and cyclical dependencies across the system; 
• The density of dependencies, belong to multiple domains; 
• The impact of overlapping in dependencies; 
 

4. A Decision Propagation model for systems design  

4.1. Overview of the Decision Propagation System – DPS 

The DPS method is based on the concept that a system can 
be represented in form of its key decision variables, agents 
who might influence and be influenced by those decisions, and 
(organization- or business-related) consequences of decisions, 
typically known as performance indicators. The underlying 
rationale is that agents in an organization make decisions and 
decisions generate consequences, which will in turn affect the 
behavior of agents. Hence, the more critical a role might be (in 

 

Fig. 1. Capturing Business requirements into input data: Elicitation from the historic documents (a) and from the company experts (b-d) 
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who might influence and be influenced by those decisions, and 
(organization- or business-related) consequences of decisions, 
typically known as performance indicators. The underlying 
rationale is that agents in an organization make decisions and 
decisions generate consequences, which will in turn affect the 
behavior of agents. Hence, the more critical a role might be (in 

 

Fig. 1. Capturing Business requirements into input data: Elicitation from the historic documents (a) and from the company experts (b-d) 
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terms of influencing on more decisions), or the more collabor-
ative a decision might be (in terms of involving more agents), 
or the more critical a decision might be (in terms of affecting 
more consequences),  will result in a more connected network 
and accordingly, a more expanded propagation. The proposed 
algorithm used the proportional strength of the direct links 
between elements to compute the indirect risk. This will be 
accomplished in a multi-dimensional space to reflect the 
overlapping impact, where the number of overlapping links 
determines the number of dimensions.  

The DPS method is primarily designed for situations where 
there is insufficient resolution about the business case, such as 
the information of the likelihood and impact values in CPM. 
However, if provided with a more detailed information, the 
method is capable of giving a more precise result. In this 
sense, it is an extension to the CPM in which the fundamental 
assumptions about the independence and cyclical propagation 
paths are fixed. Circumventing these issues has been the 
subject of several studies before such as the use of Matrix 
Multiplications and Bayesian networks in [9] and [10]; but, in 
comparison, DPS offers a dynamic socio-technical change 
prediction model at a far less computational complexity, more 
control over propagation paths, and better reproducibility 
which also requires less domain knowledge from the experts.  

Structurally, the method consists of four steps: eliciting 
data, architecting decision views, populating risks, and 
learning from outputs through visualization. These steps, 
shown in Fig. 2, are explained in the following sub-sections:  

4.2. Step 1: creating organizational model 

The method begins with analyzing the business case in 
order to obtain an initial organizational model. It is a multi-
layer network of interconnectivity between agents, decisions, 
and consequences. Experience of the FFE case study and 
company workshops suggests that, at a certain degree of 
abstraction, it is not too difficult for those familiar with the 
organization to break it down into a list of key elements. The 
outcome is an MDM with three layers with the same elements 
in rows and columns; column headings show the initiating 
elements and rows the influenced elements.  

The value of matrix components (interconnectivity) is set 
to qualitatively represent the proportional strength of a 
connection and is delineated in form of the low, medium, and 
high ratings; this ranking has been a common way of describ-
ing connectivity in the literature [11]. As the output is shown 
in Fig. 1, two data elicitation methods have been applied in 
this research to determine the value of MDM based on: 
studying the company documents (aiming to learn probability 
values based on historic data) and relying on experts’ know-
ledge (aiming to improve their judgement under uncertainty).  

4.3. Step 2: framing decision propagation paths 

The input data obtained in the first step embodies the flow 
of decision-making in the whole lifecycle of an organization’s 
change. At this step, however, the user needs to define the 
focus of modelling: architecting the entire network (mapping 
organizational dynamics) or an instantiation of it (representing 

a specific business situation). Considering the modelling con-
text as a complete network, consequently, the model contains 
so many branches that they cannot be fully independent of the 
others. This has two implications: (a) there must be some 
degree of commonality or overlap between network branches; 
and (b) there should be a set of pruning strategies to confine 
the number of expected propagation paths. Two strategies are 
consequently applied in this step:  

 
• Static Pruning (carried out at design time as part of the 

MDM configuration): we prune all paths that do not follow 
our assumptions about decision-making flow, by neutraliz-
ing the corresponding boxes in the MDM (Fig. 2, step 2); 

• Dynamic Pruning (carried out at run time when the 
propagation algorithm is run): we prune all paths whose 
length exceeds three steps. It is considered to be sufficient 
to track the flow of a change across layers back to the same 
layer where the change was originated, e.g., to capture the 
cyclical change propagation.  

