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We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from
two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power
spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain
results that are consistent with the expectation from the best-fit Planck ΛCDM model over a range of
multipoles L ¼ 80–2100, with an amplitude of lensing Alens ¼ 1.06� 0.15 ðstatÞ � 0.06 ðsysÞ relative
to Planck. Our measurement of the CMB lensing power spectrum gives σ8Ω0.25

m ¼ 0.643� 0.054;
including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be
σ8 ¼ 0.831� 0.053. We also update constraints on the neutrino mass sum. We verify our lensing
measurement with a number of null tests and systematic checks, finding no evidence of significant
systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more
precise lensing results can therefore be expected from the full ACTPol data set.

DOI: 10.1103/PhysRevD.95.123529

I. INTRODUCTION

The large-scale structure of the Universe contains a
wealth of information about the early Universe, neutrinos,
dark energy, and other physics that we are only beginning
to extract. While measurements of large-scale structure
using galaxies, quasars, Lyman-α absorbers, and other
tracers continue to give great insight, these measurements
are somewhat complicated by their reliance on biased
probes of the mass distribution. In contrast, gravitational
lensing directly probes all mass, including dark matter.
The cosmic microwave background (CMB) radiation has

unique advantages as a background light source for the
study of gravitational lensing. CMB photons originate from
the last scattering surface at z≃ 1100 and experience
gravitational lensing deflections from large-scale structure
along their paths to our telescopes. Hence, CMB lensing
encodes information about nearly all the mass fluctuations
in the Universe, with most of the signal arising between
z ¼ 0.5 and z ¼ 3 [1–4]. The fact that much of the lensing
signal originates from high redshifts and large scales means
that the signal is simple to model, with most complications
from nonlinear evolution and baryonic physics negligible at
current and near-future precision [5]. An additional sim-
plifying feature is that the primordial CMB source is well
understood, with a known redshift origin and simple
statistical properties. Measurements of the CMB lensing
signal therefore can serve as accurate probes of cosmology.
Given current measurement precision, the CMB lensing

field can be modeled as Gaussian, so the power spectrum
describes all its cosmological information; for future
surveys, higher-order statistics may add information
[6–8]. As the CMB lensing power spectrum probes the
projected mass distribution, it is sensitive to both the
growth of structure and the geometry of the Universe.
Hence it is capable of constraining parameters such as
neutrino mass, the amplitude of density fluctuations,
curvature, and dark energy.
Measurements of the lensing power spectrum have

only recently become possible with the advent of high-
resolution, low-noise CMB telescopes such as the Atacama

Cosmology Telescope (ACT) [9], the South Pole Telescope
(SPT) [10], and the Planck satellite [11]. Following earlier
cross-correlation results from WMAP [12,13], the ACT
team made the first measurement of the lensing power
spectrum [14] and was able to confirm the existence of dark
energy based on only CMB observations [15]. The SPT
Collaboration was able to make a more sensitive meas-
urement of temperature lensing [16]. The POLARBEAR
Collaboration made the first measurements of the lensing
power spectrum using polarization data [17,18], follow-
ing the first detection of polarization lensing in cross-
correlation using SPTpol and Herschel [19]. Subsequently,
the SPTpol [20] and BICEP2/Keck [21] teams presented
measurements of polarization and temperature lensing
power spectra with increased precision. The Planck team
has made the current highest precision measurement of the
lensing power spectrum: a 40σ detection significance in
their latest release [22,23].
While the Planck lensing power spectrum is generally in

agreement with ΛCDM, the authors report some tension at
small scales, with a null test failure at the∼2.9σ level [23]. In
addition, several recent measurements using galaxy lensing
and galaxy clusters have reported an amplitude of density
fluctuations lower than that found with Planck lensing data,
or Planck primary CMB data, at 2σ or higher significance,
e.g. [24]. The main goals of this work are to present a new
measurement of the lensing power spectrum, to independ-
ently constrain parameters such as the neutrino mass, and to
introduce the ACTPol lensing pipeline. The possibility of
testing both the Planck lensing results and any potential
tensions betweendifferentmeasurements of the amplitudeof
structure provides additional motivation for our work.
This paper presents new measurements of the CMB

lensing power spectrum using the first two seasons of
ACTPol nighttime data and the resulting constraints on
cosmological parameters. The current measurement relies
on only 12% of the usable ACTPol data already taken [25].
Future measurements using the full ACTPol data set will
thus have higher precision, and our paper serves also as an
exposition of the pipeline that we will use for this future
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work. Our analysis follows first-season ACTPol lensing
results, which include a cross-correlation with maps of the
cosmic infrared background fluctuations [26]; a cross-
correlation with radio sources to constrain their bias
[27]; and a detection of lensing by dark matter halos by
stacking on spectroscopic galaxies [28]. In Sec. II, we
describe the data and simulations we use in our analysis. In
Sec. III, we describe our pipeline for measuring the CMB
lensing power. We present our results in Sec. IV and verify
our measurements with systematic estimates and null tests
described in Sec. V. We discuss the implications of our
results for cosmological parameters in Sec. VI and con-
clude in Sec. VII.

II. DATA AND SIMULATIONS

ACT is a 6-meter diameter CMB telescope operating in
the Atacama Desert in Chile. The ACTPol receiver fitted to
this telescope consists of three arrays of superconducting
transition edge sensor bolometers, sensitive to both temper-
ature and polarization; see [29] for details on the instru-
ment. ACTPol observed the sky at a frequency of 149 GHz
in the first two years of the survey. The observations, data
reduction and mapmaking are as described in the most
recent ACTPol power spectrum analysis of Louis et al.
[30], hereafter L16 (see also the previous analysis [31]).
We use data taken in seasons 1 and 2 from three

regions: D5 (57 deg2 at an effective white noise level of
12 μK-arcmin) and D6 (71 deg2 at 10.5 μ K-arcmin), both
of which are contained within a larger region, D56
(626 deg2 at 17 μK-arcmin)1; see [30] for full noise
spectra. These three regions are analyzed separately,
because the significant variation in map depth would
otherwise cause large statistical anisotropy that could be
challenging to simulate and subtract accurately. Because
the deep survey regions are located entirely within the wide
survey footprint, the three different maps cannot be treated
as statistically independent in our analysis.
Each of the fields is further processed to reduce the effect

of resolved point sources and bright Sunyaev-Zel’dovich
(SZ) clusters. Our method for this follows the first-season
analysis described in van Engelen et al. [26]. First, we
template subtract the detected point sources to a flux limit
of 5 mJy. In the temperature maps, we additionally in-paint
extended galaxy cluster candidates detected at greater than
5σ significance (numbering 98 in D56), together with a
small number (14 from two map-based catalogs from D56)
of irregular, residual point sources detected at greater than
5σ significance. In the polarization maps, we mask sources
detected at 20σ (290 from two combined D56 catalogs). In
both cases we perform the in-painting using constrained
Gaussian realizations of CMB and noise [32]; the mask

