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ABSOLUTE CONTINUITY OF BERNOULLI

CONVOLUTIONS FOR ALGEBRAIC PARAMETERS

PÉTER P. VARJÚ

Abstract. We prove that Bernoulli convolutions µλ are abso-
lutely continuous provided the parameter λ is an algebraic number
sufficiently close to 1 depending on the Mahler measure of λ.

1. Introduction

Let λ, p ∈ (0, 1) be real numbers and let ξ1, ξ2, . . . be a sequence of
independent random variables withP(ξn = 1) = p, P(ξn = −1) = 1−p.
We define the Bernoulli convolution µλ,p with parameter λ and p as the
law of the random variable

∑∞
n=0 ξnλ

n.
This paper is concerned with the problem of whether µλ,p is abso-

lutely continuous or singular with respect to the Lebesgue measure for
given parameters λ and p. It is well-known that µλ,p, like all self-similar
measures, is of pure type. The main result of the paper is the following.

Theorem 1. For every ε > 0 and p ∈ (0, 1), there is c > 0 such that
the following holds. Let λ < 1 be an algebraic number and suppose that

λ > 1− cmin(logMλ, (logMλ)
−1−ε).

Then the Bernoulli convolution µλ,p is absolutely continuous with den-
sity in L logL.

Recall that a function f : R → R is in L logL if
∫

|f | log(|f |+ 2)dx < ∞.

In this theorem and everywhere in the paper, Mλ stands for the Mahler
measure of an algebraic number λ, which is defined as follows. Let
a(x− z1) · · · (x− zd) be the minimal polynomial of λ. Then

Mλ = a
∏

j:|zj|>1

|zj|.

Key words and phrases. Bernoulli convolution, self-similar measure, absolute
continuity, Mahler measure.
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BERNOULLI CONVOLUTIONS 2

We note that the constant c in the theorem may be taken to be a
continuous function of the parameters p and ε.
There were only very special explicit examples of absolutely contin-

uous Bernoulli convolutions known prior to this paper. (See the next
section.) In particular, this theorem gives the first explicit examples
of biased (i.e. with p 6= 1/2) absolutely continuous Bernoulli convolu-
tions.
In the course of the proof of Theorem 1, we keep track of the values of

the constants in a certain special case, which allows us to obtain com-
pletely explicit examples. At this point, we only remark that µ1−10−50,p

is absolutely continuous provided 1/4 ≤ p ≤ 3/4 and defer further
discussion about more examples to Section 1.3.

1.1. Background. For thorough surveys on Bernoulli convolutions we
refer to [19] and [23]. For a discussion of the most recent developments,
see [25]. We limit this discussion to the case of unbiased Bernoulli
convolutions, i.e. we take p = 1/2 and omit the index p in our notation.
Bernoulli convolutions originate in a paper of Jessen and Wintner

[14] and they have been studied by Erdős in [7, 8]. If λ < 1/2, then
suppµλ is easily seen to be a Cantor set, hence µλ is a singular measure.
If λ = 1/2, then µλ is the normalized Lebesgue measure restricted to
the interval [−2, 2].
It has been noticed by Erdős [7] that µλ may be singular even if

λ > 1/2. In particular, he showed that µλ is singular whenever λ−1

is a Pisot number – a real number greater than 1, all of whose Galois
conjugates have absolute value strictly less than 1. Pisot numbers
have the property that their powers are approximated by integers with
exponentially small error. This was exploited by Erdős to show that
the Fourier transform of µλ does not vanish at infinity.
It is easily seen that µλ = µλk ∗ ν, where ν is a probability mea-

sure (the law of the random variable
∑

n:k∤n ξnλ
n). Hence µ2−1/k is a

convolution of µ1/2 with another probability measure, and it is abso-
lutely continuous. Further explicit examples of absolutely continuous
Bernoulli convolutions were given by Garsia [11, Theorem 1.8], who
showed that µλ is absolutely continuous, whenever λ−1 is a real alge-
braic integer with Mahler measure 2.
The typical behaviour is absolute continuity for parameters in (1/2, 1).

Indeed, Erdős [8] showed that µλ is absolutely continuous for almost
all λ ∈ (c, 1), where c < 1 is an absolute constant. This was extended
by Solomyak [22] to almost all λ ∈ (1/2, 1).
Beside absolute continuity, another interesting problem is to deter-

mine the dimension of µλ. It was proved by Feng and Hu [10, Theorem
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2.8] that self-similar measures, and hence Bernoulli convolutions in
particular, are exact dimensional, that is the limit

lim
r→0

logµλ([x− r, x+ r])

log r

exists and is constant for µλ-almost every x. We call this limit the
dimension of µλ and denote it by dim µλ.
Very recently, Hochman [13] made a breakthrough on this problem.

He proved that the set of exceptional parameters

{λ ∈ (1/2, 1) : dimµλ < 1}
is of packing dimension 0. Recall that a set of packing dimension 0
is also a set of Hausdorff dimension 0. See [9, Chapter 3.5] for the
definition and basic properties of packing dimension. Building on this
result, Shmerkin [20] proved that

{λ ∈ (1/2, 1) : µλ is singular}
is of Hausdorff dimension 0.
Our aim in this paper is to obtain results about the absolute continu-

ity of µλ for specific values of λ, in particular when λ is algebraic. The
work of Hochman [13] yields a formula for the dimension of µλ when λ
is an algebraic number. Denote by hλ the entropy of the random walk
on the semigroup generated by the transformations x 7→ λ · x+ 1 and
x 7→ λ · x− 1. More precisely, let

hλ = lim
1

n
H
( n−1∑

i=0

ξiλ
i
)
,

where H(·) denotes the Shannon entropy of a discrete random variable.
With this notation Hochman’s formula is

dimµλ = min(−hλ/ log λ, 1).

(See [4, Section 3.4], where the formula is derived in this form from
Hochman’s main result.)
The quantity hλ has been studied in the paper [4]. It was proved

there [4, Theorem 5] that there is an absolute constant c0 > 0 such
that for any algebraic number, we have

c0 ·min(logMλ, 1) ≤ hλ ≤ min(logMλ, 1).

The log’s in this formula as well as those that appear in the defini-
tion of entropy are base 2. Numerical calculations reported in that
paper indicate that one can take c0 = 0.44. This result combined with
Hochman’s formula implies that dimµλ = 1 provided λ is an algebraic
number with 1 > λ > min(2,Mλ)

−1/c0.



BERNOULLI CONVOLUTIONS 4

1.2. The strategy of the proof. We aim to take a step further and
show that µλ is absolutely continuous provided λ is an algebraic number
that satisfies the conditions of Theorem 1.
Unfortunately, the methods of [20] do not seem to apply for specific

parameters, hence we need a different method. We follow a strategy
similar to Hochman’s [13] relying on lower bounds for the entropy of
convolution of measures.
We will work with the following notion of entropy. Let X be a

bounded random variable and let r > 0 be a real number. We define

H(X ; r) :=

∫ 1

0

H(⌊X/r + t⌋)dt.

On the right hand side H(·) denotes the Shannon entropy of a discrete
random variable. In addition, we define the conditional entropy

H(X ; r1|r2) := H(X ; r1)−H(X ; r2).

We will study the basic properties of these quantities in Section 2.
By abuse of notation, we write H(µ; r1|r2) = H(X ; r1|r2) and similar
expressions if µ denotes the law of X .
These quantities differ from those used by Hochman in that they

involve an averaging over a random translation. This averaging endows
these quantities with some useful properties as we will see in Section
2.2, which often come in handy. The idea of this averaging procedure
originates in Wang’s paper [26, Section 4.1].
We fix an algebraic number λ until the end of the section. For a set

I ⊂ [0, 1], we write µI for the law of the random variable
∑

n∈Z≥0:λn∈I
ξnλ

n.

The starting point of the proof is the observation going back at least
to Garsia [11, Lemma 1.51] that any two points in the support of µ(λℓ,1]

are at distance at least cλℓ
−aM−ℓ

λ , where a is the number of Galois
conjugates of λ on the unit circle. Taking any α < M−1

λ , this implies
that

H(µ(λℓ,1];αℓ) = H(µ(λℓ,1]) ≥ hλ · ℓ
for ℓ sufficiently large. Indeed, the choice of α guarantees that any two
possible values attained by the random variable

α−ℓ
ℓ−1∑

n=0

ξnλ
n

are at distance at least 1. Hence taking integer parts does not change
its Shannon entropy.
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We choose another suitable number β > 0 and note the trivial bound

H(µ(λℓ,1]; βℓ) ≤ log β−1 · ℓ+ C,

where C is a constant depending on the length of the interval on which
µλ is supported. We make sure that log β−1 < hλ and take the differ-
ence of these bounds. Writing x = λℓ, we obtain H(µ(x,1]; xc1|xc2) ≥
c3 · log x, where c1, c2 and c3 are constants depending on α, β and hλ.
After rescaling we obtain

H(µ(xy,y]; xc1y|xc2y) ≥ c3 · log x.
Then we aim to find a suitable disjoint collection of intervals of

the form Ij = (xjyj, xj ] ⊂ (0, 1] such that the corresponding intervals
(xc1

j yj, x
c2
j yj] “overlap a lot”. At this stage we observe that

µλ = µI1 ∗ · · · ∗ µIn ∗ µ(0,1]\
⋃

Ij

and invoke some results about the growth of entropy under convolution,
which we formulate now.
Recall that the log function that appears in the definition of entropy

is base 2. With this normalization, 1 is the supremum of the conditional
entropy between two scales s and 2s over the set of all probability
measures. The number 1 − H(µ; s|2s) measures how uniform µ is at
scale s. Our first result quantifies the following statement: If two
measures are very uniform at a given scale (and also at nearby scales),
then their convolution is even more uniform.

Theorem 2. There is an absolute constant C > 0 such that the fol-
lowing holds. Let µ, µ̃ be two compactly supported probability measures
on R and let 0 < α < 1/2 and r > 0 be real numbers. Suppose that

H(µ; s|2s) ≥ 1− α and H(µ̃; s|2s) ≥ 1− α

for all s with | log r − log s| < 3 logα−1.
Then

H(µ ∗ µ̃; r|2r) ≥ 1− C(logα−1)3α2. (1)

Our second result complements the first one. We consider a prob-
ability measure that is uniform only at a small fraction of scales and
estimate how much its entropy grows when we convolve it with another
measure that has at least some small amount of entropy.
We write N1(X) for the maximal cardinality of a collection of points

in a set X ⊂ R that are of distance at least 1 from each other.

(1)One may take C = 108 here.
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Theorem 3. For every 0 < α < 1/2, there is a number c > 0 such
that the following holds. Let µ, ν be two compactly supported probability
measures on R. Let σ2 < σ1 < 0 and 0 < β ≤ 1/2 be real numbers.
Suppose that

N1{σ ∈ [σ2, σ1] : H(µ; 2σ|2σ+1) > 1− α} < cβ(σ1 − σ2).
(2)

Suppose further that

H(ν; 2σ2|2σ1) > β(σ1 − σ2).

Then

H(µ ∗ ν; 2σ2 |2σ1) > H(µ; 2σ2|2σ1) + cβ(log β−1)−1(σ1 − σ2)− 3. (3)

The aim of this procedure is to show that if λ satisfies the hypothesis
in Theorem 1, then

(1) H(µλ; 2
−n|2−n+1) ≥ 1− Cn−2

for some constant C depending only on λ. Summing these inequalities,
we find that H(µλ; 2

−n) ≥ n − C (for some other constant C), which
will be enough to conclude that µλ is absolutely continuous.
This strategy is very similar to the one pursued by Hochman in [13],

however, there are very crucial differences in the details. In comparison,
Hochman’s argument prove (under milder conditions)

H(µλ; 2
−n|2−n+1) → 1,

which is enough to conclude that dimµλ = 1. One of the new contribu-
tions of this paper enabling the estimate on the speed of convergence
in (1) are the new quantitative estimates in Theorems 2 and 3 for the
growth of entropy under convolution. Theorem 3 is closely related to
[13, Theorem 2.7], but the crucial difference is that the entropy growth
is quantified in terms of the parameters in Theorem 3. In addition,
the proofs of Theorems 2 and 3 follow a different strategy. One of the
new features of our proofs is that we estimate the entropy of the con-
volution of two measures directly, which brings significant quantitative
improvements. This is in contrast with [13] (and [2], where the size
of sum-sets is estimated instead of the entropy of convolutions), where
the entropy of the convolution product of a large number of measures
is estimated first and then Plünnecke-type inequalities are used.
The way the measure µλ is decomposed as a convolution of measures

is also new and has been optimized to achieve fast speed of convergence.
Theorem 2 says that the missing entropy of a convolution is the

square (up to a logarithmic loss) of the missing entropy of the factors.

(2)One may take c = 1/(1000 logα−1) here.
(3)One may take c = α/(107 logα−1) here.
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The exponent 2 here is optimal, and crucial for the success of our
strategy, because it yields a polynomial decay in (1).
Indeed, the following simple example shows that both Theorems 2

and 3 are optimal up to logarithmic factors. Consider the measures
µ = (1 − α)χ[0,1] + αδ0 and ν = (1 − β)χ[0,1] + βδ0, where χ[0,1] is the
Lebesgue measure restricted to the interval [0, 1] and δ0 is the unit mass
supported at 0. We leave it to the reader to verify that

lim
r→0

H(µ; r|2r) =1− α, lim
r→0

H(ν; r|2r) = 1− β,

lim
r→0

H(µ ∗ ν; r|2r) =1− αβ.

However, Theorem 2 is useful only when the missing entropy is
smaller than a very small absolute constant. We need to use Theo-
rem 3 when the measures have large missing entropy on most levels.
The quantitative aspects of this theorem is responsible for the con-
straints we need to impose in Theorem 1 on λ to obtain the exponent
2 on the right hand side of (1).
Theorem 3 is also well adapted for studying the set of parame-

ters λ such that dim µλ = 1. If λ is such that dimµλ < 1, then
H(µI ; r|2r) < 1 − α for all I ⊂ R>0 and r ∈ R>0, where α > 0 is
a number depending on λ but which is independent of I and r. This
means that the hypotheses of Theorem 3 hold for these measures. This
fact is proved in the forthcoming paper [3] of Breuillard and the author,
which aims at studying the set of λ’s where µλ has full dimension.