 
Differentiating propagation paths in DPS eventually enabl-

es the user to identify the most critical paths and the elements. 
The current change propagation models mostly emphasize 
what element affects what and do not account for how 
(through which elements or paths) this will be done.  

 

Fig. 2. The Decision Propagation System method 
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4.4. Steps 3: predicting change propagation 

Framing propagation paths in the previous step determines 
all feasible routes through which any two elements in the 
MDM are connected together. An example of those routes 
between two decision points is shown in Fig. 3 (top). Accordi-
ngly, in each route scenario, a propagation tree (limited to 
three steps) can be derived from the network, where there 
might be a number of paths (in each route) to connect the two 
(initiating and affecting) elements. In the example of Fig. 3 
(top-left), it is shown that there are four paths that connect 𝐷𝐷𝑎𝑎 
to 𝐷𝐷𝑏𝑏  through the consequences. DPS then uses the strength 

value of direct links between elements to compute the risk (𝑅𝑅) 
of a change: it is a combination of probability and impact: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅𝑎𝑎𝑎𝑎) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑎𝑎𝑎𝑎) × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐼𝐼𝑎𝑎)      (1) 

4.4.1. Computing Compound Probability 
The compound probability is an average value that a 

change in an element will propagate to a change in another 
one. There are a number of algorithms for aggregating change 
probabilities, yet none of them found to have the potential to 
address the previously outlined challenges in a single frame. 
This paper presents a systematic aggregation method for 

 

 

Fig. 3. A multi-layer aggregation method for computing the compound probability   
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terms of influencing on more decisions), or the more collabor-
ative a decision might be (in terms of involving more agents), 
or the more critical a decision might be (in terms of affecting 
more consequences),  will result in a more connected network 
and accordingly, a more expanded propagation. The proposed 
algorithm used the proportional strength of the direct links 
between elements to compute the indirect risk. This will be 
accomplished in a multi-dimensional space to reflect the 
overlapping impact, where the number of overlapping links 
determines the number of dimensions.  

The DPS method is primarily designed for situations where 
there is insufficient resolution about the business case, such as 
the information of the likelihood and impact values in CPM. 
However, if provided with a more detailed information, the 
method is capable of giving a more precise result. In this 
sense, it is an extension to the CPM in which the fundamental 
assumptions about the independence and cyclical propagation 
paths are fixed. Circumventing these issues has been the 
subject of several studies before such as the use of Matrix 
Multiplications and Bayesian networks in [9] and [10]; but, in 
comparison, DPS offers a dynamic socio-technical change 
prediction model at a far less computational complexity, more 
control over propagation paths, and better reproducibility 
which also requires less domain knowledge from the experts.  

Structurally, the method consists of four steps: eliciting 
data, architecting decision views, populating risks, and 
learning from outputs through visualization. These steps, 
shown in Fig. 2, are explained in the following sub-sections:  

4.2. Step 1: creating organizational model 

The method begins with analyzing the business case in 
order to obtain an initial organizational model. It is a multi-
layer network of interconnectivity between agents, decisions, 
and consequences. Experience of the FFE case study and 
company workshops suggests that, at a certain degree of 
abstraction, it is not too difficult for those familiar with the 
organization to break it down into a list of key elements. The 
outcome is an MDM with three layers with the same elements 
in rows and columns; column headings show the initiating 
elements and rows the influenced elements.  

