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Individual participant time-to-event data from multiple prospective epidemiologic studies enable detailed inves-
tigation into the predictive ability of risk models. Here we address the challenges in appropriately combining such
information across studies. Methods are exemplified by analyses of log C-reactive protein and conventional risk
factors for coronary heart disease in the Emerging Risk Factors Collaboration, a collation of individual data from
multiple prospective studies with an average follow-up duration of 9.8 years (dates varied). We derive risk prediction
models using Cox proportional hazards regression analysis stratified by study and obtain estimates of risk discrim-
ination, Harrell’'s concordance index, and Royston’s discrimination measure within each study; we then combine the
estimates across studies using a weighted meta-analysis. Various weighting approaches are compared and lead us
to recommend using the number of events in each study. We also discuss the calculation of measures of reclassi-
fication for multiple studies. We further show that comparison of differences in predictive ability across subgroups
should be based only on within-study information and that combining measures of risk discrimination from case-
control studies and prospective studies is problematic. The concordance index and discrimination measure gave
qualitatively similar results throughout. While the concordance index was very heterogeneous between studies,
principally because of differing age ranges, the increments in the concordance index from adding log C-reactive
protein to conventional risk factors were more homogeneous.

C index; coronary heart disease; D measure; individual participant data; inverse variance; meta-analysis; risk
prediction; weighting

Abbreviations: CHD, coronary heart disease; C index, concordance index; CRP, C-reactive protein; D measure, discrimination
measure; NRI, Net Reclassification Index.

The derivation and assessment of risk prediction models
using multiple epidemiologic studies has several advantages
in comparison with analysis of single studies. These include
greater precision, reduced overfitting, and increased general-
izability (1, 2). Availability of individual participant data
from several studies, as opposed to aggregate-level statistics,
also allows detailed characterization of risk prediction mod-
els and investigation of potential effect modifiers (3). We pre-
viously described methods for investigating exposure-risk
relationships using individual participant data from multiple
studies (3) and proposed measures of discrimination for the

stratified Cox model (4). In this paper, we extend and dem-
onstrate methods for assessing risk prediction models using
individual participant data from multiple studies based on
weighted meta-analysis techniques. We describe assessment
of the predictive ability of a risk prediction model, the change
in predictive ability upon moving from one model to another,
and the comparison of predictive abilities across different
subgroups of the population. Such techniques for combining
information across studies have not previously been de-
scribed in detail in the literature and are of relevance to the
growing number of collaborative consortia (5—13).
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We illustrate these methods using data from the Emerging
Risk Factors Collaboration, which comprises individual rec-
ords from over 2.2 million participants in 125 prospective
studies of major cardiovascular disease outcomes and cause-
specific mortality in predominantly Western populations
(14—17). The studies include mostly prospective cohort stud-
ies, but also some nested case-control and nested case-cohort
studies. Examples presented in this paper focus on prediction
models for coronary heart disease (CHD), defined as first
nonfatal myocardial infarction or coronary death, and exam-
ine the predictive ability of C-reactive protein (CRP) concen-
tration when added to conventional risk predictors. Data on
CRP and conventional risk predictors at baseline were avail-
able from 37 prospective studies involving 165,856 partici-
pants without a history of cardiovascular disease, among
whom 8,806 incident CHD events occurred over an average
of 9.8 years of follow-up (for definitions of study names, see
Web Table 1 (available at http:/aje.oxfordjournals.org/)).

METHODS

Derivation of a risk prediction model over multiple
studies

Initially we assume that all data are derived from prospec-
tive cohort studies; other study designs are addressed later.
Risk prediction models are constructed using Cox propor-
tional hazards models (18), stratified by study and, if appli-
cable, by other characteristics such as sex. For studies
s=1,...,8, with strata k=1, . . ., K, and individuals i =
I, ..., N with baseline risk factors x; = (x;1, X2, . . ., X;p),

Model Derivation
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the probability of survival beyond time ¢ after baseline takes
the form

S(t]xi, s,k) = So,x(£)PE) (1)

The evolution of risk over time is modeled differently for
each study, as represented by the nonparametric baseline sur-
vivor function Sp ;i (¢). The vector = (By, Bo, . . ., Bp) Tep-
resents the multivariable adjusted log hazard ratios, assumed
to be common to all studies, per unit increase in the risk pre-
dictors x;. An individual’s estimated linear predictor, or risk
score, is simply Bx; = ZP B,xip, and the person’s absolute
risk of experiencing an event by time ¢ is estimated by
1 — 307syk(t)exp(ﬁxi)'

Fitting the stratified model (equation 1) is a 1-stage ap-
proach to model derivation across studies (Figure 1). Alterna-
tively, a 2-stage approach could be undertaken: First, a
separate Cox proportional hazards model is fitted in each
study, and then its coefficients are combined over studies to
obtain B using either fixed- or random-effects (multivariate)
meta-analysis (3, 19, 20). A 2-stage random-effects meta-
analysis has the advantage of allowing for heterogeneity in
the true coefficients between studies, giving a larger variance
for B. A multivariate meta-analysis combines estimates for
the vector of correlated coefficients, taking account of its co-
variance matrix, over the multiple studies; separate univariate
meta-analyses ignore the correlations between the coeffi-
cients. With the 2-stage approach, additional estimation is re-
quired to obtain study-specific baseline survivor functions
necessary for making absolute risk predictions. The 1- and
2-stage approaches often give similar § estimates (21), and

Assessment of Predictive Ability
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Figure 1. Overall schemes for model derivation and testing of predictive ability over multiple studies. In the model derivation process, study-
specific data sets are used to estimate the pooled vector of coefficients () for the included risk predictors, either by means of a 1-stage stratified
model or by a 2-stage approach applying meta-analysis of study-specific estimates. In assessment of predictive ability, the pooled B is used
to calculate the pooled discrimination statistic, either using a 1-stage stratified approach or by meta-analyzing study-specific estimates in a
2-stage approach. ws represents study-specific weights applied in meta-analysis approaches; possible choices are described in the text.
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hence risk scores, and the 1-stage model (equation 1) has the
advantage of simplicity.