1.3. Examples. The constant c in Theorem 1 is effective, that is, it
can be computed explicitly by first obtaining an explicit value for the
constant in [4, Theorem 5] and then by following the steps of the
proof and substituting the values of the constants with explicit val-
ues throughout the calculations in this paper. The calculations in this
paper pose no difficulty in this regard, and an explicit bound for the
constant in [4, Theorem 5] only requires a lower bound for the integral

(2)

∫

R

g1(x) log g1(x)dx−
∫

R

g√2(x) log g
√
2(x)dx,

where
gj(x) = pg(x+ j) + (1− p)g(x− j)

and g(x) is the density function of the standard Gaussian random vari-
able. (4)

(4)Indeed, this integral gives a lower bound for Φν0(
√
2) as defined in [4, Section

3.2], which in turn gives a lower bound for Φν0(a) for a ≥
√
2, because of the

monotonicity of Φν0 proved in [4, Lemma 14]. The constant in [4, Theorem 5] is
min√2≤a≤2Φν0(a)/ log(a) due to [4, Corollary 15].
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The integral (2) can be estimated numerically using a computer, at
least for a fixed value of p. We do not pursue this, but in order to obtain
explicit examples of absolutely continuous Bernoulli convolutions, we
keep track of the constants in the special case when λ is not a root of
any polynomial with coefficients −1, 0 and 1. In this special case, [4,
Theorem 5] is not required for the proof of Theorem 1. This assumption
restricts generality, but it holds in many cases, e.g. when λ is not a unit
(i.e. the leading or the constant coefficient of its minimal polynomial
is other than ±1), or when λ has a Galois conjugate of modulus > 2
or < 1/2.
If λ is not a root of a polynomial with coefficients −1, 0 and 1

and 1/4 ≤ p ≤ 3/4, then the proof of Theorem 1 yields that µλ,p is
absolutely continuous provided

(3) λ > 1− 10−37(log(Mλ + 1))−1(log log(Mλ + 2))−3.

We give the proof of Theorem 1 with inexplicit constants, but we keep
track of the values of the various constants and parameters in foot-
notes making no efforts at optimization. A reader not interested in
the explicit value of the constant c in Theorem 1 may ignore these
footnotes.
The problem of determining the relationship between the Mahler

measure and how close to 1 an algebraic number can be has a rich
literature, see Section 4.14 in [21]. We now discuss a couple of simple
constructions that allow us to find examples when Theorem 1 applies.

1.3.1. Rational numbers. If λ = 1− a/b is a rational number for some
integers a, b ∈ Z>0, then Mλ ≤ b. (If a and b are coprime, then
Mλ = b.) This means that µ1−a/b,p is absolutely continuous provided
1/4 ≤ p ≤ 3/4 and

0 < a < 10−37 b

log(b+ 1)(log log(b+ 2))3
.

1.3.2. High degree roots of algebraic numbers. Let λ ∈ (0, 1) be an
algebraic number and let k ∈ Z>0. Then

(4) Mλ1/k = M
deg(λ1/k)/k deg(λ)
λ ,

where deg(x) denotes the degree of the number field Q(x). Indeed,
lnMx = deg(x)h(x) for any algebraic number x, where h(x) denotes
the absolute logarithmic height of x, see [1, Proposition 1.6.6], and
h(xa) = |a|h(x) for any a ∈ Q, see [1, Lemma 1.5.18].
Clearly deg(λ1/k) ≤ k deg(λ), hence Mλ1/k ≤ Mλ always.
We can also get a lower bound. Let λ1 = λ1/k, λ2, . . . , λd be the

roots of the minimal polynomial of λ1/k over the field Q(λ). Then
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d = deg(λ1/k)/ deg(λ). We clearly have λk
j = λ for any j = 1, . . . , d,

hence λj = λ1/kζj, where ζj is a root of unity and

λ1 · · ·λd = λd/k · ζ2 · · · ζd ∈ Q(λ).

Now ζ2 · · · ζd is a root of unity, and it is real, since both λd/k and Q(λ)
are real. Then ζ2 · · · ζd = ±1, hence λd/k ∈ Q(λ). Applying (4) with
λd/k in place of λ and d in place of k, we get

Mλ1/k =M
deg(λ1/k)/d deg(λd/k)

λd/k = M
deg(λ)/ deg(λd/k)

λd/k

≥Mλd/k ≥ min
x∈Q(λ):Mx>1

Mx > 1.

The existence of the minimum follows from Northcott’s theorem [1,
Theorem 1.6.8]. An effective bound for the minimum in terms of deg(λ)
can be obtained from [6, Theorem 1].
This shows that Mλ1/k stays bounded away from both 1 and ∞,

however, λ1/k → 1 as k grows. By Theorem 1, we see that µλ1/k,p is
absolutely continuous for any fixed algebraic λ ∈ (0, 1) and for any
p ∈ (0, 1) provided k is sufficiently large depending only on λ and p.
If λ is not a unit, then the explicit bound (3) can be applied. In par-

ticular, we have that µn−1/k,p is absolutely continuous for any integers
n, k ∈ Z>0 provided p ∈ [1/4, 3/4] and

n−1/k > 1− 10−37(log(n + 1))−1(log log(n + 2))−3.

Using n−1/k > 1− ln(n)/k we can rewrite the above condition as

k > 1037 ln(n) log(n+ 1)(log log(n+ 2))3.

1.3.3. Polynomials with few non-zero coefficients. There are good bounds
on the Mahler measure in terms of the coefficients of the minimal poly-
nomial. Let λ be an algebraic number with minimal polynomial P (x) =
adx

d+ . . .+a0 ∈ Z[x]. For q ≥ 1, we put ℓq(P ) = (|ad|q+ . . .+ |a0|q)1/q
and ℓ∞ = max(|ad|, . . . , |a0|). Then we have the bounds [1, Lemma
1.6.7].

(5) Mλ ≤ ℓ2(P ) ≤ min(ℓ1(P ), (d+ 1)1/2ℓ∞(P ))

This means that it is easy to construct families of polynomials whose
Mahler measure stays bounded; indeed, this holds if the polynomial has
a bounded number of non-zero coefficients that are also bounded.
We describe one possible method to construct such polynomials with

roots near 1. Fix a polynomial Q of degree d such that its coefficients
satisfy 2|aj for all j but 4 ∤ a0 and Q(1) < 0. Let n be a large integer
and let x0 > 1 be a root of the polynomial xn+Q(x). By the Eisenstein
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criterion, this is an irreducible polynomial, and by |a0| > 1, x0 is not a
unit, hence (3) can be applied for λ = x−1

0 .
We estimate 1− λ−1 < x0 − 1. To this end, we write

0 = xn
0 +Q(x0) ≥ xn

0 − xd
0ℓ1(Q),

hence x0 ≤ ℓ1(Q)1/(n−d). In light of (3) µλ,p is absolutely continuous,
provided p ∈ [1/4, 3/4] and n is sufficiently large so that

ℓ1(Q)1/(n−d) < 1 + 10−37(log(ℓ1(Q) + 1) log log(ℓ1(Q) + 2))−3.

The restrictive hypothesis on the coefficients of Q is not necessary,
it is only required to ensure that the polynomial is irreducible and (3)
can be applied. However, the upper bound (5) is still valid for any root
λ of P even if P is not irreducible. A general lower bound

Mλ > 1 +
1

1200

( log logn
log n

)3

due to Dobrowolski [6, Theorem 1] is available for any algebraic number

of degree at most n that is not a root of unity. Since 1
1200

(
log logn
logn

)3

decreases much slower than ℓ1(Q)1/(n−d) − 1 as n grows, Theorem 1
implies that µλ,p is absolutely continuous if n is sufficiently large for any
fixed polynomial Q and fixed p ∈ (0, 1) assuming only that Q(1) < 0.

1.3.4. More general considerations. Since the right hand side of (3)
approaches 1 very slowly as Mλ grows, it is not necessary to restrict
our attention to examples with bounded Mahler measure. Indeed, for
the Mahler measure of a polynomial P , we have

(6) MP ≥
∏

λ:P (λ)=0,|λ|>1

|λ|.

(We have equality if P is monic.) Hence a “typical” root λ of P is

expected to satisfy |λ| < M
c/deg(P )
P , which approaches 1 much more

rapidly than the right hand side of (3). Of course, a “typical” root is
not expected to be real, but the following construction can be used to
find more examples, for which the theorem applies.
Let P ∈ Z[x] be an irreducible polynomial that is not reciprocal, i.e.

ad−i 6= ai for at least one i, where d = deg(P ) and ai are the coefficients
of P . Such polynomials can be found in abundance using Eisenstein’s
criterion. These assumptions imply that P has no roots on the unit
circle. For simplicity, assume that P has at least d/2 roots outside the
unit circle, otherwise simply replace P by xdP (x−1).
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By (6), there is a root x0 of P such that 1 < |x0| < M
2/d
P . We take

λ = |x0|−2 and observe that

λ > 1− 4 ln(MP )/d.

It is easy to see from the definition that Mλ ≤ M2
P , hence µλ,p is

absolutely continuous provided 1/4 ≤ p ≤ 3/4 and

4 ln(MP )/d < 10−37(log(M2
P + 1))−1(log log(M2

P + 2))−3.

It is straightforward to find such polynomials using (5).

1.4. Notation. We denote by the letters c, C and their indexed vari-
ants various constants that could in principle be computed explicitly
following the proof step by step. The value of these constants denoted
by the same symbol may change between occurrences. We keep the
convention that we denote by lower case letters the constants that are
best thought of as “small” and by capital letters the ones that are
“large”.
We keep track of the values of these constants in footnotes. A reader

not interested in the explicit values of these constants may choose to
ignore these footnotes. A footnote of the form Cj = x means that the
constant C in the line where the footnote points should be substituted
by Cj and its value can be taken x. This is usually followed by an
explanation or detailed calculation. The constants are indexed in a
manner that ensures that the value of the constant with index j may
depend only on the constants with index less than j. In Section 5.2 the
values given for the constants are valid under the additional hypothesis
that λ is not the root of a polynomial with coefficients −1, 0 and 1 and
1/4 ≤ p ≤ 3/4. In other parts of the paper, no hypothesis is required
beyond those stated in the main body of the text.
We denote by log the base 2 logarithm and write ln for the logarithm

in base e.

1.5. The organization of this paper. We begin by discussing some
basic properties of entropy in Section 2, which we will rely on through-
out the paper. Sections 3 and 4 are devoted to the proofs of Theorems
2 and 3 respectively. We conclude the paper in Section 5 by explaining
the details of the argument outlined above to prove Theorem 1.

Acknowledgment. I am indebted to Elon Lindenstrauss with whom
we discussed entropy increases under convolutions [17] for several years
in connection with Bourgain’s discretized sum product theorem. I am
also indebted to Emmanuel Breuillard with whom we studied the quan-
tity hλ in [4]. These works have been a rich source of inspiration for
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this project. I am grateful to Mike Hochman for useful discussions, and
in particular, for suggesting to consider biased Bernoulli convolutions.
I am grateful to the anonymous referees for carefully reading my

paper and for numerous helpful remarks and suggestions that greatly
improved the presentation.

2. Basic properties of entropy

The purpose of this section is to provide some background material
on entropy.

2.1. Shannon and differential entropies. If X is a discrete random
variable, we write H(X) for its Shannon entropy, that is

H(X) =
∑

x∈X
−P(X = x) logP(X = x),

where X denotes the set of values X takes. We recall that the base of
log is 2 throughout the paper. If X is an absolutely continuous random
variable with density f : R → R≥0, we write H(X) for its differential
entropy, that is

H(X) =

∫
−f(x) log f(x)dx.

This dual use for H(·) should cause no confusion, as it will be always
clear from the context, what the type of the random variable is. If µ is
a probability measure, we write H(µ) = H(X), where X is a random
variable with law µ.
Shannon entropy is always non-negative. Differential entropy on the

other hand can take negative values. For example, if a ∈ R>0, and
X is a random variable with finite differential entropy H(X), then it
follows from the change of variables formula that

(7) H(aX) = H(X) + log a,

which can take negative values when a varies. On the other hand, if X
takes countably many values, the Shannon entropy of aX is the same
as that of X . Note that both kinds of entropy are invariant under
translation by a constant in R, that is H(X) = H(X + a).
We define F (x) := −x log(x) for x > 0 and recall that F is concave,

and it is sub-additive, i.e. F (x+ y) ≤ F (x)+F (y), and it also satisfies
the identity F (xy) = xF (y) + yF (x).
From the concavity of F and Jensen’s inequality, we see that for any

discrete random variable X taking at most N possible different values,

(8) H(X) ≤ logN.
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Let now X and Y be two independent random variables inR. If both
are discrete, it follows immediately from the identity F (xy) = xF (y)+
yF (x) and the sub-additivity of F (x) that H(X +Y ) ≤ H(X)+H(Y )
for Shannon entropy. This is no longer true for differential entropy
since the formula is not invariant under a linear change of variable.
However if X is atomic and bounded, while Y is assumed absolutely
continuous, then

(9) H(X + Y ) ≤ H(X) +H(Y ),

where H(X) is Shannon’s entropy and the other two are differential
entropies. To see this, note that if f(y) is the density of Y , then the
density of X + Y is E(f(y −X)) =

∑
i pif(y − xi), hence:

H(X + Y ) =

∫
F
(∑

i

pif(y − xi)
)
dy

≤
∫ ∑

i

F (pif(y − xi))dy

=

∫ ∑

i

F (pi)f(y − xi)dy +

∫ ∑

i

piF (f(y − xi))dy

=
∑

i

F (pi) +

∫
F (f(y))dy = H(X) +H(Y )

and (9) follows.
In the other direction, we always have the lower bound

(10) H(X + Y ) ≥ max(H(X), H(Y ))

if all three entropies are of the same type (i.e. either Shannon or
differential), as follows easily from the concavity of F .
Let X and Y be two discrete random variables. We define the con-

ditional entropy of X relative to Y as

H(X|Y ) =
∑

y∈Y
P(Y = y)H(X|Y = y)

=
∑

y∈Y
P(Y = y)

∑

x∈X
−P(X = x, Y = y)

P(Y = y)
log

P(X = x, Y = y)

P(Y = y)
.

We recall some well-known properties. We always have 0 ≤ H(X|Y ) ≤
H(X), and H(X|Y ) = H(X) if and only if the two random variables
are independent (see [5, Theorem 2.6.5]). The entropy of the joint law
can be expressed as

H(X, Y ) = H(X|Y ) +H(Y ) ≤ H(X) +H(Y ).
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If f is any function defined on X , we have H(f(X)|X) = 0 as seen
from the definition. This implies H(f(X)) ≤ H(X). In particular,
taking f(x, y) = x + y and applying the above inequality for the joint
distribution of the random variables X and Y −X , we obtain

H(Y ) ≤ H(X, Y −X) ≤ H(X) +H(Y −X).

By reversing the roles of X and Y we get

(11) |H(X)−H(Y )| ≤ H(Y −X).

We also note the identity

H(X|f(X)) = H(X)−H(f(X)).

We will use this repeatedly in what follows.
We recall the following result from [18, Theorem I].

Proposition 4 (Submodularity inequality). Assume that X, Y, Z are
three independentR-valued random variables such that the distributions
of Y , X + Y , Y + Z and X + Y + Z are absolutely continuous with
respect to Lebesgue measure and have finite differential entropy. Then

(12) H(X + Y + Z) +H(Y ) ≤ H(X + Y ) +H(Y + Z).

This result goes back in some form at least to a paper by Kaimanovich
and Vershik [15, Proposition 1.3]. The version in that paper assumes
that the laws of X , Y and Z are identical. The inequality was redis-
covered by Madiman [18, Theorem I] in the greater generality stated
above. Then it was recast in the context of entropy analogues of sum-
set estimates from additive combinatorics by Tao [24] and Kontoyannis
and Madiman [16]. And indeed Theorem 4 can be seen as an entropy
analogue of the Plünnecke–Ruzsa inequality in additive combinatorics.
For the proof of this exact formulation see [4, Theorem 10].

2.2. Entropy at a given scale. We recall the notation

H(X ; r) =

∫ 1

0

H(⌊X/r + t⌋)dt

and
H(X ; r1|r2) = H(X ; r1)−H(X ; r2).

