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Abstract

Protoplanetary disks are believed to evolve on megayear timescales in a diffusive (viscous) manner as a result of
angular momentum transport driven by internal stresses. Here we use a sample of 26 protoplanetary disks resolved
by ALMA with measured (dust-based) masses and stellar accretion rates to derive the dimensionless α-viscosity
values for individual objects, with the goal of constraining the angular momentum transport mechanism. We find
that the inferred values of α do not cluster around a single value, but instead have a broad distribution extending
from 10−4 to 0.04. Moreover, they correlate with neither the global disk parameters (mass, size, surface density)
nor the stellar characteristics (mass, luminosity, radius). However, we do find a strong linear correlation between α
and the central mass accretion rate Ṁ . This correlation is unlikely to result from the direct physical effect of Ṁ on
internal stress on global scales. Instead, we suggest that it is caused by the decoupling of stellar Ṁ from the global
disk characteristics in one of the following ways: (1) The behavior (and range) of α is controlled by a yet-
unidentified parameter (e.g., ionization fraction, magnetic field strength, or geometry), ultimately driving the
variation of Ṁ . (2) The central Ṁ is decoupled from the global accretion rate as a result of an instability, or mass
accumulation (or loss in a wind or planetary accretion) in the inner disk. (3) Perhaps the most intriguing possibility
is that angular momentum in protoplanetary disks is transported nonviscously, e.g., via magnetohydrodynamic
winds or spiral density waves.
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1. Introduction

Protoplanetary disks are thought to persist around their
parent stars for a relatively short span of time. Observations
present a clear evolutionary picture, in which both the fraction
of systems exhibiting IR excess (Hillenbrand 2005) and the
mass accretion rate onto the central star (Calvet et al. 2000)
decline on megayear timescales. Both observational indicators
are thought to be the clear signatures of the presence of the
circumstellar disks.

Astrophysical accretion disks are believed to evolve
predominantly under the action of their internal stresses
(Shakura & Sunyaev 1973; Lynden-Bell & Pringle 1974),
and protoplanetary disks are no exception to the rule. For a
long time evolutionary models of the protoplanetary disks have
been developed assuming that the disks spread viscously,
losing mass to the central star, while at the same time providing
the birth site for planet formation. The characteristic time for
the disk evolution in these models is simply the viscous time tν
at the outer radius of the disk rout,

t r . 1out
2 n»n ( )

Here ν is the kinematic viscosity, which is conveniently
parameterized using the α-prescription (Shakura &
Sunyaev 1973)

c , 2s
2 1n a= W- ( )

with 1a being constant, and where c kTs
1 2mº ( ) (T is the

disk temperature) and GM r3 1 2
W º ( ) (M is the mass of the

central star) are the local sound speed and Keplerian angular
frequency, respectively. Viscous models invariably predict that
on long timescales (exceeding the viscous time of the initial,
more compact disk, so that rout grows beyond the initial disk

radius) the central mass accretion rate Ṁ should be related to
the total disk mass Md as

M M t 3d» n˙ ( )

(up to a constant factor of order unity), with tν evaluated at rout;
see Equation (1).
The idea of the viscous evolution of the protoplanetary disks,

diffusive in character and characterized by Equations (1)–(3),
has gained certain observational support. In particular, Hartmann
et al. (1998) and Calvet et al. (2000) found that the observed
average properties of protoplanetary disks can be explained
by their viscous evolution, with efficiency corresponding to

10 2a » - .
The value of the dimensionless parameter α is believed to

directly reflect the physics of the mechanism responsible for
the angular momentum transport in the disk. In hot and well-
ionized accretion disks around compact objects transport is
generally thought to be mediated by the magnetorotational
instability (MRI; Velikhov 1959; Chandrasekhar 1960;
Balbus & Hawley 1991). The situation is less clear in the
cold and poorly ionized protoplanetary disks, where the
nonideal magnetohydrodynamic (MHD) effects are known
to weaken or even suppress the transport driven by the MRI
(Turner et al. 2014). Other potential candidates such as
gravitoturbulence (Gammie 2001; Rafikov 2015), Rossby-
wave instability (Lovelace et al. 1999), convective over-
stability (Latter 2016), vertical shear instability (Urpin &
Brandenburg 1998; Stoll & Kley 2014), and so on, have been
proposed to explain the observed evolution of the proto-
planetary disk properties.
On the other hand, recent studies argue that the non-MRI-

related transport mechanisms can hardly be responsible for the
observed disk evolution on megayear timescales, because of
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the weakness of the purely hydrodynamic transport mechan-
isms (Stoll & Kley 2014; Turner et al. 2014). Partly for that
reason, the nondiffusive angular momentum transport mechan-
isms such as MHD winds (Wardle & Koenigl 1993; Suzuki &
Inutsuka 2009; Bai & Stone 2013) and spiral shocks
(Rafikov 2002, 2016) have been gaining popularity. The
distinctive feature of these mechanisms is that they do not need
to obey Equations (1)–(3), thus resulting in a different relation
between Ṁ and Md.

The advent of ALMA made possible more precise and
focused efforts to understand protoplanetary disk evolution.
Recent measurements of the continuum and CO line emission
for a large sample of protoplanetary disks in Lupus by Ansdell
et al. (2016) and Miotello et al. (2016b), coupled with the most
up-to-date determinations of the mass accretion rate Ṁ onto
their parent stars by Alcalá et al. (2014, 2016), allowed Manara
et al. (2016) to identify a correlation between the disk mass Md

and the central mass accretion rate. The disk masses were
derived using the dust masses inferred from the continuum
submillimeter emission assuming fixed gas-to-dust ratio. This
correlation has been interpreted by Manara et al. (2016) as
providing evidence for the viscous character of the proto-
planetary disk evolution, in which the global disk properties
directly determine the mass accretion rate at its center.

In this work we focus on a different diagnostics of the
viscous disk evolution. Using a sample of protoplanetary disks
directly resolved by ALMA, with measured dust and gas
masses (Ansdell et al. 2016), as well as the central accretion
rates (Alcalá et al. 2014, 2016), we provide a direct
determination of the value of the α-parameter in individual
systems. Given that different mechanisms of the angular
momentum transport in disks predict different values of α, our
effort can provide direct information on the physical nature of
the internal stresses driving the disk evolution. Unlike other
studies (Hartmann et al. 1998; Jones et al. 2012), in this work
we (1) utilize information about the individual disk sizes
provided by ALMA and (2) do not use information on the ages
of the parent stars, which are known to be very uncertain.

Our work is organized as follows. We describe our
methodology for inferring α in Section 2 and our observational
sample in Section 2.1. Our results, including correlations of α
with different characteristics of the observed systems, can be
found in Section 3. We provide extensive discussion of our
findings in Section 4 and summarize the results in Section 5.

2. Methodology

In our analysis we will assume that, as a result of expansion
driven by internal stresses, the present-day sizes of the
protoplanetary disks in Lupus exceed their initial radii, set at
the mass infall phase. Then the disk can be approximately
considered as evolving in a self-similar fashion, and
Equations (1)–(3) should apply. Their combination yields

M

M kT
r , 4

d

2a
m

» W
˙

( )

where Ω, r, and T are evaluated at the outer disk radius rout, and
Md is the disk mass enclosed within rout.