The selection of risk predictors may depend on several fac-
tors, including statistical significance, clinical importance,
costs, and predictive ability. This paper focuses on the latter.
The primary descriptions in this paper assume that the time
scale used is duration of time in the study and that the propor-
tional hazards assumption is met (3, 22). Assessment of pre-
dictive ability given more complex model formulations is
discussed later.

Example: Deriving risk prediction models using data from
the Emerging Risk Factors Collaboration. Examples pre-
sented in this paper are CHD risk models with conventional
risk predictors and log CRP. Deaths from other causes or
other nonfatal vascular outcomes (e.g., stroke) are regarded
as censored observations. There is considerable variation in
the censoring proportions (which equal 1 minus the event
proportions) across studies (Web Figure 1). Table 1 shows
summary statistics and p using each of the described ap-
proaches. The 1-stage stratified model (equation 1) and the
2-stage fixed- and random-effects approaches all yield simi-
lar values for B; the standard errors for the random-effects
method are greater, reflecting between-study heterogene-
ity. We checked the proportional hazards assumption by
assessing the interaction between log CRP and time in a
time-dependent Cox model using a 2-stage approach (i.e.,
study-specific interactions were first calculated and then com-
bined using random-effects meta-analysis (3)). There was no
evidence against the proportional hazards assumption (17),

and the 1-stage prediction model (equation 1) is used for all
further examples. The 2 corresponding risk scores (without
and with log CRP) are given in the footnotes of Table 1.
The distributions of the linear predictors are approximately
normally distributed (Web Table 2).

Measures of discrimination

Measures of discrimination quantify the degree to which a
model can predict the order of events. Two such measures are
the concordance index (C index) (22, 23) and the discrimina-
tion measure (D measure) (24), which are pertinent because
of their relevant interpretation, familiarity for the intended
clinical and epidemiologic audience, and low sensitivity to
censoring in the absence of marked skewness of the linear
predictor. In a single unstratified study, the C index estimates
the probability of concordance between predicted risk and the
observed order of events for a randomly selected pair of par-
ticipants (22, 23). Only informative pairs (where it is possible
to determine which person suffered the first event) are used:
This introduces some sensitivity to censoring (25), which we
ignore because currently available solutions either assume
correct model specification (25) or do not accommodate cen-
soring by the end of follow-up (26). The D measure estimates
the mean log hazard ratio for the event of interest for a ran-
domly selected pair of participants (for one individual in the
top half of the predicted risk distribution versus another indi-
vidual in the bottom half) (24). The variance of the C index
can be calculated by bootstrapping or by means of a jackknife

Table 1. Characteristics of Study Participants in the Emerging Risk Factors Collaboration and Comparison of Log Hazard Ratios for Coronary

Heart Disease in Multivariable-Adjusted Models

Multivariable-Adjusted Log HR? (SE) Heterogeneity

Mean (SD) sﬂgj'ezfts %  1-Stage Stratified  2-Stage Fixed-  2-Stage Random- 2 o5%cCl
Model*° Effects Model® Effects Model® °

Age at survey, years 64.2 (8.6) 0.567 (0.013) 0.565 (0.013) 0.529 (0.043) 76 67,82
Male sex 81,732 49 NA NA NA NA NA
Current smoking® 35,577 21 0.516 (0.024) 0.529 (0.024) 0.515 (0.050) 63 48,73
Systolic blood pressure, mm Hg 131 (19) 0.202 (0.009) 0.203 (0.009) 0.211 (0.017) 30 0, 53
History of diabetes® 10,790 7 0.557 (0.038) 0.587 (0.037) 0.600 (0.049) 24 0, 49
Total cholesterol, mmol/L 5.84 (1.06) 0.234 (0.010) 0.235 (0.010) 0.216 (0.018) 32 0, 54
HDL cholesterol, mmol/L 1.27 (0.38) —-0.247 (0.014)  —0.240 (0.014)  —0.232(0.023) 52 32,67
Log CRP, mg/L 0.55 (1.09) 0.206 (0.012) 0.207 (0.012) 0.201 (0.013) 9 0, 38

Abbreviations: Cl, confidence interval; CRP, C-reactive protein; HDL, high-density lipoprotein; HR, hazard ratio; NA, not applicable; SD, standard
deviation; SE, standard error.

@ Log HR for coronary heart disease per 1-SD increase or in comparison with the relevant reference category, using data from 37 studies
(165,856 participants with 8,806 cases of coronary heart disease).

® Implies that log HRs were estimated using the stratified model described in equation 1.

¢ The 1-stage stratified model was used to construct the following risk scores (note that log HRs now represent a 1-unit increase in continuous risk
factors)—risk score without CRP: 0.068 x age + 0.576 x smoker + 0.012 x systolic blood pressure + 0.584 x diabetic + 0.221 x total cholesterol —
0.756 x HDL cholesterol; risk score with CRP: 0.066 x age + 0.516 x smoker + 0.011 x systolic blood pressure +0.557 x diabetic + 0.220 x total
cholesterol —0.652 x HDL cholesterol + 0.189 x log CRP.