These quantities originate in the work of Wang [26], and they also
play an important role in the paper [17], where a quantitative version
of Bourgain’s sum-product theorem is proved.
We continue by recording some useful facts about these notions. We

note that entropy at scales have the following scaling property

(13) H(X ; r) = H(sX ; sr)
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for any numbers s, r > 0, which follows immediately from the definition.
If N is an integer then we have the following interpretation, which

follows easily from the definition

(14) H(X ;N−1r|r) =
∫ 1

0

H
(
⌊N(r−1X + t)⌋

∣∣⌊r−1X + t⌋
)
dt.

Indeed, ⌊r−1X + t⌋ is a function of ⌊N(r−1X + t)⌋, hence
H
(
⌊N(r−1X + t)⌋

∣∣⌊r−1X + t⌋
)
= H(⌊N(r−1X + t)⌋)−H(⌊r−1X + t⌋).

Combining (14) and (8) we see that the entropy between scales of
ratio N ∈ Z is at most logN . It is not difficult to see that this upper
bound is sharp (consider uniform measures on very long intervals),
though equality is never attained.
The next lemma gives an alternative definition for entropy at a given

scale.

Lemma 5. Let X be a bounded random variable in R. Then

H(X ; r) = H(X + Ir)−H(Ir) = H(X + Ir)− log(r).

where Ir is a uniform random variable in [0, r] independent of X.

Proof. By (7) and (13), both sides of the identity are scaling invari-
ant, hence it is enough to prove the lemma for r = 1. Let µ be the
distribution of X . Then the density of X + I1 is µ[x− 1, x), hence

H(X + I1) =

∫ ∞

−∞
F (µ([x, x+ 1)))dx =

∫ 1

0

∑

n∈Z
F (µ([n− t, n− t+ 1)))dt

=

∫ 1

0

∑

n∈Z
F (P(⌊X + t⌋ = n))dt =

∫ 1

0

H(⌊X + t⌋)dt = H(X ; 1).

�

It follows from the definition that being an average of Shannon en-
tropies H(X ; r), is always non-negative. Similarly, we see from (14)
that H(X ; r1|r2) is also non-negative if r2/r1 is an integer. We will see
below that this holds also for any r2 ≥ r1.
We show that conditional entropy between scales of integral ratio

cannot decrease by taking convolution of measures.

Lemma 6. Let X and Y be two bounded independent random variables
in R. Let r2 > r1 > 0 be two numbers such that r2/r1 ∈ Z. Then

H(X + Y ; r1|r2) ≥ H(X ; r1|r2).
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Proof. Write Ir2 = Ir1 + Z, where Iri are uniform random variables
on [0, ri] for i = 1, 2 and Z is uniformly distributed on the arithmetic
progression {0, r1, 2r1, . . . , r2−r1} and is independent of Ir1 . Now using
submodularity (Proposition 4), we can write

H(X + Y ; r1|r2) = H(X + Y + Ir1)−H(X + Y + Ir1 + Z) + log(r2/r1)

≥ H(X + Ir1)−H(X + Ir1 + Z) + log(r2/r1) = H(X ; r1|r2).
�

It is reasonable to expect that perturbation on a small scale does not
affect entropy at a much larger scale. A particular instance of this is
proved in the next lemma.

Lemma 7. Let r1, r2 be two positive real numbers such that 2r1 ≤ r2.
Let X and Y be two random variables such that X ≤ Y ≤ X + r1
almost surely. Then

|H(X ; r2)−H(Y ; r2)| ≤ 2
r1
r2

log(r2/r1).

Proof. We have

H(X ; r2) =

∫ 1

0

H(⌊r−1
2 X + t⌋)dt, H(Y ; r2) =

∫ 1

0

H(⌊r−1
2 Y + t⌋)dt.

Hence using (11) we can write

|H(X ; r2)−H(X ; r2)| ≤
∫ 1

0

|H(⌊r−1
2 X + t⌋)−H(⌊r−1

2 Y + t⌋)|dt

≤
∫ 1

0

H(⌊r−1
2 Y + t⌋ − ⌊r−1

2 X + t⌋)dt.

We note that ⌊r−1
2 Y +t⌋−⌊r−1

2 X+t⌋ is equal to 0 or 1 almost surely,
since X ≤ Y ≤ X + r1 and r1 ≤ r2.
For all x, y ∈ R with x ≤ y ≤ x+ r1 we have

∫ 1

0

⌊r−1
2 y + t⌋ − ⌊r−1

2 x+ t⌋dt ≤ r1
r2
.

Thus∫ 1

0

P(⌊r−1
2 Y + t⌋−⌊r−1

2 X + t⌋ = 1)dt

=E
[ ∫ 1

0

⌊r−1
2 Y + t⌋ − ⌊r−1

2 X + t⌋dt
]
≤ r1

r2
.

For each 0 ≤ t ≤ 1 we have

H(⌊r−1
2 Y + t⌋ − ⌊r−1

2 X + t⌋) = h(P(⌊r−1
2 Y + t⌋ − ⌊r−1

2 X + t⌋ = 1)),
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where h(x) = −x log x− (1− x) log(1− x).
By Jensen’s inequality we then have

∫ 1

0

H(⌊r−1
2 Y + t⌋ − ⌊r−1

2 X + t⌋)dt ≤ h(r1/r2).

This proves the claim, since h(x) ≤ −2x log x for x ≤ 1/2. �

In the next lemma we show that H(X ; r) is a monotone increasing
and Lipschitz function of − log r; in particular H(X ; r1|r2) is nonneg-
ative for all r1 ≤ r2. The lemma is taken from [17], but we include the
proof for the reader’s convenience.

Lemma 8. Let X be a bounded random variable in R. Then for any
r1 ≥ r2 > 0 we have

0 ≤ H(X ; r2)−H(X ; r1) ≤ 2(log r1 − log r2).

Proof. We observe that the density of X + rI1 is equal to r−1P(X ∈
[x− r, x]). Then

H(X ; r) = H(X + rI1)− log r

=−
∫

R

r−1P(X ∈ [x− r, x]) log(r−1P(X ∈ [x− r, x]))dx− log r

=

∫

R

∫ 1

0

− log(P(X ∈ [y + rt− r, y + rt]))dtdµ(y),

where we substituted x = y+rt and used again the fact that r−1P(X ∈
[x−r, x]) is the density ofX+rI1. We note that the function− log(P(X ∈
[y + (t− 1)r, y + tr])) is an increasing function of − log r for any fixed
y and t ∈ [0, 1], hence the lower bound follows.
For the upper bound, we assume without loss of generality that X is

absolutely continuous (use e.g. Lemma 7) and write f for its density.
In this case
d

dr
P(X ∈ [y + r(t− 1), y + rt]) = (1− t)f(y + r(t− 1)) + tf(y + rt).

Hence

dH(X ; r)

dr

∣∣∣∣
r=1

=−
∫

R

∫ 1

0

(1− t)f(y + (t− 1)) + tf(y + t)

(ln 2)P(X ∈ [y + (t− 1), y + t])
dtf(y)dy

≥−
∫

R

∫ y+1

y

(f(z − 1) + f(z))f(y)

(ln 2)P(X ∈ [z − 1, z])
dzdy

=−
∫

R

∫ z

z−1

(f(z − 1) + f(z))f(y)

(ln 2)P(X ∈ [z − 1, z])
dydz

=− 2(ln 2)−1.
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To derive the second line, we used the estimates t ≤ 1, 1 − t ≤ 1 and
the substitution z = y + t. From this we conclude

dH(X ; 2−ρ)

dρ

∣∣∣∣
ρ=0

≤ 2.

Dilating X , we derive the same inequality for all ρ. This implies the
upper bound in the lemma. �

We have seen above that convolution can only increase entropy be-
tween scales of integral ratio. Unfortunately, this does not hold for
general scales, but it does hold with small error, provided the ratio of
the scales is large. This is the content of the next lemma. Recall that
we write H(µ) = H(X), when the measure µ is the law of the random
variable X .

Lemma 9. Let µ and ν be two compactly supported probability mea-
sures on R and be 0 < r2 < r1 numbers. Then

H(µ ∗ ν; r2|r1) ≥ H(µ; r2|r1)−
2

(ln 2)(r1/r2 − 1)
.

Proof. Write N = ⌊r1/r2⌋. Then
H(µ ∗ ν; r2|Nr2) ≥ H(µ; r2|Nr2)

by our previous discussion.
By Lemma 8, we have

H(µ ∗ ν;Nr2|r1) ≥0,

H(µ;Nr2|r1) ≤2 log
r1
Nr2

.

Combining our estimates, we find

H(µ ∗ ν; r2|r1) ≥ H(µ; r2|r1)− 2 log
r1
Nr2

.

We note Nr2 ≤ r1 < (N + 1)r2, hence

1 ≤ r1
Nr2

< 1 +
1

N
< 1 +

1

r1/r2 − 1
.

Now the claim follows from log(1 + x) ≤ (ln 2)−1x. �

2.3. Entropy of non-probability measures. It is convenient to use
the notationH(µ), H(µ; r) andH(µ; r1|r2) for Shannon and differential
entropies and for entropies at a scale also for positive measures µ that
have total mass different from 1. Let µ be such a measure and write
‖µ‖ for its total mass. In this paper, we use the conventions

(15) H(µ) = pH(p−1µ), H(µ; r) = pH(p−1µ; r),
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where p = ‖µ‖.
With this convention, entropy has the following superadditive prop-

erty. Let µ, . . . , µn and µ be positive measures of the same type and
a1, . . . , an positive real numbers such that µ = a1µ1+ . . .+anµd. Then

(16) H(µ) ≥ a1H(µ1) + . . .+ anH(µd)

holds for both Shannon and differential entropies. If all the measures
are probabilities, then this is an immediate consequence of Jensen’s in-
equality applied to the concave function F (x) = −x log x. The general
case follows from this special case and the convention (15).
Entropies at scales are also superadditive, since they are defined as

averages of Shannon entropies. Moreover, this property also holds for
conditional entropies between scales of integral ratio.

Lemma 10. Let µ1, . . . , µk be non-negative compactly supported mea-
sures on R, r > 0 and N ∈ Z>0. Then

H(µ1 + . . .+ µk;N
−1r|r) ≥ H(µ1;N

−1r|r) + . . .+H(µk;N
−1r|r).

Proof. By (13), we may assume without loss of generality that r = N .
For a random variable X with law µ, we have the formula (14):

H(µ; 1|N) = H(X ; 1|N) =

∫ 1

0

H
(
⌊X +Nt⌋

∣∣⌊N−1X + t⌋
)
dt.

For each t ∈ [0, 1] and a ∈ Z, we define the non-negative measure
ρt,a on [0, N − 1] ∩ Z by

ρt,a(j) = P(⌊X +Nt⌋ = aN + j) = µ([aN − tN + j, aN − tN + j+1)).

Using these measures, the definition of conditional entropy reads

H
(
⌊X +Nt⌋

∣∣⌊N−1X + t⌋
)
=

∑

a∈Z
‖ρt,a‖H(‖ρt,a‖−1ρt,a) =

∑

a∈Z
H(ρt,a).

We plug this in our first formula and obtain:

H(X ; 1|N) =

∫ 1

0

∑

a∈Z
H(ρt,a)dt.

Therefore, we can express conditional entropy between scales of in-
tegral ratio as an integral of a sum of Shannon entropies. Hence the
lemma reduces to superadditivity of Shannon entropies. �
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2.4. Measures supported on Z. We consider measures supported
on Z in this section, and develop some formulae for their entropies.
Let X be an integer valued random variable, and let M ∈ Z>1.
Using the formula (14), we can write

H(X ; 1|M) =

∫ 1

0

H
(
⌊X +Mt⌋

∣∣⌊M−1X + t⌋
)
dt.

We observe that the integrand is constant on the interval [aM−1, (a +
1)M−1) and is equal toH

(
X+a

∣∣⌊M−1(X+a)⌋
)
, for each a = 0, 1, . . . ,M−

1. Hence we can write

(17) H(X ; 1|M) =
1

M

M−1∑

a=0

H
(
X + a

∣∣⌊M−1(X + a)⌋
)
.

For each a ∈ Z, write ρa for the restriction of the law of X to the
interval [a, a+M−1] without normalization, that is ρa(n) = P(X = n)
for n ∈ {a, . . . , a +M − 1} and ρa(n) = 0 otherwise. We note that

H
(
X + a

∣∣⌊M−1(X + a)⌋
)

=
∑

b∈Z
P(⌊M−1(X + a)⌋ = b)H

(
X + a

∣∣⌊M−1(X + a)⌋ = b
)

=
∑

b∈Z
‖ρMb−a‖ ·H(‖ρMb−a‖−1 · ρMb−a)

=
∑

b∈Z
H(ρMb−a)

using the convention for entropies of non-probability measures we made
in the previous section. We combine this with (17) and get

(18) H(X ; 1|M) =
1

M

∑

a∈Z
H(ρa).

3. Entropy of convolutions in the high entropy regime

This section is devoted to the proof of Theorem 2, which we restate.

Theorem. There is an absolute constant C > 0 such that the following
holds. Let µ, µ̃ be two compactly supported probability measures on R

and let 0 < α < 1/2 and r > 0 be real numbers. Suppose that

H(µ; s|2s) ≥ 1− α and H(µ̃; s|2s) ≥ 1− α

for all s with | log r − log s| < 3 logα−1.
Then

H(µ ∗ µ̃; r|2r) ≥ 1− C(logα−1)3α2.
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We begin with a discussion motivating the argument. As we already
noted, the entropy of a measure between the scales 1 and M for some
M ∈ Z>0, is always bounded above by logM . Motivated by this, we
refer to the quantity logM−H(µ; 1|M) as the missing entropy between
these scales. If a, b are positive integers such that a|b and b|M , then

log(b/a)−H(µ; a|b) ≤ logM −H(µ; 1|M),

that is, the missing entropy between the scales a and b is at most
as much as between the scales 1 and M . This follows easily from
H(µ; 1|a) ≤ log a and H(µ; b|M) ≤ log(M/b).
In this language, Theorem 2 can be stated informally as follows.

If we take two measures whose missing entropies are small, then the
missing entropy of their convolution may be only a little larger than the
product of the missing entropies of the factors. The intuition behind
this result is that we can decompose the probability measures µ and µ̃ as
a combination of the uniform distribution (on an interval, say) plus an
error term controlled by the missing entropy in a suitable quantitative
sense. Since the convolution of a uniform measure with any measure is
(close to) uniform, the only term contributing to the missing entropy of
the convolution is the convolution of the error terms. We will control
the “size” of this term in a suitable sense by the product of the “sizes”
of the error terms.
We will reduce the theorem to a problem about measures supported

on the set [1, N ] ∩ Z, where N is an integer comparable to a suitable
negative power of α. We will do this in two steps beginning with the
following result about measures supported on Z.