radii for this in-paint procedure are 5’ for the clusters and
the polarized sources, and 15’ for the irregular sources. We
apodize our maps using a mask constructed from a product
of the weight map, smoothed with a Gaussian of width
l ¼ 1200 in Fourier space, and a cosine-squared edge roll-
off of total width 1.7°, where the weights are proportional to
the number of detector hits on each map pixel. All maps are
deconvolved by the appropriate beams. The resulting
polarization maps in Stokes parameters Q and U are then
transformed to the E − B basis using the pure-EB method
[33]. This method has been found to perform well for
lensing reconstruction in [34].
Our simulations are generated as described in [14,26]. To

construct the signal component of our simulations, we
create appropriately correlated, Gaussian-distributed T, Q,
and U primordial CMB maps using the best-fit parameters
of [35]. We then lens the maps with a Gaussian lensing
potential using the algorithm described in [36]. We add
Gaussian foreground power matching that from ACT
observations as described in [26]. After convolving with
the appropriate beam, each field is cut out of the larger
CMBmap; this ensures that the cut-out fields are correlated
in the same way as our observed sky areas.
We construct the noise component of our simulations

using the map hit-count and noise statistics from the data set
as follows. We make the map noise approximately isotropic
bymultiplying each pixel by the square root of the number of
observations in that pixel; we then use four independent
splits of the data to obtain a two-dimensional power spectral
density, measuring it by subtracting the mean intersplit
cross-spectrum from the mean autospectrum. This power
spectral density is then used to seed Gaussian random noise
maps with the correct two-dimensional power spectral
density. The spatial inhomogeneity of noise levels over
themap ismodeled by dividing the simulations by the square
root of the number of observations in each pixel.
After adding the noise and signal components together,

the simulations are apodized and transformed into the E
and B polarization basis in exactly the same manner as the
data. We generate 400 simulations of each field using this
method. The full simulation power spectra were found to
match those of the data to within ≈5% (the high-statistical-
weight temperature map of D56 having the best match of
3%, and the low-weight D5/D6 polarization maps having
the worst match to within 10%). We also generate 400
simulated maps with the same lensing potential realizations
as the original simulation set, but with different background
CMB and noise realizations, which we use to calculate
higher-order lensing biases (as first implemented in [37]
and as described in the following section).

III. LENSING PIPELINE

In this section, we describe our method to estimate the
CMB lensing power spectrum. The methodology in our
pipeline is overall similar to that presented in [20,23,26].

1Although the maps are identical to those analyzed in [30], the
boundaries of the analyzed regions differ slightly, leading to
slightly different areas for each patch.
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Since a fixed projected dark matter map introduces
statistical anisotropy into the CMB by gravitational lensing,
CMB lensing introduces correlations between formerly
independent Fourier modes of the CMB temperature and
polarization fields. Exploiting these lensing-induced cor-
relations between pairs of modes, we can reconstruct the
lensing potential with quadratic estimators in the CMB
temperature and polarization fields X ¼ fT; E; Bg [38]:

ϕ̄XY
L ¼ RXY

ϕ ðLÞ
Z

d2l
ð2πÞ2 XðlÞYðL − lÞgXYϕ ðl;LÞ ð1Þ

where g is a weighting function on the modes used in the
quadratic estimators and Rϕ is a normalizing function
obtained analytically following [38]. The estimators we
consider in our analysis are XY ¼ fTT; TE; EE;EBg,
because the TB estimator has negligible signal to noise
and the BB correlation is higher order. The two CMB maps
X, Y we use in the estimators have been filtered to include
only scales 1000 < jlj < 3000. For a detailed discussion of
this choice, focusing in particular on the minimum value of
jlj used, see the Appendix. In addition, “stripes” of width
−90 < jlxj < 90 and −50 < jlyj < 50 have been removed
from the maps along Fourier axes corresponding to map
declination and right ascension, respectively.
The function gXYϕ ðl;LÞ provides an optimal weighting

given by the mean response of a pair of CMB fields
XðlÞYðL − lÞ to a lens ϕL, divided by the variance of this
pair of fields. The simplest example is given by the TT
estimator, for which

gTTϕ ðl;LÞ ¼
CTT
l l ·Lþ CTT

jL−ljL · ðL − lÞ
2ðCTT

l þ NTT
l ÞðCTT

jL−lj þ NTT
L−lÞ

ð2Þ

where CTT
l is the temperature power spectrum including the

peak smoothing from lensing and NTT
l is the temperature

noise power spectral density. Analogous expressions for the
other estimators can be found in [38], though we follow
[39] and replace unlensed with lensed spectra in filters to
cancel higher-order biases.
The normalization function RXY

ϕ ðLÞ divides out the
weights g to ensure an unbiased estimator. As a first
approximation, it is calculated analytically as in [38].
For example, for the TT estimator, our first approximation
to RTT

ϕ is

RTT
ϕ ðLÞ ≈ L2

�Z
d2l
ð2πÞ2

ðgTTϕ ðl;LÞÞ2
ðCTT

l þ NTT
l ÞðCTT

jL−lj þ NTT
L−lÞ

�−1
:

ð3Þ

We apply a small correction to this function when binning
the estimator in L-space (e.g., to account for windowing
effects); this correction is obtained by requiring that the

cross-correlation of the reconstructed lensing field with the
input lensing field from simulations recover the input
lensing power spectrum of the simulations. In calculating
this normalization correction, since two powers of the data
mask enter into the quadratic lensing estimator, we apodize
the input lensing potential simulations with the square of
the data mask to mimic and absorb aliasing affecting the
lensing reconstruction. For each estimator, the integrand of
Eq. (1) can be written as sums of different convolutions of
two Fourier space maps, so that the convolutions of Eq. (1)
can be calculated using real space multiplications of
different filtered fields [38]. The use of inverse FFTs in
evaluating the integrals of Eq. (1) [and similarly, Eq. (3)]
allows us to greatly speed up the lensing estimation and
improve the scaling of computer time with map size. We
assume the flat-sky approximation in our analysis, which is
sufficiently accurate for the map sizes we use and the range
of scales we seek to reconstruct [14,26].
Even in the absence of lensing, anisotropic noise and

window functions will produce spurious statistical
anisotropy that affects the naive lensing estimator. An
unbiased estimate of the potential can be recovered by
subtracting this anisotropy signal, known as the mean field
hϕ̄XY

L i, that is induced by these types of nonlensing mode
couplings. This mean field correction is calculated by
averaging the reconstructions of the naive estimator from
400 simulations, each with independent CMB and lensing
potential realizations. In this average, only the spurious,
nonlensing mode couplings remain. We then recover an
unbiased estimate of the lensing potential after subtracting
this mean field:

ϕ̂XY
L ¼ ϕ̄XY

L − hϕ̄XY
L i: ð4Þ

We use barred variables to indicate biased estimators.
From these potential maps, we calculate the lensing

power spectrum using the following naive estimator:

C̄ϕ
Lb
½XY; AB�≡ 1

w4

X
b

hϕ̂XY�
L ϕ̂AB

L i ð5Þ

where XY and AB can be any of TT; TE; EE;EB, and the
factor w4 is calculated by taking each pixel value of the
apodization mask to the fourth power and then averaging
over pixels. To maximize the signal-to-noise ratio, the
bandpowers are binned using a weight in the two-
dimensional Fourier plane L given by the fiducial signal
and noise spectra using ðCϕ

L=ðCϕ
L þ RϕðLÞÞÞ2. Since each

ϕ̂XY
L is a quadratic estimator in temperature and polariza-

tion, C̄ϕ
Lb

is a four-point function in the CMB fields.
This naive lensing power spectrum estimate, Eq. (5), is

biased, however, because a contribution to the lensing
reconstruction power arises from both instrumental noise
and the primary CMB. To obtain an unbiased estimator, this

BLAKE D. SHERWIN et al. PHYSICAL REVIEW D 95, 123529 (2017)

123529-4



reconstruction “noise bias” must be subtracted. This bias
can be understood if we consider averaging over the lensing
field in addition to the background CMB; the measured
power is comprised of a non-Gaussian (connected) part of
the four-point function and a Gaussian (disconnected) part.
The former is the lensing power spectrum of interest, and
the latter must be subtracted off. We will refer to this bias
term as the Gaussian bias (though it is often referred to as
the “N0” bias).
In addition to the Gaussian bias, a bias must be

subtracted that arises from additional connected contrac-
tions of two lensing potential fields in the measured four-
point function, contributing at first order in the lensing
power, and known as the “N1” bias. Furthermore, a small
“Monte Carlo” (MC) bias must be simulated and subtracted
to absorb any additional nonidealities not captured by the
map-level mean field subtraction, for instance due to
masking correlations beyond the mean field or higher-
order corrections (we choose to treat this correction as
additive, which is sufficient for small corrections). Finally,
we also subtract a small modeled foreground bias ΔCFG

Lb

(3% of the signal for temperature) from unresolved point
sources and galaxy clusters, as detailed in Sec. V. For each
temperature and polarization combination, after subtracting
off the Gaussian, N1, MC, and foreground biases, the final
unbiased estimate of the lensing power spectrum that we
use for our analysis is given by [20,22]

Ĉϕ
Lb
½XY; AB� ¼ C̄ϕ

Lb
½XY; AB� − ΔCGauss

Lb
½XY; AB�

− ΔCN1
Lb
½XY; AB� − ΔCMC

Lb
½XY; AB�

− ΔCFG
Lb
½XY; AB� ð6Þ

where C̄ϕ
Lb

is the biased estimate.
The biases we have described above are calculated as

follows. The Gaussian (N0) bias is calculated using the
method described by [37] from different pairings of data
and simulation (superscript S) maps:

ΔCGauss
Lb

½XY; AB� ¼ hC̄ϕ
Lb
½XYS; ABS� þ C̄ϕ

Lb
½XSY; ABS�

þ C̄ϕ
Lb
½XSY; ASB� þ C̄ϕ

Lb
½XYS; ASB�

− C̄ϕ
Lb
½XSYS0 ; ASBS0 �

− C̄ϕ
Lb
½XSYS0 ; AS0BS�iS;S0 : ð7Þ

This method is constructed to self-correct for small
differences between the two-point functions of simulations
and data. This is accomplished by using the two-point
correlation functions of the data, rather than the simulations
alone, to calculate the Gaussian bias; the first four terms
each isolate a different two-point contraction of data maps.
The robustness to incorrect simulations can be seen in
detail by expanding the two-point correlation function of
the data about the two-point function of the simulation, and

noting that the difference in this expression cancels to first
order, as demonstrated in BICEP/Keck 2016 [21]. The
detailed form of the estimator can be obtained by deriving
an optimal trispectrum estimator from an Edgeworth
expansion of the CMB likelihood [37]. Aside from provid-
ing robustness to simulations not matching real data, the
use of a realization-dependent bias derived from data in the
bias estimation has additional advantages such as reducing
the correlation of different lensing potential bandpowers
[39] as well as reducing the correlation of the lensing power
spectra with the primary CMB spectra [40–42].
To calculate the average over simulations we use 100

different realizations of the simulation pairs S, S0 to obtain
this bias for each real and simulated measurement. We
verify that increasing the number of different realizations
from 50 to 100 did not substantially affect the results (with
the amplitude only changing by ∼1%). We therefore
conclude that 50 realizations are sufficient for convergence,
though we use 100 in our data to be conservative.
We obtain the N1 bias by using simulations with

different CMB realizations, but common lensing potential
maps, following [20]:

ΔCN1
Lb
½XY; AB� ¼ hC̄ϕ

Lb
½XSϕYS0ϕ ; ASϕBS0ϕ �

þ C̄ϕ
Lb
½XSϕYS0ϕ ; AS0ϕBSϕ �

− C̄ϕ
Lb
½XSYS0 ; ASBS0 �

− C̄ϕ
Lb
½XSYS0 ; AS0BS�iS;S0;Sϕ;S0ϕ : ð8Þ

Here Sϕ and S0ϕ indicate simulations with different CMB
realizations but the same lensing potential realization,
whereas S and S0 have different CMB and lensing potential
realizations. Though subtracting the Gaussian and N1

biases should result in a nearly unbiased lensing power
spectrum, the Monte Carlo bias CMC

b ½XY; AB� is obtained
by calculating any remaining residual from simulations. We
find this MC bias to be significantly smaller than our one
sigma error, so we use it in our pipeline although its
inclusion does not substantially change our results.
Finally, we combine our estimate of the lensing potential

power spectrum for all three patches p and all ten
estimators α ¼ fTT; TT;TT; TE;TT; EE � � �g:

Ĉϕ
Lb

¼
X
α;p

wα;p;bĈ
ϕ;α;p
Lb

: ð9Þ

Here the weights for the bandpowers of each estimator and
patch are given by the inverse of the variance of the
bandpowers, obtained from 200 simulations. While our
weights do not take into account correlation of the different
estimators and maps, our final coadded error calculation
does, because it simulates the full measurement and
coadding procedure. We calculate error bars and a full
covariance matrix for the final bandpowers by repeating the
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complete coadd power spectrum estimation procedure on
200 simulations. We discuss our systematic error estimate
in Sec. V of this paper.
A plot showing the relevant bias terms for our pipeline,

along with additional information useful for verification, is
given in Fig. 1. Even before correcting the normalization
function R with simulations, we note that the cross-
correlation of the raw reconstructed lensing field with
the input lensing field from simulations matches the input
lensing power spectrum of the simulations to better than
5%. In addition, we find the N1 bias to have the expected
form and the MC bias to be small, which gives us further
confidence.

