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Abstract. In this article we consider the smoothing problem for hidden Markov models (HMM).3
Given a hidden Markov chain {Xn}n≥0 and observations {Yn}n≥0, our objective is to compute4
E[ϕ(X0, . . . , Xk)|y0, . . . , yn] for some real-valued, integrable functional ϕ and k �xed, k � n and5
for some realisation (y0, . . . , yn) of (Y0, . . . , Yn). We introduce a novel application of the multilevel6
Monte Carlo (MLMC) method with a coupling based on the Knothe-Rosenblatt rearrangement. We7
prove that this method can approximate the afore-mentioned quantity with a mean square error8
(MSE) of O(ε2), for arbitrary ε > 0 with a cost of O(ε−2). This is in contrast to the same direct9
Monte Carlo method, which requires a cost of O(nε−2) for the same MSE. The approach we suggest10
is, in general, not possible to implement, so the optimal transport methodology of [26, 23] is used,11
which directly approximates our strategy. We show that our theoretical improvements are achieved,12
even under approximation, in several numerical examples.13
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1. Introduction. Given a hidden Markov chain {Xn}n≥0, Xn ∈ X ⊂ Rd and16

observations {Yn}n≥0, Yn ∈ Y, we consider a probabilistic model such that for Borel17

A ∈ X , P(X0 ∈ A) =
∫
A
f(x)dx, for every n ≥ 1, x0:n−1 ∈ Xn18

(1.1) P(Xn ∈ A|x0:n−1) =

∫
A

f(xn−1, x)dx19

with dx Lebesgue measure and for Borel B ∈ Y and all n ≥ 0, (y0:n−1, x0:n) ∈20

Yn × Xn+121

(1.2) P(Yn ∈ B|y0:n−1, x0:n) =

∫
B

g(xn, y)dy,22

where we have used the compact notation ak:n = (ak, . . . , an) for any k, n ≥ 0 and23

any sequence (an)n≥0 with the convention that the resulting vector of objects is null24

if k > n. The model de�ned by (1.1) and (1.2) is termed a hidden Markov model.25

In this article, given y0:n, our objective is to compute E[ϕ(X0:k)|y0:n] for some real-26

valued, integrable functional ϕ and k �xed, k � n, which we refer to as large-lag27

smoothing. Hidden Markov models and the smoothing problem are found in many real28

applications, such as �nance, genetics and engineering; see e.g. [4] and the references29

therein.30

The smoothing problem is notoriously challenging. Firstly, E[ϕ(X0:k)|y0:n]31

is seldom available analytically and hence numerical methods are required.32

Secondly, if one wants to compute E[ϕ(X0:k)|y0:n] for several values of n,33

i.e. potentially recursively, then several of the well-known methods for approximation34

of E[ϕ(X0:k)|y0:n] can fail. For instance the particle �lter (e.g. [8] and the references35
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2 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

therein) su�ers from the well-known path degeneracy problem (see e.g. [19]). Despite36

this, several methods are available for the approximation of E[ϕ(X0:k)|y0:n], such as37

particle Markov chain Monte Carlo [1] or the PaRIS algorithm [22], which might be38

considered the current state-of-the-art. The latter algorithm relies on approximating39

E[ϕ(X0:k)|y0:n∗ ] for some n∗ < n and is then justi�ed on the basis of using forgetting40

properties of the smoother (see e.g. [4, 7]). We will extend this notion as will be41

explained below.42

The main approach that is followed in this paper, is to utilize the multilevel43

Monte Carlo method (e.g. [10, 13, 12, 15]). Traditional applications of this method44

are associated to discretizations of continuum problems, but we adopt the framework45

in a slightly non-standard way. To describe the basic idea, suppose one is interested46

in Eπ[ϕ(X)] for π a probability, ϕ real-valued and bounded, but, one can only hope to47

approximate Eπl
[ϕ(X)] with πl a probability (assumed on the same space as π), l ∈ N48

and in some loose sense one has πl approaches π as l grows. Now, given π0, . . . , πL49

a sequence of increasingly more `precise' probability distributions on the same space,50

one trivially has51

(1.3) EπL
[ϕ(X)] = Eπ0

[ϕ(X)] +

L∑
l=1

{Eπl
[ϕ(X)]− Eπl−1

[ϕ(X)]}.52

The approach is now to sample dependent couplings of (πl, πl−1) independently for53

1 ≤ l ≤ L and approximate the di�erence Eπl
[ϕ(X)]−Eπl−1

[ϕ(X)] using Monte Carlo.54

The term Eπ0
[ϕ(X)] is also approximated using Monte Carlo with i.i.d. sampling from55

π0. Then, given a `good enough' coupling and a characterization of the bias, for many56

practical problems the cost to achieve a pre-speci�ed MSE against i.i.d. sampling from57

πL and Monte Carlo, is signi�cantly reduced. To elaborate the e�ectiveness of the58

coupling (as discussed in [11]), the main issue is to approximate (as in eq. (1.3))59

(1.4) Eπl
[ϕ(X)]− Eπl−1

[ϕ(X)] = Eπ̌l,l−1
[ϕ(X)− ϕ(Y )]60

where π̌l,l−1 is any probability on the product space (say R × R) of the original
probability measures πl, πl−1, with for any measurable A ⊆ R,

∫
A×R π̌l,l−1(d(x, y)) =∫

A
πl(dx),

∫
R×A π̌l,l−1(d(x, y)) =

∫
A
πl−1(dy). Now, if one performs i.i.d. sampling

from π̌l,l−1 to approximate the R.H.S. of (1.4), the variance of this approximation (of
say N ≥ 1 samples) is upper-bounded by a term of the form

‖ϕ‖Lip
N

Eπ̌l,l−1
[|X − Y |2]

where we assume ϕ is Lipschitz, |ϕ(x) − ϕ(y)| ≤ ‖ϕ‖Lip|x − y|. Now, the gain of61

MLMC is possible if the coupling can strongly correlate X,Y . In the case above, we62

know that the optimal coupling is that w.r.t. squared Wasserstein distance.63

We leverage the idea of MLMC where the `level' l corresponds to the time64

parameter and L is some chosen n∗, so as to achieve a given level of bias. The main65

issue is then how to sample from couplings which are good enough. We show that,66

as elaborated on above, when d = 1 (the dimension of the hidden state) that using67

the optimal coupling, in terms of squared Wasserstein distance, can yield signi�cant68

improvements over the case where one directly approximates E[ϕ(X0:k)|y0:n] with69