Proposition 11. There is an absolute constant C > 0 such that the
following holds. Let ν and ν̃ be two probability measures on Z. Let N ,
M be two positive integers such that 2|N and M |N . Then

logM −H(ν∗ν̃; 1|M)

≤C logM(logN −H(ν; 1|N))(logN −H(ν̃; 1|N)) (5)

+ C
M logM

N
. (6)

To see how Theorem 2 can be reduced to this, we assume, as we may,
that r is an integer comparable to α−C. We will show thatH(µ∗µ̃; r|2r)
is not sensitive to perturbations on scale 1, so we can replace µ and µ̃
by measures ν and ν̃ supported on Z. We will then apply Proposition

(5)C6 = 6 · 104.
(6)C7 = 4000.
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11 for these perturbed measures with M = 2r and N = M2. We
will conclude by observing that the missing entropy between the scales
M/2 and M can be bounded above by the missing entropy between
the scales 1 and M . The details of this will be given in Section 3.6.
Proposition 11 will be proved in Section 3.5 by decomposing the

measures ν and ν̃ as convex combinations of measures supported on
intervals of length N and using the following result.

Proposition 12. There is an absolute constant C > 0 such that the
following holds. Let N be a positive integer and let µ and µ̃ be two
probability measures concentrated on [1, N ] ∩Z. Suppose that 2|N and
let M |N . Write σ = (µ ∗ µ̃)|[N/2+1,3N/2]. Then

‖σ‖1 · logM −H(σ; 1|M) ≤C logM(logN −H(µ))(logN −H(µ̃)) (7)

+ C
M logM

N
. (8)

The key observation behind the proof of Proposition 12 is that we
can decompose µ and µ̃ as sums of pairs of functions, such that one in
the pair has controlled L2 distance from the uniform distribution and
the other one has controlled L1 norm in terms of the missing entropy.
Then we can write σ as the combination of 4 functions, each of which
will be estimated using different methods.
The reason for restricting the convolution to the interval [N/2 +

1, 3N/2] is technical. In a certain stage, we will show that one of
the terms contributing to the convolution does not vary too much on
intervals of appropriate length. To convert this to a bound on entropy,
we need to know that the function is not too small, which is achieved
by cutting off the ends of the support.
We will explain the above mentioned decomposition in Section 3.1.

We estimate the convolution of two functions controlled in L2 in Section
3.2. We estimate the convolution of two functions, one of which is
controlled in L2 and one of which is controlled in L1 in Section 3.3.
Then we combine these estimates in Section 3.4 to obtain the proof of
Proposition 12.

Notation. In this section, we write χN for the normalized counting
measure on [1, N ] ∩ Z, i.e. for the function χN : Z → R given by

χN(x) =

{
1
N

x ∈ [1, N ]

0 otherwise.

(7)C4 = 4 · 104.
(8)C5 = 3000.
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Most functions and measures in this section are defined on Z, and
their Lp-norms are defined with respect to the counting measure. It
will be convenient for us to identify measures with their densities.

3.1. The purpose of this section is the following decomposition of
measures of high entropy.

Lemma 13. Let N be a positive integer and let µ be a probability
measure concentrated on [1, N ] ∩ Z. Then there are two non-negative
functions f, g : Z → R such that µ = f + g and the following estimates
hold:

‖f − χN‖22 ≤ 2
logN −H(µ)

N
, ‖f‖∞ ≤ 2

N
, ‖f‖1 ≤ 1,

‖g‖1 ≤ 2(logN −H(µ)).

Proof. Set

f(n) :=

{
µ(n) if µ(n) ≤ 2/N,

χN (n) otherwise,

g(n) := µ(n)− f(n).

We note the inequalities

x log x ≥
{
(1/ ln 2)(x− 1) + (2− 1/ ln 2)(x− 1)2 if 0 ≤ x ≤ 2

2x− 2 if x ≥ 2.

We substitute x = Ny. If y ≤ 2/N we obtain

y log(Ny) ≥ 1

ln 2

(
y − 1

N

)
+
(
2− 1

ln 2

)
N
(
y − 1

N

)2

,

and

(19)
logN

N
+y log y ≥

( 1

ln 2
−logN

)(
y− 1

N

)
+
(
2− 1

ln 2

)
N
(
y− 1

N

)2

.

If y > 2/N we obtain

y log(Ny) ≥ 2
(
y − 1

N

)

and

(20)
logN

N
+y log y ≥

( 1

ln 2
− logN

)(
y− 1

N

)
+
(
2− 1

ln 2

)(
y− 1

N

)
.
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Using (19) if µ(n) ≤ 2/N and (20) if µ(n) > 2/N , we can write

logN −H(µ) =
N∑

n=1

( logN
N

+ µ(n) logµ(n)
)

≥
( 1

ln 2
− logN

) N∑

n=1

(
µ(n)− 1

N

)
(21)

+
∑

µ(n)≤2/N

(
2− 1

ln 2

)
N
(
µ(n)− 1

N

)2

+
∑

µ(n)>2/N

(
2− 1

ln 2

)(
µ(n)− 1

N

)
.

Since
∑

µ(n) = 1, the term (21) vanishes. Using the definitions of f
and g we can write

logN −H(µ) ≥
(
2− 1

ln 2

)
N‖f − χN‖22 +

(
2− 1

ln 2

)
‖g‖1.

The claim now follows by noting that 2− 1/ ln 2 ≥ 1/2. �

3.2. The purpose of this section is to give a lower bound for the en-
tropy of the convolution of two functions whose L2 distance from χN

is small.

Lemma 14. Let N be a positive integer and let f, f̃ : Z → R≥0 be

two functions concentrated on [1, N ] such that ‖f‖∞, ‖f̃‖∞ ≤ 2/N and

‖f‖1, ‖f̃‖1 ≤ 1. Suppose 2|N and let M |N . Suppose further

‖f − χN‖22 ≤
1

100N
, ‖f̃ − χN‖22 ≤

1

100N
.

Write ρ = (f ∗ f̃)|[N/2+1,3N/2].
Then

‖ρ‖1 logM−H(ρ; 1|M) ≤ C
(
N2‖f−χN‖22 ·‖f̃−χN‖22+

M logM

N

)
. (9)

First we give a lower bound for the entropy of a function whose L2

distance from χM is small. This is a partial converse to Lemma 13.

Lemma 15. Let M be an integer and let µ be a probability measure
concentrated on [1,M ] ∩ Z. Then

logM −H(µ) ≤ 2M‖µ − χM‖22.
(9)C1 = 1000.
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Proof. We note the inequality

x log x ≤ 1

ln 2
(x− 1) +

1

ln 2
(x− 1)2.

We sustitue x = My and obtain

y log(My) ≤ 1

ln 2

(
y − 1

M

)
+

1

ln 2
M

(
y − 1

M

)2

and

logM

M
+ y log y ≤

( 1

ln 2
− logM

)(
y − 1

M

)
+

1

ln 2
M

(
y − 1

M

)2

.

We substitute y = µ(n) and sum the resulting inequality for n ∈
[1,M ]. Since

∑
µ(n) = 1, the linear term cancels and we obtain the

inequality claimed in the lemma using 1/ ln 2 < 2. �

In the next lemma, we show that the convolution of two functions
with small L2 distance from χN does not vary much on intervals shorter
than the support. This is essentially a consequence of the Cauchy-
Schwartz inequality.

Lemma 16. Let N be a positive integer and let f, f̃ : Z → R≥0 be two

functions concentrated on [1, N ] such that ‖f‖∞, ‖f̃‖∞ < 2/N . Then

|f ∗ f̃(n)− f ∗ f̃(n+m)| ≤ 3m

N2
+ 2‖f − χN‖2‖f̃ − χN‖2

for any n,m ∈ Z.

Proof. Set h = f − χN and h̃ = f̃ − χN . Then

f ∗ f̃(n)−f ∗ f̃(n+m)

=
∑

k∈Z
(χN(k)χN(n− k)− χN(k)χN (n+m− k))(22)

+
∑

k∈Z
(h(k)χN (n− k)− h(k)χN (n+m− k))(23)

+
∑

k∈Z
(χN(n− k)h̃(k)− χN (n+m− k)h̃(k))(24)

+
∑

k∈Z
(h(k)h̃(n− k)− h(k)h̃(n +m− k)).(25)

We first consider the contribution of the first three sums. Without
loss of generality we assume that m > 0. It is easy to see that χN(n−
k)−χN (n+m−k) 6= 0 implies that either n−k ≤ 0 and n+m−k > 0 or
n−k ≤ N and n+m−k > N . Rearranging these inequalities we obtain
that k satisfies either n ≤ k < n+m or n−N ≤ k < n+m−N . If a
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term corresponding to k in one of (22)–(24) is non-zero, then k must
satisfy one of these inequalities and also 1 ≤ k ≤ N , otherwise χN(k),

h(k) and h̃(k) are zero.
This shows that each of (22)–(24) have at most m non-zero terms.

Each term is bounded above by N−2, as ‖χN‖∞, ‖h‖∞, ‖h̃‖∞ ≤ 1/N .
Hence the total contribution of the first three sums is at most 3mN−2.
We estimate the fourth term using the Cauchy-Schwartz inequality:

∣∣∣
∑

k∈Z
(h(k)h̃(n− k)− h(k)h̃(n+m− k))

∣∣∣ ≤ 2‖h‖2‖h̃‖2.

�

We will convert the information obtained in the previous lemma to
a lower bound on entropy using Lemma 15. This requires to normalize
the convolution to obtain probability measures on intervals of length
M . We need to show that the error is not magnified too much, hence
we need to show that the convolution has enough mass on each such
interval. This is done using the next lemma.

Lemma 17. Let N be a positive even integer and let f, f̃ : Z → R≥0

be two functions concentrated on [1, N ]. Suppose that

‖f − χN‖2 ≤
1

10N1/2
and ‖f̃ − χN‖2 ≤

1

10N1/2
.

Then

f ∗ f̃(n) ≥ 1

4N
for all N/2 + 1 ≤ n ≤ 3N/2.

Proof. Set h = f − χN and h̃ = f̃ − χN . We write

f ∗ f̃(n) =
∑

k∈Z
χN (k)χN(n− k) +

∑

k∈Z
h(k)χN(n− k)

+
∑

k∈Z
χN(n− k)h̃(k) +

∑

k∈Z
h(k)h̃(n− k).(26)

We assume without loss of generality that n ≤ N + 1. Then
∑

k∈Z
χN(k)χN(n− k) = (n− 1)/N2.

By the Cauchy-Schwartz inequality,

∣∣∣
∑

k∈Z
h(k)χN(n− k)

∣∣∣ =
n−1∑

k=1

1

N
|h(k)| ≤ (n− 1)1/2

N
‖h‖2 ≤

(n− 1)1/2

10N3/2
.
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One can derive a similar estimate for the first sum in (26). Finally, we
estimate the last sum by

∣∣∣
∑

k∈Z
h(k)h̃(n− k)

∣∣∣ ≤ ‖h‖2‖h̃‖2 ≤
1

100N
.

We note that

t− t1/2

5
− 1

100
>

1

4
for all t ≥ 1/2. We apply this with t = (n − 1)/N , which completes
the proof. �

Proof of Lemma 14. We write

ρa := ρ|[a+1,a+M ]

for each a ∈ Z. We recall the formula (18):

H(ρ; 1|M) =
1

M

∑

a∈Z
H(ρa).

Write I = [N/2, 3N/2 −M ] ∩ Z and p(a) := ‖ρa‖1 for a ∈ Z. Then
p(a) ≥ M/4N for a ∈ I by Lemma 17.
The average of the values of ρa(x) for x ∈ [a+1, a+M ]∩Z is p(a)/M ,

hence

|ρa(x)− p(a)/M | < 3M

N2
+ 2‖f − χN‖2 · ‖f̃ − χN‖2

for all x ∈ [a + 1, a+M ] by Lemma 16.
Combining the above two observations, and writing χa+1,a+M for the

normalized counting measure on [a+1, a+M ]∩Z, we obtain for a ∈ I

‖p(a)−1ρa − χa+1,a+M‖22 <
16N2

M2
· 2M

(9M2

N4
+ 4‖f − χN‖22 · ‖f̃ − χN‖22

)

<400
(M

N2
+

N2

M
‖f − χN‖22 · ‖f̃ − χN‖22

)
.

We apply Lemma 15 for the probability measure p(a)−1ρa and obtain

H(ρa) ≥ p(a) logM − 800p(a)M
(M

N2
+

N2

M
‖f − χN‖22 · ‖f̃ − χN‖22

)
.

For a /∈ I, we use the trivial estimate H(ρa) ≥ 0. The number of
a /∈ I such that p(a) > 0 is at most 2M . Since ‖ρ‖∞ ≤ ‖f‖∞ ≤ 2/N ,
we have p(a) ≤ 2M/N . Thus

∑

a/∈I
p(a) ≤ 4M2

N
.
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Note that

∑

a∈Z
p(a) =

∑

a∈Z

M∑

i=1

ρ(a+ i) = M
∑

a∈Z
ρ(a) = M.

Then

M ≥
∑

a∈I
p(a) ≥ M‖ρ‖1 −

4M2

N
.

We combine our estimates and obtain

H(ρ; 1|M) ≥
(
‖ρ‖1−

4M

N

)
logM−800

(M2

N2
+N2‖f−χN‖22·‖f̃−χN‖22

)
.

(10)
�

3.3. The purpose of this section is to estimate the entropy of the
convolution of a function that is near constant in L2-norm and one
that has small L1 norm.

Lemma 18. Let N be a positive integer and let f, g : Z → R≥0 be two
functions concentrated on [1, N ] such that 1/2 ≤ ‖f‖1 ≤ 1 and ‖f‖∞ ≤
2/N . Suppose that 2|N and let M |N . Suppose further ‖g‖1 ≤ 1. Let
ρ = (f ∗ g)|[N/2+1,3N/2].
Then

‖ρ‖1 logM −H(ρ; 1|M) ≤ 8N‖f − χN‖22‖g‖1 + 6
M logM

N
.

We begin by recording a consequence of Lemma 15.

Lemma 19. Let N be a positive integer and let f : Z → R≥0 be a
function concentrated on [1, N ] such that 1/2 ≤ ‖f‖1 ≤ 1 and ‖f‖∞ ≤
2/N . Then for any M |N , we have

‖f‖1 logM −H(f ; 1|M) ≤ 8N‖f − χN‖22 + 2
M

N
.

Proof. Let X be a random variable with law ‖f‖−1
1 f . We note

‖‖f‖−1
1 f−χN‖22 ≤ ‖‖f‖−1

1 f−χN‖22+‖(1−‖f‖−1
1 )χN‖22 = ‖f‖−2

1 ‖f−χN‖22,
since ‖f‖−1

1 f − χN is orthogonal to χN . We apply Lemma 15 with
M = N for the law of X , and obtain

H(X) ≥ logN − 2N‖f‖−2
1 ‖f − χN‖22 ≥ logN − 8N‖f − χN‖22.

(10)The constant C1 in the lemma needs to satisfy C1M logM/N ≥
4M logM/N + 800M2/N2 so C1 = 1000 works.
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We can write using (17)

‖f‖−1
1 H(f ; 1|M) =H(X ; 1|M) =

1

M

M−1∑

a=0

H
(
X + a

∣∣∣
⌊X + a

M

⌋)

≥H(X)− 1

M

M−1∑

a=0

H
(⌊X + a

M

⌋)
.