The value of matrix components (interconnectivity) is set 
to qualitatively represent the proportional strength of a 
connection and is delineated in form of the low, medium, and 
high ratings; this ranking has been a common way of describ-
ing connectivity in the literature [11]. As the output is shown 
in Fig. 1, two data elicitation methods have been applied in 
this research to determine the value of MDM based on: 
studying the company documents (aiming to learn probability 
values based on historic data) and relying on experts’ know-
ledge (aiming to improve their judgement under uncertainty).  

4.3. Step 2: framing decision propagation paths 

The input data obtained in the first step embodies the flow 
of decision-making in the whole lifecycle of an organization’s 
change. At this step, however, the user needs to define the 
focus of modelling: architecting the entire network (mapping 
organizational dynamics) or an instantiation of it (representing 

a specific business situation). Considering the modelling con-
text as a complete network, consequently, the model contains 
so many branches that they cannot be fully independent of the 
others. This has two implications: (a) there must be some 
degree of commonality or overlap between network branches; 
and (b) there should be a set of pruning strategies to confine 
the number of expected propagation paths. Two strategies are 
consequently applied in this step:  

 
• Static Pruning (carried out at design time as part of the 

MDM configuration): we prune all paths that do not follow 
our assumptions about decision-making flow, by neutraliz-
ing the corresponding boxes in the MDM (Fig. 2, step 2); 

• Dynamic Pruning (carried out at run time when the 
propagation algorithm is run): we prune all paths whose 
length exceeds three steps. It is considered to be sufficient 
to track the flow of a change across layers back to the same 
layer where the change was originated, e.g., to capture the 
cyclical change propagation.  

 
Differentiating propagation paths in DPS eventually enabl-

es the user to identify the most critical paths and the elements. 
The current change propagation models mostly emphasize 
what element affects what and do not account for how 
(through which elements or paths) this will be done.  
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Framing propagation paths in the previous step determines 
all feasible routes through which any two elements in the 
MDM are connected together. An example of those routes 
between two decision points is shown in Fig. 3 (top). Accordi-
ngly, in each route scenario, a propagation tree (limited to 
three steps) can be derived from the network, where there 
might be a number of paths (in each route) to connect the two 
(initiating and affecting) elements. In the example of Fig. 3 
(top-left), it is shown that there are four paths that connect 𝐷𝐷𝑎𝑎 
to 𝐷𝐷𝑏𝑏  through the consequences. DPS then uses the strength 

value of direct links between elements to compute the risk (𝑅𝑅) 
of a change: it is a combination of probability and impact: 
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4.4.1. Computing Compound Probability 
The compound probability is an average value that a 

change in an element will propagate to a change in another 
one. There are a number of algorithms for aggregating change 
probabilities, yet none of them found to have the potential to 
address the previously outlined challenges in a single frame. 
This paper presents a systematic aggregation method for 
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computing the compound probability. It is comprised of three 
levels pertaining to the aggregation of (1) direct links in a 
single path, (2) multiple paths in a single route, and (3) 
multiple routes in the network. These steps are exemplified in 
Fig. 3 for a simplified network with 2 decision points, 2 
agents, and 3 consequences. Of central importance to the 
proposed method is the aggregation engine. Inspired by the 
generalization of distance metrics in a multi-dimensional 
space, we found the Minkowski metric sufficiently agile to 
calculate the aggregation power of overlapping links, while 
being applicable to a dense network. It is in fact the most 
commonly used proximity metric in graph theory that is used 
in this research to give a non-linear approximation of the 
relative probability between elements. For a real number 𝑝𝑝 ∈
ℝ  (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝  is the number of dimensions), the 𝑝𝑝 -norm of 
Minkowski measure is defined as below, where 𝑛𝑛 refers to the 
number of incoming links to an element and may be or not 
equivalent to the power of formula (𝑝𝑝): 

‖𝑥𝑥‖𝑝𝑝 = (|𝑥𝑥1|𝑝𝑝 + |𝑥𝑥2|𝑝𝑝 + ⋯ + |𝑥𝑥𝑛𝑛|𝑝𝑝)
1
𝑝𝑝                        (2) 