Monte Carlo and i.i.d sampling from the smoother. That is, for ε > 0 given, to achieve70

a mean square error of O(ε2), the cost is O(ε−2), whereas for the ordinary Monte Carlo71

method the cost is O(nε−2). The same conclusion with d > 1 can be achieved using72
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 3

the Knothe-Rosenblatt rearrangement. The main issue with our approach is that it73

cannot be implemented for most problems of practical interest. However, using the74

transport methodology in [26], it can be approximated. We show that in numerical75

examples our predicted theory is veri�ed, even under this approximation. We also76

compare our method directly with PaRIS, showing substantial improvement in terms77

of cost for a given level of MSE. Note that the transport methodology used here di�ers78

fundamentally from the �particle �ow� methods discussed in [6, 3, 14] where samples79

from a base probability distributions are moved using an ordinary di�erential equation80

adapted to the target distribution.81

This article is structured as follows. In Section 2 we detail our approach and82

theoretical results. In Section 3 we demonstrate how our approach can be implemented83

in practice. In Section 4 we give our numerical examples. Section 5 summarizes the84

article. The appendix includes the assumptions, technical results and proofs of our85

main results.86

1.1. Notations. Let (X,X ) be a measurable space. For ϕ : X → R we write
Bb(X) and Lip(X) as the collection of bounded measurable and Lipschitz functions
respectively. For ϕ ∈ Bb(X), we write the supremum norm ‖ϕ‖ = supx∈X |ϕ(x)|. For
ϕ ∈ Bb(X), Osc(ϕ) = sup(x,y)∈X×X |ϕ(x) − ϕ(y)| and we write Osc1(X) for the set
of functions ϕ on X such that Osc(ϕ) = 1. For ϕ ∈ Lip(X), we write the Lipschitz
constant ‖ϕ‖Lip. P(X) denotes the collection of probability measures on (X,X ). For a
measure µ on (X,X ) and a ϕ ∈ Bb(X), the notation µ(ϕ) =

∫
X
ϕ(x)µ(dx) is used. Let

K : X×X → [0, 1] be a Markov kernel and µ be a measure then we use the notations
µK(dy) =

∫
X
µ(dx)K(x, dy) and for ϕ ∈ Bb(X), K(ϕ)(x) =

∫
X
ϕ(y)K(x, dy). For a

sequence of Markov kernels K1, . . . ,Kn we write

K1:n(x0, dxn) =

∫
Xn−1

n∏
p=1

Kp(xp−1, dxp).

For µ, ν ∈P(X), the total variation distance is written ‖µ− ν‖tv = supA∈X |µ(A)−87

ν(A)|. For A ∈ X the indicator is written IA(x). UA denotes the uniform distribution88

on the set A. N (a, b) is the one-dimensional Gaussian distribution of mean a and89

variance b.90

2. Model and Approach. We are given a HMM and we seek to compute

Eπn,0
[ϕ(X0)|y0:n] =

∫
Xn+1 ϕ(x0)

∏n
p=0 g(xp, yp)f(xp−1, xp)dx0:n∫

Xn+1

∏n
p=0 g(xp, yp)f(xp−1, xp)dx0:n

where f(x−1, x0) := f(x0) and for ease of simplicity we suppose that ϕ ∈ Bb(X) ∩
Lip(X) and X is a compact subspace of the real line. πn,0 is the probability density (we
also use the same symbol for probability measure) of the smoother given n observations
at the co-ordinate at time 0. That is

πn,0(x0|y0:n) ∝
∫
Xn

n∏
p=0

g(xp, yp)f(xp−1, xp)dx1:n.

Let 0 < n∗ < n be �xed, then we propose to consider

Eπn∗,0 [ϕ(X0)|y0:n∗ ] = Eπ0,0
[ϕ(X0)|y0]+

n∗∑
p=1

{Eπp,0
[ϕ(X0)|y0:p]−Eπp−1,0

[ϕ(X0)|y0:p−1]}.
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4 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

2.1. Case X ⊂ R. Let us denote the CDF of πp,0 as Πp,0. An approximation of
Eπp,0

[ϕ(X0)|y0:p]− Eπp−1,0
[ϕ(X0)|y0:p−1] is

1

Np

Np∑
i=1

[ϕ(Π−1
p,0(U i))− ϕ(Π−1

p−1,0(U i))]

where for i ∈ {1, . . . , Np}, U i
i.i.d.∼ U[0,1] and Π−1

p,0 is the (generalized) inverse CDF91

of Πp,0. If we do this independently for each p ∈ {1, . . . , n} and use an independent92

estimator 1
N0

∑N
i=1 ϕ(Π−1

0 (U i)) for Eπ0,0
[ϕ(X0)|y0] one can estimate E[ϕ(X0)|y0:n].93

The utility of the coupling is that it is optimal in terms of 2-Wasserstein distance.94

We have the following result, where the assumption and proof are in the appendix.95

Theorem 2.1. Assume (A1). Then there exists ρ ∈ (0, 1), C < +∞ such that
for any ϕ ∈ Bb(X) ∩ Lip(X), n∗ ≥ p ≥ 1, Np ≥ 1, we have

Var
[ 1

Np

Np∑
i=1

[ϕ(Π−1
p,0(U i))− ϕ(Π−1

p−1,0(U i))]
]
≤
Cρp−1‖ϕ‖2Lip

Np
.

The main implication of the result is the following. In the approach to
be considered later in this paper the cost of computing (an approximation of)

(Π−1
p,0,Π

−1
p−1,0) is O(1) per time step. So the cost of this method is C(n∗ +

∑n∗

p=0Np).
Thus the MSE and cost associated to this algorithm are (at most in the �rst case)

C(‖ϕ‖2 ∨ ‖ϕ‖2Lip)
( 1

N0
+

n∗∑
p=1

ρp−1

Np
+ ρ2n

)
and96

(2.1) C(n∗ +

n∗∑
p=0

Np).97

Let ε > 0 be given. To achieve an MSE of O(ε2) we can choose n∗ = | log(ε)/ log(ρ)|
(here we of course mean n∗ = d| log(ε)/ log(ρ)|e, but this is omitted for simplicity)
and Np = ε−2(p + 1)−1−δ for any δ > 0 yields that the associated cost is O(ε−2). If
one just approximates Eπn,0 [ϕ(X0)|y0:n] using