In Equation (4) the values of rout, Md, Ṁ , and M come
directly from observations. However, to obtain α, we still need
to make assumptions about the disk temperature T rout( ). We try
three different thermodynamic prescriptions in this work.

First, we simply assume that

T r 20 K, 5out =( ) ( )

for all disks in our sample. This prescription is the same as that
used by Ansdell et al. (2016) for deriving the dust masses Mdust

of the disks from their continuum submillimeter fluxes,
providing certain internal consistency.
Second, we take the T rout( ) to correspond to the temperature

of optically thin dust, directly illuminated by the central star, in
which case

T r
L

r16
. 6out

out
2

1 4


ps
=

⎛
⎝⎜

⎞
⎠⎟( ) ( )

This expression neglects the difference between the emission
and absorption efficiencies of the grains. Stellar luminosity L
is known to us from observations.
Finally, we also use a prescription for the optically thick,

externally irradiated passive protoplanetary disks, motivated by
Chiang & Goldreich (1997), that reads

T r
L

L

M

M r
120 K

au
. 7out

2 7 1 7

out

3 7
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This prescription predicts T rout( ) lower than in the case given
by Equation (6).
We determine the full disk masses using the dust masses

Mdust derived from the continuum submillimeter fluxes
(Ansdell et al. 2016). To convert Mdust to the full disk mass
Md, we use a uniform gas-to-dust mass ratio 100c = . In
certain cases (Section 3.2) we also use the information on the
gas masses coming from the 13CO and C18O line measurements
by ALMA. However, it should be kept in mind that the disk
masses inferred this way are believed to be systematically
underestimated (see our Figure 1(c)), often by more than an
order of magnitude, as a result of CO freezeout on dust grains
or sequestration of carbon into large bodies (Ansdell
et al. 2016; Miotello et al. 2016a). As a result, it is expected
that M Md dustc= , which we employ in this work, should
provide a better estimate of the disk mass.

2.1. Observational Sample

Our approach to determining α via Equation (4) works only
for disks that have nontrivial measurements of Ṁ , Md, and rout,
as well as of L and M. For this reason, we are interested only
in resolved disks with significant detections of both the
continuum dust emission by ALMA and the stellar mass
accretion rate Ṁ via spectroscopy.
Ansdell et al. (2016) have carried out an ALMA survey of 89

protoplanetary disks in the Lupus star-forming complex at
∼150–200 pc away from the Sun (age 3± 2Myr; Alcalá et al.
2014). They directly resolved many sources and provided
initial measurements of the dust and gas masses for about two-
thirds and one-thirds of their sample, correspondingly. Miotello
et al. (2016b) carried out a more sophisticated analysis of this
data set based on work of Miotello et al. (2016a), providing
more accurate dust and gas mass measurements. At the same
time, Alcalá et al. (2014, 2016) carried out X-shooter
spectroscopy for many of these targets, deriving central mass
accretion rates Ṁ based on the UV excesses.
By examining the samples presented in these studies, we

selected 26 objects, which possess resolved disks with well-
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measured Mdust and Ṁ . Out of these disks, 18 also have
significant measurements of the gas mass based on CO line
measurements. Two disks—Sz84 and MYLup—fall in the
transitional disk category (Alcalá et al. 2016). The parameters
of all 26 systems are listed in Table 1. We adopt Mdust and disk
sizes from Ansdell et al. (2016), gas masses Mg from Miotello
et al. (2016b), and Ṁ and stellar parameters from Alcalá et al.
(2014, 2016).

For simplicity, in this study we associate the outer disk
radius rout with the semimajor axis obtained in Ansdell et al.
(2016) by simple Gaussian fitting of the resolved continuum
intensity pattern. This alone may introduce a systematic
uncertainty in the determination of rout at the level of tens of
percent. An even more serious error may arise from the
possible difference between the radii of the gas and dust disks,
evidence for which has been found in a number of systems
(Andrews et al. 2012; Cleeves et al. 2016; Walsh et al. 2016).
We discuss the impact of the rout uncertainty on our results in
Section 4.1.

We show some characteristics of our systems in Figure 1.
We display with different symbols objects that have

characteristic accretion time M Md ˙ shorter (open) or longer
(filled) than 10Myr (we use this convention in other figures as
well). Even though in this work we prefer to be unbiased by the
ages of individual systems, the Lupus objects are unlikely to be
older than 10Myr (Alcalá et al. 2014). In the framework of the
viscous evolutionary picture the existence of objects with
M M 10 Myrd >˙ would imply the breakdown of the assump-
tion of the disk spreading in a self-similar fashion. This
suggests that such objects (seven in our sample) should be
treated with caution. We also single out one system, 2MASS
J16081497-3857145, which is close to the brown dwarf regime
and is different from the rest of the sample (shown as a red
filled hexagon).
The top panel shows that, unlike Manara et al. (2016), we do

not observe a significant correlation between Md and Ṁ (see
Table 2 for the statistical parameters of correlations shown in
our plots: Pearson correlation coefficient ρ, Spearman’s rank
correlation coefficient rs, and p-value—probability of the null
hypothesis that the two variables have zero correlation). This is
most likely explained by the modest size of our sample

Figure 1. Different characteristics of the systems in the sample of objects used in this work (see Table 1) shown to reveal possible correlations. Quantitative
characteristics of the possible correlations can be found in Table 2. Here and in all subsequent plots open (filled) hexagons correspond to objects with the characteristic
accretion time M Md ˙ lower (higher) than 10 Myr. Red filled hexagons show object 2MASS J16081497-3857145, which is close to the brown dwarf regime. (a)
Central accretion rate Ṁ vs. disk mass Md inferred from the continuum dust emission. Given the limited size of our sample, we do not find strong evidence for a
correlation between Ṁ and Md in our sample (see Manara et al. 2016). (b) Disk size rout vs. Md, showing a correlation between rout and Md. The linear regression is
shown as the blue dashed line (see text for its explicit form). (c) Gas mass inferred from molecular line observations Mg (only for objects with significant detections of
Mg) vs.Md, showing that the former usually underestimates the dust-based disk mass. (d) Ṁ vs. M, showing a hint of a correlation (Muzerolle et al. 2003; Alcalá et al.
2016) contaminated by large scatter. (e) rout vs. M, showing no correlation. (f) Md vs. M, exhibiting weak correlation (Pascucci et al. 2016) with a lot of scatter.
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Table 1
Observational Sample

Name L (L) R (R) M (M) M Mlg yr 1-
[ ˙ ( )] SMA (arcsec) Mdust (MÅ) M M Mmin , maxg g g[ ( ) ( )] (MJ) d (pc)