9 Implies that log HRs were estimated by meta-analyzing study-specific estimates assuming fixed or random effects, respectively.

¢ Reference categories were non—current smoker for smoking and nondiabetic for history of diabetes.
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procedure (27), whereas the variance of the D measure is sim-
ply a log hazard ratio variance. When stratification (e.g., by
study and sex) is used, the selection of pairs is constrained
to be within the same stratum.

Calculation of measures of discrimination using
multiple studies

A 2-stage approach can be used to estimate discrimination
measures over multiple studies (Figure 1). Firstly, the dis-
crimination measure is estimated within each study s, denoted
by 6,, with corresponding standard error (SE) 6 cs The study-
specific estimates are then combined using a welghted aver-
age to obtain the pooled estimate o:

o= ©)

with SE 64 = /(ZZW%; (3)

where w; is the weight applied to each study’s estimate. The
estimated O represents the discrimination measure when pairs
of individuals are selected via a 2-stage sampling scheme:
First one of the S studies is selected with probability propor-
tional to wy, and then a pair is selected at random from that
study. We choose w; as the study-specific number of events,
since this is the principal determinant of study precision.
Since this weighting scheme is concerned with sampling
from existing studies only, it is not relevant to allow for het-
erogeneity in 6, across studies.

Possible alternative weights include inverse-variance
weights from a fixed- or random-effects meta-analysis. The
latter results in a C index which estimates the probability of
concordance for a randomly selected pair of participants from
a new study, sampled from a distribution from which the ex-
isting studies are believed to have come.

Alternatively, 1-stage stratified calculations of the discrim-
ination measure could be used, stratifying by study (4)
(Figure 1). For the stratified D measure, this gives study
weights similar to the number of events. For the stratified C
index, however, studies receive weights according to the
number of contributing informative pairs, which generally
depends on the total number of study participants. As a result,
large studies with few events can receive substantial weight,
which may be unappealing.

The impact of heterogeneity on the imprecision of the
pooled estimate of discrimination can be quantlﬁed by the
I? statistic, defined as the percentage of variance in the study-
specific point estimates that is attributable to true between-
study heterogeneity as opposed to sampling variation (28).
Values of I” close to 0% correspond to lack of heterogeneity,
and values close to 100% correspond to heterogeneity much
larger than the sampling variation. The primary determinants
of heterogeneity in study-specific estimates of discrimination
0, are: 1) study-specific distributions of the risk predictors,
with wider ranges of continuous risk predictors leading to
higher values of 6, and 2) variation in the relevance of the
pooled B to individual studies.

Example: Calculation of C index and D measure. Web
Figure 1 illustrates study-specific C indices for a conventional
CHD prediction model (including all predictors in Table 1 ex-
cept log CRP), with pooled estimates derived using various
weighting schemes. The second and third columns show that
the proportion of events varies from 0.5% to 20%. Weighting
by the number of informative pairs gives inappropriate weight-
ing across studies, with 2 large studies (the Reykjavik Study
and the Women’s Health Study) receiving 57% of the com-
bined weight. When weighting is done by number of events
or by inverse variance assuming fixed effects, large studies
with few events are assigned comparatively less weight, but
the contribution of studies with many events, such as the Reyk-
javik Study, remains substantial. In contrast, weights assuming
random effects are more uniformly assigned across studies.
This is expected in the presence of large between-study hetero-
geneity, as is the noticeably wider 95% confidence interval for
the pooled estimate. This latter approach allows calculation of
a 95% prediction interval (29) to indicate the range of values
that might be expected in a new study when there is between-
study heterogeneity (Web Figure 1).

Similar results are seen with the D measure (Web Figure 2),
and there is strong correlation between the study-specific C
index and D measure (Web Figure 3). Heterogenelty in study-
specific absolute values for both measures is substantial (/* =
93% for the C index and I* = 91% for the D measure). Meta-
regression (21, 30) reveals strong positive correlations
between study-specific 8, (C index or D measure) and the
standard deviation of age (Figure 2, top panels). After the
meta-regression adjustment, the /> value for the C index is
reduced to 75%, remaining substantial.

Meta-regression also reveals correlations between study-
specific 6, and the standard deviation of the prognostic
index and, to a lesser extent, its skewness and Kkurtosis
(Web Figure 4, top panels), probably due to the extensive
censoring. Calculations are stratified by sex, preventing sex
from contributing to calculation of 6, and eliminating
between-study heterogenelty caused by different proportions
of males and females. I* values i in Table 1 indicate moderate
heterogeneity in study-specific BX for some predictors (par-
ticularly age and smoking), which may also explain some
of the heterogeneity in 6.

Calculating a change in discrimination using
multiple studies

Often interest is in the difference in 0 between 2 alternative
models, denoted A = 0,04c12 — Omodel 1- AS before, we com-
bine study-specific differences in the C 1ndex or D measure,
A = O5model2 — O5,model 1, With variances c

D @
w262
with SE &; = 7(Zzw )AZ (5)

where 62 for the C index difference is directly estimable
using the jackknife procedure (27) and for the D measure
the difference is obtained using nonparametric bootstrapping.