 (a) Pre-aggregation. Given the probabilistic MDM as the 
input, the algorithm first generates the three-step propagation 
trees for all the elements, such as the ones illustrated in Fig. 3 
(top) for 𝐷𝐷𝑎𝑎. Unlike many change prediction models, the DPS 
method differentiates the route-type (by which the elements 
are connected) and the path-number within each route (by 
which an element might be affected). In the given example, 
there are in total three routes that connect the decisions 𝐷𝐷𝑎𝑎 
and 𝐷𝐷𝑏𝑏  ( 𝐷𝐷 → 𝐴𝐴 → 𝐷𝐷;  𝐷𝐷 → 𝐴𝐴 → 𝐴𝐴 → 𝐷𝐷;  𝐷𝐷 → 𝐶𝐶 → 𝐴𝐴 → 𝐷𝐷 ); 
each route  contains 2, 2, and 4 paths, respectively.  

 
(b) Component-level aggregation. At the first aggregation 

level, the model utilizes the AND logic operator and 
multiplies the direct links within each path, starting from the 
top. It is based on the concept of path searching in that if for 
example 𝐶𝐶𝑎𝑎 is a consequence of 𝐷𝐷𝑎𝑎 which can affect 𝐴𝐴𝑎𝑎, then 
𝐷𝐷𝑎𝑎 can indirectly affect 𝐴𝐴𝑎𝑎 with an impact that is less than a 
direct impact between them.  

 
(c) Route-level aggregation. When aggregating the direct 

links at the component-level, there is an assumption about the 
independence of multiple paths that belong to the same route. 
However, in reality, the links coming to a decision (𝐷𝐷𝑏𝑏) might 
involve the same element (e.g., two paths going through 𝐶𝐶𝑏𝑏) 
which can be contributed to an overlapping impact. Therefore, 
the next level aggregates multiple propagation paths of the 
same route. In the example of Fig. 3(c), all the changes are 
propagated through consequences and agents. Mathematical-
ly, the model considers each individual path in a separate 
dimension, and the density of paths between initiating and 
affected elements determines the power of Minkowski 
formula. In the given example, this number is respectively 
equal to 2, 2, and 4 for routes ending to 𝐷𝐷𝑏𝑏 . 

 
(d) Network-level aggregation. This phase aggregates all 

the routes by which the two elements are connected together. 
At this point, the model considers the entire network in a 
multi-dimensional space in which a change in an upstream 

decision (𝐷𝐷𝑎𝑎) affects a downstream decision (𝐷𝐷𝑏𝑏) by different 
routes, through the involving agents, communication between 
agents, or impact of consequences on the agents. Hence, the 
number of possible routes between two elements regulates the 
power of Minkowski formula. Finally, the model normalizes 
the compound probability values to ensure that they lie within 
the range of (0,1). 

4.4.2. Computing Compound Impact 
There are several ways to quantify impact of a change. 

Focusing on connectivity, this paper proposes that one way to 
measure the impact of an element is through adjacency 
metrics: looking at the intensity of changes that an element 
exerts on (activity) or receive from (passivity) its immediate 
neighbours. Hence, inspired by the Centrality metrics in Net-
work Science [12], we define the measure of Criticality (𝐶𝐶𝐶𝐶) 
as the fraction of the cumulative strength of outgoing links 
from an element over the cumulative strength of incoming 
links to that element. As the criticality can take any positive 
value, Feature Scaling is then used to restrict the values 
between the arbitrary points of 𝑎𝑎 (lower strength bound) and 𝑏𝑏 
(upper strength bound), as the formulas show:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝐶𝐶𝑖𝑖) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    (3) 

        𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐼𝐼𝑖𝑖) = (𝑎𝑎 + (𝐶𝐶𝐶𝐶𝑖𝑖−𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)×(𝑏𝑏−𝑎𝑎)
(𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) )                        (4) 

A higher value of impact implies that if change occurs, the 
element has more influence on the other elements, whilst 
being less influenced by the others. Fig. 4 displays the compu-
tation of impact values for a trivial example with 4 elements.  

