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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS*

JEREMIE HOUSSINEAUT, AJAY JASRAT, AND SUMEETPAL S. SINGH?

Abstract. In this article we consider the smoothing problem for hidden Markov models (HMM).
Given a hidden Markov chain {X,},>0 and observations {Y»},>0, our objective is to compute
Ele(Xo, ..., Xk)|yo,-..,yn] for some real-valued, integrable functional ¢ and k fixed, k& < n and
for some realisation (yo,...,yn) of (Yo,...,Yn). We introduce a novel application of the multilevel
Monte Carlo (MLMC) method with a coupling based on the Knothe-Rosenblatt rearrangement. We
prove that this method can approximate the afore-mentioned quantity with a mean square error
(MSE) of O(e2), for arbitrary e¢ > 0 with a cost of O(e~2). This is in contrast to the same direct
Monte Carlo method, which requires a cost of O(ne~2) for the same MSE. The approach we suggest
is, in general, not possible to implement, so the optimal transport methodology of [26, 23] is used,
which directly approximates our strategy. We show that our theoretical improvements are achieved,
even under approximation, in several numerical examples.

Key words. Smoothing, Multilevel Monte Carlo, Optimal Transport

AMS subject classifications. 62M05, 62E17

1. Introduction. Given a hidden Markov chain {X,},>0, X € X C R¢ and
observations {Y},},>0, ¥, € Y, we consider a probabilistic model such that for Borel
Ae X, P(Xyg e A) = [, f(x)dz, for every n > 1, zg;n—y € X"

(1.1) P(X, € Alxon—1) = /Af(a:n_l,x)da:

with dx Lebesgue measure and for Borel B € Y and all n > 0, (yo.n—1,%o:mn) €
Y™ ox Xl

(1.2) P(Y, € Blyo:n—1,To:n) =/ 9(Tn, y)dy,
B

where we have used the compact notation ay., = (ag,...,a,) for any k,n > 0 and
any sequence (a,)n>o with the convention that the resulting vector of objects is null
if & > n. The model defined by (1.1) and (1.2) is termed a hidden Markov model.
In this article, given yg.,, our objective is to compute E[¢(Xo.x)|yo.n] for some real-
valued, integrable functional ¢ and k fixed, k < n, which we refer to as large-lag
smoothing. Hidden Markov models and the smoothing problem are found in many real
applications, such as finance, genetics and engineering; see e.g. [4] and the references
therein.

The smoothing problem is notoriously challenging. Firstly, E[o(Xo.x)|yo:n]
is seldom available analytically and hence numerical methods are required.
Secondly, if one wants to compute E[p(Xo.x)|yon] for several values of n,
i.e. potentially recursively, then several of the well-known methods for approximation
of E[p(Xo.x)|yo:n] can fail. For instance the particle filter (e.g. [8] and the references
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2 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

therein) suffers from the well-known path degeneracy problem (see e.g. [19]). Despite
this, several methods are available for the approximation of E[p(Xo.x)|yo.n], such as
particle Markov chain Monte Carlo [1] or the PaRIS algorithm [22], which might be
considered the current state-of-the-art. The latter algorithm relies on approximating
E[¢o(Xo:x)|yo:nx] for some n* < n and is then justified on the basis of using forgetting
properties of the smoother (see e.g. [4, 7]). We will extend this notion as will be
explained below.

The main approach that is followed in this paper, is to utilize the multilevel
Monte Carlo method (e.g. [10, 13, 12, 15]). Traditional applications of this method
are associated to discretizations of continuum problems, but we adopt the framework
in a slightly non-standard way. To describe the basic idea, suppose one is interested
in E[¢(X)] for w a probability, ¢ real-valued and bounded, but, one can only hope to
approximate E,, [¢(X)] with m; a probability (assumed on the same space as 7), | € N
and in some loose sense one has m; approaches 7 as [ grows. Now, given mg,..., 7
a sequence of increasingly more ‘precise’ probability distributions on the same space,
one trivially has

L
(1.3) Er, [0(X)] = Eny[p(X)] + Y _{Ex, [0(X)] = Er,_, [p(X)]}.
=1

The approach is now to sample dependent couplings of (m;,m—1) independently for
1 <1 < L and approximate the difference E., [¢(X)]—Er,_, [¢(X)] using Monte Carlo.
The term E.,[¢(X)] is also approximated using Monte Carlo with i.i.d. sampling from
mo. Then, given a ‘good enough’ coupling and a characterization of the bias, for many
practical problems the cost to achieve a pre-specified MSE against i.i.d. sampling from
7w, and Monte Carlo, is significantly reduced. To elaborate the effectiveness of the
coupling (as discussed in [11]), the main issue is to approximate (as in eq. (1.3))