Am J Epidemiol. 2014;179(5):621-632
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Figure 2. Meta-regression of study-specific concordance index (C index) and discrimination measure (D measure) for model 1, and subsequent
changes upon addition of log C-reactive protein, on the study-specific standard deviation (SD) of age. Model 1 included conventional risk factors:
age, smoking status, systolic blood pressure, history of diabetes, total cholesterol, and high-density lipoprotein cholesterol, and results are stratified
by sex. The size of each circle represents the inverse variance weight applied to each study in the meta-regression.

When pooling study-specific changes, weighting by the
number of events is attractive for the same reasons as those
discussed above for pooling absolute values. This scheme
also ensures consistency between the difference in the pooled
model-specific 6 estimates (Bmode12 — Omodel 1) and the result
obtained by pooling the within-study differences A,. Such
consistency is not true of inverse-variance weighting ap-
proaches, which may give a pooled estimate close to the
null, since small values of A, tend to have small variances.
_ When model 2 extends model 1 through added predictors,
A represents the incremental predictive ability of the added
predictors, and heterogeneity in A; depends on 1) the study-
specific distributions of the added predictors (wider ranges
leading to greater Ay) and 2) the relevance of the pooled §
for the added predictors to individual studies. In addition,
since the C index has an upper bound of 1, improvements
in the C index are more difficult to achieve for higher starting
values. Given heterogeneity in study-specific C indices for
model 1, we might expect consequent heterogeneity in A;.
Since the D measure is a log hazard ratio, this potential “ceil-
ing effect” does not apply.

Example: Calculating a change in discrimination. For our
example, model 1 contains conventional CHD risk predictors
nested within model 2, which additionally contains log CRP

Am J Epidemiol. 2014;179(5):621-632

(Table 1). There are significant increases in the C index and D
measure upon the addition of log CRP under all weighting
schemes (Web Figures 5 and 6). The clinical interpretation of
this is discussed in detail elsewhere (17). Heterogeneity in Ay is
less than that for absolute values 0, (I2 =0% and I* = 26% for
C-index and D-measure changes, respectively). This lack of
heterogeneity can be attributed to similarity in the distribution
of log CRP across studies and to homogeneity in B; for this pre-
dictor (I* =9%). A, is also independent of study-specific age
range (Figure 2, bottom panels), as well as the standard devia-
tion, skewness, and kurtosis of the prognostic index (Web Fig-
ure 4, bottom panels), and we see little impact of the ceiling
effect with the C index. The correlation between within-study
changes in the C index and D measure is strong (Web Figure 3).

Subgroup-specific measures of discrimination

Of possible interest are subgroup-specific changes in dis-
crimination, A,; =0, model 2 — Om.moder 1 for m=1,..., M
subgroups, upon addition of a new predictor. These can be
estimated as follows: 1) using equation 1, fit model 1 (without
the new predictor) and model 2 (with the new predictor and its
interaction with the subgroup variable); 2) calculate study- and
subgroup-specific discrimination measures for each model as
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és,m,model 1 and és,m,modelz and their difference, As,m; and
3) pool As’m and their variance estimates across studies as
in equations 4 and 5 using study weights equal to the number
of events within the subgroup, to obtain subgroup specific
estimates A,, and correspondmg standard errors 6; . The
null hypothesis that A, is the same across all subgroups can
be tested using a x> test with M — 1 degrees of freedom. To
maintain within-study comparisons between subgroups, only
studies with data on all subgroup levels are used (e.g., only
studies with both men and women are used to compare sex-
specific subgroups). This avoids erroneous conclusions re-
sulting from between-study comparisons (3).

Example: Calculating measures of discrimination across
subgroups.  Figure 3 shows that log CRP appears to provide
less improvement in discrimination among women and non-
smokers, although these results will require confirmation
elsewhere before being adopted into clinical guidelines (17).

Other issues

Time-dependent risk predictions. Measures of discrimi-
nation assess how well participants are ranked in terms of

risk predictions. In a proportional hazards model, where du-
ration of time in the study is employed as the time scale and
baseline covariates are used, ranking of #-year risk does not
change with #; hence, measures of discrimination are stable
over time and Bx; is sufficient for their calculation. If time-
dependent covariates are introduced or if nonproportional
hazards are modeled, the ranking of #-year risk can change
with z. In such situations, we suggest calculating the predicted
risk estimates for each individual for a single (or a selection
of) fixed time point(s) . Each set of 7-year risk predictions
can be used to rank individuals and calculate 7-year-specific
measures of discrimination using the methods previously de-
scribed, but with censoring of follow-up at the selected ¢ so
that only the order of events occurring before ¢ is considered.
Since measures of discrimination will now change with time,
careful choice of ¢ is required. If a selection of fixed points 7 is
used, then it may be useful to plot the 7-year-specific mea-
sures against 7.

Similar considerations are relevant when using age as the
time scale (31-33); in this case, participant entry into the
model is staggered (with entry at starting age) and, again,
ranking of #-year risk changes with choice of ¢. Here, risk

A) B)
Variable or No. of No. of CHD P Value for P Value for
Subgroup Studies Participants Cases Heterogeneity Heterogeneity
Sex
Male 24 53,037 4,189 - — ——
Female 24 58,199 2,515 —in— <0.0001 = <0.0001
Smoking Status
Other 36 128,676 5,403 —— 0.004 - 0.004
Current 36 35507 3,380 —a— ' —a
History of Diabetes
No 36 144,353 7,491 0.752 —a— 0.173
Yes 3 10788 1,004 | ' T
Framingham 2008 10-Year CVD Risk
<10% 30 62,715 932 @ ——— & —
10%-<20% 30 47,161 2,527 —— 0027 —- 0.147
>20% 30 47,069 4,808 — —
Overall 37 165,856 8,806 - NA - NA
T T T T T T T T T
—-0.005 0 0.005 0.010 0.015 0.020 -0.08 -0.04 0 0.04 0.08 0.12 0.16