4.5. Step 4: decision management 

Once the compound risk matrix has been derived, a variety 
of charts and diagrams may be used to visualize the resultant 
data. The primary outcome of the model would be a risk plot. 
It can be tailored to show the mutual risk between agents, 
decisions, and consequences in parallel. The initial analysis 
enables the user to identify the critical elements and the low-
risk leverages, i.e., the sensitivity that consequences show to 
each decision and agent. More iterations may be applied by 
the user to evaluate and compare the impact of change in 
initial data pertaining to for example different decision-
making strategies, multiple expert views, or different trans-
lation of connectivity data (strength values). The following 
section outlines the implementation of DPS. 

 

Fig. 4. Example of computing impact in DPS; the values are bounded 
within the range of [0.2,0.8] 
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5. Implementation and discussion 

The implementation of DPS was an iterative process with 
regular evaluation and calibration after each development 
phase. The primary validation was undertaken with reference 
to the BT’s FFE system. A prototype support tool has been 
developed in Microsoft Excel (due to its compatibility and 
portability across different operating systems) to enable real-
time interaction and decision support (Fig. 5). It is a data-
driven platform that provides ready access to the underlying 
change prediction model in a way that encourages decision 
makers to explore the mutual sensitivity between Consequen-
ces, and also the sensitivity that Consequences have to each 
Decision and Agent (via the output risk plot and matrix).  

The DPS dashboard has been tailored based on the 
sponsors’ preferences in such a way that embraces a number 
of views relating to the: impact of elements (bar charts); 
compound risk on the Consequences (risk plot/matrix); risk 
variance between multiple propagation routes (tree boxes); 
and sensitivity analysis engine (combined bar charts) which 
provide an extensive range of narratives to compare variation 
in expert views. This integrated platform enables the user to 
build, populate, re-evaluate, and refine the data until reaching 
a level of relative stability in the outcomes. Each of the icons 
in the XL-DPS ribbon has been designed to address a specific 
aspect of model building, populating, and analysis, based on 
the challenges that have been identified during the workshops 
with partners.  

The implementation of DPS began with the historic data 
that was obtained from the company documents. It was based 
on the assumption that all the links of the same type (e.g., 

agents’ influence on decisions as shown in the left-middle box 
in the input MDM) have the same priority. The focus of the 
initial implementation has largely been on creating and testing 
a range of what-if business scenarios that could potentially 
affect the model behavior; for example, to what extent do 
changes in the organization-related consequences (such as 
work-life balance and productivity) effect the business-related 
consequences (such as public image and total cost), and what 
are the key decisions to mitigate that risk? 

After endorsing the plausibility of the model, a range of 
workshops was held with BT experts to obtain more detailed 
connectivity data using the FFE case as an end-to-end project. 
This resulted in a deeper investigation of the challenges that 
were discussed earlier in section 3.1. For example, as far as 
related to the data elicitation approaches, Fig. 6 shows the 
apparent difference in behavior of the model based on a 
sparse (historic data) dataset and a more dense (expert 1) 
dataset. Accordingly, the figure signifies the critical role of 
the density and interdependence of the connections across the 
system, and the validity of the model’s assumptions relating 
to the proportional strength of the connections and the need 
for clarity in displaying the details of the model.  

Further investigations, using the sensitivity analysis panel, 
compared the experts’ views in terms of the compound risk 
between consequences: this is displayed by the Stacked Risk 
bars in Fig. 5 (right) together with the Clustered bars represe-
nting the Variance between them. The results explicitly 
identify the connections at which there is more consensus 
between the experts. As a result, the focus of further 
refinements can be shifted towards the areas with a higher 
degree of variation to find out the source, thus helping to 

 