1

N

N∑
i=1

ϕ(Π−1
n,0(U i))

then, to achieve an MSE of O(ε2) the cost would be O(nε−2) which is considerably
larger if n is large. That is, the cost of the ML approach is essentially O(1) w.r.t. n.
If one stops at n∗ = | log(ε)/ log(ρ)| and uses the estimate

1

N

N∑
i=1

ϕ(Π−1
n∗,0(U i))

to achieve an MSE of O(ε2), the cost is O(ε−2| log(ε)|). A similar approach can show98

that these results are even true when smoothing for E[ϕ(X0:k)|y0:n] for k �xed (and99
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 5

hence E[ϕ(Xs:s+k)|y0:n]). The strategy of choosing n∗ and N0:n∗ detailed above, is100

the one used throughout the paper. Note that in practice, we do not know ρ, so we101

choose a value such as ρ = 0.8 which should lead to an n∗ which is large enough. This102

is also the reason for setting Np = ε−2(p+ 1)−1−δ and not Np = ε−2(ρ1/2)p−1 say.103

It is remarked that the compactness of X could be removed by using Kellerer's
extension of the Kantorovich-Rubenstein theorem (see [9] for a summary) and then,
given that the latter theory is applicable, to show that there exists a C < +∞,
ρ ∈ (0, 1) such that for any n∗ ≥ p ≥ 1

sup
ϕ∈Lip1(X)′

|Eπp,0
[ϕ(X0)|y0:p]− Eπp−1,0

[ϕ(X0)|y0:p−1]| ≤ Cρp−1

where Lip1(X)′ is the collection of functions ϕ : X→ R such that for every (x, y) ∈ X2,104

|ϕ(x) − ϕ(y)| ≤ |x − y|2. This can be achieved using the techniques in [17]. Such105

an extension is mainly of a technical nature and is not required in the continuing106

exposition. We now establish that the construction here can be extended to the case107

X ⊂ Rd.108

2.2. Case X ⊂ Rd. We consider the Knothe-Rosenblatt rearrangement, which
is assumed to exist (see e.g. [26]). For simplicity of notation, we set X = Ed for some
compact E ⊂ R. Denote by Πp,0(·|x1:j) the conditional CDF of πp,0(xj+1|x1:j) with
1 ≤ j ≤ d− 1. Note that here we are dealing with the d−dimensional co-ordinate at
time zero and we are considering conditioning on the �rst j of these dimensions. Then

to approximate Eπp,0
[ϕ(X0)|y0:p]−Eπp−1,0

[ϕ(X0)|y0:p−1], sample U1
1:d, . . . , U

Np

1:d , where

for i ∈ {1, . . . , Np}, U i1:d
i.i.d.∼ U[0,1]d . Then we have the estimate for ϕ ∈ Bb(X)∩Lip(X)

1

Np

Np∑
i=1

[ϕ(ξip,d)− ϕ(ξip−1,d)]

where for ease of notation, we have set ξip,1 = Π−1
p,0(U i1), (resp. ξip−1,1 = Π−1

p−1,0(U i1))109

and ξip,j = (ξip,1, . . . , ξ
i
p,j−1,Π

−1
p,0(U ij |ξip,j−1)), 2 ≤ j ≤ d, (resp. ξip−1,j =110

(ξip−1,1, . . . , ξ
i
p−1,j−1, Π−1

p−1,0(U ij |ξip−1,j−1)), 2 ≤ j ≤ d). We have the following result,111

whose proof and assumptions are in the appendix.112

Theorem 2.2. Assume (A1-2). Then there exists ρ ∈ (0, 1), C < +∞ such that
for any ϕ ∈ Bb(X) ∩ Lip(X), n∗ ≥ p ≥ 1, Np ≥ 1, we have

Var
[ 1

Np

Np∑
i=1

[ϕ(ξip,d)− ϕ(ξip−1,d)]
]
≤
Cρp−1‖ϕ‖2Lip

Np
.

As will be detailed in the following section and in particular in Algorithm 3.1,113

it is often more convenient in practice to use the standard normal distribution114

instead of the uniform distribution as a base distribution. The only di�erence is115

that samples from the standard normal distribution �rst have to be mapped through116

the corresponding CDF before taking the inverse image through the CDF of interest,117

e.g. Π−1
p,0(·|x1:j) for some p ≥ 0 and some 1 ≤ j ≤ d− 1.118

We end this section with some remarks. Firstly, the MLMC strategy could be119

debiased w.r.t. the time parameter using the trick in [25], which is a straightforward120

extension. One minor issue with this methodology, is that the variance can blow up in121

some scenarios. Secondly, the idea of using the approach in [25], when approximating122
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6 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

E[ϕ(X0;n)|y0:n] has been adopted in [16]. The authors use a conditional version of the123

coupled particle �lter (e.g. [5, 18]) to couple smoothers, versus the optimal Wasserstein124

coupling. The goal in [16] is unbiased estimation which is complementary to ideas in125

this article, where we focus upon reducing the cost of large lag smoothing.126

3. Transport methodology.127

3.1. Standard Approach. The basic principle of the transport methodology
introduced in [26] is to determine a mapping T relating a base distribution η, e.g. the
normal distribution, to a potentially sophisticated target distribution π̃ related to the
problem of interest. The distribution η should be easy to sample from so that, given
the map T , we can obtain samples from π̃ by simply mapping samples from η via T .
More precisely, the considered mapping T is characterised by

T#η(x) = η(T−1(x))|det∇T−1(x)| = π̃(x),

that is, the push-forward distribution of η by T is π̃. Such a mapping can be
approximated using deterministic or stochastic optimisation methods. However, the
underlying optimisation problem is only amenable when the space on which π̃ is
de�ned is of a low dimension, e.g. up to 4. This is not the case in general for the
smoothing distributions introduced in the previous sections, especially as the number
of observations increases. This is addressed in [26] by identifying the dependence
structure between the random variables of interest. In particular, for a hidden
Markov model on Rd, it is possible to decompose the problem into transport maps
of dimension 2d, which does not depend on the number n of observations that de�ne
the smoother. The problem at time p can be solved by introducing a mapping Tp of
the form

Tp(xp, xp+1) =

[
T 0
p (xp, xp+1)
T 1
p (xp+1)

]
which will transform the 2d-dimensional base distribution η2d into a target distribution
related to the considered hidden Markov model, as detailed below. This target
distribution can be expressed as

π̃p(xp, xp+1) ∝ ηd(xp)f
(
T 1
p−1(xp), xp+1

)
g(xp+1, yp+1),

for any p > 0, which can be seen to be related to the 1-lag smoother. When p = 0, we
simply de�ne π̃0(x0, x1) = f(x0)f(x0, x1)g(x0, y0)g(x1, y1). The base distribution η2d