C Index Change (95% CI)

D Measure Change (95% Cl)

Figure 3. Changes in the concordance index (C index) (section A) and the discrimination measure (D measure) (section B) upon movement from
model 1 to model 2 within various population subgroups. Model 1 included conventional risk factors: age, smoking status, systolic blood pressure,
history of diabetes, total cholesterol, and high-density lipoprotein cholesterol, and results are stratified by sex. Model 2 additionally included log
C-reactive protein and an interaction term for interaction between this predictor and each subgroup factor. Bars, 95% confidence intervals (Cls).
CHD, coronary heart disease; CVD, cardiovascular disease; NA, not applicable.
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from “age-at-entry” to “age-at-entry plus 7 years” can be used
to rank participants in calculation of the discrimination mea-
sure. With this approach, follow-up should be censored at
“age-at-entry plus ¢ years.” A simpler approach is possible
for the D measure, in which the original algorithm is used
but with age as the time scale in the Cox models. This will
yield lower D measures, since age is effectively adjusted
for in the discrimination calculation.

Case-control studies. It is possible to estimate predictive
ability in case-control studies using the area under the re-
ceiver operating characteristic curve (22). However, matched
case-control studies create 2 problems: 1) coefficients for
matched variables are essentially meaningless (or null), lead-
ing to distortion of risk predictions, and 2) the restricted dis-
tribution of matched variables means that discrimination
appears reduced. Hence, as has been reported previously
(34, 35), values of discrimination obtained are commonly in-
consistent with those from cohort studies.

Example: C statistic for nested case-control studies. ~Figure
4 illustrates that the C statistic is substantially lower in nested
age-matched case-control studies than in cohort studies, and
the corresponding change upon addition of log CRP is
greater.

Measures of reclassification

Measures of reclassification quantify the extent to which
individuals are more appropriately classified into risk catego-
ries using a new model versus an old model. Participants are

Study Design and
Base Model Variable(s)

Cohort
(37 studies, 8,806 CHD cases)

C Statistic (95% CI

placed into predefined risk categories based on their pre-
dicted absolute risk of experiencing an event by time ¢ ac-
cording to each model. Reclassification can be quantified
using the Net Reclassification Index (NRI) (36), which is
the sum of 2 proportions: 1) the proportion of events by
time ¢ that move up through the risk categories upon using
the new model and 2) the proportion of nonevents at time #
that move down through the risk categories upon using the
new model. We suggest reporting these 2 meaningful propor-
tions (as an “event NRI” and “nonevent NRI,” respectively)
along with an overall NRI. Participants censored before ¢
years are excluded from these calculations.

For multiple studies, and having derived the prediction
model using only studies with at least ¢ years of follow-up,
a 1-stage approach for the calculation of the NRI across mul-
tiple studies can be applied by calculating the 2 proportions
across all studies. A 2-stage approach could also be taken, in
which the NRI is calculated within each study before pooling.
However, study-specific estimates of the NRI can be unstable
if few participants experience an event and, hence, very few
events change categories. It is also unclear which weights to
apply; while weighting by the number of events is intuitively
sensible for measures of discrimination and for the “event
NRI” component, it is less relevant for the “nonevent NRI.”
Weighting the “event NRI” and the “nonevent NRI” by the
number of events and nonevents, respectively, is equivalent
to the 1-stage approach. Inverse-variance weighting produces
results closer to the null, since studies with few movements
between risk categories will have small standard errors and

Age

Above and smoking status
Above and systolic BP

Above and history of diabetes
Above and total cholesterol

Above and HDL cholesterol

Case-Control
(8 studies, 1,566 CHD cases)

Age -+ 0.4997 (0.4823, 0.
Above and smoking status il 0.5176 (0.5004,
Above and systolic BP - 0.5430 (0.5261,
Above and history of diabetes - 0.5506 (0.5337, 0.
Above and total cholesterol -+ 0.5849 (0.5681,
Above and HDL cholesterol - 0.6053 (0.5888, 0.
T T T
05 06 07 08
C Statistic (95% CI)

0.6441

(
0.6614 (0.6558, 0.
0.6789 (0.6733, 0.
0.6863 (0.6807,
0.6977 (0.6923, 0.
0.7080 (0.7027,

0.6383,

B)

C Statistic Change (95% Cl) Z P Value
0.6499) - 0.0224 (0.0191, 0.0258) 13.2 <0.0001
0.6671) - 0.0153 (0.0126, 0.0180) 11.1  <0.0001
0.6844) - 0.0103 (0.0081, 0.0124) 9.2 <0.0001
0.6918) - 0.0087 (0.0067, 0.0107) 8.5 <0.0001
0.7030) - 0.0083 (0.0063, 0.0102) 8.4 <0.0001
0.7133) - 0.0051 (0.0035, 0.0066) 6.3 <0.0001
0.5171) - 0.0458 (0.0358, 0.0557) 9.0 <0.0001
0.5347) — 0.0337 (0.0257, 0.0417) 8.2 <0.0001
0.5600) — 0.0246 (0.0178, 0.0313) 7.1  <0.0001
0.5676) - 0.0224 (0.0160, 0.0289) 6.8 <0.0001
0.6017) — 0.0191 (0.0130, 0.0252) 6.1 <0.0001
0.6218) - 0.0122 (0.0070, 0.0173) 4.6 <0.0001