The random variable ⌊(X+a)/M⌋ may take at most N/M+1 different
values, hence H(⌊(X + a)/M⌋) ≤ log(N/M + 1).
Combining our estimates, we obtain

‖f‖−1
1 H(f ; 1|M) ≥ logN − 8N‖f − χN‖22 − log(N/M + 1).

Since log(N/M + 1) ≤ log(N/M) + 2M/N , we have

‖f‖−1
1 H(f ; 1|M) ≥ logM − 8N‖f − χN‖22 − 2M/N.

This proves the lemma. �

Lemma 19 implies the conclusion of Lemma 18 with ρ replaced by f .
Since convolution may only increase entropy between scales of integral
ratio, it also implies the claim with ρ replaced by f ∗g. To conclude the
proof of Lemma 18, it is left to consider the effect of taking restriction
to [N/2 + 1, 3N/2].

Proof of Lemma 18. Write for a ∈ Z

ηa := (f ∗ g)|[a+1,a+M ], ρa := ρ|[a+1,a+M ].

With this notation, we can write using (18)

H(f ∗ g; 1|M) =
1

M

∑

a∈Z
H(ηa), H(ρ; 1|M) =

1

M

∑

a∈Z
H(ρa).

We observe that for N/2 ≤ a ≤ 3N/2 −M we have ηa = ρa. Using
the trivial estimate H(ηa) ≤ ‖ηa‖1 logM we can write

H(ρ; 1|M) ≥ H(f ∗ g; 1|M)− logM

M

∑

a∈Z\[N/2,3N/2−M ]

‖ηa‖1.

We use now that convolving f by g may only increase its entropy
(up to normalization), and then apply Lemma 19:

H(f∗g; 1|M) ≥ ‖g‖1H(f ; 1|M) ≥ ‖f∗g‖1 logM−8N‖f−χN‖22‖g‖1−2
M

N
.
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We note that

1

M

∑

a∈Z\[N/2,3N/2−M ]

‖ηa‖1 ≤
∑

n∈Z\[N/2+M,3N/2−M+1]

f ∗ g(n)

≤‖f ∗ g‖1 − ‖ρ‖1 + (2M − 2)‖f ∗ g‖∞.

We add that ‖f ∗ g‖∞ ≤ 2/N and combine the above estimates:

H(ρ; 1|M) ≥‖f ∗ g‖1 logM − 8N‖f − χN‖22‖g‖1 − 2
M

N

−
(
‖f ∗ g‖1 − ‖ρ‖1 +

4M

N

)
logM

≥‖ρ‖1 logM − 8N‖f − χN‖22‖g‖1 − 6
M logM

N
.

�

3.4. Proof of Proposition 12. We first consider the case, when logN−
H(µ) < 1/200 and logN −H(µ̃) < 1/200. We apply Lemma 13 to the

measures µ and µ̃ and write µ = f + g and µ̃ = f̃ + g̃ such that

‖f − χN‖22 ≤ 2
logN −H(µ)

N
, ‖f‖∞ ≤ 2

N
,(27)

‖g‖1 ≤ 2(logN −H(µ)) <
1

2
,(28)

‖f̃ − χN‖22 ≤ 2
logN −H(µ̃)

N
, ‖f̃‖∞ ≤ 2

N
,(29)

‖g̃‖1 ≤ 2(logN −H(µ̃)) <
1

2
.(30)

Since µ = f + g and both f and g are non-negative, we have ‖f‖1 +
‖g‖1 = 1, hence ‖f‖1, ‖g‖1 ≤ 1 and we have ‖f‖1 > 1/2 by (28).

We put ρ1 = (f ∗ f̃)|[N/2+1,3N/2], ρ2 = (f ∗ g̃)|[N/2+1,3N/2] and ρ3 =

(g ∗ f̃)|[N/2+1,3N/2]. The conditions of Lemmata 14 and 18 hold, hence
we can write

H(ρi; 1|M) ≥‖ρi‖1 logM − C(logN −H(µ))(logN −H(µ̃)) (11)

− C
M logM

N
(12)

for i = 1, 2, 3.

(11)C2 = 4000. If i = 1, we apply Lemma 14 and we need C2 ≥ C1 · 22 = 4000.
If i = 2, 3, we apply Lemma 18 and we need C2 ≥ 8 · 2 · 2. Here C1 is the constant
from Lemma 14 on page 24.

(12)C3 = 1000, which is the maximum of C1 and the constant 6 from Lemma 18.
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We note that

‖σ‖1−(‖ρ1‖1+‖ρ2‖1+‖ρ3‖1) ≤ ‖g∗g̃‖1 ≤ 4(logN−H(µ))(logN−H(µ̃)).

This proves the proposition, since

σ = ρ1 + ρ2 + ρ3 + (g ∗ g̃)|[N/2+1,3N/2],

and entropy between scales of integral ratio is superadditive by Lemma 10.
(13)

Next, we consider the case, when logN−H(µ) < 1/200 and logN −
H(µ̃) ≥ 1/200. We apply Lemma 13 to the measure µ and write
µ = f + g with functions f and g that satisfy (27) and (28).
We put ρ = (f ∗ µ̃)|[N/2+1,3N/2] and apply Lemma 18 to get

H(ρ; 1|M) ≥ ‖ρ‖1 logM − 16(logN −H(µ))− 6
M logM

N
.

We note that

‖σ‖1 − ‖ρ‖1 ≤ ‖g‖1 ≤ 2(logN −H(µ)).

We consider the identity σ = ρ+ (g ∗ µ̃)[N/2+1,3N/2] and conclude the

claim by superadditivity of entropy. (14)

The case logN−H(µ) ≥ 1/200 and logN−H(µ̃) < 1/200 is the same
as the previous. If logN −H(µ) ≥ 1/200 and logN −H(µ̃) ≥ 1/200,
then the proposition is vacuous. (15)

3.5. Proof of Proposition 11. For each a, b ∈ Z write fa = ν|[a+1,a+N ],

f̃b = ν̃|[b+1,b+N ]. By (18) we have

(31) H(ν; 1|N) =
1

N

∑

a∈Z
H(fa), H(ν̃; 1|N) =

1

N

∑

b∈Z
H(f̃b).

We put

σa,b = fa ∗ f̃b|[a+b+N/2+1,a+b+3N/2].

We will show below that

(32)
3

4
N2ν ∗ ν̃ =

∑

a,b∈Z
σa,b.

(13)The constant C4 in the proposition needs to absorb 3 · C2 coming from the
lower bound on H(ρi; 1|M) for i = 1, 2, 3 plus 4, which comes from (‖σ‖1−(‖ρ1‖1+
‖ρ2‖1 + ‖ρ3‖1)) logM . This holds for C4 = 4 · 104. The constant C5 = 3000, needs
to satisfy C5 ≥ 3 · C3.

(14)The constant C4 = 4 · 104 in the proposition needs to absorb 16/(logN −
H(µ̃)) ≤ 16 ·200 = 3200 plus 2/(logN−H(µ̃)) ≤ 400. For C5 we only need C5 ≥ 6.

(15)It is vacuous, because C4 ≥ 2002.
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Taking (32) for granted, we complete the proof. We apply Propo-
sition 12 for the probability measures µ = ‖fa‖−1fa ∗ δ−a and µ̃ =

‖f̃b‖−1f̃b ∗ δ−b and obtain

H(σa,b; 1|M) ≥‖σa,b‖1 logM
− C logM(‖fa‖1 logN −H(fa))(‖f̃b‖1 logN −H(f̃b))

(16)

− C‖fa‖1‖f̃b‖1
M logM

N
. (17)

We sum the above inequality for a, b ∈ Z. We use (32) and superad-
ditivity of entropy to conclude

3

4
N2H(ν ∗ ν̃; 1|M) ≥

∑

a,b∈Z
‖σa,b‖1 logM

− C logM
∑

a,b∈Z
(‖fa‖1 logN −H(fa))(‖f̃b‖1 logN −H(f̃b))

(16)

− C
∑

a,b∈Z
‖fa‖1‖f̃b‖1

M logM

N
. (17)

We use (31),
∑ ‖fa‖1 = N ,

∑ ‖f̃b‖1 = N and
∑ ‖σa,b‖1 = 3N2/4.

The latter is a consequence of (32). We obtain

3

4
N2H(ν ∗ ν̃; 1|M) ≥ 3

4
N2 logM

− C logM(N logN −NH(ν; 1|N))(N logN −NH(ν̃; 1|N)) (16)

− CN2M logM

N
, (17)

which proves the claim upon dividing both sides by 3N2/4. (18)

It is left to prove (32). We note that both sides of (32) are linear in
both ν and ν̃, therefore it is enough to prove it for ν = δx and ν̃ = δy
for every x, y ∈ Z. In this case, ν ∗ ν̃ = δx+y. In addition, we have
σa,b = δx+y if the three conditions

x ∈[a+ 1, a+N ],

y ∈[b+ 1, b+N ],

x+ y ∈[a+ b+N/2 + 1, a+ b+ 3N/2]

(16)C4 = 4 · 104, (see page 22).
(17)C5 = 3000, (see page 22).
(18)We need the constants C6 and C7 in the proposition (see page 21) to satisfy

C6 = 6 · 104 ≥ (4/3)C4 and C7 = 4000 ≥ (4/3)C5.
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hold, and σa,b = 0 otherwise. It is easy to see that for any x, y, there
are 3N2/4 choices of pairs (a, b) ∈ Z2 such that σa,b = δx,y and this
proves (32).

3.6. The purpose of this section is to explain the reduction of Theorem
2 to Proposition 11.

Proof of Theorem 2. We put K = ⌊3 logα−1⌋. By rescaling µ and µ̃
if necessary, we may assume that r = 2K . We define the probability
measures ν and ν̃ on Z by

ν(n) = µ([n, n+ 1)), ν̃(n) = µ̃([n, n+ 1)).

By (14) applied twice, H(µ; 1|22K+1) is the average of

H({µ([n+ t, n + 1 + t))}n∈Z; 1|22K+1)

with t running over [0, 1), and a similar relation holds for µ̃. Therefore,
by replacing µ or µ̃ or both by suitable translates, we may assume, that

H(ν; 1|22K+1) ≥H(µ; 1|22K+1)

H(ν̃; 1|22K+1) ≥H(µ̃; 1|22K+1).

Using the hypothesis H(µ; r|2r) ≥ 1 − α for r = 2a for a = 0, . . . , 2K
(and similar inequalities for µ̃) these yield

H(ν; 1|22K+1) ≥(2K + 1)(1− α),(33)

H(ν̃; 1|22K+1) ≥(2K + 1)(1− α).(34)

Lemma 7 gives

(35) |H(µ ∗ µ̃; 2K |2K+1)−H(ν ∗ ν̃; 2K |2K+1)| ≤ 4
K

2K
.

We use Proposition 11 with M = 2K+1 and N = 22K+1 and get

K+1−H(ν ∗ ν̃; 1|2K+1)

≤CK(2K + 1−H(ν; 1|22K+1))× (2K + 1−H(ν̃; 1|22K+1)) (19)

+ C
K

2K
. (20)

We combine this with

H(ν ∗ ν̃; 2K |2K+1) =H(ν ∗ ν̃; 1|2K+1)−H(ν ∗ ν̃; 1|2K)
≥H(ν ∗ ν̃; 1|2K+1)−K

(19)C8 = 1.2 · 105. Indeed, we need KC8 ≥ (K + 1)C6. For C6 see page 21.
(20)C9 = 8000. Indeed, we need KC9 ≥ (K + 1)C7. For C7 see page 21.
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and with (33)–(34) and write

1−H(ν ∗ ν̃; 2K|2K+1) ≤ K + 1−H(ν ∗ ν̃; 1|2K+1) ≤ CK3α2 (21)

(36)

+C
K

2K
. (22)

By the choice of K = ⌊3 logα−1⌋ and α < 1/2, we have 2−K < α2

and the claim follows if we combine (35) and (36). (23)
�

4. Entropy of convolutions in the low entropy regime

The purpose of this section is to prove Theorem 3, which we restate.

Theorem. For every 0 < α < 1/2, there is a number c > 0 such that
the following holds. Let µ, ν be two compactly supported probability
measures on R. Let σ2 < σ1 < 0 and 0 < β ≤ 1/2 be real numbers.
Suppose that

(37) N1{σ ∈ [σ2, σ1] : H(µ; 2σ|2σ+1) > 1− α} < cβ(σ1 − σ2).

Suppose further that

H(ν; 2σ2|2σ1) > β(σ1 − σ2).

Then

H(µ ∗ ν; 2σ2 |2σ1) > H(µ; 2σ2|2σ1) + cβ(log β−1)−1(σ1 − σ2)− 3.

Our proof of Theorem 3 is motivated by some ideas of Bourgain
in his second proof of the discretized ring conjecture [2]. The proof
relies on the following two propositions. We call a measure a Bernoulli
measure, if it is supported on two points, which have equal weight (not
necessarily 1/2, unless it is a probability measure).

Proposition 20. Let µ be a compactly supported probability measure
on R and let t, r1, r2 > 0 be numbers. Let ν be a Bernoulli probability
measure supported on two points at distance t. Then

H(µ ∗ ν; r2|r1) ≥ H(µ; r2|r1) +
1

3
(1−H(µ; t|2t)),

provided

r2 ≤ t(1−H(µ; t|2t))/10 and r1 ≥ 144t(1−H(µ; t|2t))−2.

(21)C10 = 1.1 · 106. Indeed, we need K2C10 ≥ (2K + 1)2C8.
(22)C9 = 8000.
(23)For the constant C in the theorem, we need C ≥ 27C10 + 3(C9 + 4),

which holds if we set C = 108. Here the factor 27 comes from the estimate
K3 ≤ 27(logα−1)3 and the factor 3 comes from K ≤ 3(logα−1)3.
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Proposition 21. Let µ be a finitely supported probability measure on
R and let r > 0 be a number. Suppose that

H
(
µ;

r

2

∣∣∣r
)
≤ 1.5 ·H(µ; r|2r).

Then

µ = ν + η1 + . . .+ ηN ,

where N is an integer, ν is a non-negative measure,

‖η1‖+ . . .+ ‖ηN‖ ≥ 1

128
· H(µ; r|2r)
log(H(µ; r|2r)−1) + 1

and ηi are Bernoulli measures supported on pairs of points at distances
between 2r and r/2.

A decomposition similar to the one in Proposition 21 appears in [17],
however, they have different quantitative aspects, hence they require
different proofs. The main difference between the setup in Theorem 3
and [17] is that assumption (37) is absent in the latter, and this makes
a drastic difference in the quantitative features of the conclusion, and
also very different arguments are required.
The proofs of Propositions 20 and 21 will be given in Sections 4.1

and 4.2, respectively.
In the proof of Theorem 3, we will use Proposition 21 for the measure

ν to write it as a combination of Bernoulli measures. We will see
that the distance between the points, where the Bernoulli measures
are supported can be choosen to fall in many different scale ranges.
We will then apply Proposition 20 to show that we gain a small

amount of entropy on each such scale range. The details of this argu-
ment are given in Section 4.3.

4.1. The purpose of this section is the proof of Proposition 20. We
begin with a simple observation about how entropy increases if we con-
volve a measure by a Bernoulli measure supported at points of distance
matching the scale.