(resp. ηd) is the standard normal distribution of dimension 2d (resp. d). The mapping
Tp can be embedded into the 2d(n+ 1)-dimensional identity mapping as

T̄p(x0, . . . , xn) = (x0, . . . , xp−1, T
0
p (xp, xp+1), T 1

p (xp+1), xp+2, . . . , xn)t,

with ·t denoting the matrix transposition. It follows that

Tn = T̄0 ◦ · · · ◦ T̄n

is the map such that the pushforward (Tn)#ηd(n+1) is equal to the probability128

density function of the smoother at time n. Obtaining samples from the smoothing129

distribution is then straightforward: it su�ces to sample from ηd(n+1) and to map the130

obtained sample via Tn.131

Even in low dimension, the optimisation problem underlying the computation of132

the transport maps of interest is not trivial. One �rst has to consider an appropriate133
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 7

parametrisation of these maps, e.g. via polynomial representations. The parameters134

of the considered representation then have to be determined using the following135

optimisation problem136

(3.1) T ∗p = argmin
T
−E
[

log π̃p(T (X)) + log
(

det∇T (X)
)
− log η2d(X)

]
,137

where the minimum is taken over the set of monotone increasing lower-triangular
maps. This minimisation problem can be solved numerically by considering a
parametrised family of maps and deterministic or stochastic optimisation methods.
Let T be any acceptable map in the minimisation (3.1) and denote by T (i) the ith

component of T , which only depends on the ith �rst variables, i ∈ {1, . . . , 2d}, then
the considered parametrisation can be expressed as

T (i)(x1, . . . , xi) = ai(x1, . . . , xi−1) +

∫ xi

0

bi(x1, . . . , xi−1, t)
2dt

for some real-valued functions ai and bi on Ri−1 and Ri respectively. It is assumed138

that the functions xj 7→ ai(x1, . . . , xi−1) and xj 7→ bi(x1, . . . , xi−1, t) are probabilists'139

Hermite functions [2] extended with constant and linear components for any j ≤ i−1,140

and the function t 7→ bi(x1, . . . , xi−1, t) is also a probabilists' Hermite function which141

is only extended with a constant component. In particular, these functions take the142

form143

ai(x1, . . . , xi−1) =

2d(omap+1)∑
k=1

ckΦk(x1, . . . , xi−1)144

bi(x1, . . . , xi−1, t) =

2domap∑
k=1

c′kΨk(x1, . . . , xi−1, t)145

146

with omap the map order, with {ck}k≥1 and {c′k}k≥1 some collections of real coe�cients147

and with Φk and Ψk basis functions based on the above mentioned probabilists'148

Hermite functions. The expectation in (3.1) is then approximated using a Gauss149

quadrature of order oexp in each dimension and the minimisation is solved via the150

Newton algorithm using the conjugate-gradient method for each step.151

The desired function Tp can be recovered through the relation152

153

(3.2) Tp((xp,1, . . . , xp,d), (xp+1,1, . . . , xp+1,d)) =154

(Sσ ◦ T ∗p ◦ Sσ)(xp,1, . . . , xp,d, xp+1,1, . . . , xp+1,d),155156

where σ = (2d, 2d − 1, . . . , 1) and Sσ is the linear map corresponding to the157

permutation matrix of σ, which veri�es S−1
σ = Sσ.158

3.2. Fixed-Point Smoothing with Transport Maps. The approach159

described in Section 3.1 allows for obtaining samples from the distribution πn,0 of160

X0 given (Y0, . . . , Yn) = (y0, . . . , yn) by simply retaining the �rst d components of161

samples from ηd(n+1) after mapping them through Tn. However, the computational162

cost associated with the mapping of samples by Tn increases with n, making the163

complexity of the method of the order O(n2).164

This can however be addressed by considering X0 as a parameter and by
only propagating the transport map corresponding to the posterior distribution of
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8 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

(X0, Xn). This approach has been suggested in [26, section 7.4]. We assume in the
remainder of this section that observations start at time step 1 instead of 0. When
considering X0 as a parameter, the elementary transport maps take the form

Tp(x0, xp, xp+1) =

 TX0
p (x0)

T 0
p (x0, xp, xp+1)
T 1
p (x0, xp+1)

 .
and the corresponding target distributions become

π̃1(x0, x1, x2) ∝ p0(x0)f(x0, x1)f(x1, x2)g(x1, y1)g(x2, y2),

and
π̃p(x0, xp, xp+1) ∝ η2d(x0, xp)f

(
T 1
p−1(x0, xp), xp+1

)
g(xp+1, yp+1),

for any p > 1. The transport map associated with the posterior distribution of
(X0, Xn) is

T̂n(x0, xn) =

[
TX0

1 ◦ · · · ◦ TX0
n−1(x0)

T 1
n−1(x0, xn)

]
.

By recursively approximating the composition TX0
1 ◦ · · · ◦ TX0

n−1 by a single map, the165

computation of samples from the posterior distribution of X0 becomes linear in time.166

The pseudo-code for this approach is given in Algorithm 3.1.167

4. Case Studies.168

4.1. Linear Gaussian.169

4.1.1. Theoretical Result. The results in Section 2 do not apply to the linear170

Gaussian case. We extend our results to this scenario. We assume that the dynamical171

and observations models are one-dimensional as well as linear and Gaussian such that172

the state and observation random variables at time n can be de�ned as173

Xn|xn−1 ∼ N (αxn−1, β
2), n ≥ 1(4.1a)174

Yn|xn ∼ N (xn, τ
2), n ≥ 0(4.1b)175176

and X0 ∼ N (0, σ2), for some α ∈ R and some β, σ, τ > 0. We have the following177

result, whose proof is in the appendix.178

Theorem 4.1. Assuming that Var(Xp | y0:p) ≈ γ2 for all p large enough, it holds
that

Var
[

1

Np

Np∑
i=1

[Π−1
p,0(U i)−Π−1

p−1,0(U i)]

]
= O

(
1

Np

(
α+

β2

αγ2

)−2p
)
.