T T T
0 0.02 0.04 0.06

C Statistic Change (95% ClI)

Figure 4. Comparison of C statistics for the cohort and case-control study designs. The concordance index (C index) is shown for cohort studies,
and the area under the receiver operating characteristic curve is shown for case-control studies. Section A shows values for base models with the
progressive addition of conventional risk factors for coronary heart disease (CHD), and section B shows the resulting change in the C statistic upon
addition of log C-reactive protein (CRP) to each base model. Bars, 95% confidence intervals (Cls). BP, blood pressure; HDL, high-density

lipoprotein.
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receive greater weight. The most appropriate weighting
scheme to use may depend on the similarity of studies in
terms of risk distribution, which affects the proximity of par-
ticipant risk predictions to the risk category boundaries and
hence the degree of movement between categories. Ideally
the risk distribution within each study should match that of
the target population, which would make inverse-variance
weighting more clinically relevant. In the absence of data
of this type, reweighting calculations to mimic movement
that would be expected in a standard target population (e.
g., a standard European population) is a possibility.

Calculation of the NRI is less feasible for case-control
studies, since it is not possible to directly derive absolute
risk estimates from these studies. Matching (particularly by
age) also affects the proportions of participants placed into
each category such that they are not representative of the tar-
get population.

Overall CHD Cases

Example: Calculation of the NRI.  Figures 5 and 6 illus-
trate different weighting schemes in the estimation of the
NRI for models with and without log CRP using conven-
tional 10-year risk categories (<10%, 10% to <20%, and
>20%). Studies with fewer than 10 years of follow-up and
participants censored before 10 years are excluded, and thus
the NRI estimates are not directly comparable with the C
index or D measure. The power of the NRI is also lower,
since it relies on only a few categories of predicted risk.
Inverse-variance weighting (particularly fixed effects) gives
large weight to 1 low-risk study (the Women’s Health Study)
in which the majority of participants (all female) are non-
events in the lowest risk category. Since there is little move-
ment between risk categories, the study’s NRI estimate has a
small standard error and receives a large inverse-variance
weight. Our current recommendation is to use the 1-stage
calculation.

SEof %WT %WT %WT

Cohort No. in10 Years NRI (95% ClI NRI Event 10 IV-FE IV-RE
1
MOSWEGOT 359 5 —r -0.54 (-1.59,0.52) 0.54 0.12 0.03 285
FINRISK97 1,150 56 - 0.00 (-1.18,1.18) 0.60 1.38 0.03 2.36
EAS 741 48 — T -0.70 (-2.46,1.05) 0.89 119  0.01 1.16
BRUN 817 26 —— —-0.29 (-1.29,0.70) 0.51 0.64  0.04  3.11
HISAYAMA 2,577 60 - 0.10 (-0.38,0.57) 0.24 148 0.16 8.26
MOGERAUG1 873 59 —— -0.14 (-2.01,1.74) 096 146  0.01 1.02
QUEBEC 1,219 67 —— —-0.39 (-1.70,0.93) 0.67 166  0.02 1.95
FINRISK92 891 99 : 0.17 (-2.32,2.66) 1.27 245 0.01 059
ULSAM 926 103 T 2.28(-0.95,551) 165 255 000 0.36
RANCHO 1,381 116 — -1.56 (-3.22,0.11) 0.85 287 0.01 1.27
ROTT 4,437 184 T 0.09 (-0.42,0.60) 0.26 455 0.14  7.71
WHS 23,287 234 0.00 (-0.02,0.02) 0.01 579 97.13 16.22
SHS 3,112 280 : 0.73(-2.40,3.87) 160 6.92 000 0.38
USPHS2 10,715 305 u -0.47 (-0.69,-0.25) 0.11 7.54  0.74 13.47
EPICNOR 15,902 330 -0.18 (-0.37,0.01) 0.10 8.16  1.02 14.13
ARIC 9,326 374 : -0.12(-2.11,1.87) 1.01 925 0.01 0.92
KIHD 2,020 189 , -0.30 (-1.80, 1.20) 0.77 4.67 0.02 1.54
COPEN 7,772 354 |l 0.60 (0.16,1.03) 022 875 0.19 8.96
1

CHS 4,211 489 0.76 (-0.62,2.15) 0.70 12.09  0.02 1.79
REYK 14,927 666 —0.65 (-0.94,-0.35) 0.15 16.47  0.43 11.96
HOORN 525 19 0.00 (NA, NA) 0.00 047  0.00 0.00

Overall (2= 95%, P < 0.0001)

Overall no. of events in 10 years WT
Overall IV fixed-effect WT I
Overall IV random-effect WT

Overall 1-stage calculation

Random-effect 95% prediction interval
1

0.02 (-0.35, 0.38) 100
-0.01 (-0.03, 0.01) 100
~0.14 (~0.33, 0.06) 100
—0.14 (-0.27, -0.02)
(-0.70, 0.42)

I |
-5 0

Nonevent NRI (95% ClI)

5 10

Figure 5. Study-specific estimates of nonevent Net Reclassification Index (NRI) upon application of model 2 versus model 1 and overall estimates
obtained using a 1-stage approach and by meta-analysis using 3 alternative weighting schemes in the Emerging Risk Factors Collaboration. Model
1 included conventional risk factors: age, smoking status, systolic blood pressure, history of diabetes, total cholesterol, and high-density lipoprotein
cholesterol, and results are stratified by sex. Model 2 additionally included log C-reactive protein. The 3 weighting schemes illustrated are 1) number
of contributing events occurring before 10 years (Event 10), 2) inverse-variance weights assuming fixed effects (IV-FE), and 3) inverse-variance
weights assuming random effects (IV-RE). There was no reclassification observed among nonevents in the Hoorn Study (shown at the bottom), and
therefore it does not contribute to the inverse-variance-weighted pooled estimates due to undefined weight. Bars, 95% confidence intervals (Cls).
CHD, coronary heart disease; NA, not applicable; SE, standard error; WT, weight. Definitions of study names are given in Web Table 1.
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Overall CHD Cases