Lemma 22. Let µ be a compactly supported probability measure on
R and let t > 0 be number. Let ν be a Bernoulli probability measure
supported on two points at distance t. Then

H(µ ∗ ν; t) = H(µ; t) + (1−H(µ; t|2t)).
Proof. We assume as we may that ν = (δ0 + δt)/2. We use the alter-
native definition for the entropies given in Lemma 5. Denoting by χs
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the normalized Lebesgue measure on [0, s], we can write

H(µ ∗ ν; t) =H(µ ∗ ν ∗ χt)−H(χt)

=H(µ ∗ χ2t)−H(χ2t) + (H(χ2t)−H(χt))

=H(µ; 2t) + 1

=H(µ; t)−H(µ; t|2t) + 1.

�

In order to prove Proposition 20, we need to show that the entropy
increase obtained in Lemma 22 is captured by a suitably large scale
range around the distance between the points in the support of ν. We
proceed with the details of this.

Proof of Proposition 20. Applying Lemma 22, we obtain

H(µ ∗ ν; t) = H(µ; t) + (1−H(µ; t|2t)).
By Lemma 7 we have

|H(µ∗ν; r1)−H(µ; r1)| ≤ (2t/r1) log(r1/t) ≤ 4(t/r1)
1/2 ≤ (1−H(µ; t|2t))/3,

where we used the inequality log(x) ≤ 2x1/2, and then the assumption

r1/t ≥ 144(1−H(µ; t|2t))−2.

Hence

(38) H(µ ∗ ν; t|r1) ≥ H(µ; t|r1) +
2

3
(1−H(µ; t|2t)).

Using Lemma 9, we write

H(µ ∗ ν; r2|t) ≥ H(µ; r2|t)−
2

(ln 2)(t/r2 − 1)
.

By assumption,

t/r2 ≥ 10(1−H(µ; t|2t))−1 ≥ 6

ln 2
(1−H(µ; t|2t))−1 + 1,

where we also used 6/ ln(2) < 9. This yields

2

(ln 2)(t/r2 − 1)
≤ 1

3
(1−H(µ; t|2t)).

Thus

H(µ ∗ ν; r2|t) ≥ H(µ; r2|t)−
1

3
(1−H(µ; t|2t)).

This combined with (38) proves the claim. �
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4.2. The purpose of this section is the proof of Proposition 21. Our
first aim is the next lemma.

Lemma 23. Let µ be a probability measure on R and let 0 < r0, r1 be
numbers with 4r0 ≤ r1. Let I1, . . . In ⊂ R be disjoint intervals of length
at most r0 such that every two of them have a gap of at least r1 between
them. Suppose suppµ ⊂ I1 ∪ . . . ∪ In. Then for all 2r0 ≤ r ≤ r1/2, we
have

H
(
µ;

r

2

∣∣∣r
)
= 2H(µ; r|2r).

This lemma shows that the inequality

H
(
µ;

r

2

∣∣∣r
)
< 2H(µ; r|2r)

implies that the support of µ contains at least one pair of points of
distance comparable to r. We prove this lemma in Section 4.2.1. In
Section 4.2.2, we estimate the effect of restricting a measure to a subset
of its support on its entropy. In Section 4.2.3, we use these estimates
to understand the effect of removing all pairs of points at distance
comparable to r from the support of µ. We combine this with Lemma
23 to conclude the proof of Proposition 21.

4.2.1. We introduce some notation. Let µ be a probability measure
on R. We write

H±(µ) := −µ(−∞, 0) logµ(−∞, 0)− µ[0,∞) logµ[0,∞).

We begin with the special case of Lemma 23 in which the measure
is supported on a small interval.

Lemma 24. Let µ be probability measure whose support is contained
in an interval of length r0. Then for all r ≥ r0 we have

(39) H(µ; r|2r) = 1

2r

∫ ∞

−∞
H±(µ ∗ δx)dx.

Observe that the lemma indeed implies

H
(
µ;

r

2

∣∣∣r
)
= 2H(µ; r|2r)

if r ≥ 2r0.

Proof. Since both sides of (39) are continuous in r, we may assume
r > r0. Let X be a random variable with law µ. We have

H(µ; r) =
1

r

∫ r

0

H(⌊r−1(X + t)⌋)dt.
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We assume without loss of generality that µ is concentrated on [−r0−
ε, 0 − ε] for some ε < r − r0. Observe that the value of ⌊r−1(X + t)⌋
for t ∈ [0, r] depends only the sign of r−1(X + t). Thus

H(µ; r) =
1

r

∫ r

0

H±(r
−1(X+t))dt =

1

r

∫ r

0

H±(µ∗δt)dt =
1

r

∫ ∞

−∞
H±(µ∗δt)dt.

The last equality follows from the fact that the integrand is 0 for t /∈
[0, r]. We take the difference of this with itself with 2r substituted in
place of r and obtain the claim. �

We continue with a lemma which allows to reduce the general case
of Lemma 23 to the special case considered in the previous lemma.

Lemma 25. Let µ be a probability measure on R and let r1 > 0 be
a number. Let I1, . . . In ⊂ R be disjoint intervals such that every two
of them have a gap of at least r1 between them. Suppose suppµ ⊂
I1 ∪ . . . ∪ In. Then for all r ≤ r1, we have

(40) H(µ; r) =

n∑

j=1

H((µ|Ij); r).

Proof. Since both sides of (40) are continuous in r, we may assume
r < r1. We note that

µ ∗ χr = (µ|I1) ∗ χr + . . .+ (µ|In) ∗ χr,

and the measures on the right hand side have disjoint support. Using
Lemma 5, we can write

H(µ; r) =H(µ ∗ χr)−H(χr) =

n∑

j=1

(H((µ|Ij) ∗ χr)− µ(Ij)H(χr))

=

n∑

j=1

H((µ|Ij); r).

�

Finally, we can prove the general version of our claim.

Proof of Lemma 23. We can decompose µ as the sum of its restrictions
to each Ij . By Lemma 25 applied with r/2, r and 2r in place of r,
it is enough to show the claim for each of these restrictions. Hence
we can assume without loss of generality that supp µ is contained in
an interval of length r0. The claim now follows immediately from the
formula in Lemma 24. �
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4.2.2. We need a further technical lemma that allows us to compare
the entropy of a measure with the entropy of a term appearing in a
decomposition.

Lemma 26. Let µ be a probability measure. Suppose that µ = ν+η for
two non-negative measures ν and η. Suppose further that ‖η‖ ≤ 1/2.
Then

H(ν; r|2r) ≤ H(µ; r|2r) ≤ H(ν; r|2r) + 3‖η‖ log ‖η‖−1

for any r > 0.

We remark that this lemma is closely related to Fano’s inequality
(see [5, Proposition 2.10.1]) and the inequality on the left hand side
also follows from Lemma 10.

Proof. Owing to (13), we can assume without loss of generality that
r = 1. Let X be a random variable with law µ and let Z be {0, 1}
valued random variable such that P(Z = 0) = ‖ν‖ and the distribution
of X conditioned on the event Z = 0 is ‖ν‖−1ν, and the distribution
of X conditioned on Z = 1 is ‖η‖−1η.
By (14), we have

H(µ; 1|2) =
∫ 1

0

H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋
)
dt,

H(ν; 1|2) =P(Z = 0)

∫ 1

0

H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋, Z = 0
)
dt,

H(η; 1|2) =P(Z = 1)

∫ 1

0

H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋, Z = 1
)
dt.

Here we use the following convention for conditioning on events. If
Y1, Y2 are random variables and E is an event, then to calculateH(Y1|Y2, E),
we restrict the probability space to the event E (and normalize the
measure) and calculate the conditional entropy of the restriction of the
random variables to this new probability space.
This means that for each t, we have

H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋, Z
)
=P(Z = 0)H

(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋, Z = 0
)

+P(Z = 1)H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋, Z = 1
)

We combine this with the estimates

H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋
)
≥H

(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋, Z
)

≥H
(
⌊X + 2t⌋

∣∣⌊X/2 + t⌋
)
−H(Z).

and integrate it for t. We find

H(µ; 1|2) ≥ H(ν; 1|2) +H(η; 1|2) ≥ H(µ; 1|2)−H(Z).
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We note that H(η; 1|2) ≤ ‖η‖ and

H(Z) = −‖η‖ log ‖η‖ − (1− ‖η‖) log(1− ‖η‖) ≤ 2‖η‖ log ‖η‖−1,

which proves the claim. �

4.2.3. Proof of Proposition 21. Let

µ = ν + η1 + . . .+ ηN

be a decomposition such that ν is a non-negative measure, each ηi is
a Bernoulli measure supported on a pair of points at distance between
r/2 and 2r and ‖ν‖ is minimal among all such decompositions. Recall
that µ is assumed to be finitely supported, hence the minimum exists.
Then there are no two points in the support of ν at distance between

r/2 and 2r. It is easy to see that the support of ν can be covered by
intervals of length less than r/2 that are of distance more than 2r.
Hence Lemma 23 applies with r0 = r/2 and r1 = 2r and we have

H
(
ν;

r

2

∣∣∣r
)
= 2H(ν; r|2r).

Write δ = 1− ‖ν‖. If ‖δ‖ ≥ 1/2, the claim of the proposition holds
trivially, so we assume that this is not the case. Then, by Lemma 26,

H(µ; r|2r) ≤ H(ν; r|2r) + 3δ log δ−1.

Using Lemma 26 again, we can write

H
(
µ;

r

2

∣∣∣r
)
≥ H

(
ν;

r

2

∣∣∣r
)
= 2H(ν; r|2r) ≥ 2H(µ; r|2r)− 6δ log δ−1.

Combining this with our assumption, we get

1.5H(µ; r|2r) ≥ 2H(µ; r|2r)− 6δ log δ−1,

hence

δ log δ−1 ≥ H(µ; r|2r)/12.
Now, we suppose to the contrary that the claim is false, that is

δ ≤ 1

128
· H(µ; r|2r)
log(H(µ; r|2r)−1) + 1

.

Writing h = H(µ; r|2r), and using that δ 7→ δ log δ is monotone, we get

δ log δ−1 ≤ 1

128
· h

log(h−1) + 1
· (7+log(h−1)+log(log(h−1)+1)) ≤ 7h

128
,

a contradiction, since 7/128 < 1/12.



BERNOULLI CONVOLUTIONS 41

4.3. The purpose of this section is the proof of Theorem 3. We begin
with a technical lemma that locates a large number of scales, where
both Propositions 20 and 21 can be applied.

Lemma 27. For every 0 < α < 1/2, there is a number c′ > 0 such that
the following hold. Let µ, ν, σ1, σ2 and β be as in Theorem 3 and assume
that the hypotheses of that theorem hold. Let K = ⌈log(144/α2)⌉ + 2.
Then there is a 2K-separated set B ⊂ Z∩ [σ2+K, σ1−K] such that

each n ∈ B satisfies

1.5 ·H(ν; 2n|2n+1) > H(ν; 2n−1|2n),
H(ν; 2n|2n+1) ≥ β/12,

H(µ; t|2t) ≤ 1− α for all t with 2n−1 ≤ t ≤ 2n+1.

Furthermore

(41)
∑

n∈B
H(ν; 2n|2n+1) ≥ c′β(σ1 − σ2)− 1. (24)

The lemma would hold for any K with the constant c′ depending on
K. Our choice of the value of K will become relevant later.

Proof. Write

a = ⌊σ1 −K⌋, b = ⌈σ2 +K⌉.
Write

B1 = {n ∈ [b, a] ∩ Z : 1.5 ·H(ν; 2n|2n+1) > H(ν; 2n−1|2n)}.
If n1 ≥ n2 are two consecutive elements of B1, then

H(ν; 2n2+j |2n2+j+1) ≤ (1.5)−jH(ν; 2n2|2n2+1)

for all 0 ≤ j < n1 − n2. Thus

n1−1∑

j=n2

H(ν; 2j|2j+1) ≤ 3H(ν; 2n2|2n2+1).

A similar argument shows that

(42)

minB1−1∑

j=b

H(ν; 2j|2j+1) ≤ 3.

Hence we have

β(σ1 − σ2) < H(ν; 2σ2|2σ1) ≤ 3
∑

n∈B1

H(ν; 2n|2n+1) + 2K + 5.

(24)c′ = c11 = (1000 logα−1)−1.
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The term 2K+5 on the right is the contribution of (42) combined with

H(ν; 2b−K |2b), H(ν; 2a|2a+K) ≤K,

H(ν; 2σ2|2b−K), H(ν; 2a+K |2σ1) ≤1.

We define B2 ⊂ B1 by the following procedure. First we select an
n ∈ B1 such that H(ν; 2n|2n+1) is maximal and declare that n ∈ B2.
Then in each step, we consider all n ∈ B1 that are of distance at least
2K from the elements of B2 already selected. We choose among these
elements one such that H(ν; 2n|2n+1) is maximal and declare it to be
an element of B2. We continue this procedure until there is no n ∈ B1

of distance at least 2K to the already selected elements of B2.
It is easy to see that the set B2 obtained this way is 2K separated

and satisfies

β(σ1 − σ2)− (2K + 5) ≤3
∑

n∈B1

H(ν; 2n|2n+1)

≤3 · 4K
∑

n∈B2

H(ν; 2n|2n+1).

We put

B3 := {n ∈ B2 : H(ν; 2n|2n+1) > β/12}.
Since |B2\B3| ≤ |B2| < (σ1 − σ2)/2K, we have

∑

n∈B3

H(ν; 2n|2n+1) ≥β(σ1 − σ2)

12K
− β

12

σ1 − σ2

2K
− 2K + 5

12K

≥ 1

24K
β(σ1 − σ2)− 1.