Sz65 0.8318±0.3623 1.84±0.40 0.76±0.18 −9.61±0.42 0.171±0.002 15.1559±0.0752 0.64 [0.2, 1.5] 150
Sz68 5.1286±2.1919 3.14±0.67 2.13±0.33 −8.42±0.41 0.159±0.002 35.3387±0.1081 0.68 [0.2, 1.5] 150
Sz69 0.0880±0.0410 0.97±0.22 0.19±0.03 −9.48±0.41 0.092±0.012 3.9858±0.0658 0.034 [0.018, 0.07] 150
Sz71 0.3090±0.1420 1.43±0.33 0.42±0.11 −9.06±0.42 0.558±0.003 39.0213±0.1481 0.096 [0.07, 0.3] 150
Sz72 0.2520±0.1160 1.29±0.30 0.38±0.09 −8.66±0.42 0.094±0.012 3.3137±0.0658 L 150
Sz73 0.4190±0.1930 1.35±0.31 0.82±0.16 −8.18±0.41 0.245±0.01 7.1514±0.1293 L 150
Sz83 1.3130±0.6050 2.39±0.55 0.75±0.19 −7.19±0.42 0.379±0.001 100.3265±0.1692 1.5 [0.48, 4.0] 150
Sz84 (td) 0.1220±0.0560 1.21±0.28 0.18±0.03 −9.27±0.41 0.392±0.006 7.6708±0.094 0.11 [0.06, 0.22] 150
Sz88A 0.4880±0.2250 1.61±0.37 0.57±0.15 −8.14±0.42 0.102±0.02 3.7351±0.1253 L 200
Sz90 0.6607±0.2845 1.64±0.36 0.79±0.17 −8.68±0.41 0.143±0.011 9.1205±0.1922 0.056 [0.035, 0.1] 200
Sz98 2.5119±1.0755 3.20±0.69 0.74±0.20 −7.26±0.42 0.974±0.006 99.1394±0.5933 0.066 [0.04, 0.1] 200
Sz103 0.1880±0.0870 1.41±0.30 0.25±0.03 −9.04±0.41 0.122±0.012 4.8214±0.117 L 200
Sz108B 0.1514±0.0813 1.33±0.36 0.19±0.03 −9.45±0.41 0.236±0.005 11.1845±0.1421 0.65 [0.2, 1.5] 200
Sz110 0.2760±0.1270 1.61±0.37 0.26±0.03 −8.60±0.41 0.153±0.009 6.4341±0.1212 L 200
Sz113 0.0640±0.0300 0.83±0.19 0.19±0.03 −8.85±0.41 0.118±0.007 9.3378±0.1128 L 200
Sz114 0.3120±0.1440 1.82±0.42 0.23±0.03 −8.99±0.41 0.342±0.002 40.28±0.1713 0.096 [0.065, 0.28] 200
Sz129 0.3715±0.1600 1.23±0.27 0.80±0.16 −8.41±0.41 0.458±0.002 42.5653±0.1222 0.046 [0.03, 0.09] 150
Sz130 0.1600±0.0740 1.03±0.24 0.37±0.09 −9.15±0.42 0.246±0.028 1.4547±0.0823 0.036 [0.011, 0.05] 150
Sz131 0.1318±0.0583 1.04±0.23 0.30±0.04 −9.25±0.41 0.116±0.018 2.0141±0.0682 L 150
MYLup (td) 0.7762±0.3315 1.13±0.24 1.02±0.13 −9.65±0.41 0.593±0.003 41.5524±0.1786 0.083 [0.05, 0.21] 150
SSTc2d J154508.9-341734 0.0575±0.0283 0.85±0.21 0.14±0.02 −8.41±0.41 0.173±0.005 10.874±0.1175 0.77 [0.25, 2.0] 150
SSTc2d J160002.4-422216 0.1479±0.0666 1.20±0.27 0.24±0.04 −9.69±0.41 0.749±0.004 28.1662±0.1481 0.14 [0.11, 0.7] 150
2MASS J16085324-3914401 0.3020±0.1477 1.57±0.38 0.32±0.04 −9.80±0.41 0.08±0.009 8.1763±0.117 0.034 [0.02, 0.07] 200
SSTc2d J161029.6-392215 0.1585±0.0698 1.29±0.29 0.22±0.03 −9.82±0.41 0.238±0.021 2.9831±0.1462 0.16 [0.1, 0.56] 200
SSTc2d J161243.8-381503 0.6166±0.2691 1.91±0.42 0.47±0.11 −8.78±0.42 0.162±0.008 12.4838±0.2047 L 200
2MASS J16081497-3857145 0.0087±0.0047 0.33±0.09 0.10±0.02 −10.27±0.42 0.114±0.019 3.4761±0.1253 0.022 [0.01, 0.045] 200

Note. For each object we list the luminosity L, radius R, mass M, and accretion rate Ṁ of its parent star, the outer semimajor axis (SMA) and dust and gas masses (Mdust and Mg, the latter with upper and lower limits)
of the disk, and the distance to the object d. Data come from Alcalá et al. (2014, 2016), Ansdell et al. (2016), and Miotello et al. (2016a). The presence of “(td)” near the object name indicates a transitional disk.
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compared to that of Manara et al. (2016) and the significant
scatter around the M Mdust˙ – correlation found in that work.

On the other hand, we do find an appreciable correlation
between the disk size and mass, as Figure 1(b) demonstrates—
more extended disks typically have larger dust masses. The
best-fit bisector regression (Isobe et al. 1990) describing this
correlation is r Mlg 3.05 0.16 0.6 0.06 lg dout =  + ( ) ( )
(with rout and Md measured in au and M), but there is
significant scatter around it. This relation may seem to suggest
that the values of the disk surface density at the outer edge

r M rdout out
2S µ( ) should be roughly the same. This might raise

a worry that rout, interpreted by Ansdell et al. (2016) as the
outer extent of the disk, in fact corresponds to the detection
limit of ALMA. However, Figure 3(c) shows that this is not the
case, and that M rd out

2 spans almost two orders of magnitude
for our sample, thanks to the large scatter in Figure 1(b).

Figure 1(d) demonstrates a hint of a correlation between Ṁ
and stellar mass M. Such correlation has been known to exist
for quite some time (Muzerolle et al. 2003; Alcalá et al. 2016),
although in our case it is difficult to see because of large scatter
and the small size of our sample. For the same reason we see
only a weak correlation between the disk mass Md and M in
Figure 1(f), which is also expected based on previous studies
(Pascucci et al. 2016). We find no correlation between the disk
size and M; see Figure 1(e).