Theorem 4.1 shows that, under assumptions on the parameters of the model, the179

variance of the approximated multilevel term at level p tends to 0 exponentially fast180

in p and with an order of 1/Np for the number of samples. This theorem also indicates181

that the behaviour depends on all the parameters in the model, although implicitly182

in τ . For instance, if β � τ then one can consider γ = τ in the above expression. The183

assumption about the variance of the �lter can be justi�ed in terms of reachability184

and observability of the system [20].185

This rate can get extremely bene�cial for the proposed approach when β is large186

and γ is small, however it can also make it of little use in the opposite case. This187

does not come as a surprise since a large β means that the initial condition is quickly188

forgotten so that obtaining a high number of samples from the smoother πp,0 for large189

p would be ine�cient, whereas small values of β incur a much higher dependency190

between the initial state and the observations at di�erent time steps.191
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Algorithm 3.1 Multilevel transport

1: input: ε, δ, ρ
2: Output: estimate X̂0 of ϕ(X0) | y0:n∗

3: n∗ = log(ε)/ log(ρ)
4: for p = 1, . . . , n∗ do
5: if p = 1 then
6: π̃p(x0, x1, x2) ∝ p0(x0)f(x0, x1)f(x1, x2)g(x1, y1)g(x2, y2)
7: else

8: π̃p(x0, xp, xp+1) ∝ η2d(x0, xp)f
(
T 1
p−1(x0, xp), xp+1

)
g(xp+1, yp+1)

9: . T 1
p−1 is the second component of T̂p−1

10: end if

11: η = N (02d, I2d)
12: T̂p = FilteringDistributionTransportMap(η, π̃p)
13: . Compute transport map from η to the law of (X0, Xp) | y1:p based on π̃p
14: Np = ε−2(p+ 1)−1−δ . Compute the number of samples
15: for i = 1, . . . , Np do
16: S ∼ η
17: ξip = T̂p(S)
18: if p = 1 then
19: ζip = ϕ(ξi,1:d

p ) . Map the �rst d components of ξip through ϕ
20: else

21: ξip−1 = T̂p−1(S)

22: ζip = ϕ(ξi,1:d
p )− ϕ(ξi,1:d

p−1 )
23: end if

24: end for

25: X̂0 ← X̂0 + 1
Np

∑Np

i=1 ζ
i
p

26: end for

4.1.2. Numerical Results. The performance of the proposed method is �rst
assessed in the linear-Gaussian case where an analytical solution of the �xed-point
smoothing problem is available, this solution being known as the Rauch-Tung-Striebel
smoother [24]. More speci�cally, we consider the model (4.1) with X0 ∼ N (1, σ2),
σ = 2 and α = β = τ = 1. The transport maps of interest are approximated1 to
the order omap = 3 while the expectation is approximated to the order oexp = 5 and
the minimisation is performed with a tolerance of 10−4. The number of samples at
each time step as well as the time horizon n∗ is computed according to the method
proposed in Section 2.1 with di�erent values for the parameter ε and with ρ = 0.8.
The performance of the proposed method is compared against the PaRIS algorithm
introduced in [22] using the observations y1, . . . , y50 with a varying number N of
samples and with Ñ = 2 terms for the propagation of the estimate of X0. In the
simulations, it always holds that n∗ ≤ 50 to ensure the fairness of the comparison.
The criteria for performance assessment is the MSE at the �nal time step, de�ned as

1

M

M∑
i=1

(x̂i − x∗)2

1The solver used for the determination of the transport maps is the one provided at
http://transportmaps.mit.edu/docs/index.html
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Fig. 1. Performance of the proposed method against the PaRIS algorithm and the single-level
transport-map approach for the linear-Gaussian model, averaged over 100 Monte Carlo simulations.
The reference for the computation of the MSE is the Rauch-Tung-Striebel smoother. The displayed
cost for the multilevel approach includes the computation of the transport maps.

where M is the number of Monte Carlo simulations, x̂i is the estimate of X0 | y1:n∗192

(with n∗ = 50 for the PaRIS algorithm) and where x∗ is the corresponding estimate193

given by the Rauch-Tung-Striebel smoother.194

The values of the MSE at the �nal time obtained in simulations are shown195

in Figure 1 where the proposed approach displays smaller errors than the PaRIS196

algorithm for di�erent values of ε and N . The comparison is also made with a single-197

level transport-map approach, i.e. without the multilevel decomposition, for di�erent198

numbers of samples. The advantage when representing the probability distributions199

of interest with transport maps is that the computational e�ort required to obtain a200

sample is extremely limited once the maps have been determined. For instance, the201

highest and lowest considered values of ε in Figure 1 correspond to N1 = 1250 and202

N1 = 500, 000 samples respectively, which induces a comparatively small increase in203

computational time.204

In this linear-Gaussian case, using maps of order omap < 3 would have been205

su�cient, however this would have been equivalent to making an assumption on206

the type of distribution considered for the proposed algorithm whereas the PaRIS207

algorithm makes no such assumption. The reason for choosing speci�cally omap = 3 is208

that this value was found to be su�cient for nonlinear models as in the next section.209

4.2. Stochastic Volatility Model. In order to further demonstrate the210

performance of the proposed approach, the assessment conducted in the previous211

section is applied to the estimation of X0 | y1:n∗ in a non-linear case. A stochastic212

volatility model is considered with213

Xn = µ+ φ(Xn−1 − µ) + Vn, n ≥ 1, X0 ∼ N
(
µ,

1

1− φ2

)
214

Yn = Wn exp
(1

2
Xn

)
, n ≥ 0215
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Fig. 2. Performance of the proposed method against the PaRIS algorithm and the single-
level transport-map approach for the stochastic volatility model, averaged over 100 Monte Carlo
simulations. The reference for the computation of the MSE is the PaRIS algorithm with 214 samples.
The displayed cost for the multilevel approach includes the computation of the transport maps.

with Vn ∼ N (0, β2) andWn ∼ N (0, 1), where µ = −0.5, φ = 0.95 and β = 0.25. In the216

absence of an analytical solution, the reference is determined by the PaRIS algorithm217

with N = 214 samples. Since the observation process of this model is generally less218

informative than the one of the Gaussian model, the PaRIS algorithm is given the219

observations up to the time step 50 and, similarly, it is ensured that n∗ ≤ 50 for220

the proposed approach. The other parameters are the same as in the linear-Gaussian221

case, that is maps of order omap = 3 are used, the expectation is approximated to the222

order oexp = 5 and the minimisation is performed with a tolerance of 10−4.223

The MSE at the �nal time obtained for the two considered methods is shown224

in Figure 2. Once again, the error for the proposed approach is lower than for the225