Fig. 5. A data-driven real-time computer support prototype for DPS: a screenshot of the model run in case of Expert 2; each Scatter line in the Output Risk Plot 
stands for the compound risk of a particular agent on consequences; each line in Stacked bar at far right shows a risk of propagation between two consequences  
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computing the compound probability. It is comprised of three 
levels pertaining to the aggregation of (1) direct links in a 
single path, (2) multiple paths in a single route, and (3) 
multiple routes in the network. These steps are exemplified in 
Fig. 3 for a simplified network with 2 decision points, 2 
agents, and 3 consequences. Of central importance to the 
proposed method is the aggregation engine. Inspired by the 
generalization of distance metrics in a multi-dimensional 
space, we found the Minkowski metric sufficiently agile to 
calculate the aggregation power of overlapping links, while 
being applicable to a dense network. It is in fact the most 
commonly used proximity metric in graph theory that is used 
in this research to give a non-linear approximation of the 
relative probability between elements. For a real number 𝑝𝑝 ∈
ℝ  (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝  is the number of dimensions), the 𝑝𝑝 -norm of 
Minkowski measure is defined as below, where 𝑛𝑛 refers to the 
number of incoming links to an element and may be or not 
equivalent to the power of formula (𝑝𝑝): 

‖𝑥𝑥‖𝑝𝑝 = (|𝑥𝑥1|𝑝𝑝 + |𝑥𝑥2|𝑝𝑝 + ⋯ + |𝑥𝑥𝑛𝑛|𝑝𝑝)
1
𝑝𝑝                        (2) 

 (a) Pre-aggregation. Given the probabilistic MDM as the 
input, the algorithm first generates the three-step propagation 
trees for all the elements, such as the ones illustrated in Fig. 3 
(top) for 𝐷𝐷𝑎𝑎. Unlike many change prediction models, the DPS 
method differentiates the route-type (by which the elements 
are connected) and the path-number within each route (by 
which an element might be affected). In the given example, 
there are in total three routes that connect the decisions 𝐷𝐷𝑎𝑎 
and 𝐷𝐷𝑏𝑏  ( 𝐷𝐷 → 𝐴𝐴 → 𝐷𝐷;  𝐷𝐷 → 𝐴𝐴 → 𝐴𝐴 → 𝐷𝐷;  𝐷𝐷 → 𝐶𝐶 → 𝐴𝐴 → 𝐷𝐷 ); 
each route  contains 2, 2, and 4 paths, respectively.  

 
(b) Component-level aggregation. At the first aggregation 

level, the model utilizes the AND logic operator and 
multiplies the direct links within each path, starting from the 
top. It is based on the concept of path searching in that if for 
example 𝐶𝐶𝑎𝑎 is a consequence of 𝐷𝐷𝑎𝑎 which can affect 𝐴𝐴𝑎𝑎, then 
𝐷𝐷𝑎𝑎 can indirectly affect 𝐴𝐴𝑎𝑎 with an impact that is less than a 
direct impact between them.  

 
(c) Route-level aggregation. When aggregating the direct 

links at the component-level, there is an assumption about the 
independence of multiple paths that belong to the same route. 
However, in reality, the links coming to a decision (𝐷𝐷𝑏𝑏) might 
involve the same element (e.g., two paths going through 𝐶𝐶𝑏𝑏) 
which can be contributed to an overlapping impact. Therefore, 
the next level aggregates multiple propagation paths of the 
same route. In the example of Fig. 3(c), all the changes are 
propagated through consequences and agents. Mathematical-
ly, the model considers each individual path in a separate 
dimension, and the density of paths between initiating and 
affected elements determines the power of Minkowski 
formula. In the given example, this number is respectively 
equal to 2, 2, and 4 for routes ending to 𝐷𝐷𝑏𝑏 . 

 
(d) Network-level aggregation. This phase aggregates all 

the routes by which the two elements are connected together. 
At this point, the model considers the entire network in a 
multi-dimensional space in which a change in an upstream 

decision (𝐷𝐷𝑎𝑎) affects a downstream decision (𝐷𝐷𝑏𝑏) by different 
routes, through the involving agents, communication between 
agents, or impact of consequences on the agents. Hence, the 
number of possible routes between two elements regulates the 
power of Minkowski formula. Finally, the model normalizes 
the compound probability values to ensure that they lie within 
the range of (0,1). 