IV. LENSING POWER SPECTRUM

In Fig. 2, we show the final lensing power spectrum
coadded over all estimators and patches, and in Table I we
give the bandpower values and error bars. The amplitude of
lensing power we obtain from the coadded result in Fig. 2,
scaled fromthePlanckTT;TE;EEþ lowPþ lensingΛCDM
model of [23], isAlens of 1.06� 0.15 ðstatÞ � 0.06 ðsysÞ.
This represents a 7.1σ measurement of the amplitude of
lensing. Calculating a χ2 to our best-fit model, we obtain a
probability to exceed (PTE) the given χ2 of 0.32, indicating a

FIG. 1. Bias and signal terms from our pipeline simulations.
The solid black circles show that the raw reconstructed maps
correlate well with the input simulations (even without a
simulation-based correction), closely matching the binned theory,
denoted with light blue crosses. The dashed, dotted, and dotted-
dashed lines give the Gaussian (N0) bias for the D5, D6, and D56
patches respectively. The N1 bias, indicated with a solid gray line,
has a magnitude and shape consistent with expectations. The MC
bias, indicated with stars, is small as expected. All curves are
coadds over estimators and, where not indicated otherwise, over
all patches, with the weights of Eq. (9).

FIG. 2. Combined two-season ACTPol lensing power spectrum, coadded across all patches and estimators. The best-fit theory lensing
power spectrum has an amplitude of Alens ¼ 1.06� 0.15 ðstatÞ � 0.06 ðsysÞ relative to the Planck best-fit ΛCDM cosmology from
the Planck temperature and polarization power spectra (which we define to have Alens ¼ 1). The ACTPol best fit is indicated with a black
solid line, and the error bars just include statistical uncertainty. The χ2 to the best-fit, scaled Planck ΛCDM theory model has a
probability to exceed (PTE) of 0.32, suggesting a good fit to the standard ΛCDM cosmology.
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good fit to ΛCDM. This lensing amplitude is consistent with,
and slightly higher than, that in the standard Planck
cosmology.
In Fig. 3, we show our results broken down by estimator

and patch. From Fig. 3, it can be seen that most of the
constraining power comes from the temperature data in the
wider D56 map. In Table II, we list the individual PTEs for
the lensing power from each estimator and patch. Though
there is one entry, the TE; TE estimator on D56, which has
a low PTE of 0.44%, we note that having a minimal PTE of
this order is not unexpected, given that we calculate 30

FIG. 3. Lensing power spectrum reconstructions for all the different patches and estimators separately. The blue points are from the
D56 patch, the red from D5, and the gray from D6. We note that the fields overlap and are thus not independent. The black curve is the
best-fit model. The TT; TT measurement (top right) can be seen to dominate the combined result, but the other combinations with
temperature (top row) also have significant weight.

TABLE I. ACTPol two-season lensing power spectrum band-
powers and 1σ error bars.

L L4Cϕϕ
L =ð4 × 10−7Þ σðL4Cϕϕ

L Þ=ð4 × 10−7Þ
138 1.039 0.251
301 0.937 0.183
484 0.414 0.132
697 0.136 0.094
1002 0.271 0.089
1304 0.124 0.100
1602 0.087 0.126
1911 −0.132 0.277
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signal PTEs and 30 null PTEs in this paper—in fact, a
minimal PTE at or below this value occurs in 30% of our
simulated measurements. Excluding the D56 TE; TE data
shifts the best-fit overall Alens value downwards by only a
small amount, approximately 0.25σ (to Alens ¼ 1.02).

V. NULL TESTS AND SYSTEMATIC ESTIMATES

We verify our results with null tests and targeted
systematic checks. Neglecting very small corrections due
to inadequacies of the lowest order Born approximation
[43,44], the lensing deflection field is given by the gradient
of the lensing potential from scalar density perturbations.
The deflection field hence is irrotational, with zero curl.
However, a systematic that mimics lensing need not
necessarily obey this gradientlike symmetry, and could
hence also induce a curl-like deflection. Estimating the
curl-like component of the deflection field yields a diag-
nostic for systematic errors that can mimic the lensing
signal. We use a curl estimator given by

ΩXY
L ¼ RXY

Ω ðLÞ
Z

d2l
ð2πÞ2 XðlÞYðL − lÞgXYΩ ðl;LÞ ð10Þ

where the filter gXYΩ ðl;LÞ differs from the usual lensing
estimation filter by the replacement of a dot product in the
numerator with the perpendicular component of a cross-
product; the same modification occurs in the normalization
function R. With this filter replacement, all the bias
estimation steps are repeated in the same way as for the
lensing estimation. The results for this null test are shown in
Fig. 5 for each estimator and patch separately, and in Fig. 4
for the coadded result. The curl PTEs for each estimator
and patch with respect to zero are shown in Table III, and
are consistent with zero. For the coadded curl, the PTE with
respect to zero is 0.57, a good agreement with null.
We also investigate the stability of our lensing power

spectrum measurement to specific sources of systematic
error. In Fig. 6, we show our measurement of the lensing
power spectrum repeated with maps that have been

perturbed by realistic levels of different sources of instru-
mental or astrophysical error. The sources of error we
consider are described in the following paragraphs. For
each potential systematic effect, we note the change in the
best-fit lensing amplitude Alens, yielding an approximate
estimate of its contribution to the total systematic error on
our measurement.

A. Beam uncertainty

We vary the beam within the uncertainties given in L16,
coherently perturbing the beams in both temperature and
polarization for all patches upwards by one standard
deviation in order to obtain a conservative estimate. As
shown in Fig. 6, we find only small changes in the lensing
bandpowers and a negligible overall shift of ΔAlens < 0.01.

B. Calibration uncertainty

We show the impact of CMB calibration uncertainty in
Fig. 6. As the limits quoted by L16 are ≈1%, the band-
powers are perturbed by a factor ≈1.04. The corresponding
shift in the lensing amplitude is similarly ΔAlens ¼ 0.04.
We include this error as a contribution to the total
systematic error on Alens.

C. Polarization angle uncertainty

We model a global polarization angle offset within the
stated limits of L16 by adding 1% of the Q maps to U and
subtracting 1% of the U maps fromQ. This results in small
shifts to lensing bandpowers and a change in the overall
amplitude of ΔAlens ¼ 0.01. We again include this value in
our total systematic error budget.

TABLE II. Probability to exceed the given χ2 for the lensing
signal, compared to the best-fit model.