Cohort No. in 10 Years
HOORN 525 19
FINRISK97 1,150 56
EAS 741 48
BRUN 817 26
HISAYAMA 2,577 60
MOGERAUGH1 873 59
QUEBEC 1,219 67
FINRISK92 891 99
ULSAM 926 103
RANCHO 1,381 116
ROTT 4,437 184
WHS 23,287 234
SHS 3,112 280
USPHS2 10,715 305
EPICNOR 15,902 330
ARIC 9,326 374
KIHD 2,020 189
COPEN 7,772 354
CHS 4,211 489
REYK 14,927 666
MOSWEGOT 359 5

Overall (/= 59%, P < 0.0001)

Overall no. of events in 10 years WT
Overall IV fixed-effect WT

Overall IV random-effect WT

Overall 1-stage calculation

Random-effect 95% prediction interval

Figure 6. Study-specific estimates of event Net Reclassification Index (NRI) upon application of model 2 versus model 1 and overall estimates obtained using a 1-stage approach and by
meta-analysis using 3 alternative weighting schemes in the Emerging Risk Factors Collaboration. See the legend of Figure 5 for explanations. There was no reclassification observed
among events in the MONICA Goéteborg Study (shown at the bottom), and therefore it does not contribute to the inverse-variance-weighted pooled estimates due to undefined weight. Bars,

[ . N

¢

-10

Event NRI (95% Cl)

10

NRI (95% ClI

-10.53 (-31.16, 10.10)
5.36 (-5.14, 15.86)
4.17 (-5.84, 14.17)
0.00 (~10.66, 10.66)
3.33 (-7.00, 13.66)

-3.39 (-12.79, 6.01)
0.00 (-7.17, 7.17)
4.04 (-3.37, 11.45)
6.80 (~1.50, 15.09)
2.59 (-3.51, 8.68)
2.17 (-1.19, 5.54)
0.43 (-0.41, 1.26)
2.86 (-1.57, 7.28)

—0.66 (—2.69, 1.38)
2.42 (-0.10, 4.94)
1.34 (-2.18, 4.85)
2.65 (-2.74, 8.03)
3.11 (-0.26, 6.48)
2.66 (~0.47, 5.79)
3.60 (0.84, 6.36)
0.00 (NA, NA)

2.32 (1.32, 3.32)
1.06 (0.43, 1.69)
1.13 (0.46, 1.79)
2.31 (1.32,3.31)

(0.31,1.95)

Event 10

10.53
5.36
5.10
5.44
5.27
4.79
3.66
3.78
4.23
3.1
1.72
0.43
2.26
1.04
1.29
1.79
2.75
1.72
1.60
1.41
0.00

PWT  %WT  %WT
IV-FE  IV-RE
0.47 0.09 0.10
1.38 0.36 0.40
1.18 0.39 0.44
0.64 0.35 0.39
1.48 0.37 0.41
1.45 0.45 0.50
1.65 0.77 0.86
2.44 0.72 0.80
2.54 0.57 0.64
2.86 1.06 1.18
4.53 3.48 3.84
577 56.32 52.09
6.90 2.02 2.23
7.52 9.57 10.32
8.13 6.22 6.79
9.22 3.20 3.53
4.66 1.36 1.51
8.72 3.48 3.84
12.05 4.03 4.44
16.41 5.18 5.68
0.12 0.00 0.00
100
100
100

95% confidence intervals (Cls). CHD, coronary heart disease; NA, not applicable; SE, standard error; WT, weight. Definitions of study names are given in Web Table 1.
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The prospective NRI.  The prospective NRI (37) allows
inclusion of participants censored before ¢ years and requires
estimating (using Kaplan-Meier methods) the probability of
having an event among 1) all participants, 2) those who move
up through the risk categories, and 3) those who move down
through the risk categories. Its standard error can be obtained
by bootstrapping. The prospective NRI is generally more sta-
ble within studies (since censored participants are included,
increasing numbers), and its calculation lends itself better
to within-study calculation and the 2-stage approach using
equations 2 and 3.

DISCUSSION

In this paper, we have demonstrated methods for combining
measures of predictive ability across multiple studies. Relevant
Stata code (StataCorp LP, College Station, Texas) is available
from the University of Cambridge (http:/www.phpc.cam.ac.
uk/ceu/research/erfc/stata). We have described assessment of
the predictive ability of a risk prediction model, the change
in predictive ability upon moving from one model to another,
and the comparison of predictive abilities across subgroups of
the population. Various approaches to weighting estimates of
predictive ability when pooling across studies have been dis-
cussed, and we recommend using the number of events in
each study. Study designs other than the prospective cohort
study and risk prediction models other than the Cox propor-
tional hazards model with duration of time in the study as
the time scale have also been considered. The clinical implica-
tions of using CRP concentration as an additional predictor of
CHD risk are considered in detail elsewhere (17).