4.4.2. Computing Compound Impact 
There are several ways to quantify impact of a change. 

Focusing on connectivity, this paper proposes that one way to 
measure the impact of an element is through adjacency 
metrics: looking at the intensity of changes that an element 
exerts on (activity) or receive from (passivity) its immediate 
neighbours. Hence, inspired by the Centrality metrics in Net-
work Science [12], we define the measure of Criticality (𝐶𝐶𝐶𝐶) 
as the fraction of the cumulative strength of outgoing links 
from an element over the cumulative strength of incoming 
links to that element. As the criticality can take any positive 
value, Feature Scaling is then used to restrict the values 
between the arbitrary points of 𝑎𝑎 (lower strength bound) and 𝑏𝑏 
(upper strength bound), as the formulas show:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝐶𝐶𝑖𝑖) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    (3) 

        𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐼𝐼𝑖𝑖) = (𝑎𝑎 + (𝐶𝐶𝐶𝐶𝑖𝑖−𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)×(𝑏𝑏−𝑎𝑎)
(𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) )                        (4) 

A higher value of impact implies that if change occurs, the 
element has more influence on the other elements, whilst 
being less influenced by the others. Fig. 4 displays the compu-
tation of impact values for a trivial example with 4 elements.  

4.5. Step 4: decision management 

Once the compound risk matrix has been derived, a variety 
of charts and diagrams may be used to visualize the resultant 
data. The primary outcome of the model would be a risk plot. 
It can be tailored to show the mutual risk between agents, 
decisions, and consequences in parallel. The initial analysis 
enables the user to identify the critical elements and the low-
risk leverages, i.e., the sensitivity that consequences show to 
each decision and agent. More iterations may be applied by 
the user to evaluate and compare the impact of change in 
initial data pertaining to for example different decision-
making strategies, multiple expert views, or different trans-
lation of connectivity data (strength values). The following 
section outlines the implementation of DPS. 

 

Fig. 4. Example of computing impact in DPS; the values are bounded 
within the range of [0.2,0.8] 
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5. Implementation and discussion 

The implementation of DPS was an iterative process with 
regular evaluation and calibration after each development 
phase. The primary validation was undertaken with reference 
to the BT’s FFE system. A prototype support tool has been 
developed in Microsoft Excel (due to its compatibility and 
portability across different operating systems) to enable real-
time interaction and decision support (Fig. 5). It is a data-
driven platform that provides ready access to the underlying 
change prediction model in a way that encourages decision 
makers to explore the mutual sensitivity between Consequen-
ces, and also the sensitivity that Consequences have to each 
Decision and Agent (via the output risk plot and matrix).  

The DPS dashboard has been tailored based on the 
sponsors’ preferences in such a way that embraces a number 
of views relating to the: impact of elements (bar charts); 
compound risk on the Consequences (risk plot/matrix); risk 
variance between multiple propagation routes (tree boxes); 
and sensitivity analysis engine (combined bar charts) which 
provide an extensive range of narratives to compare variation 
in expert views. This integrated platform enables the user to 
build, populate, re-evaluate, and refine the data until reaching 
a level of relative stability in the outcomes. Each of the icons 
in the XL-DPS ribbon has been designed to address a specific 
aspect of model building, populating, and analysis, based on 
the challenges that have been identified during the workshops 
with partners.  

The implementation of DPS began with the historic data 
that was obtained from the company documents. It was based 
on the assumption that all the links of the same type (e.g., 

agents’ influence on decisions as shown in the left-middle box 
in the input MDM) have the same priority. The focus of the 
initial implementation has largely been on creating and testing 
a range of what-if business scenarios that could potentially 
affect the model behavior; for example, to what extent do 
changes in the organization-related consequences (such as 
work-life balance and productivity) effect the business-related 
consequences (such as public image and total cost), and what 
are the key decisions to mitigate that risk? 