3. Results

In Figure 2 we show the histograms for the values of α
computed through Equation (4) for different thermodynamic

assumptions, as shown in the panel. One can see that different
methods of calculating the outer disk temperature do not result
in large differences in the values of α. Regardless of our

Table 2
Statistical Characteristics of the Data

Variables Figures ρ rs p-value

Ṁ–Md 1(a) 0.446 0.3 0.137
rout–Md 1(b) 0.7 0.631 5.5 10 4´ -

Mg–Md 1(c) 0.375 0.34 0.166

Ṁ–M 1(d) 0.496 0.444 0.023
rout–M 1(e) 0.198 0.195 0.339
Md–M 1(f) 0.476 0.407 0.039
α–Md 3(a) 0.004 −0.093 0.653
α–rout 3(b) −0.01 −0.045 0.828
α–M rd out

2- 3(c) 0.02 0.054 0.792

α– M r Mdout
1 2 1


-( ) 3(d) 0.18 0.209 0.306

α–Md 4(a) 0.036 −0.084 0.684
α–Md 4(b) 0.028 −0.082 0.689
α–Ṁ 5 0.877 0.868 9.4 10 9´ -

α–Ṁ 6(a) 0.866 0.854 2.8 10 8´ -

α–Ṁ 6(b) 0.868 0.858, 2.1 10 8´ -

α–Ṁ 7 0.808 0.743 4.1 10 4´ -

ν–Ṁ 8(a) 0.841 0.767 4.9 10 6´ -

ν–Md 8(b) 0.304 0.119 0.564
ν–rout 8(c) 0.517 0.421 0.032
α–M 9(a) 0.439 (0.354) 0.414 (0.341) 0.035 (0.095)
α–L 9(b) 0.448 (0.326) 0.373 (0.295) 0.061 (0.153)
α–R 9(c) 0.45 (0.312) 0.335 (0.252) 0.094 (0.223)
Ṁ–Tvir 10 0.177 0.235 0.247
α–Facc 11 0.79 0.768 4.6 10 6´ -

M Md ˙ –Ṁ 12(a) −0.753 −0.806 6.9 10 7´ -

M Md ˙ –Md 12(b) 0.254 0.268 0.186

Note. Variables: combination of physical parameters for which the correlation is assessed; figure: number of the figure in which this correlation is illustrated; ρ:
Pearson correlation; rs: Spearman’s rank correlation coefficient; p-value: probability of a null hypothesis that the two variables are completely uncorrelated. Values in
parentheses correspond to the sample with the near-brown-dwarf object 2MASS J16081497-3857145 excluded.

Figure 2. Distribution of the inferred values of α, computed via Equation (4).
Solid black, dotted red, and dashed green histograms correspond to T rout( )
prescriptions given by Equations (5)–(7), correspondingly. One can see a large
spread in the values of α, covering more than two orders of magnitude.
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assumptions, the distribution of α does not seem to show
complicated substructure, roughly consistent with being either
peaked (for T rout( ) given by Equations (6) and (7)) or
approximately uniform (for T r 20out =( ) K).

The most important feature of these distributions is their
broad range. Irrespective of the T rout( ) prescription, we find
that in our sample of 26 disks the values of α span more than
two orders of magnitude—from 10−4 to 0.04. This spread is
hardly compatible with the simple idea of a single angular
momentum transport mechanism setting the value of α, as one
would then expect a narrowly peaked distribution of α values.
Nor could it be several physical mechanisms operating in
different systems (e.g., different instabilities driving the
transport), as then one would expect to see more substructure
in the distribution of α.

As we show in Section 4.1, this spread is unlikely to be
forced by the intrinsic scatter or observational errors in our
sample. Some of this dispersion can be explained by the fact
that all objects with low inferred 6 10 4a < ´ - have accretion
times M M 10 Myrd >˙ (e.g., see Figure 3). As mentioned in
Section 2.1, this likely implies that these systems do not evolve
in a self-similar fashion, which makes their α determined via
Equation (4) suspect. This, however, cannot explain the two-
orders-of-magnitude spread in α for the rest of our objects.
Thus, we are left to hypothesize that there must be some other
reasons for this behavior of α in different systems, and we try
to identify them next.

3.1. Dependence of α on Global Disk Properties

What we are calculating via Equation (4), given the
observables, is the value of α at rout, which determines the
global evolution of the disk. For this reason it is natural to seek
possible connection of α with the global variables characteriz-
ing the disk on scales rout~ .

In Figure 3 we plot α computed for T r 20out =( ) K versus
the disk mass Md; its radial extent rout; M rd out

2 , which
characterizes the surface density at rout; and M r Mdout

1 2 1


-( ) ,
which appears in Equation (4) together with Ṁ . The errors on α
were calculated quadratically from the uncertainties of the
observables, as follows from Equation (4). It is clear that these
plots do not reveal significant correlations of α with these

global variables. This is also confirmed by the quantitative
metrics of the possible relations between the pairs of variables
shown in Table 2.
One may wonder whether this lack of correlation with the

global disk parameters is forced by our simple assumption
about the thermal state of the disk, represented by Equation (5).
To address this issue, in Figure 4 we show the analog of
Figure 3(a), i.e., α versus Md, but calculated for T rout( ) given
by Equations (6) and (7). One can see that, again, no
correlation is present in the data, implying that this result is
robust with regard to our assumptions about the disk
temperature structure. To summarize, we do not find any clear
dependence of α on the most obvious global characteristics of
the disk.

3.2. Dependence of α on Ṁ

Effective viscosity computed via Equation (4) depends not
only on the global disk characteristics but also on the central
mass accretion rate Ṁ . In Figure 5 we plot the effective
viscosity α for T r 20out =( ) K versus Ṁ . This figure clearly
reveals a strong correlation (Pearson coefficient

M, 0.877r a =( ˙ ) ) between α and Ṁ . Simple linear bisector
regression (Isobe et al. 1990) results in a best-fit line

Mlg 5.98 0.91 0.97 0.1 lg 8a =  + ( ) ( ) ˙ ( )

(with Ṁ measured in M yr−1), which is consistent with a
linear dependence. This relation links the broad distribution of
α seen in Figure 2 with the spread of Ṁ in our sample.
The α–Ṁ correlation is robust with respect to our

assumptions about T rout( ), as further demonstrated in Figure 6.
There we again observe that Ṁ and the effective viscosity
parameter computed using Equations (6) and (7) are strongly
correlated, despite the different assumptions about disk
thermodynamics.
Correlation persists even if we use the CO-based gas masses

Mg, available for 18 objects in our sample, instead of the dust-
based masses Md when computing α. This is illustrated in
Figure 7. The spread in the values of α measured this way is
considerably larger than in Figures 5–6, and the best-fit line is
significantly offset from relation (8), illustrating the problem

Figure 3. Values of α plotted against some global characteristics of the disk: (a) disk mass Md; (b) outer radius rout; (c) M rd out
2 , which is a proxy for the surface

density at rout; and (d) M r Mdout
1 2

( ) , which is a combination of variables entering Equation (4), expressed in units of (au/Me)
1/2. No statistically significant

correlations between α and these global variables are found (see Table 2 for quantitative metrics).
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with the CO-based disk masses (Ansdell et al. 2016; Miotello
et al. 2016a).

If we were to take the CO-based masses at face value, we
would conclude from Figure 7 that, in the framework of the
viscous model for the disk evolution based on Equations (1)–
(3), some systems require 1a . As such values of α are
unlikely, this could, again, demonstrate the problem with the
disk mass determinations based on the CO line emission.

The existence of a tight correlation between α and Ṁ is a
nontrivial and rather unexpected result. Indeed, if the angular
momentum transport in the disk were effected by a mechanism
characterized by a unique value of α, then Figure 5 would look
very differently, with α clustering around a well-defined value
regardless of Ṁ , and the slope of the Ma ( ˙ ) relation being close
to zero, as illustrated by the cyan line in this figure. The

10 2a = - corresponding to this line is for illustrative purposes,
although this value has been suggested by previous studies
(Hartmann et al. 1998). In that case the variation of Ṁ would
have been exactly compensated by the variation of

r M Tdout
2W ( ). Figure 3(d) shows that the latter variable

(proportional to M r Mdout
1 2 1


-( ) ) exhibits essentially no corre-

lation with α, unlike Ṁ entering expression (4) for α in an
identical fashion. Thus, the very fact that a strong α–Ṁ
correlation exists tells us something interesting.