Estimator D56 lens D5 lens D6 lens

TT; TT 0.26 0.14 0.91
TE; TE 0.004 0.74 0.94
EE;EE 0.69 0.70 0.51
EB;EB 0.42 0.84 0.94
TT; TE 0.86 0.34 0.92
TT; EE 0.92 0.79 0.22
TT; EB 0.21 0.13 0.73
TE; EE 0.84 0.88 0.64
TE; EB 0.25 0.29 0.89
EE;EB 0.77 0.92 0.92

FIG. 4. Curl null test, coadded over all patches and estimators
with the same weights as the lensing potential power spectrum.
The PTE with respect to zero is 0.57.
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D. Temperature-to-polarization leakage

Wemodel instrumental temperature-to-polarization leak-
age by adding 1% of the temperature map to the E-mode
map (as a leakage of this form and magnitude was found to
be present in initial versions of the ACTPol CMB maps,
though it was fixed by better beam characterization, as
described in L16). We again find only small shifts to
bandpowers and a change in the amplitude of lensing of
ΔAlens ¼ −0.02, which we include in our total systematic
error calculation.

E. Galactic dust

We calculate an upper bound on the impact of galactic
dust by subtracting the Planck 353 GHz maps below l <
2000 from our CMB temperature maps (at higher l, cosmic
infrared background (CIB) and instrumental noise become
large and dominant). Prior to subtraction, we rescale the
353 GHz maps to serve as dust maps at 149 GHz by
dividing by ≈20 (see [23]). We obtain a shift of
ΔAlens ¼ −0.03, with only small changes in the lensing
bandpowers. Though this value represents in some sense an

FIG. 5. Curl null test power spectra for all the different patches and estimators separately. The blue points are from D56, the red points
are from D5, and the gray points are from D6.
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upper bound (since a small fraction of the large-scale CMB
is also removed), we include this value in our systematic
error budget. Comparable small bounds were found in
[16,23]. We note that the impact of polarized dust is
expected to be very small, given that we only
use information at l > 1000 and given that most of our
statistical weight is in the temperature estimator.
Furthermore, we note that the curl null should be sensitive
to an unexpectedly large dust bias [20].

F. Source and cluster mask level and mask size

Steps have been taken in this analysis to mitigate the
impact of astrophysical contaminants, such as observing in
low-dust regions, masking and in-painting SZ clusters, and
template-subtracting bright star-forming and radio galaxies.
However, we also test for any effect on our results from
residual astrophysical foregrounds. In Fig. 6, we show the
result of changing the number of masked clusters and
residual sources, with mask thresholds corresponding to
objects detected at 6σ, 5σ, and 4σ using a matched filter.
Our main result masks out SZ clusters and residual sources
above 5σ. The variation in bandpowers and in the amplitude
of lensing is much less than the statistical error for all
masking choices, with a root-mean-squared change of
ΔAlens ¼ 0.03 from the baseline result. We further test
the stability of our results by doubling the size of the in-
painting mask around each object. We find only small
changes to bandpowers and an overall shift of
ΔAlens ¼ −0.01. Finally, we display in Fig. 6 the lensing
bandpowers when no masking of clusters and residual
sources is performed. As expected, omitting the masking
procedure entirely causes substantial shifts in the band-
powers. However, as shown in Fig. 6 our results are
insensitive to the details of the masking procedure, which
gives confidence in their robustness.

G. Unresolved astrophysical foregrounds

Even with aggressive masking, some residual effective
lensing signal will remain from the trispectra associated

with extragalactic objects just below the cut threshold in the
temperature maps [45]. These biases, arising from galaxy
clusters, the cosmic infrared background, and radio
sources, were estimated in [46], based partly on the
simulations from [47]. We find that for our current masking
levels and maximum multipole used in the reconstructions,
the biases expected are roughly 3% of the signal for the
TT; TT estimator. We use the relevant curves from [46] as
our foreground bias ΔCFG

Lb
that we subtract when deriving

TABLE III. Probability to exceed the given χ2 for the curl
signal, compared to null.

Estimator D56 curl D5 curl D6 curl

TT; TT 0.10 0.89 0.60
TE; TE 0.05 0.66 0.29
EE;EE 0.43 0.74 0.58
EB;EB 0.08 0.50 0.55
TT; TE 0.49 0.75 0.45
TT; EE 0.36 0.64 0.96
TT; EB 0.53 0.99 0.54
TE; EE 0.51 0.995 0.99
TE; EB 0.90 0.98 0.43
EE;EB 0.51 0.82 0.94

FIG. 6. Systematic test summary plot. The top panel shows the
stability of our results to realistic levels of potential sources of
systematic error, including instrumental errors in beams, calibra-
tion, polarization angle and temperature to polarization leakage,
as well as astrophysical systematics such as galactic dust (see text
for details). We also show the stability of our results when
changing the masking threshold for SZ clusters and irregular
point sources. The second panel shows the same data, but
represented in terms of standard deviations. We note the stability
of the results to realistic levels of instrumental systematic effects
and analysis choices (though it is apparent that some degree of
source masking is required). The bottom two panels show the
equivalent points for the curl null test.
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our final lensing power spectrum. For polarization, the
foregrounds are expected to be much less of a concern—SZ
clusters produce only an extremely small polarized signal,
and the polarized CIB and point source levels are also very
small (e.g., L16). We thus neglect unresolved foreground
biases in estimators using only polarization. For lensing
power spectrum estimators involving one TT-estimator half
(e.g, TT; EB), we assume a bias ΔCFG

Lb
given by one half of

the TT; TT bias (which is justified by a dominant con-
tribution to the bias arising from the lensing-source-source
bispectrum [46]). If we turn off subtraction of the entire
bias, the amplitude of lensing shifts by ΔAlens ¼ −0.02.
What contribution from astrophysical foregrounds such

as galaxy clusters, CIB, and radio sources should we assign
to our overall systematic error budget? We note that there is
of order 50% theoretical uncertainty on the simulation-
derived estimate [46], implying an error ΔAlens ≈ 0.01. To
be conservative, we add (in quadrature) to this the
dispersion found for different source and cluster masking
levels, giving a total error of ΔAlens ¼ 0.03 for the
astrophysical uncertainty in our measurement.