After endorsing the plausibility of the model, a range of 
workshops was held with BT experts to obtain more detailed 
connectivity data using the FFE case as an end-to-end project. 
This resulted in a deeper investigation of the challenges that 
were discussed earlier in section 3.1. For example, as far as 
related to the data elicitation approaches, Fig. 6 shows the 
apparent difference in behavior of the model based on a 
sparse (historic data) dataset and a more dense (expert 1) 
dataset. Accordingly, the figure signifies the critical role of 
the density and interdependence of the connections across the 
system, and the validity of the model’s assumptions relating 
to the proportional strength of the connections and the need 
for clarity in displaying the details of the model.  

Further investigations, using the sensitivity analysis panel, 
compared the experts’ views in terms of the compound risk 
between consequences: this is displayed by the Stacked Risk 
bars in Fig. 5 (right) together with the Clustered bars represe-
nting the Variance between them. The results explicitly 
identify the connections at which there is more consensus 
between the experts. As a result, the focus of further 
refinements can be shifted towards the areas with a higher 
degree of variation to find out the source, thus helping to 

 

Fig. 5. A data-driven real-time computer support prototype for DPS: a screenshot of the model run in case of Expert 2; each Scatter line in the Output Risk Plot 
stands for the compound risk of a particular agent on consequences; each line in Stacked bar at far right shows a risk of propagation between two consequences  
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achieve a convergent answer in less time and effort.  
Therefore, the rich DPS ribbon supported by a multi-view 

dashboard can provide the user with numerous ways of 
capturing, interpreting, and visualizing a model. The populati-
on panel in XL-DPS enables the configuration of propagation 
architecture, the translation of connections into probability 
values, and setting up the aggregation engine. The primary 
result presented earlier is in fact based on automatic 
computation of the Minkowski power where the density of 
incoming links determines the power of formula. In this case, 
each propagation path is considered as a separate dimension 
and hence, the degree of overlap between multiple paths is 
equal to their number. However, this might not be always the 
case. To address this sort of uncertainty, the aggregation 
engine in DPS is developed to work in two modes: automatic 
and manual. In the latter case, the power of Minkowski metric 
for each propagation route is manually entered by the user, 
and the power engine icon allows the user to evaluate the 
impact of using different power values until reaching the 
stability in the outcomes.  

Finally, the analysis panel provides a mean for analyzing 
the impact of multiple simultaneous changes on the outcome, 
when for example some elements or a particular propagation 
route are excluded from the computation. As pointed out by 
the practitioners, it is an effective way of analyzing the global 
impact of local unforeseen issues, e.g., absence of a particular 
role and its associated decisions. At the end of the initial 
implementation, the research questions (Section 2) and the 
associated modelling challenges (Section 3.1) were reviewed 
with the BT team. The primary workshops confirmed the 
credibility of the results and that the proposed method has 
properly addressed all the modelling challenges. Populating 
the FFE model based on the ultimate (most-dense) scenario 
confirmed that the DPS mathematical engine has the capabi-
lity to deliver the compound risk of making decisions in 
highly connected and overlapped networks without saturation.  

6. Conclusions 

Grounded in the connectivity inside and across organizati-
ons, new business requirements necessitate the need for 
rethinking about the decision-making and decision modelling 
processes. Making well-informed decision in such situations 
requires a proactive approach to quantify the desirability of its 
possible consequences. In response to the needs of industry 

and the research community, this paper has proposed the 
development of a new way of capturing, interpreting, and 
visualizing probabilistic connections in complex systems. The 
implementation of a new change propagation algorithm has 
accommodated the density of connections; and the design of a 
novel dashboard acts as an interface to the model and enables 
real-time interaction and decision support.  

The potential impact of this research to support process 
improvement is significant – particularly in the light of ever 
more connected products and manufacturing processes. Not 
only for engineering and business sectors which often make 
interconnected decisions, but also for the academic communi-
ty which have few tools capable of supporting connected 
decision propagation with overlapping spheres of influence. 

The experience from the primary case study (partially 
illustrated in this paper) represents the relative success of the 
proposed method in tackling an organization’s challenges in 
dealing with socio-technical change predictions. At present, 
the method is under evaluation in BT and being evolved to 
facilitate its utility with respect to the different business 
contexts such as healthcare and infrastructure systems design.  
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