We also explored the behavior of the dimensional kinematic
viscosity r M Md

2n » ˙ , which plays the role of a diffusion
coefficient for viscous spreading of the disk; see Figure 8. One
possible advantage of using ν instead of α is that its
determination does not involve assumptions about the

thermodynamic properties of the disk. One can see that ν is
also strongly correlated with Ṁ (although the spread around the
best-fit line is larger than in Figures 5–6), while at the same
time being independent of either Md or rout. This again suggests
that there is a certain causal relation between Ṁ and the
inferred disk viscosity.

3.3. Dependence of α on Stellar Properties

Having found correlation of α with Ṁ , which is a local
characteristic measured at the star, we also checked whether α
could have some relation to other stellar parameters.
In Figure 9 we examine this possibility, finding no

significant correlations between α and the stellar mass,
luminosity, or radius. Weak correlations that may be present
in the full data set vanish when we remove the brown-dwarf-
like object 2MASS J16081497-3857145 (which has very
distinct properties and strongly affects covariances between
the variables) from the sample.
This lack of correlation is not surprising from the physical

point of view, as one may expect only a relatively weak effect
of M (e.g., through local shear, proportional to M1 2

 ) or L
(on which the disk temperature might depend) on the global
disk properties.

4. Discussion

Having established a close relation between the mass
accretion rate onto the central star Ṁ and the inferred value
of α on the global scale of the disk, we now seek to understand
the implications of this finding. When doing this, it is also
important to keep in mind the lack of any significant

Figure 4. Values of α computed assuming T rout( ) given by (a) Equation (6)
and (b) Equation (7), plotted as a function of the disk mass Md. No correlations
emerge here, in agreement with Figure 3(a).

Figure 5. Effective viscosity α, computed for T=20 K (Equation (5)), as a
function of the central mass accretion rate Ṁ . One can clearly see a strong
correlation between the two variables. The blue line is the best fit to the data
given by Equation (8). The horizontal cyan line is the dependence, around
which the data points would be expected to cluster if the angular momentum
transport were characterized by a single value of α (taken to be equal to 10−2

for illustrative purposes). Such clustering is clearly not exhibited by our
sample, necessitating modifications to the simple picture of the viscous
evolution of the protoplanetary disks.
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correlations of α with other obvious characteristics of the
system, be it global (like Md or rout) or local, stellar (e.g., M,
or L).

There are different ways in which such a correlation could
emerge. First, it may result from various systematic effects
related to the measurement of the observables (Section 4.1).
Second, there may be a physical reason for the correlation. This
would be the case if, for example, some processes related to
accretion of gas onto the stellar surface are able to influence the
value of α globally, on scales rout~ (Section 4.2). Alternatively,
the value of the α-parameter may depend on some yet-
unidentified property of the protoplanetary disk, resulting in
observed spread, and giving rise to a variation of Ṁ
(Section 4.3). Third, the α–Ṁ relation (8) may simply reflect
the way in which Ṁ enters the determination of α in
Equation (4), with Ṁ being, in fact, largely unrelated to the
global disk characteristics. This would be the case if the central
Ṁ were decoupled from the global accretion rate set by the disk
properties, e.g., as a result of some instability operating in the
inner disk, or mass accumulation in a dead zone (Section 4.4).
Decoupling would also be natural if the angular momentum
transport in protoplanetary disks does not have a diffusive
character (Section 4.5) and is not characterized by
Equations (1)–(3).

We now examine each of these possibilities in detail.

4.1. Observational Biases

Our calculation of α involves several observables—Ṁ , Md,
rout—and we need to make sure that the origin of the α–Ṁ
correlation is not related to the possible systematic biases in
their measurement. We do this next for each of these variables.

4.1.1. Uncertainty in Ṁ

Determination of stellar Ṁ is a challenging task, which was
accomplished in Alcalá et al. (2014, 2016) by measuring the UV
excess above the stellar photospheric emission. A variety of
factors, including the differences between the stellar evolution
tracks computed by different groups, contribute to the uncertainty
in the subsequent derivation of Ṁ , which we conservatively
adopted to be about 0.4 dex (Alcalá et al. 2016). However, it is not
easy to see how they could enforce a systematic (and not random)
correlation as given by Equation (8).
One way to do this might involve the unobserved portion of

the accretion luminosity, which could skew the Ṁ determina-
tion in a systematic way. Indeed, it may be the case that in
many systems most of the accretional energy GM M R » ˙ is
re-emitted in the (high-energy) spectral region inaccessible to
ground-based instruments. In that case the accretion luminosity
measured from the ground would account for only a small
fraction of the bolometric accretion flux. If gas accretion is
mediated by a stellar magnetosphere, which truncates the disk,
then one may expect (Calvet & Gullbring 1998) the
discrepancy in Ṁ determination to correlate with the virial
temperature T k GM Rvir  m= ( ) of the gas striking the stellar
surface in freefall—the higher Tvir would shift emission from
accretion shock to shorter wavelengths and result in a more

Figure 6. Correlations between the central mass accretion rate Ṁ and α,
computed using different assumptions about disk temperature: (a) T(r) given by
Equation (6), and (b) T(r) given by Equation (7). Correlation between Ṁ and α
clearly persists in both cases.

Figure 7. α computed using gas masses Mg inferred from the CO line
observations, instead of the dust-based masses Md computed using the
continuum submillimeter emission (displayed in Figures 5–6), shown as a
function of Ṁ . Despite the use of a different tracer of the disk mass, the α–Ṁ
correlation (dashed line) is still present at high significance. The solid line
corresponds to correlation (8), which is clearly offset from the best fit for CO-
based α and Ṁ .
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severe underestimate of Ṁ . This deviation of Ṁ from its true
value would then lead to an underestimate of α inferred
through Equation (4), perfectly correlated with the biased
estimate of Ṁ .

To address this issue, in Figure 10 we plot Ṁ versus the
virial temperature calculated using stellar parameters from
Table 1. One can see no correlation of the kind suggested
above, with systems having higher Tvir not showing system-
atically lower values of Ṁ . The two variables appear
completely uncorrelated in our sample. This suggests that the
determination of Ṁ does not suffer from the bias related to the
unobserved accretion luminosity.

4.1.2. Uncertainty in rout

In this work we also implicitly assumed that rout, obtained in
Ansdell et al. (2016) by fitting a Gaussian to the observed
intensity pattern, is the true outer disk radius, which encloses its
full mass. One may worry that, in fact, this radius corresponds
to the sensitivity limit of ALMA and in reality the disk extends
beyond rout, so that both rout and Md underestimate their
true values. However, Figure 3(c) demonstrates that this is not
the case: the values of M rd out

2 proportional to the surface
brightness of the outer disk do not cluster around a single value
(which could be interpreted as the sensitivity limit of
observations), but rather extend over almost two orders of
magnitude.