PaRIS algorithm although the di�erence is less signi�cant. In particular, the gain226

in accuracy between the lowest and the second lowest value of ε seem to indicate227

that simply increasing the number of samples would not allow for reducing the error228

much further. However, increasing the order of the transport maps or decreasing229

the tolerance in the optimisation could further reduce the error, although with a230

signi�cantly higher computational cost.231

The computational costs obtained for the two models considered in simulations232

are shown in Figure 3 for di�erent values of ε. These results con�rm the order O(ε−2)233

that was predicted in Section 2.234

5. Summary. In this article we have considered large lag smoothing for HMMs,235

using the MLMC method. We showed that under an optimal coupling when the236

hidden state is in dimension 1 or higher, but on a compact space that, essentially,237

the cost can be decoupled from the time parameter of the smoother. As this optimal238

method is not possible in practice, we showed how it could be approximated and239

established numerically that our theory still holds in this approximated case. Several240

extensions to the work are possible. Firstly, to extend our theoretical results to the241
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Fig. 3. Computational cost as a function of ε, averaged over 100 Monte Carlo simulations.
The �tted curves are based on a function of the form ε 7→ −aε−2 − b log(ε), with a and b some
parameters, which is justi�ed by the form of the cost (2.1).

case of the approximated coupling. Secondly, to investigate whether the coupling used242

in [16] can also yield, theoretically, the same improvements that have been seen in the243

work in this article.244

Appendix A. Variance Proofs. We write the density (or probability measure)245

of the smoother, at time p, on the co-ordinate at time zero as πp,0 and the associated246

CDF as Πp,0 (with generalized inverse Π−1
p,0). Recall that throughout X is a compact247

subspace of Rd. Throughout the observations are �xed and often omitted from the248

notations. The appendix gives our main assumptions, followed by a technical Lemma249

(Lemma A.1) which features some technical results used in the proofs. Then the proof250

of Theorem 2.1 is given. The appendix is concluded by a second technical Lemma251

(Lemma A.2) followed by the proof of Theorem 2.2.252

(A1) There exists 0 < C < C < +∞ such that253

inf
x∈X

g(x, y0)f(x) ∧ inf
p≥1

inf
(x,x′)∈X2

g(x′, yp)f(x, x′) ≥ C254

sup
x∈X

g(x, y0)f(x) ∨ sup
p≥1

sup
(x,x′)∈X2

g(x′, yp)f(x, x′) ≤ C.255

(A2) There exists C < +∞ such that for every (x, x′) ∈ X2256

|g(x, y0)− g(x′, y0)| ≤ C|x− x′|257

sup
z∈X
|f(x, z)− f(x′, z)| ≤ C|x− x′|258

|f(x)− f(x′)| ≤ C|x− x′|.259

Below πp,0(·|x1:j) denotes the probability of the (j + 1)th co-ordinate of the260

smoother at time 0, given the �rst j−co-ordinates at time 0, and conditional upon261

the observations up-to time p.262

Lemma A.1. Assume (A1-2). Then there exists (C,C ′) ∈ (0,∞)2, ρ ∈ (0, 1) such263

that264

This manuscript is for review purposes only.



ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 13

1. for any 1 ≤ j ≤ d, supp≥0 πp,0(x0,1:j) ≤ C, infp≥0 πp,0(x0,1:j) ≥ C ′265

2. for any p ≥ 1, ‖πp,0 − πp−1,0‖tv ≤ Cρp−1266

3. for any 1 ≤ j ≤ d, p ≥ 1, supx1:j∈Ej ‖πp,0(·|x1:j)− πp−1,0(·|x1:j)‖tv ≤ Cρp−1267

4. for any p ≥ 0, (x, x′) ∈ X2, |πp,0(x)− πp,0(x′)| ≤ C|x− x′|268

5. for any p ≥ 0, 1 ≤ j ≤ d, (x1:j , x
′
1:j) ∈ (Ej)2, |πp,0(x1:j) − πp,0(x′1:j)| ≤269

C|x1:j − x′1:j |.270

Proof. 1. follows trivially from (A1) and the compactness of E. 2. follows from271

the backward Markov chain representation of the smoother and (A1); see for instance272

[4] and the references therein.273

3. to prove this result, we �rst consider controlling for any �xed 1 ≤ j ≤ d p ≥ 1,

|πp,0(x1:j)− πp−1,0(x1:j)|.

Denoting π(p) as the �lter at time p and setting for k ≥ 0

Bk(xk+1, xk) =
π(k)(xk)f(xk, xk+1)∫

X
π(k)(xk)f(xk, xk+1)dxk

we can write274
275

(A.1) |πp,0(x1:j)− πp−1,0(x1:j)| =276

Osc(B0(·, x1:j))
∣∣∣[π(p)Bp−1 − π(p−1)](Bp−2:1)

( B0(·, x1:j)

Osc(B0(·, x1:j))

)∣∣∣.277
278

Using standard results for the total variation distance

|πp,0(x1:j)− πp−1,0(x1:j)| ≤ Osc(B0(·, x1:j))

p−2∏
s=1

ω(Bs)

where ω(Bs) is the Dobrushin coe�cient of the Markov kernel Bs. Standard279

calculations yield that there exists a ρ ∈ (0, 1) such that Osc(B0(·, x1:j))∨ω(Bs) ≤ Cρ,280

where C does not depend upon x1:j . Hence we have shown that281

(A.2) sup
x1:j∈Ej

|πp,0(x1:j)− πp−1,0(x1:j)| ≤ Cρp−1.282

To prove the result of interest we have for any ϕ ∈ Osc1(E)283

|πp,0(ϕ|x1:j)− πp−1,0(ϕ|x1:j)| =
1

πp,0(x1:j−1)

∫
E

ϕ(xj)[πp,0(x1:j)− πp−1,0(x1:j)]dxj +284

πp−1,0(x1:j−1)− πp,0(x1:j−1)

πp,0(x1:j−1)πp−1,0(x1:j−1)

∫
E

ϕ(xj)πp−1,0(x1:j)dxj .285

The conclusion then follows by using (A.2) and 1..286

4. follows almost immediately from (A2) and the de�nition of the smoother. 5.287

follows from 4. on marginalization and the compactness of E.288

Proof of Theorem 2.1. Standard calculations for i.i.d. random variables and the
Lipschitz property of ϕ clearly yields:

Var
[ 1

Np

N∑
i=1

[ϕ(Π−1
p,0(U i))− ϕ(Π−1

p−1,0(U i))]
]
≤
‖ϕ‖2Lip
Np

∫
[0,1]

|Π−1
p,0(u)−Π−1

p−1,0(u)|2du.
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Now we note that∫
[0,1]

|Π−1
p,0(u)−Π−1

p−1,0(u)|2du = W2(πp,0, πp−1,0)2

where W2(πp,0, πp−1,0) is the 2-Wasserstein distance between πp,0 and πp−1,0. As X
is compact it follows

W2(πp,0, πp−1,0)2 ≤
(∫

X

dx
)2

‖πp,0 − πp−1,0‖tv

where ‖ ·‖tv is the total variation distance. Under our assumptions one can show that
there exists ρ ∈ (0, 1), C < +∞ such that for any p ≥ 1 (see Lemma A.1 2., which
holds when d = 1)

‖πp,0 − πp−1,0‖tv ≤ Cρp−1.