Finally, we define B as the set of n ∈ B3 such that

H(µ; t|2t) ≤ 1− α

for all t with 2n−1 ≤ t ≤ 2n+1. We clearly have

|B3\B| ≤ N1{σ ∈ [σ2, σ1] : H(µ; 2σ|2σ+1) > 1− α} < cβ(σ1 − σ2),

where c is the number that appears in Theorem 3. If we choose this
number sufficiently small depending only on K, which depends only on
α, then B satisfies (41). (25)

�

Proof of Theorem 3. We can approximate ν by a finitely supported
measure so that we change its entropy at scales larger than 2σ2 only by

(25) (41) holds if we choose both the constant c in Theorem 3 and the constant
c′ = c11 in the lemma to be less than (48K)−1. This is satisfied, because K <
2 logα−1 + 11 ≤ 13 logα−1 and c11 = c = (1000 logα−1)−1.
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an arbitrarily small amount. We can use for example Lemma 7 with
r1 very small. Therefore, we may assume that ν is finitely supported.
Let B be as in Lemma 27 and fix some n ∈ B. Since

1.5 ·H(ν; 2n|2n+1) ≥ H(ν; 2n−1|2n),
we can apply Proposition 21 with r = 2n and write

ν = ν0 + η1 + . . .+ ηN ,

where each ηi is a Bernoulli measure supported at a pair of points of
distance between 2n−1 and 2n+1, ν0 is a non-negative measure and

‖η1‖+ . . .+ ‖ηN‖ ≥ c(log β−1)−1H(ν; 2n|2n+1), (26)

where c is an absolute constant.
By Proposition 20 (the conditions of the proposition are met by our

choice of the value of K), we have

H(µ ∗ ηi; 2n−K|2n+K) ≥ ‖ηi‖ · (H(µ; 2n−K|2n+K) + α/3)

for each i = 1, . . . , N . We combine this with the trivial estimate (com-
ing from Lemma 6)

H(µ ∗ ν0; 2n−K|2n+K) ≥ ‖ν0‖ ·H(µ; 2n−K|2n+K)

and use superadditivity of entropy between scales of integral ratio
(Lemma 10) to obtain
(43)
H(µ∗ν; 2n−K|2n+K) ≥ H(µ; 2n−K|2n+K)+c(log β−1)−1H(ν; 2n|2n+1), (27)

for some number c that depends only on α.
We note that H(µ ∗ ν; 2m|2m+1) ≥ H(µ; 2m|2m+1) for all m ∈ Z

by Lemma 6. We sum this for all m ∈ [σ2, σ1] ∩ Z that is not in
[n−K, n+K) for any n ∈ B together with (43) for n ∈ B and obtain
also using (41)

H(µ ∗ ν; 2⌈σ2⌉|2⌊σ1⌋)

≥H(µ; 2⌈σ2⌉|2⌊σ1⌋) + c(log β−1)−1
∑

n∈B
H(ν; 2n|2n+1) (28)

>H(µ; 2⌈σ2⌉|2⌊σ1⌋) + cβ(log β−1)−1(σ1 − σ2)− 1. (29)

(26)c12 = 1/1000. Here we need c12(log β
−1)−1 ≤ 1/128(log(12/β) + 1), which

holds since β ≤ 1/2.
(27)c13 = α/3000.
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The claim of the theorem follows from this and the inequalities

H(µ ∗ ν; 2σ2 |2σ1) ≥H(µ ∗ ν; 2⌈σ2⌉|2⌊σ1⌋),

H(µ; 2σ2|2σ1) ≤H(µ; 2⌈σ2⌉|2⌊σ1⌋) + 2.

�

5. Absolute continuity of Bernoulli convolutions

The purpose of this section is the proof of Theorem 1. We begin by
recalling the following result of Garsia, which links absolute continuity
of measures to entropy estimates.

Proposition 28. Let µ be a compactly supported probability measure
on R. Then µ is absolutely continuous with density in the class L logL
if and only if log r−1 −H(µ; r) is bounded as r → 0.

This is just a small variation on [12, Theorem I.5], but we give a
proof for the reader’s convenience.

Proof. Suppose that log r−1−H(µ; r) is bounded as r → 0 and suppose
to the contrary that there is a compact set E ⊂ R of Lebesgue measure
0 such that µ(E) > 0.
Note that (see Lemma 5)

log r−1 −H(µ; r) =

∫ ∞

−∞
µ ∗ χr(x) log(µ ∗ χr(x))dx,

where χr is the density of the uniform distribution on the interval [0, r].
We also observe that

Ar :=

∫

E+[0,r]

µ ∗ χr(x)dx =
1

r

∫ r

0

µ(E + [0, r]− t)dt ≥ µ(E).

By Jensen’s inequality applied to the function x 7→ x log x, we get
∫

E+[0,r]

µ ∗ χr(x) log(µ ∗ χr(x))dx

=m(E + [0, r]) · 1

m(E + [0, r])

∫

E+[0,r]

µ ∗ χr(x) log(µ ∗ χr(x))dx

≥m(E + [0, r]) · Ar

m(E + [0, r])
log

Ar

m(E + [0, r])
,

where m(·) denotes Lebesgue measure.

(28)c13 = α/3000.
(29)c14 = α/(107 logα−1). Here we need c14 < c13c11 = (α/3000)/(1000 logα−1).

Here c11 is from Lemma 27 on page 41.
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Let [−B,B] be an interval containing the support of µ, and denote
α = minx≥0 x log x. Then∫

R\(E+[0,r])

µ ∗ χr(x) log(µ ∗ χr(x))dx ≥ (2B + r)α

Combining our estimates we write

log r−1 −H(µ; r) ≥ µ(E) log
µ(E)

logm(E + [0, r])
+ (2B + r)α.

This is unbounded, since m(E + [0, r]) → 0 as r → 0, which is a
contradiction.
We have established that the boundedness of log r−1−H(µ; r) implies

that µ is absolutely continuous. We know show that the density of
µ belongs to L logL. By the Lebesgue differentiation theorem, then
µ ∗ χr → µ′ almost everywhere, where µ′ is the density of µ. Using
Fatou’s lemma, we can write

∫
µ′(x) log µ′(x)dx ≤ lim inf

r→0

∫
µ ∗ χr(x) log(µ ∗ χr(x))dx

= lim inf
r→0

(log r−1 −H(µ; r)),

which is bounded by assumption. (Fatou’s lemma applies, because µ′

is compactly supported and x 7→ x log x is bounded from below.) Since
µ′ is compactly supported, this implies that it is in the class L logL.
For the converse, we note that if µ is absolutely continuous with class

L logL density, then we have H(µ) ≤ H(µ ∗ χr) by (10). This can be
rewritten as∫

µ′(x) logµ′(x) ≥
∫

µ ∗ χr(x) log(µ ∗ χr(x))dx = log r−1 −H(µ; r),

which proves the claim. The last equation holds by Lemma 5. �

In the rest of the section, we aim to verify the condition in this
proposition for the Bernoulli convolutions µλ,p with parameters that
satisfy the hypothesis of Theorem 1. To this end, we will show that

(44) H(µλ,p; r|2r) ≥ 1− (log r−1)−2

for all r small enough under the hypothesis of the theorem. Summing
this for r = 2−n, we clearly satisfy the condition in Proposition 28
proving Theorem 1.
In Section 5.1, we introduce the condition k-HE for probability mea-

sures on R. This condition is designed in a way to ensure that the
convolution of two k-HE measures satisfies (k + 1)-HE. The proof of
this will be a direct application of Theorem 2.



BERNOULLI CONVOLUTIONS 46

We will also see that k-HE for sufficiently large k depending on r will
imply (44). At this point it will be left to show that we can decompose
µλ,p as a convolution product of sufficiently many measures each of
which satisfies 0-HE.
For I ⊂ R>0 we write µI for the law of the random variable

∑

n∈Z≥0:λn∈I
ξnλ

n,

where ξ0, ξ1, . . . is a sequence of independent random variables with
P(ξn = 1) = p and P(ξn = −1) = 1 − p. (A similar notation was
introduced in the unbiased case before. From this point on, λ and p
are considered fixed, so we suppress them in this notation.)
If I1, . . . , IK ⊂ R>0 are disjoint intervals, then there is a probability

measure ν such that

(45) µλ,p = µI1 ∗ . . . ∗ µIK ∗ ν.
In Section 5.2, we will show that we can find intervals Ij such that
µIj satisfies 0-HE. To that end, we will further decompose µIj as a
convolution product and use Theorem 3, the separation between the
points in the support of µI and the estimates of [4, Theorem 5] for the
entropy hλ,p of the discrete random walk.

5.1. The high entropy regime. We fix a large number A,(30) whose
value will be chosen depending only on the constant C in Theorem 2.
We say that a probability measure µ supported on a compact subset
of R satisfies the k-th high entropy inequality (or k-HE) at scale r if

H(µ; t|2t) ≥ 1− 2−(2k+3k+A)

for all t with

| log t− log r| ≤ A(2 + log log log r−1 − k) log log r−1.

Here and everywhere in what follows, we assume that (say) r < 2−4,
hence log log log r−1 is defined and is at least 1.

Proposition 29. Let µ and ν be two compactly supported probability
measures on R and let r > 0 be a real number and let k be an integer
such that

0 ≤ k ≤ 1 + log log log r−1.

Suppose that µ and ν both satisfy k-HE at scale r.
If the parameter A fixed above is sufficiently large and r is suffi-

ciently small depending only on the constant C in Theorem 2, then
µ ∗ ν satisfies (k + 1)-HE at scale r.

(30)We can take A = 47.
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Proof. We apply Theorem 2 with

α = 2−(2k+3k+A)

at all scales (whose log is) between

log r ±A(1 + log log log r−1 − k) log log r−1.

First we check that

(46) A log log r−1 ≥ 3 logα−1

holds, hence µ and ν satisfy the conditions of Theorem 2. We write

logα−1 = 2k + 3k + A ≤ 2 log log r−1 + 3 log log log r−1 + 3 + A.

We see that (46) holds provided A > 6 and r is sufficiently small
depending on A.
The estimate in Theorem 2 implies that µ ∗ ν satisfies (k+1)-HE at

scale r provided

2−(2k+1+3(k+1)+A) ≥ C(logα−1)3α2 = C(2k+2k+A)32−(2k+1+6k+2A). (31)

This is equivalent to

23k+A−3 ≥ C(2k + 3k + A)3 (32)

or
2A/3−1 ≥ C(1 + (3k + A)2−k). (33)

Fixing k and increasing A, the left hand side grows faster than the
right, hence the inequality holds for k = 0 and k = 1 if we choose A (34)

sufficiently large depending only on C. However, the right hand side is
maximal for k = 0 or k = 1 for any choice of A, hence the inequality
holds for all k. �

From now on, we assume that the parameter A that appears in the
definition of k-HE is sufficiently large so that Proposition 29 holds.
This is the only requirement we impose on A.
We aim to show that for r sufficiently small, µλ,p satisfies k-HE at

scale r for k = ⌊log log log r−1 + 1⌋+ 1. This implies (44). Indeed:

H(µλ,p; r|2r) ≥ 1− 2−2k ≥ 1− (log r−1)−2.

We achieve this by decomposing µλ,p as the convolution product of 2k

measures that satisfy 0-HE and another arbitrary measure as in (45),
and then use Proposition 29 iteratively.

(31)C15 = 108 is the constant from Theorem 2.
(32)C15 = 108.
(33)C16 = 500 > C

1/3
15 .

(34)A = 47 works here.
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In the next section, we prove Proposition 30, which implies that
under the hypothesis of Theorem 1, the decomposition (45) exists with
K = ⌈4 log log r−1⌉ such that each µIj satisfies 0-HE at scale r. In light
of the above comments, this proves (44) and Theorem 1 in turn.

5.2. The low entropy regime. The aim of this section is to prove
the following result, which completes the proof of Theorem 1. In this
section, the values of the constants given in the footnotes are valid
under the additional hypothesis that λ is not the root of a polynomial
with coefficients −1, 0 and 1 and 1/4 ≤ p ≤ 3/4.

Proposition 30. There is a number c > 0 depending only on p such
that the following holds. Let λ < 1 be an algebraic number and suppose
that

λ > 1− cmin(logMλ, (log(Mλ + 1))−1(log log(Mλ + 2))−3). (35)

Suppose that r > 0 is sufficiently small.
Then there are at least 4 log log r−1 pairwise disjoint intervals I such

that µI satisfies 0-HE at scale r.

5.2.1. In this section, we prove a technical lemma, which shows that
for proving that µI satisfies 0-HE, it is enough to show that µI′ has
large entropy at a single scale for some I ′ slightly smaller than I.
We will use this to show that if Theorem 3 cannot be applied for µI′,

because the required upper bound on its entropy fails, then µI satisfies
0-HE for a corresponding interval I.

Lemma 31. There is a number α0 > 0 (36) such that the following
holds. Let 0 < λ, r, s, t < 1 be real numbers. Suppose that

log t−1 > (log log r−1)2, r < s < t4, λ > 1− α0,

H(µ(t2,t); s|2s) > 1− α0.

Then the measure µ(t3r/s,r/s) satisfies 0-HE at scale r, provided r is
sufficiently small depending only on A (the parameter appearing in the
definition of k-HE).

Informally, the proof goes as follows. We need to show that

H(µ(t3r/s,r/s); t̃|2t̃) ≥ 1− 2−(A+1)

for all scales t̃ near r. Assuming that t̃/s is a power of λ, by (13), we
have

H(µ(t3r/s,r/s); t̃|2t̃) = H(µ(t3r/t̃,r/t̃); s|2s),
(35)c24 = 10−37 under the additional assumption that λ is not a root of a poly-

nomial with coefficients −1, 0 and 1 and 1/4 ≤ p ≤ 3/4.
(36)α0 = 247/10.
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since µλkI is obtained from µI by scaling by λk. In this case, the claim
follows by Lemma 6. We proceed with the details.

Proof. Let t̃ be a number with

| log t̃− log r| ≤ (log log r−1)2/2.

If r is sufficiently small, this includes all scales we need to consider in
the definition of 0-HE.
Let k be an integer such that

(47) | log(sλk)− log t̃| < log λ−1.

We then have

| log(λk)−log(r/s)| < (log log r−1)2/2+log λ−1 < (log log r−1)2 < log t−1,

provided r is sufficiently small.
Thus (t2λk, tλk) ⊂ (t3r/s, r/s) and consequently

H(µ(t3r/s,r/s);λks|2λks) ≥H(µ(t2λk,tλk);λks|2λks)

=H(µ(t2,t); s|2s)
>1− α0.

Here we used Lemma 6 and then (13).
We combine this with Lemma 8 and (47), then use λ > 1 − α0 to

obtain

H(µ(t3r/s,r/s); t̃|2t̃) >1− α0 − 2 log λ−1

≥1− α0 − 2 log(1− α0)
−1

≥1− 2−(A+1) (37)

provided α0 is sufficiently small. �

5.2.2. Our aim in this section is to show that for any sufficiently small
number t > 0, there are many scales s such that H(µ(t2,t); s|2s) > 1−α,
where α > 0 is an arbitrary (but a previously fixed) number. We will
then combine this with Lemma 31 to find intervals I such that µI

satisfies 0-HE at suitable scales.
The argument is simple, but requires some technical calculations,

which obscure the ideas. For this reason, we first explain the strat-
egy without the detailed calculations. We fix some carefully chosen
parameters 0 < τ < t < 1 and ℓ ∈ Z>0. We consider numbers a such
that (aλℓ, a] ⊂ (t2, t). We use certain Diophantine considerations going
back to Garsia [11] to bound from below the separation between the

(37)Using − log(1 − x) ≤ 2x, which is valid for 0 ≤ x ≤ 1/2, we have 1 − α0 −
2 log(1− α0)

−1 = 1− α0 + 2 log(1 − α0) ≥ 1− 2−47/10− 4 · 2−47/10 = 1− 2−48.
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points in the support of the measure µ(aλℓ,a]. We set our parameters to
ensure that this separation is at least τ .
This allows us to estimate H(µ(aλℓ,a]; τ) in terms of the Shannon

entropy H(µ(aλℓ,a]) ≥ hλ,pℓ. Recall that

hλ,p = lim
ℓ→∞

H(µ(λℓ,1])

ℓ
,

where the sequence in the limit is monotone non-increasing. We then
plug in the bound on hλ,p from [4]. We choose another parameter
τ1 > τ so that log τ1 is at most half the lower bound that we gave for
H(µ(aλℓ,a]; τ). This will yield the bound

H(µ(aλℓ,a]; τ |τ1) ≥
c

log(Mλ + 1)
log τ−1.

Then we consider a sequence ai such that the intervals (aiλ
ℓ, ai] ⊂

(t2, t) are disjoint and apply Theorem 3 repeatedly with β = c/ log(Mλ+
1) for the measures

µ = µ(a1λℓ,a1] ∗ . . . ∗ µ(aiλℓ,ai], ν = µ(ai+1λℓ,ai+1].