A potentially more serious issue with rout may arise in
systems with different apparent sizes of the gas and dust disks.
Evidence for this discrepancy has been found recently in TW
Hya (Andrews et al. 2012), IM Lup (Cleeves et al. 2016), and
HD 97048 (Walsh et al. 2016), with the dust continuum
emission being radially more centrally concentrated by a factor
of 2–3 than the gaseous disk emitting in 12CO lines. This has
been interpreted as the evidence for the radial inward drift of
solids in these disks (Birnstiel & Andrews 2014), which
decouples radial distributions of the gas and dust. If this
interpretation is correct, then the dust masses would still
properly reflect the full disk mass, but the size of the main mass
reservoir (gas disk) would be underestimated by a factor of

several. Although this issue should be further explored
observationally for our Lupus sample, we believe that it is
unlikely to affect our main conclusions for the following
reasons.
First, the inferred α depends on rout rather weakly, e.g., as

rout
1 2a µ if T=20 K; see Equation (4). Thus, a possible

underestimate of rout by a factor of 2–3 would not explain the
broad distribution of the inferred values of α. Second, it is not
clear that the gas disk sizes based on 12CO measurements
represent the radii where most of the gas mass is concentrated
(which is what the actual rout should correspond to). Because of
the optical thickness of the 12CO lines, it is generally believed
that the CO isotopologues are better tracers of the gas mass
distribution than the 12CO molecule. And the sizes of regions
emitting in 13CO and C18O lines tend to be less discrepant with
the dust-continuum-based radii than the ones based on 12CO
emission (Cleeves et al. 2016; Schwarz et al. 2016). This
statement seems to hold in our sample too (Ansdell et al. 2016),
based on the disk images obtained using different tracers.

4.1.3. Uncertainty in Md

Finally, we discus the effect of the uncertainty in the disk
mass measurement. Miotello et al. (2016a) derived more
accurate dust-continuum-based masses of the disks from the
sample of Ansdell et al. (2016) using detailed radiative transfer
calculations of the thermal structure of the disk (instead of
assuming a single T=20 K as in Ansdell et al. 2016). They
found that Ansdell et al. (2016) systematically overestimate Md

by about a factor of 2 for M M10d
2 -

. However, this bias
would simply uniformly shift our α–Ṁ relation, without
affecting its scatter or slope. A similar effect would be caused
by the possibility of an inward drift of solids (see Section 4.1.2),
which tends to decrease the gas-to-dust ratio χ in the disk
region probed by the submillimeter continuum measurements.
However, such bias would just shift down (roughly uniformly)
the disk mass enclosed within the dust disk radius, without
breaking the Ma– ˙ correlation or increasing the spread of α.
Moreover, Equation (4) remains valid even if rout and Md do

not characterize the full disk: as long as M rd <( ) accounts for

Figure 8. Dimensional kinematic viscosity ν characterizing global disk evolution, computed for T=20 K, as a function of several global parameters: (a) central mass
accretion rate Ṁ , (b) disk mass Md, and (c) outer disk radius rout. There is a clear correlation between ν and Ṁ , but no correlation between ν and either Md or rout.
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the full disk mass enclosed within some radius r, their values
can be used instead ofMd and rout for the determination of α via
Equation (4).

Based on this discussion, we conclude that observational
uncertainties and biases are unlikely causes of correlation (8)
and can hardly account for the full spread in the inferred values
of α seen in Figure 2.

4.2. Ṁ Setting α

Another possibility for the origin of the α–Ṁ correlation is
that the central Ṁ has a direct physical effect on α. It is difficult
to see how this connection can be realized in practice, since α

is set by the disk physics on global scales, while Ṁ is a local
property, characterizing the innermost region of the disk.
One possibility for establishing this connection is if the

accretion energy release at the stellar surface has a direct
impact on the value of α on global scales. This may be the case
if the value of α depends on the degree of ionization (as may be
expected for the nonideal MRI), and the accretional luminosity
plays a major role in determining the ionization balance in the
outer disk. If that were the case, one would expect to see a
correlation between the global α and the accretion energy flux
F GM M R r4 out

2
 p= ˙ ( ) at r rout= .

Figure 11 demonstrates that such correlation does indeed
exist. However, it shows larger scatter around the best-fit line
than the correlation in Figure 5. This would not be expected if

Figure 9. Effective viscosity α, computed for T=20 K, plotted vs. stellar parameters: (a) stellar mass M, (b) luminosity L, and (c) radius R. No clear correlations
are present in the data, especially when the near-brown-dwarf object 2MASS J16081497-3857145 (red filled hexagon) is not included in the sample.

Figure 10. Stellar Ṁ plotted vs. the virial temperature at the stellar surface Tvir.
No obvious correlation is seen in the data, demonstrating the lack of biases
related to the unobserved fraction of the accretion luminosity.

Figure 11. Effective viscosity plotted as a function of the accretion energy flux
at the outer radius of the disk, F GM M R r4 out

2
 p= ˙ ( ).
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it were F rather than Ṁ alone being the real culprit behind the
α–Ṁ correlation. Moreover, it is also unlikely that the spectral
range used for inferring Ṁ (longward of 310 nm; Alcalá et al.
2016) dominates the ionization balance of the disk. Nor is it
clear that the accretion energy release provides a major
contribution to the flux of ionizing photons impinging on the
disk (Glassgold et al. 2000). Furthermore, it is not obvious why
this physical mechanism should give rise to an Fa ( )
dependence with a slope so close to unity.

One final argument against a physical effect of the central Ṁ
on the global value of α is that the disk with

F F r0.8 1.6a µ µ -( ) dependence, suggested by the best fit in
Figure 11, should have a rather unusual structure. Indeed,
inside rout the disk should converge to a constant Ṁ structure,
meaning that M r T0.1 1nS µ µ -˙ , where we used Equation (2)
for ν and took r 1.6a µ - . Since the disk temperature T does not
increase with r, this would mean that Σ should be an increasing
function of r. This conclusion is hardly compatible with our
understanding of the protoplanetary disk structure.

For all these reasons we do not find the direct physical effect
of stellar Ṁ on α to be a plausible explanation of the α–Ṁ
correlation.

4.3. α Setting Ṁ

A physical connection between α and Ṁ may also emerge in
the direction opposite to that considered in Section 4.2, with α
directly affecting Ṁ . Such a connection is rather natural in light
of Equation (4). However, in the conventional picture α has a
unique value, which is incompatible with the distribution
shown in Figure 2. Thus, the broad range of α in the observed
sample has to be caused by some additional environmental
parameter, which controls angular momentum transport and
allows α to vary over almost three orders of magnitude. And
then the α–Ṁ correlation would naturally emerge from
Equation (4), with the distribution of α directly translating
into the broad range of the Ṁ values.

The hidden parameter controlling α cannot be one of the
global disk variables—Md, rout, global surface density—as
Figure 3 shows no correlation of α with them. The cooling time
of the disk, which directly depends on these global disk
characteristics, also cannot be the controlling parameter. This
likely excludes the vertical shear instability (Urpin &
Brandenburg 1998), which sensitively depends on the local
cooling time (Stoll & Kley 2014; Lin & Youdin 2015), from
being a candidate for driving the viscous evolution of the
protoplanetary disks.