H. Noise tests

Finally, we test our modeling of the noise. By differ-
encing two splits of our data with equal weight and thus
canceling the signal, we obtain maps of the noise in our
data. We add these maps to simulations of the lensed CMB
signal and measure the lensing power spectrum of the
resulting maps with our pipeline. The recovered lensing
power spectrum is found to be a good fit to the input
simulation power spectrum, with a PTE of 76%. We repeat
this analysis with a new realization of the background CMB
signal, obtaining a PTE of 6%. From different splits of our
data, we also obtain a new, uncorrelated noise (and signal)
map, which gives a PTE of 75% in our test. For all three
cases, the 30 individual PTEs for each patch and estimator
combination appear nominal. We therefore find no signifi-
cant evidence for systematics from noise modeling in our
analysis.
In Fig. 6, we also show the changes to the curl null test in

response to the enumerated systematic effects. As none of
the systematics or analysis choices we investigate (aside
from not masking any sources at all) causes significant
changes to the curl points, we conclude that the systematic
effects investigated are not responsible for any features in
the curl power spectrum.
We summarize the different sources of systematic

error investigated, along with an approximate (often
conservative) estimate of their impact on the amplitude
of lensing, ΔAlens, in Table IV. By adding all these sources
of error in quadrature, we obtain an estimate for the total
systematic error on our measurement of the lensing power
spectrum amplitude of ΔAlensðsysÞ ¼ 0.06.
For the systematic tests enumerated above, we note that

the overall systematic error contribution is subdominant to

the statistical error. In all tests, we do not see significant
changes to our baseline results. Indeed, nearly all our
estimates of systematics are conservative upper limits; there
is no significant evidence for systematic contamination to
our lensing measurement at the current level of precision
from either astrophysical or instrumental effects.

VI. COSMOLOGICAL PARAMETERS

In this section, we present cosmological constraints on
the linear-theory matter fluctuation amplitude σ8, the matter
density Ωm, and the sum of the neutrino masses Σmν from
the ACTPol lensing power spectrum. We obtain these
constraints from the coadded lensing power spectrum
shown in Fig. 2.
We model the ACTPol lensing likelihood by assuming

Gaussian uncertainties on the correlated, binned coadded
spectrum, Ĉϕ

Lb
, so that the log-likelihood is given by

−2 lnL ¼
X
bb0

½Ĉϕ
Lb

− Cϕ;th
Lb

ðθÞ�C−1
bb0 ½Ĉϕ

Lb0
− Cϕ;th

Lb0
ðθÞ�: ð11Þ

The Gaussian approximation is justified by the large
number of effective independent modes in our bandpowers.
We have checked that a correction due to having a finite
number of simulations, based on [48], yields only a 2–3%
effect on our final bandpower errors. The covariance matrix
C−1 for the binned spectrum is calculated using
Monte Carlo simulations as described in Sec. III. Since
the normalization RϕðLÞ in Eq. (1) and the ΔCN1

Lb
bias

correction in Eq. (8) assume a fiducial cosmology θ0, we
calculate the expected spectrum, Cϕ;th

L ðθÞ, at the point θ in
cosmological parameter space and correct it to reflect the
RϕðLÞ and CN1

Lb
we used for the data. Since calculating the

exact correction for each point in parameter space is
prohibitively slow, we follow the approach in [23] and
exploit the near-linear dependence of the expected power
spectrum, due to shifts in RϕðLÞ and ΔCN1

Lb
, when expand-

ing around the fiducial cosmology [see in particular

TABLE IV. Systematic error budget. We list the different
sources of systematic error investigated, along with an approxi-
mate (often conservative) estimate of their impact on the
amplitude of lensing, ΔAlens. Adding the different errors in
quadrature, we obtain an estimate for our total systematic error,
ΔAlens ðsysÞ.
Type of systematic Systematic error, ΔAlens

Beams < 0.01
Calibration 0.04
Polarization angle 0.01
Temperature-polarization leakage 0.02
Galactic dust < 0.03
Astrophysical (clusters/sources) 0.03
Total systematic error 0.06
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Eq. (C.5) in [23]]. However, we neglect the contribution to
the correction from the dependence of ΔCN1

Lb
on the CMB

primordial power spectra as these spectra are strongly
constrained by the addition of CMB power spectrum
information. In addition, the dependence of ΔCN1

Lb
on the

lensing power spectrum is assumed to be dominated by an
overall scaling of the amplitude of the fiducial lensing
power spectrum rather than on scaling each Lb mode
separately; this is a very good approximation for the
parameters we consider, which effectively only smoothly
rescale the lensing power spectrum. For any pair of
estimators XY; AB used for the power spectrum we there-
fore have

Cϕ;th
L;XYAB ¼ Cϕ

L þ d lnRXY
ϕ RAB

ϕ ðLÞ
dCj

l

����
θ0

ðCj
lðθÞ

− Cj
lðθ0ÞÞCϕ

Lðθ0Þ

þ ΔCN1
L;XYABðθ0Þ

� hCϕ
LðθÞi

hCϕ
Lðθ0Þi

− 1

�
; ð12Þ

where Cϕ
L is the theory power spectrum for the given

parameters, and where we estimate the mean amplitude of
lensing hCϕ

LðθÞi by averaging L times the lensing con-
vergence power (∼L5Cϕ

L) from L ¼ 0–2000.
The final theory lensing spectrum that is compared

against the measured coadded lensing spectrum is the
linear combination of the above spectra over all XY; AB
pairs, weighted and binned in the same way as the
measured coadded lensing spectrum [Eq. (5)].
We calculate theory power spectra using the Boltzmann

code CAMB (using Halofit to model the effects of nonlinear
structure formation [49,50]) and use the MCMC code
CosmoMC [51,52] to obtain parameter constraints. We
consider the basic six ΛCDM parameters—cold dark
matter and baryon densities Ωch2 and Ωbh2, the optical
depth to reionization τ, the Hubble constant H0, and the
amplitude and scalar spectral index of primordial fluctua-
tions As and ns—and a single family of massive neutrinos
with total mass Σmν. These parameters are varied with
priors as summarized in Table V and consistently with the
Planck lensing analysis [23]. We, however, update the τ
estimate following more recent Planck data [53]. The prior
on Ωbh2 comes from big bang nucleosynthesis in combi-
nation with quasar absorption line observations [54], and
the prior on ns is centered on Planck measurements of the
CMB power spectra but with a relatively broad width [55].
As explained in detail in [23], the parameter combination

that lensing measures best is σ8Ω0.25
m . From ACTPol lensing

alone, we obtain a constraint in the σ8 −Ωm plane of

σ8Ω0.25
m ¼ 0.643� 0.054 ðACTPol lensonly;68%Þ: ð13Þ

This is consistent with the Planck lensing-only constraint of
σ8Ω0.25

m ¼ 0.591� 0.021 [23]. Though the Planck lensing
power spectrum measurement itself is much more precise
than our measurement, the constraints on σ8Ω0.25

m are more
comparable, because Planck’s constraint on the σ8Ω0.25

m
combination is degraded by marginalizing over Ωmh2 and
other parameters.
Combining the ACTPol lensing likelihood with a baryon

acoustic oscillations (BAO) likelihood, which includes 6DF
[56], SDSS MGS [57], and BOSS DR12 CMASS and
LOWZ data sets [58], we break the σ8-Ωm degeneracy and
obtain the following individual marginalized constraints,