We will see that if λ is sufficiently close to 1, then we can find suffi-
ciently many such intervals so that the combined contributions of the
entropy increments given by Theorem 3 would exceed log τ−1, which
is impossible. This means that in one of the steps, the hypothesis of
Theorem 3 must fail for µ = µ(a1λℓ,a1] ∗ . . . ∗ µ(aiλ

ℓ,ai], that is,

H(µ(a1λℓ,a1] ∗ . . . ∗ µ(aiλℓ,ai]; s|2s) > 1− α

for many s ∈ (τ, τ1). This is what we wanted to do.
We turn to the details. We first recall the following result of Garsia

we alluded to above.

Lemma 32 ([11, Lemma 1.51]). Let λ be an algebraic number and
denote by d the number of its Galois conjugates that lie on the unit
circle.
Then there is a number c = cλ such that the following holds. Let

ℓ ∈ Z>0 and b0, . . . , bℓ ∈ {−1, 0, 1}. Then
∣∣∣

ℓ∑

j=0

bjλ
j
∣∣∣ > cλℓ

−dM−ℓ
λ .

Lemma 33. For every 0 < p < 1, there is a number c > 0 such that
the following holds. Let 0 < λ < 1 be an algebraic number and let
0 < τ < 1 be a number. Let

ℓ =
⌊ log τ−1

2 logMλ

⌋
.
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If τ is sufficiently small depending only on λ, then there is number
τ1 such that τ1/τ ∈ Z, and

log τ−1
1 ≥ c log τ−1

log(Mλ + 1)
, (38)

H(µ(aλℓ,a]; τ |τ1) ≥
c log τ−1

log(Mλ + 1)

holds for all τ 1/3 < a < 1.

Proof. Any two points in the support of µ(aλℓ,a] are of the form

λk

ℓ−1∑

j=0

ωjλ
j , λk

ℓ−1∑

j=0

ω′
jλ

j,

where k is a positive integer such that λk ∈ (aλ, a] and ωj, ω
′
j = ±1.

Hence the difference of these two points is

∣∣∣λk
ℓ−1∑

j=0

(ωjλ
j − ω′

jλ
j)
∣∣∣ = 2λk

∣∣∣
ℓ−1∑

j=0

bjλ
j
∣∣∣ > a

∣∣∣
ℓ−1∑

j=0

bjλ
j
∣∣∣,

where bj ∈ {−1, 0, 1}.
By Lemma 32, any two distinct points in the support of µ(aλℓ,a] are

of distance at least cλℓ
−dM−ℓ

λ a. By a ≥ τ 1/3 and the choice of ℓ, this
is greater than τ , provided τ is small enough (depending only on λ).
Thus

H(µ(aλℓ,a]; τ) = H(µ(aλℓ,a]) ≥ hλ,pℓ.

We plug in the bound for hλ,p from [4, Theorem 5] (see also Remark 6
there for the biased case), and obtain

H(µ(aλℓ,a]; τ) ≥ cpmin(1, logMλ)ℓ ≥
cp log τ

−1

3 log(Mλ + 1)
(39)

using again the definition of ℓ, provided τ is small enough (depending
only on λ), where cp is a constant depending only on p.
Fix a number τ1 > 0. We note that

H(µ(aλℓ,a]; τ1) < log τ−1
1 + Cλ

(38)c17 = 1/20 in both lines if λ is not a root of a polynomial with coefficients
−1, 0 and 1 and 1/4 ≤ p ≤ 3/4.

(39)If λ is not a root of a polynomial with coefficients −1, 0 and 1, then we do
not need to apply [4, Theorem 5]. In this case, all the points

∑
j:λj∈(aλℓ,a) ±λj are

distinct, hence H(µ(aλℓ,a]) = (−p log p−(1−p) log(1−p))|{j : λj ∈ (aλℓ, a]}| ≥ ℓ/2,
provided 1/4 ≤ p ≤ 3/4. Therefore, we can take cp = 1/2.
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for some number Cλ depending only on λ. Indeed, if L is a number
larger than the length of the interval supp µλ,p, then H(µ(aλℓ,a];L) ≤ 1.
If we choose L so that Lτ−1

1 is an integer, then we can take Cλ =
1 + logL.
Thus

H(µ(aλℓ,a]; τ |τ1) ≥
cp log τ

−1

3 log(Mλ + 1)
− log τ−1

1 − Cλ.

It is easily seen from this formula that a suitable choice of τ1 is possible.
(40)

�

In the next lemma we apply Theorem 3 repeatedly for the measures
µ(aλℓ,a] and make use of the entropy bounds provided by Lemma 33.
We introduce the shorthand

Kλ = log(Mλ + 1) log log(Mλ + 2),

which we continue to use until the end of the paper.

Lemma 34. For any numbers 0 < α < 1/2, 0 < p < 1, there is a
number c > 0 such that the following holds. Let 0 < λ < 1 be an
algebraic number. Suppose that 0 < τ is sufficiently small depending
only on λ, α and p. Choose a number 0 < t < 1 such that

(48) λ > 1− c
log(t)min(logMλ, 1)

log(τ) log log(Mλ + 2)
, (41)

t ≥ τ 1/6.

Then there is an integer

K ≥ cK−1
λ log τ−1 (42)

and real numbers

τ c(log(Mλ+1))−1

> s1 > . . . > sK > τ (43)

such that si > 2si+1 and

H(µ(t2,t); si|2si) > 1− α

for all i.

(40)Indeed, we can set τ1 = Bτ , where B is the largest integer such that
log(Bτ) ≤ (log τ)/(20 log(Mλ + 1)) holds.

(41)c19 = α/(1010 logα−1).
(42)c21 = 1/(105 logα−1).
(43)c17 = 1/20.
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It may look confusing that the parameter τ is required to be small
depending on λ in an uncontrolled fashion and then λ is bounded below
by a quantity depending on τ in (48). Observe, however, that the
lower bound in (48) depends only on the ratio log t/ log τ . Hence,
we can first choose τ , depending on λ and then t to make sure that
the hypotheses of the lemma hold, which we will see is possible if λ
satisfies the assumptions in Proposition 30. Note also that (48) may
be considered a condition of the form t ≤ τa for some a depending on
λ. This complements the bound t ≥ τ 1/6 in the next line.

Proof. Let

ℓ =
⌊ log τ−1

2 logMλ

⌋

as in Lemma 33. We set

N =
⌊ log t

ℓ log λ

⌋
.

We note that N can be made arbitrarily large if the constant c in the
lemma is sufficiently small, see (51) below. For each i = 1, . . . , N we
put

Ii = (λiℓt, λ(i−1)ℓt].

Note that Ii = (aiλ
ℓ, ai] for some number ai such that

1 ≥ ai ≥ λNℓt ≥ t2 ≥ τ 1/3.

Thus we can apply Lemma 33 and write

H(µIi; τ |τ1) ≥ c0 log τ
−1/ log(Mλ + 1)(44)

for all i, where τ1 is as in Lemma 33 and c0 is the constant c from that
lemma. Moreover, Ii ⊂ (t2, t) for all i.
Since H(µ; τ |τ1) ≤ log(τ1/τ) for any probability measure µ, there is

i ∈ {0, . . . , N − 1} such that

(49) H(µI1 ∗ . . . ∗ µIi+1; τ |τ1) ≤ H(µI1 ∗ . . . ∗ µIi; τ |τ1) +
1

N
log(τ1/τ).

We combine the definitions of N and ℓ:

(50)
1

N
≤

⌊
2 log(t) log(Mλ)

log(τ−1) log(λ)

⌋−1

≤ − log(τ) log(λ)

log(t) log(Mλ)
. (45)

(44)c0 = c17 = 1/20.
(45)Provided log t/ log τ is sufficiently large so that N ≥ 1. This definitely holds

if c19 = α/(1010 logα−1) in (48).
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Using − log(λ) ≤ 2(1 − λ), which is valid for 1/2 ≤ λ ≤ 1, (48)
implies

− log(τ) log(λ)

log(t)min(logMλ, 1)
<

2c

log log(Mλ + 2)
.(46)

We combine this with

min(logMλ, 1)

logMλ
≤ 2

log(Mλ + 1)

and use (50) to get

(51)
1

N
≤ 4c

Kλ
.(47)

We apply Theorem 3 for the measures µ = µI1 ∗ . . .∗µIi and ν = µIi+1

with β = c0/ log(Mλ + 1), σ1 = log τ1 and σ2 = log τ . We have already
seen that the hypothesis of the theorem holds for ν. If the hypothesis
on µ is also satisfied, then

H(µI1 ∗ . . .∗µIi+1; τ |τ1) ≥ H(µI1 ∗ . . .∗µIi; τ |τ1)+
c2 log(τ1/τ)

Kλ
−3. (48)

for some c2 > 0 that depends on c0 and the constant c from Theorem
3. Note that

log(τ1/τ) > c0 log(τ
−1)/ log(Mλ + 1)− 1, (49)

which follows from the conclusion of Lemma 33. Hence the term −3
in the above estimate becomes negligible, provided τ is small enough.
We reached a contradiction with (51) and (49) if c is sufficiently small
in (51). (50)

Hence the hypothesis on µ in Theorem 3 fails, and we can find a
1-separated set σ1 ≥ . . . ≥ σK in

{σ ∈ [log τ, log τ1] : H(µI1 ∗ . . . ∗ µIi; 2σ|2σ+1) > 1− α}.

(46)c19 = α/(1010 logα−1).
(47)c19 = α/(1010 logα−1).
(48)c2 = c18 = α/(1.6 · 109 logα−1). Indeed, we have log β−1 = log(log(Mλ +

1)20) ≤ log log(Mλ+2)+log 20 ≤ 8 log log(Mλ+2), because log(20)/ log log(3) < 7,
so we need here c18 ≤ c17c/8, where c = α/(107 logα−1) is the constant in Theorem
3.

(49)c0 = c17 = 1/20. See page 51.
(50)We have contradiction if 4c19 < c2 = c18, which holds with the choice c19 =

α/(1010 logα−1) that we made.
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of cardinality
K > cK−1

λ (log τ1 − log τ) (51)

with a constant c that depends on c0 and the constant in Theorem 3.
Since Ij ⊂ (t2, t) for all j, we have

H(µ(t2,t); 2σ|2σ+1) ≥ H(µI1 ∗ . . . ∗ µIi; 2σ|2σ+1)

by Lemma 6 for all σ. This concludes the proof. �

We combine Lemmata 31 and 34 in the next lemma.

Lemma 35. Let α0
(52) be the number from Lemma 31 and let c0 be a

number such that Lemma 34 holds with α = α0 and c = c0. Let λ < 1
be an algebraic number and 0 < r, t, τ < 1 be real numbers. Suppose
that r is sufficiently small, and

(52) 2−(log r−1)1/2 > τ > r,

(53) (log τ−1)1/2 < log t−1 <
c0
4Kλ

log τ−1, (53)

λ > 1− c0
log(t)min(1, logMλ)

log(τ) log log(Mλ + 2)
. (54)

Then there are at least

c0K
−1
λ log τ

4 log t
(55)

pairwise disjoint intervals

I ⊂ (r/τ c0(log(Mλ+1))−1

, r/τ) (56)

such that the measure µI satisfies 0-HE at scale r.

Proof. By (53), we have

t > τ c0/4Kλ ≥ τ 1/6

so we can apply Lemma 34, and obtain an integer

K ≥ c0K
−1
λ log τ−1 (57)

(51)c20 = 1/(2 · 104 logα−1). This requires c20 ≤ c17c, where c is the constant
from Theorem 3. In the lemma, we need to set c21 to satisfy c21 ≤ c20/2, because
log τ−1 ≤ 2(log τ1 − log τ).

(52)α0 = 2−47/10
(53)c0 = c17 = 1/20.
(54)c0 = c22 = 10−27. This requires c22 ≤ α0/(10

10 logα−1
0 ).

(55)c0 = c23 = 10−7.
(56)c0 = c17 = 1/20.
(57)c0 = c23 = 10−7. This requires c23 ≤ 1/(105 logα−1

0 ).
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and real numbers

τ c0(log(Mλ+1))−1

> s1 > . . . > sK > τ (58)

such that si > 2si+1 and

H(µ(t2,t); si|2si) > 1− α0

for all i.
We put Ii = (t3r/si, r/si). We note that

r/si ∈ (r/τ c0(log(Mλ+1))−1

, r/τ)

for all i = 1, . . . , K, hence Ii ⊂ (r/τ c0(log(Mλ+1))−1

, r/τ) for all i ≥
3 log t−1.
We combine (53) and (52) and obtain

t < 2−(log r−1)1/4 < 2−(log log r−1)2 ,

if r is sufficiently small. Moreover, (53) implies that

t4 > τ c0(log(Mλ+1)−1) > si

for all i. Thus Lemma 31 applies and µIi satisfy 0-HE at scale r for
each i.
We observe that Ii and Ij are disjoint provided 2|i−j| ≥ t−3, that is

|i− j| ≥ 3 log t−1. This shows that the intervals I⌈3 log t⌉j satisfy all the
requirements of the lemma. �

5.2.3. Proof of Proposition 30. With c0 as in Lemma 35, we put a =
c0(log(Mλ + 1))−1. (59)

We set N in such a way that

2−(log r−1)1/2 > ra
N

,

i.e. take N = ⌊log log r−1/2 log a−1⌋. We apply Lemma 35 for n =
0, 1, . . . , N with τ = ra

n
. The choice of a guarantees that the intervals

(r/τ c0(log(Mλ+1))−1

, r/τ) are pairwise disjoint for the different values of
n.
For each n, we will set t in Lemma 35 in such a way that

(54)
c0K

−1
λ log τ

4 log t
· log log r

−1

2 log a−1
≥ 4 log log r−1. (60)

If we can satisfy the conditions of Lemma 35 for each n, then (54) is a
lower bound on the number of disjoint intervals I such that µI satisfies
0-HE at scale r, which proves the proposition.

(58)c0 = c17 = 1/20.
(59)c0 = c17 = 1/20.
(60)c0 = c23 = 10−7.
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Taking
log t

log τ
=

c0
32Kλ log a−1

(61)

we satisfy (54) and (53). (The left hand side of (53) holds if r and
hence t and τ are sufficiently small in terms of λ, p and a.) It remains
to verify that the lower bound on λ required in Lemma 35 holds, i.e.
that

(55) 1− λ < c0
log(t)min(1, logMλ)

log(τ) log log(Mλ + 2)
. (62)

Combining the definitions of a, t and τ , we write

c0
log(t)min(1, logMλ)

log(τ) log log(Mλ + 2)
> c

min(1, logMλ)

log(Mλ + 1)(log log(Mλ + 2))3
(63)

for some number c depending only on c0. Hence (55) holds indeed by
the assumptions of the proposition. (64)
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[15] V. A. Kăımanovich and A. M. Vershik, Random walks on discrete groups:
boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR704539
(85d:60024)

[16] I. Kontoyiannis and M. Madiman, Sumset and inverse sumset inequalities for
differential entropy and mutual information, IEEE Trans. Inform. Theory 60

(2014), no. 8, 4503–4514. MR3245338
[17] E. Lindenstrauss and P. P. Varjú, Work in progress, 2018.
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