The proof is then easily concluded.289

Lemma A.2. Assume (A1-2). Then there exists C < +∞, ρ ∈ (0, 1) such that
for any p ≥ 1

E[|ξ1
p,d − ξ1

p−1,d|2] ≤ Cρp−1.

Proof. The proof is by induction on d, the case d = 1 being proved by the approach290

in the proof of Theorem 2.1. Throughout C is a �nite constant whose value may291

change from line-to-line, but does not depend upon p.292

We suppose the result for d − 1 and consider d. For simplicity of notation, we293

drop the superscript 1 from the notation, e.g. we write ξp,d instead of ξ1
p,d. We have294

E[|ξp,d − ξp−1,d|2] = E[E[|ξ1
p,d − ξ1

p−1,d|2|U1:d−1]]295

≤ CE[‖πp,0(·|ξp,d−1)− πp−1,0(·|ξp−1,d−1)‖tv](A.3)296

where, to go to the second line, we have used (conditional upon U1:d) the relationship297

between the squared 2-Wasserstein distance and the (generalized) inverse CDF, along298

with the total variation bound as used in the proof of Theorem 2.1.299

Now, we have

‖πp,0(·|ξp,d−1)− πp−1,0(·|ξp−1,d−1)‖tv ≤
300

(A.4) ‖πp,0(·|ξp,d−1)− πp−1,0(·|ξp,d−1)‖tv + ‖πp−1,0(·|ξp,d−1)− πp−1,0(·|ξp−1,d−1)‖tv.301

By Lemma A.1 3. it follows that302

(A.5) ‖πp,0(·|ξp,d−1)− πp−1,0(·|ξp,d−1)‖tv ≤ Cρp−1303

so we consider ‖πp−1,0(·|ξp,d−1)− πp−1,0(·|ξp−1,d−1)‖tv. For any ϕ ∈ Osc1(E)304

305

πp,0(ϕ|ξp,d−1)− πp−1,0(ϕ|ξp,d−1) =306

1

πp−1,0(ξp−1,d−1)

∫
E

ϕ(x)[πp−1,0(ξp,d−1, x)− πp−1,0(ξp−1,d−1, x)]dx+307

πp−1,0(ξp−1,d−1)− πp−1,0(ξp,d−1)

πp−1,0(ξp,d−1)πp−1,0(ξp−1,d−1)

∫
E

ϕ(x)πp−1,0(ξp−1,d−1, x)dx.308
309
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Applying Lemma A.1 4. to the �rst term on the R.H.S. and Lemma A.1 5. to the310

second term on the R.H.S. along with the boundedness of ϕ and compactness of E,311

we have that312

|πp,0(ϕ|ξp,d−1)− πp−1,0(ϕ|ξp,d−1)| ≤ C

πp−1,0(ξp−1,d−1)
|ξp,d−1 − ξp−1,d−1|+313

C

πp−1,0(ξp,d−1)πp−1,0(ξp−1,d−1)
|ξp,d−1 − ξp−1,d−1|.314

Applying Lemma A.1 1. we can then establish that315

(A.6) ‖πp−1,0(·|ξp,d−1)− πp−1,0(·|ξp−1,d−1)‖tv ≤ C|ξp,d−1 − ξp−1,d−1|.316

Combining (A.5) and (A.6) with (A.4) and noting (A.3), we have shown that

E[|ξp,d − ξp−1,d|2] ≤ C
(
ρp−1 + E[|ξp,d−1 − ξp−1,d−1|]

)
.

The proof is completed by using the Jensen inequality and the induction hypothesis.317

Proof of Theorem 2.2. We have

Var
[ 1

Np

Np∑
i=1

[ϕ(ξip,d)− ϕ(ξip−1,d)]
]
≤
‖ϕ‖2Lip
Np

E[|ξ1
p,d − ξ1

p−1,d|2].

The proof is then completed by applying Lemma A.2.318

Appendix B. Linear Gaussian Result.319

Proof of Theorem 4.1. The Rauch-Tung-Striebel smoother gives an expression of320

the smoothed mean mp|n and variance vp|n at time p given the observations y0, . . . , yn321

as322

mp|n = mp|p + cp(mp+1|n −mp+1|p)323

vp|n = vp|p + c2p(vp+1|n − vp+1|p),324

with cp = αmp|p/mp+1|p, where mp+1|p and vp+1|p are the predicted mean and
variance at time p+ 1 given the observations y0, . . . , yp. It follows that the mean mp

and variance vp of πp,0 satisfy similar relations to the �ltered means and variances:

mp =

p∑
i=0

mi|iα
i(1− Ii<pα2dp)

i−1∏
j=0

dj and vp =

p∑
i=0

vi|iα
2i(1− Ii<pα4d2

p)

i−1∏
j=0

d2
j ,

where dp = vp|p/vp+1|p and where Ic is the indicator of condition c. The objective is
to compute the order of

Π−1
p,0(u)−Π−1

p−1,0(u) = mp −mp−1 +
√

2 erf−1(2u− 1)(σp − σp−1)

where σp =
√
vp. From the above expression, it follows easily that

mp−mp−1 = αp(mp|p−mp|p−1)

p−1∏
i=0

di and vp− vp−1 = α2p(vp|p− vp|p−1)

p−1∏
i=0

d2
i .
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Fig. 4. Performance of the Rhee-Glynn estimator against the PaRIS algorithm with a linear-
Gaussian model, averaged over 100 Monte Carlo simulations, where the number of samples is
indicated on the �gure. The reference for the computation of the MSE is the Rauch-Tung-Striebel
smoother. The results for the Rhee-Glynn estimator are averaged over 210 runs of the estimator.

which yields the same order for both mp −mp−1 and σp − σp−1. The desired result
follows from the fact that