At the same time, there are a variety of possible controlling
parameters if transport in the disk on scales ∼rout is driven by
the (nonideal) MRI. They include (but are not limited to)
thermal gas pressure (Ross et~al. 2016), ionization fraction
(Jin 1996; Fleming et al. 2000; Bai & Stone 2011), strength of
the magnetic field in the disk (Bai & Stone 2011), or its
geometry (Simon et al. 2013a, 2013b). Most of these physical
characteristics are difficult to determine observationally at the
moment.

The idea of global (but variable from object to object) α is
likely incompatible with the self-similar viscous evolution of
the disk in systems with long M M 10 Myrd ˙ . Self-
similarity implies that accretion time should be equal to the
system age, and Lupus objects are not that old (Alcalá et al.
2014). This suggests that the assumption of self-similarity is
violated for this subset of our objects. Nevertheless, we

believe that the variation of α between different objects
controlled by an additional parameter is a more plausible way
of producing an α–Ṁ correlation than the one outlined in
Section 4.2.

4.4. Decoupling of Stellar Ṁ from the Global Mass
Accretion Rate

A correlation between the inferred α and Ṁ would also
naturally emerge if the Ṁ measured through stellar accretional
luminosity is, in fact, unrelated to the global mass accretion
rate M td n .
In the standard viscous disk theory the two should be equal,

as demonstrated by Equation (3). However, if stellar Ṁ is
somehow decoupled from the global accretion rate, then
Equation (4) would naturally result in a strong linear
correlation between the inferred α (unrelated to the real global
α) and Ṁ . This would be true even if the real α set by the
physics of the angular momentum transport on scales rout~
takes on a unique value. Errors in measuring Ṁ could lead to
this situation, but they would need to be very dramatic
(potentially exceeding two orders of magnitude), which is
unlikely, as we showed in Section 4.1.
A decoupling between Ṁ and M td n (by more than two

orders of magnitude, to explain the range of inferred α)
requires a modification of the simple picture of viscous disk
accretion. It can arise, for example, if some instability operates
in the inner regions of protoplanetary disks, dramatically
modulating local Ṁ compared to its global value set on scales

rout~ . The characteristic timescale for such variability should
be substantial for it to have escaped detection until now. One
may suspect FUor and EXor outbursts (Audard et al. 2014) to
be the known realizations of such an instability. However, one
would then expect the distribution of α to be bimodal, with
most disks being in quiescence and having low α, and a small
population of disks undergoing an outburst and having high
inferred α (Audard et al. 2014).
Another way of decoupling stellar Ṁ from the global

accretion rate is if the viscous mass flow toward the star
accumulates in a substantial mass reservoir at some inter-
mediate radii, e.g., in a dead zone (Gammie 1996). This
reservoir should be able to accumulate large amounts of mass,
comparable to the total disk mass at the start of its evolution.
This may be difficult to realize on timescales comparable to the
disk lifetime (Myr), necessitating periodic deposition of mass
from the reservoir onto the star, and making this scenario
similar to the aforementioned instability in the inner disk.
Alternatively, gas reaching the inner regions of the disk may

be lost in a wind (photoevaporative or MHD driven). It can also
be consumed by vigorously accreting giant planets residing in
the inner disk. If that were the case, then in many systems the
rate of mass removal from the global inward accretion flow
should be matching the accretion rate set on large scales, with
only a small amount of mass reaching the star. The wind is
likely to also affect the angular momentum budget of the disk
in a nontrivial manner, a possibility that we consider next.

4.5. Nonviscous Evolution of the Protoplanetary Disks

One final, very intriguing possibility is that the angular
momentum and mass transport in the protoplanetary disks have
a nonviscous (nondiffusive) character. In this case
Equations (1)–(3) do not hold, and an α–Ṁ correlation
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emerges simply as a consequence of calculating α through
Equation (2), with no real physical meaning for α. Also, stellar
Ṁ may have little to do with the global disk parameters,
although the work of Manara et al. (2016) does show evidence
for a correlation between Md and Ṁ (which is not obvious in
our sample of resolved disks).

Such nonviscous transport may be caused by the magneti-
cally controlled winds (Blandford & Payne 1982; Konigl 1989;
Wang & Goodman 2017). Outflows from the disks of YSOs are
a well-studied observational phenomenon (Frank et al. 2014).
Recently self-consistent launching of the magnetocentrifugal
winds has been observed in simulations of magnetized
accretion disks (Suzuki & Inutsuka 2009; Bai & Stone 2013),
adding support to this possibility.

Another potential driver of the nondiffusive evolution of the
protoplanetary disks could be the density waves excited by
massive perturbers, e.g., planets or stellar companions (Goodman
& Rafikov 2001; Rafikov 2002, 2016; Dong et al. 2016). Global
spiral waves have been observed recently in several proto-
planetary disks, e.g., in SAO 206462 (Garufi et al. 2013), MWC
758 (Benisty et al. 2015), HD 100453 (Wagner et al. 2015), etc.

We believe that in light of the perceived difficulty of the
known local turbulent transport mechanisms to drive the
protoplanetary disk evolution on megayear timescales (Turner
et al. 2014), the nondiffusive mechanisms for driving disk
evolution should be considered very seriously. Our work may
thus provide strong indirect evidence in favor of this
possibility.

4.6. Comparison with Previous Studies

There have been a handful of studies trying to understand
viscous evolution of the protoplanetary disks based on
observational data. Using the mean properties of a large
sample of the protoplanetary disks, Hartmann et al. (1998) have
concluded that their effective viscosity should be narrowly
clustered around 10 2a » - . In this work we determine α for
individual objects and find a much broader distribution of α,
extending over more than two orders of magnitude (Figure 2).
This difference suggests that care should be taken when
making inferences based on the averaged properties of the
sample.

Some studies of viscous evolution of the protoplanetary
disks have tried to verify Equation (3) with tν set equal to the
age of the system t (Hartmann et al. 1998; Jones et al. 2012;
Manara et al. 2016). Identification of tν with the age of the
central star is a valid procedure as long as t exceeds the
viscous time of the disk at its initial radius r0. This assumption
is similar to our implicit assumption that the current disk size
exceeds its initial size, r rout 0 , so that viscous evolution
enters the self-similar regime and the memory of initial
conditions gets erased. However, the problem with using this
metric of disk evolution is that the determination of ages of the
young stars is notoriously difficult (Soderblom et al. 2014)