σ8 ¼ 0.8321� 0.053 ðACTPol lensþBAO;68%Þ ð14Þ

Ω8 ¼ 0.418� 0.042 ðACTPol lensþBAO;68%Þ: ð15Þ

We note that the constraints given in Eqs. (13)–(15) are
obtained while fixing the cosmology θ in the RϕðLÞ
correction given in Eq. (12) to the Planck best-fit model
from the Planck primary CMB data alone, just as done for
the Planck lensing-only constraints obtained in [23]. This
restricts the statistics of the CMB background source light,
giving a weaker constraint than fully adding the Planck
primary CMB data to the ACTPol and BAO data sets. If we
allow the cosmology in the RϕðLÞ correction to vary when
only ACTPol lensing data are used, then the parameter
chains explore regions of parameter space that are largely
inconsistent with known measurements of the primary
CMB, due to a degeneracy of the amplitude of the lensing
signal with the CMB power spectra [in our case, primarily
with an integral scaling as ðCTT

l Þ2].
We present our constraints in Fig. 7. The red contours

show the ACTPol lensing-only results with the source
plane fixed in the RϕðLÞ correction to the best-fit Planck
primary CMB cosmology. The blue contours show the
result when adding BAO, again fixing θ in the RϕðLÞ
correction to the Planck best-fit model. We compare with
the corresponding Planck lensing plus BAO contours
shown in gray. BAO alone has a mild preference for Ωm ≈
0.4 in this plane, and it intersects the ACTPol-only contours
around this value. However, in the H0 −Ωm plane, there is
only a small parameter region where BAO and Planck lens

TABLE V. Priors used in the cosmological analysis when
including and not including primary CMB temperature fluctua-
tions.

Parameter Without CMB TT With CMB TT

ln 1010As [2, 4] [2, 4]
H0 [40, 100] [40, 100]
ns 0.96� 0.02 [0.8, 1.2]
Ωbh2 0.0223� 0.0009 [0.005, 0.1]
Ωch2 [0.005, 0.99] [0.005, 0.99]
τ 0.058� 0.012 0.058� 0.012P

mν (eV) 0.06 [0, 10]

BLAKE D. SHERWIN et al. PHYSICAL REVIEW D 95, 123529 (2017)

123529-12



contours intersect, which is around Ωm ≈ 0.3. Thus, the
gray Planck lens plus BAO contour is centered around
Ωm ≈ 0.3, though the reason for this is not immediately
apparent from the σ8-Ωm plane alone.
In Fig. 7, we also show Planck primary TT plus BAO

and ACTPol primary CMB plus BAO constraints. CMB
power spectrum measurements give a measurement of
lensing through peak smoothing of the primary spectrum.
We call this lensing measurement “two-point lensing,” in
contrast to the lensing power spectrum measurement
discussed in this work, which we call “four-point lensing.”
We note that the Planck and ACTPol primary CMB
measurements plus BAO are very constraining, both due
to their measurements of the two-point lensing signal and
because they constrain the amplitude of high-redshift
structure via the optical depth τ.
In Fig. 8, we show a compilation of recent CMB lensing-

only (four-point) and optical-lensing only constraints. The
optical lensing constraints are from CFHTLens [59], KiDS
[60] and DES [61], and are derived from measurements of
galaxy shapes that have been distorted by lensing from
intervening matter. The DES chains provided by the DES
team only extend to Ωm ≃ 0.9. This plot shows consistency
between the data sets given their uncertainties.

The presence of massive neutrinos suppresses the growth
of structure and thus reduces the amplitude of lensing. In
the CMB, neutrino mass constraints therefore arise via a
constraint on the lensing amplitude from four-point lensing
(the lensing power spectrum) or from two-point lensing
(the CMB power spectrum peak smoothing). Within
νLCDM, the amplitude of both effects (and their ratio)
is predicted uniquely. If their amplitude differs significantly
in the data, caution may be called for in the interpretation of
one or both of the measurements unambiguously as a
lensing signal [62,63].
To constrain the sum of neutrino masses, we combine

our lensing measurement with the ACTPol two-season
CMB temperature and polarization power spectra [30], and
with BAO. Since our lensing maps are nearly noise
dominated and since we use a data-dependent Gaussian
bias subtraction, we can neglect the covariance of the
lensing and CMB power spectrum measurements [40].
With this combination, we obtain a constraint of

Σmν < 0.396 eV ðACTPol lens
þ ACTPol CMBþ BAO; 95%Þ: ð16Þ

For this result, the cosmology in the RϕðLÞ correction was
allowed to be free. We show this constraint as the thick red
curve in Fig. 9.
In Fig. 9, we also show the constraint combining Planck

four-point lensing plus Planck primary CMB TT (the Planck
temperature power spectrum at all scales) plus BAO, as the
solid blue curve. This constraint is Σmν < 0.153 eV at
95% C.L., which is somewhat tighter than reported in [23].
This tighteningof theΣmν constraint is due to the useofDR12
as opposed to DR11 when including BOSS BAO, and the

FIG. 8. Compilation of recent constraints on σ8 versus Ωm from
CMB and optical lensing measurements (CFHTLens [59], KiDS
[60] and DES [61]). The CMB constraints are from the lensing
power spectrum information only. The data sets are seen to be
broadly consistent, and the degeneracy direction from the CMB
experiments can be seen to differ from those from the optical surveys.

FIG. 7. Constraints at 68% C.L. on σ8 versus Ωm from ACTPol
lensing data alone and in combination with BAO data. The red
contours are from ACTPol lensing data (i.e. four-point correlation
function information) alone when fixing the cosmology used in
the lensing power spectrum normalization correction to the best
fit from Planck primary CMB data; this effectively restricts the
background source plane to be consistent with primary CMB
data. The blue contour shows the result when BAO data are added
(see text for details of the data set). Planck four-point lensing data
plus BAO are indicated by the gray contour. For comparison with
high redshift probes of the amplitude of structure, which do not
necessarily probe the same physics in extensions to ΛCDM, we
also show the contours from the CMB power spectra, for both
ACTPol and Planck data plus BAO, as purple and yellow
contours, respectively. These CMB power spectrum contours,
which mainly probe the primary CMB, are consistent with our
lower redshift lensing measurements.
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lower central value and tighter error bar on τ, 0.058� 0.012
versus 0.067� 0.017, that was recently reported in [53].
The constraint without Planck four-point lensing, i.e.

from Planck TT and BAO alone, is shown as the solid black
curve. Omitting the Planck four-point lensing actually
makes the constraint slightly stronger, because the large
two-point peak smoothing is mildly discrepant with the
four-point lensing amplitude.
To explore constraints on the neutrino mass which do not

rely on two-point smoothing of the CMB TT spectrum and
to quantify the constraining power of current ACTPol
lensing, we free the parameter Alens, allowing it to vary just
the two-point peak smoothing in the Planck TT spectrum
[65]. Marginalizing over Alens effectively removes the peak-
smoothing information from the Planck two-point TT
measurement. The resulting constraints are shown as
dashed lines in Fig. 9. The black dashed curve shows
Planck TT and BAO alone, marginalizing over Alens; the
gold and blue dashed curves include ACTpol and Planck
lensing measurements. The two-point data and BAO (black
dashed) give a mass constraint of Σmν < 0.378 eV at
95% C.L. Adding ACTPol four-point lensing (the gold
dashed curve) yields a constraint of Σmν < 0.320 at

95% C.L. This improvement is from the ACTPol four-
point lensing measurement alone.