αp
p−1∏
i=0

di = αp
p−1∏
i=0

vi|i

αvi|i + β2
=

p−1∏
i=0

α

α2 + β2/vi|i
=

p−1∏
i=0

(
α+

β2

αvi|i

)−1

,

and from the assumption that vp|p = Var(Xp | y0:p) ≈ γ2 for all p large enough.325

Appendix C. The Rhee-Glynn smoothing estimator. We compare the so-326

called Rhee-Glynn smoothing estimator described in [16] with the PaRIS algorithm327

[22] on the linear-Gaussian model considered in Section 4.1.2. The Rhee-Glynn328

smoothing estimator is implemented with ancestor sampling [21] and where all the329

generated paths are used in the estimate of X0 | y1:n∗ , as originally suggested in [1]330

in the context of particle Markov chain Monte Carlo.331

The result of the comparison is given in Figure 4 where it appears that the PaRIS332

algorithm slightly outperforms the Rhee-Glynn smoothing estimator. Although the333

scenario considered here is linear and Gaussian, none of the compared methods relies334

on these assumptions so that the conclusions made for this case are generalisable to335

some other classes of scenarios. This justi�es the sole use of the PaRIS algorithm in336

Section 4 for comparison against the proposed approach.337

REFERENCES338

[1] Andrieu, C., Doucet, A. & Holenstein, R. (2010). Particle Markov chain Monte Carlo339
methods (with discussion). J. R. Statist. Soc. Ser. B, 72, 269�342.340

[2] Boyd, J.P. (2001). Chebyshev and Fourier spectral methods. Courier Corporation.341
[3] Bunch, P., & Godsill, S. (2016). Approximations of the optimal importance density342

using Gaussian particle �ow importance sampling. Journal of the American Statistical343
Association, 111(514), 748�762.344

This manuscript is for review purposes only.



ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 17

[4] Cappé, O., Ryden, T, & Moulines, É. (2005). Inference in Hidden Markov Models. Springer:345
New York.346

[5] Chopin, N. & Singh, S. S. (2015). On particle Gibbs sampling. Bernoulli, 21, 1855�1883.347
[6] Daum, F., & Huang, J. (2008). Particle �ow for nonlinear �lters with log-homotopy. In Signal348

and Data Processing of Small Targets. International Society for Optics and Photonics.349
[7] Del Moral, P., Doucet, A. & Singh, S. S. (2010). A backward interpretation of Feynman-350

Kac formulae. M2AN, 44, 947�975.351
[8] Doucet, A. & Johansen, A. (2011). A tutorial on particle �ltering and smoothing: Fifteen352

years later. In Handbook of Nonlinear Filtering (eds. D. Crisan & B. Rozovsky), Oxford353
University Press: Oxford.354

[9] Edwards, D. A. (2011). On the Kantorovich-Rubinstein theorem. Expos. Math., 29, 387�398.355
[10] Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Op. Res., 56, 607�617.356
[11] Giles, M. B. (2013). Multilevel Monte Carlo methods. InMonte Carlo and Quasi-Monte Carlo357

Methods 2012 (pp. 83-103). Springer, Berlin, Heidelberg.358
[12] Gregory, A., Cotter, C. J., & Reich, S. (2016). Multilevel ensemble transform particle359

�ltering. SIAM J. Sci. Comput., 38(3), A1317�A1338.360
[13] Heinrich, S. (2001). Multilevel Monte Carlo methods. In Large-Scale Scienti�c Computing,361

(eds. S. Margenov, J. Wasniewski & P. Yalamov), Springer: Berlin.362
[14] Heng, J., Doucet, A., & Pokern, Y. (2015). Gibbs �ow for approximate transport with363

applications to Bayesian computation. arXiv preprint arXiv:1509.08787.364
[15] Hoel, H., Law, K. J., & Tempone, R. (2016). Multilevel ensemble Kalman �ltering. SIAM J.365

Numer. Anal., 54(3), 1813�1839.366
[16] Jacob, P., Lindsten, F. & Schön, T. (2017). Smoothing with Couplings of Conditional Particle367

Filters. arXiv preprint, arXiv:1701.02002.368
[17] Jasra, A. (2015). On the behaviour of the backward interpretation of Feynman-Kac formulae369

under veri�able conditions. J. Appl. Probab., 52, 339�359.370
[18] Jasra, A., Kamatani, K., Law K. J. H. & Zhou, Y. (2017). Multilevel particle �lters. SIAM371

J. Numer. Anal., 55, 3068�3096.372
[19] Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J. M. & Chopin, N. (2015) On Particle373

Methods for Parameter Estimation in General State-Space Models. Statist. Sci., 30, 328�374
351.375

[20] Kumar, P.R., & Pravin V. (1986). Stochastic systems: Estimation, identi�cation, and376
adaptive control. Prentice-Hall.377

[21] Lindsten, F., Jordan, M. I., & Schön, T. B. (2014). Particle Gibbs with ancestor sampling.378
The Journal of Machine Learning Research, 15(1), 2145�2184.379

[22] Olsson, J. & Westerborn, J. (2017). E�cient particle-based online smoothing in general380
hidden Markov models: The PaRIS algorithm. Bernoulli, 23, 1951�1996.381

[23] Parno, M.,Moselhy, T., &Marzouk, Y. (2016). A multiscale strategy for Bayesian inference382
using transport maps. SIAM/ASA Journal on Uncertainty Quanti�cation, 4(1), 1160�383
1190.384

[24] Rauch, H. E., Striebel, C. & Tung, F. (1965) Maximum likelihood estimates of linear385
dynamical systems. AIAA J. 3, 1445�1450.386

[25] Rhee, C. H., & Glynn, P. W. (2015). Unbiased estimation with square root convergence for387
SDE models. Op. Res., 63, 1026�1043.388

[26] Spantini, A., Bigoni, D. &Marzouk Y. (2018). Inference via low-dimensional couplings. The389
Journal of Machine Learning Research, 19(1), 2639-2709.390

This manuscript is for review purposes only.


	Introduction
	Notations

	Model and Approach
	Case XR
	Case XRd

	Transport methodology
	Standard Approach
	Fixed-Point Smoothing with Transport Maps

	Case Studies
	Linear Gaussian
	Theoretical Result
	Numerical Results

	Stochastic Volatility Model

	Summary
	Appendix A. Variance Proofs
	Appendix B. Linear Gaussian Result
	Appendix C. The Rhee-Glynn smoothing estimator
	References