Despite this drawback, Hartmann et al. (1998) and Jones
et al. (2012) have tried to verify that M M td ~˙ (up to a
constant factor of order unity) using observational data. Both
studies found significant deviations (up to two orders of
magnitude) from this simple relation. In Figure 12 we show the
characteristic accretion time for the objects in our sample,
plotted against Ṁ and Md. Dotted lines show the range of ages
for the Lupus objects in our sample (Alcalá et al. 2016; we do

not attempt to use uncertain ages of the individual objects). It is
clear that accretion times of many objects fall outside this
range, by more than an order of magnitude in some cases. This
agrees with the conclusions of Hartmann et al. (1998) and
Jones et al. (2012).
In Figure 12(a) one can also see a strong anticorrelation

between M Md ˙ and Ṁ , with a much weaker statistical
connection for Md (see Figure 12(b)). This demonstrates the
key role of Ṁ for the accretion time, just as we found for α in
Section 3.2.
Jones et al. (2012) were not able to account for the

discrepancy between M Md ˙ and t even using sophisticated
disk models including the effects of dead zones, photoevapora-
tion, planet formation, etc. Instead, they concluded that it
follows from the systematic errors in the determination of Md.
However, we find that the systematic underestimate (or
overestimate) of Md would result in a uniform overestimate
(underestimate) of α, but would not explain the emergence of
the α–Ṁ correlation. Our results suggest that the discrepancy
between M Md ˙ and t is more likely to be caused by the
decoupling of the central Ṁ from the global mass accretion rate
M td n computed using the standard theory of viscous disk
evolution, as described in Sections 4.4–4.5.
We also note that the scenario in which α is controlled by

a yet-unidentified variable (Section 4.3) is not expected to
produce significant deviations from the M M td ~˙ relation
(which is insensitive to α in the self-similar regime). This
may argue against this scenario for the protoplanetary disks,
although more work is certainly needed to resolve this issue.
Our approach bypasses the issue of uncertain stellar ages by

simply ignoring them altogether. Instead, we use spatial
information to gain insight on the physical mechanisms
responsible for the angular momentum transport in the
protoplanetary disks by measuring α. Past efforts (Hartmann
et al. 1998; Jones et al. 2012) did not have the ability to do that
because they lacked accurate information on the sizes of disks
in individual objects. Thus, our work represents an independent
way of testing the theory of viscous evolution of the
protoplanetary disks.

Figure 12. Characteristic accretion time M Md ˙ shown as a function of (a) Ṁ
and (b) Md. Dotted lines illustrate the approximate upper and lower age limits
for the objects in Lupus (Alcalá et al. 2014).
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4.7. Implications for the M M
˙ – Correlation

It has long been known that accretion rates onto young stars
tend to scale rather strongly with the stellar mass M, albeit
with a large scatter (Muzerolle et al. 2003; Alcalá et al. 2016).
To explain this correlation, several models were proposed
(Alexander & Armitage 2006; Dullemond et al. 2006), suggest-
ing that the Ṁ–M relation reflects the dependence of initial
conditions for the disk evolution on the stellar mass. The
substantial scatter around the Ṁ–M relation has been
explained as arising as a result of the spread in ages of objects
(Alexander & Armitage 2006) or initial angular momentum of
their disks (Dullemond et al. 2006). A generic feature of all
such models is their reliance on simple viscous models for the
subsequent disk evolution, which use a single value of α
(independent of radius, for all systems) to predict the central
accretion rate Ṁ . Our results strongly suggest that such an
interpretation may be problematic.

Even if the disk evolution is truly viscous and can be
characterized by a single (global) value of α in a given system,
as assumed by Alexander & Armitage (2006) and Dullemond
et al. (2006), our interpretation of the Ma– ˙ correlation
presented in Section 4.3 still implies a significant variation of
α (by orders of magnitude) between different objects. Whether
the Ṁ–M correlation would hold once the variation of α
(dependent on yet-undetermined disk characteristics) is
accounted for in these viscous models is not clear at the
moment.

The relevance of viscous models for explaining the Ṁ–M

correlation is even less clear if stellar Ṁ is decoupled from the
global value of the accretion rate, as discussed in Sections 4.4
and 4.5. Viscous models necessarily assume that the global
disk properties uniquely determine stellar Ṁ , which may not be
the case, as we have shown. On the other hand, one could argue
that the decoupling of stellar Ṁ from the global accretion rate is
the ultimate cause of the large scatter in the Ṁ–M relation
(more so than the dispersion of stellar ages or initial conditions
for the disk evolution).

In any case, our results strongly suggest that any interpreta-
tion of the Ṁ–M correlation should be based on a clear
understanding of what physics is actually reflected in the
observed stellar accretion rates.

5. Summary

In this work we explored viscous evolution of the
protoplanetary disks. Using an observational sample of 26
disks resolved with ALMA with measured masses (based on
submillimeter continuum) and central accretion rates, we
derived the values of the dimensionless viscosity parameter
α, with the goal of constraining the mechanism of the angular
momentum transport in the disk. Our findings can be
summarized as follows.

1. The distribution of inferred values of α extends over
more than two orders of magnitude, from 10−4 to 0.04,
with no obvious preferred value inside this interval.

2. We found no correlation of α with either the global disk
parameters (mass, size, surface density) or stellar
parameters (luminosity, mass, radius).

3. The main finding of this work is the discovery of a strong
linear correlation between α and central mass accretion
rate Ṁ , which is robust with regard to the thermodynamic
assumptions about the disk. This correlation persists even

if we use the CO-based gas masses for computing α, and
holds not only for α but also for the dimensional
kinematic viscosity ν on global scales.

These results suggest that a simple picture in which viscous
evolution of the protoplanetary disks is driven by a physical
process (e.g., MRI) with a single, well-defined value of α is too
simplistic and must be modified. We find that observational
errors and biases cannot account for the observed α–Ṁ
correlation, and we seek other explanations. We find it unlikely
that gas accretion onto the stellar surface can have a direct
effect on α (e.g., through the accretional energy release) on
scales of order the disk size (tens to hundreds of au). We
propose three other possibilities for explaining the α–Ṁ
correlation, which effectively assume that either α or Ṁ is
decoupled from the global characteristics (mass, size) of the
disk. In that case Equation (2) naturally leads to a linear
relation between α and Ṁ . These possibilities are as follows.

1. The value of α in every disk is controlled by some yet-
unobserved variable, variation of which is responsible for
the broad range of α. This, in turn, is the main cause of
the variation of Ṁ . In the case of accretion driven by the
(nonideal) MRI, the role of such a control parameter may
be played by the disk ionization, as well as the strength or
geometry of the magnetic field in the disk.

2. Stellar Ṁ may be decoupled from the global mass
accretion rate by some instability operating in the inner
disk, or mass accumulation in a dead zone, or a wind with
high mass-loss rate. In this case the inferred values of α
do not characterize the global disk evolution.

3. Finally, disk evolution may have a nondiffusive (non-
viscous) character, in which case the inferred α has no
physical meaning. This may be the case if mass accretion
in protoplanetary disks is driven by, e.g., magnetocen-
trifugal winds or spiral density waves.

Future work aimed at expanding the sample of resolved
protoplanetary disks with well-measured masses and accretion
rates will help us identify the physical reason behind the
observed α–Ṁ correlation.

I am indebted to Megan Ansdell and Juan Manuel Alcalá for
sharing their data with me, to Carlo Felice Manara and Eugene
Churazov for useful discussions, to Ruobing Dong for
insightful comments on the manuscript, and to an anonymous
referee for the constructive and detailed review. Financial
support for this study has been provided by the NSF via grant
AST-1409524 and NASA via grant 15-XRP15-2-0139.
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