VII. CONCLUSIONS

We report a new measurement of the power spectrum of
CMB lensing from two seasons of ACTPol CMB temper-
ature and polarization data. This measurement can be
compared with those of other groups in Fig. 11. We detect
lensing power at high significance in our data and find the
lensing power spectrum to be consistent with ΛCDM
predictions. No evidence for significant systematic effects
is seen in our null tests and checks. We obtain an amplitude
of lensing power Alens¼1.06�0.15 ðstatÞ�0.06 ðsysÞ, a
7.1σ measurement, and an amplitude of density fluctua-
tions σ8 ¼ 0.831� 0.053. Both measurements are consis-
tent with the Planck ΛCDM cosmology (which we define
to have Alens ¼ 1). While the amplitude of density fluctua-
tions we report is higher than that found in some recent
weak lensing surveys [24], our uncertainties are currently
still too large to resolve any claimed tensions between
Planck and these low-redshift tracers. However, we note
that our current measurements are based on only 12% of the
ACTPol observational data [30]. As the remaining ACTPol
data are included in our analysis, using the pipeline
described in detail in this paper, we expect to report
significantly improved measurements of the lensing power
spectrum. This will, in turn, give stronger constraints on the
amplitude of structure and on cosmological parameters
such as the neutrino mass.
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FIG. 9. Constraint on neutrino mass marginalized over the other
parameters from ACTPol primary CMBþ ACTPol four-point
lensingþ BAO (thick red curve). We also show Planck TT þ
BAO (black solid curve), Planck TT þ BAOþ Planck four-point
lens (blue solid curve), and Planck TT þ BAOþ ACTPol four-
point lens (gold solid curve). The black dashed curve shows Planck
TT þ BAO when we remove the two-point lensing signal from
peak smoothing in Planck TT (see details in text), and the gold
dashed curve shows the result when ACTPol four-point lensing is
added to that. The difference between the black and gold dashed
curves isolates the improvement when adding ACTPol four-point
lensing data, and comparison of the gold dashed and solid curves
shows the effect from adding the two-point lensing information in
Planck TT. We also show the minimal neutrino masses for the
normal and inverted hierarchy of 58 and 105 meV, respectively,
assuming that the cosmological neutrinos have the same properties
as those measured in terrestrial experiments [64].
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APPENDIX: THE TEMPERATURE CURL NULL
TEST AND THE LOW-l CUTOFF

In our analysis, we impose a lower cutoff on the CMB
scales lmin, from which to measure our lensing. This cut
was chosen to be above low multipoles where atmospheric

noise is largest. Our initial choice was lmin ¼ 500.
However, with this initial choice, the curl null test for
D56 for the TT; TT estimator marginally fails at the 3σ
level (with a PTE of ∼0.2%). Though with 60 null tests,
one failure of this magnitude is not very unlikely (see
discussion in the main text of the TE; TE estimator); the
D56 TT; TT measurement is particularly important, as it
dominates our result. A significant fraction of the tension
seemed to arise from the highest L bandpowers, approach-
ing L ¼ 2000, where the Gaussian bias that we need to
subtract off is largest.
As the prescription for calculating the realization de-

pendent bias only self-corrects to first order in differences
between simulations and data, we note that a mismatch in
the simulated CMB power at the 10% level in any region of
our map is sufficient to cause failures at the highest L. One
possibility that gives such a mis-simulation is that our noise
simulation procedure assumes that the atmospheric noise
scales down with the local map weights as white noise,
which is not quite true on large scales. We changed our
cutoff to l ¼ 1000 in our analyses to address the fact that
the bias subtraction might not be precise enough when
using this range of scales in the estimator. This change
results in the null test now passing at a slightly better than
2σ level, because the highest L-bandpower is more con-
sistent with null, though also to some extent because the
error bars increased since data were removed. By varying
the new cutoff above l ¼ 1000, we verified the stability of
the result.
To check our understanding and to ensure that the scales

we cut are at least partially responsible for the marginal null
failure beyond merely inflating error bars, we plot the
relevant null test points in Fig. 10 for both lmin ¼ 500 and
lmin ¼ 1000. We now seek to approximately isolate the
new information arising from the low l scales by assuming

FIG. 10. Curl null test for the D56 TT; TT estimator, with
different choices of the low-ell cutoff. It can be seen that the
contribution from l < 1000 is in ∼3σ tension with null for the
highest L bandpower. This is likely due to the limitations of the
realization-dependent bias subtraction, which only corrects for
mismatched simulations to leading order, for the highest L
bandpower where the bias is very large—the simulations we
use may not adequately capture the noise at l < 1000 where
atmospheric noise is very large. The problem is solved by,
conservatively, using only CMB scales l > 1000 in our analysis.

FIG. 11. Compilation of lensing power spectrum measurements from various experimental groups, including Planck [23], SPT [16],
SPTpol [20], this work, BICEP/Keck [21], and Polarbear [17]. In the case of Planck, we show both the full range of reported bandpowers
(light purple), as well as the restricted range 40 < L < 400 used for cosmological analysis (dark purple).
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an independent measurement which is coadded with the
lmin ¼ 1000 data to obtain the lmin ¼ 500 data. We invert
the simple coadd procedure to obtain a new null test,
which is also shown on the plot. We approximately identify
this null with the contribution that we are cutting, i.e.
the part that originates below lmin ¼ 1000 (noting that in
noise domination with a realization dependent bias, the
correlation of the four-point functions involving any
l < 1000 contribution with the lmin ¼ 1000 measurement
is small).
It can be seen that the highest-L bandpower deviates at

the 3σ level from null for the lmin < 1000 contribution we

isolate. This suggests that the large scales are to some
extent responsible for the problem, and it is consistent with
our picture of mis-simulation of atmospheric noise causing
problems in the highest L bandpower where the bias
subtraction is largest. In a future work, we plan to prioritize
our noise modeling (or alternatively, the development of a
cross-spectrum based estimator) to mitigate this issue and
extend the range of scales we can use in our analysis. In
addition, with the significant increase in data expected from
the full three-season data set, we will be able to investigate
any hints of systematics in our data with more powerful
null tests.
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