We used the C index (22), the D measure (24), and mea-
sures of reclassification (36) to illustrate the additional pre-
dictive ability of CRP in prediction of 10-year CHD risk.
For these data, the C index and D measure led to similar con-
clusions with similar statistical power, whereas reclassification
measures were not comparable because of their different inter-
pretations, use of study-specific absolute risks instead of linear
predictors, use of risk cutoffs, and exclusion of censored obser-
vations. Calculation of the D measure and its standard error re-
quired the least computational time.

Study-specific estimates of discrimination were dependent
on the risk predictors’ distributions. The implication is that
any pooled estimate of discrimination represents a value ap-
plicable to a population with “average” risk predictor ranges.
Caution should be applied when comparing estimates of dis-
crimination across studies with large differences in the risk
predictors’ distributions. In our examples, the changes in dis-
crimination were less heterogeneous and therefore more reli-
ably combined across studies.

Other approaches with which to assess prediction models
exist. These include measures of explained variation, which
quantify the proportion of variation in the outcome that can
be explained by the predictors in the model. Few such mea-
sures appear to adequately deal with censored data, and these
approaches have proven difficult to adapt to the multistudy
context (4). Others, such as the R%) extension to the D mea-
sure (38), could be applied. Measures of calibration generally
compare observed and predicted risks within groups (e.g.,
deciles) and quantify any evidence for lack of model fit

with a P value (39, 40). Calibration is important for the as-
sessment of a new proposed model for a target population,
but it is not the main issue when comparing the predictive
ability of alternative models. We have also not considered
validation approaches (41). Internal validation has not been
necessary, because the overall data sets used are of substantial
size and overfitting is minimal (42). External validation is
more relevant when a new risk score is proposed and its gen-
eralizability is of interest (1). Addressing overfitting is more
important when combining measures of discrimination using
inverse-variance weights from a random-effects meta-
analysis in order to estimate predictive ability in a new study.

Certain limitations of our proposed methods remain.
Firstly, our approach does not combine estimates of predic-
tive ability from nested case-control studies with those from
cohort studies. Estimates from studies with a case-cohort de-
sign, however, may be more comparable with those from full
cohorts (34). Secondly, persons with missing predictors are
often excluded. Multiple imputation methods (43) applicable
to multiple studies need further investigation.

As the scientific benefits of meta-analysis of individual
participant data become increasingly recognized, there are a
growing number of collaborative consortia being established.
The methods presented in this paper provide practical solu-
tions for assessment of the overall predictive ability of risk
models, as well as the added value of novel predictors, in
such collaborative enterprises.
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APPENDIX

Emerging Risk Factors Collaboration investigators/
contributors—Air Force/Texas Coronary Atherosclerosis
Prevention Study: Robert W. Tipping; Atherosclerosis Risk
in Communities Study: Aaron R. Folsom, David J. Couper,
Christie M. Ballantyne, Josef Coresh; British Regional
Heart Study: S. Goya Wannamethee, Richard W. Morris;
Bruneck Study: Stefan Kiechl, Johann Willeit, Peter Willeit,
Georg Schett; British Women’s Heart and Health Study:
Shah Ebrahim, Debbie A. Lawlor; Caerphilly Prospective
Study: John W. Yarnell, John Gallacher; Cardiovascular
Health Study: Mary Cushman, Bruce M. Psaty, Russ Tracy
(see http:/www.chs-nhlbi.org for acknowledgements); Co-
penhagen City Heart Study: Anne Tybjerg-Hansen, Ruth
Frikke-Schmidt, Marianne Benn, Bgrge G. Nordestgaard;
Edinburgh Artery Study: Jackie F. Price, Amanda J. Lee,
Stela McLachlan; European Prospective Investigation of
Cancer—Norfolk Study: Kay-Tee Khaw, Nicholas J. Wareham;
Epidemiologische Studie zu Chancen der Verhiitung,
Fritherkennung und Therapie chronischer Erkrankungen in
der alteren Bevolkerung: Hermann Brenner, Ben Schottker,
Heiko Miiller, Dietrich Rothenbacher; First Myocardial In-
farction in Northern Sweden: Jan-Hakan Jansson, Patrik
Wennberg; Finrisk Cohort 1992, Finrisk Cohort 1997:
Veikko Salomaa, Kennet Harald, Pekka Jousilahti,
Erkki Vartiainen; Fletcher Challenge Blood Study: Mark
Woodward; Framingham Offspring Study: Ralph B.
D’Agostino, Sr., Philip A. Wolf, Ramachandran S. Vasan,
Emelia J. Benjamin; Research Centre for Prevention and
Health: Else-Marie Bladbjerg, Torben Jgrgensen, Lars
Mgiller, Jorgen Jespersen; Hisayama Study: Yutaka Kiyohara,
Hisatomi Arima, Yasufumi Doi, Toshiharu Ninomiya; Hoorn
Study: Jacqueline M. Dekker, Giel Nijpels, Coen D. A.
Stehouwer; Kuopio Ischaemic Heart Disease Study: Jussi

Kauhanen, Jukka T. Salonen; Lower Extremity Arterial
Disease Event Reduction Trial: Tom W. Meade, Jackie
A. Cooper; Multi-Ethnic Study of Atherosclerosis: Mary
Cushman, Aaron R. Folsom, Bruce M. Psaty, Steven Shea
(see http:/www.mesa-nhlbi.org for acknowledgements);
MONICA/KORA Augsburg Surveys S1, S2, and S3: Angela
Doring, Wolfgang Koenig, Christa Meisinger; Multiple Risk
Factor Intervention Trial 1: Lewis H. Kuller, Greg Grandits;
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