(1.4) Er [o(X)] = Er,_ [0(X)] = Exy ,_, [9(X) — (V)]

where 7;;_1 is any probability on the product space (say R x R) of the original
probability measures m;, m;_1, with for any measurable A C R, foR fri—1(d(z,y)) =
Jam(dx), [o, 4 7Tri-1(d(z,y)) = [, m-1(dy). Now, if one performs i.i.d. sampling
from 7; ;1 to approximate the R.H.S. of (1.4), the variance of this approximation (of
say N > 1 samples) is upper-bounded by a term of the form

Il g

N 7?1,171[|X_Y|2]

where we assume ¢ is Lipschitz, |¢(z) — ¢(y)| < ||¢lluiple — y|. Now, the gain of
MLMC is possible if the coupling can strongly correlate X, Y. In the case above, we
know that the optimal coupling is that w.r.t. squared Wasserstein distance.

We leverage the idea of MLMC where the ‘level’ | corresponds to the time
parameter and L is some chosen n*, so as to achieve a given level of bias. The main
issue is then how to sample from couplings which are good enough. We show that,
as elaborated on above, when d = 1 (the dimension of the hidden state) that using
the optimal coupling, in terms of squared Wasserstein distance, can yield significant
improvements over the case where one directly approximates E[p(Xo.x)|y0.n] with
Monte Carlo and i.i.d sampling from the smoother. That is, for e > 0 given, to achieve
a mean square error of O(e?), the cost is O(e~?), whereas for the ordinary Monte Carlo
method the cost is O(ne~2). The same conclusion with d > 1 can be achieved using
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 3

the Knothe-Rosenblatt rearrangement. The main issue with our approach is that it
cannot be implemented for most problems of practical interest. However, using the
transport methodology in [26], it can be approximated. We show that in numerical
examples our predicted theory is verified, even under this approximation. We also
compare our method directly with PaRIS, showing substantial improvement in terms
of cost for a given level of MSE. Note that the transport methodology used here differs
fundamentally from the “particle flow” methods discussed in [6, 3, 14] where samples
from a base probability distributions are moved using an ordinary differential equation
adapted to the target distribution.

This article is structured as follows. In Section 2 we detail our approach and
theoretical results. In Section 3 we demonstrate how our approach can be implemented
in practice. In Section 4 we give our numerical examples. Section 5 summarizes the
article. The appendix includes the assumptions, technical results and proofs of our
main results.

1.1. Notations. Let (X, X) be a measurable space. For ¢ : X — R we write
By(X) and Lip(X) as the collection of bounded measurable and Lipschitz functions
respectively. For ¢ € By(X), we write the supremum norm ||¢|| = sup,cx |[¢(x)|. For
¢ € Byp(X), Osc(p) = sup(, yyexxx |9() — ¢(y)| and we write Osci(X) for the set
of functions ¢ on X such that Osc(p) = 1. For ¢ € Lip(X), we write the Lipschitz
constant ||¢||rip- Z?(X) denotes the collection of probability measures on (X, X). For a
measure x on (X, X) and a ¢ € By(X), the notation u(¢) = [y p(z)u(dz) is used. Let
K : Xx X — [0,1] be a Markov kernel and ;1 be a measure then we use the notations
wK(dy) = [y n(dw)K (2, dy) and for ¢ € By(X), K(@)(x) = i o(y) K (, dy). For a
sequence of Markov kernels K, ..., K, we write

Kl:n(x()adxn) :/ HKp(xp_l,da:p).
Xn=1 .74

For p,v € #(X), the total variation distance is written ||x — v||tv = supcn [1(A) —
v(A)|. For A € X the indicator is written I4(x). U4 denotes the uniform distribution
on the set A. AN(a,b) is the one-dimensional Gaussian distribution of mean a and
variance b.

2. Model and Approach. We are given a HMM and we seek to compute

Jxnsr (o) HZ:O 9(@p, yp) f (Tp—1, Tp)dT0in
fxn+1 H;L:() g(x;m yp)f(xpfla ‘rp)de:n

Eﬂ'n,o [QD(XO) |y0:n] =

where f(z_1,70) := f(z¢) and for ease of simplicity we suppose that ¢ € B,(X) N
Lip(X) and X is a compact subspace of the real line. m, ¢ is the probability density (we
also use the same symbol for probability measure) of the smoother given n observations
at the co-ordinate at time 0. That is

n,0(0Yo:n) 0(/ Hg(zpvyp)f(zp—l’xp)dxlzn-
anO

Let 0 < n* < n be fixed, then we propose to consider

*
n

E‘ﬂ'n*‘o [(p(XO) |90:n*] = ]Eﬂ'o,o [@(XO) |y0}+Z{Eﬂp,o [@(XO) |y02p]_Eﬂ’p71,o [@(XU) |y0:p71}}'
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4 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

2.1. Case X C R. Let us denote the CDF of 7, ¢ as I, 9. An approximation of
Eﬂp,o[@(XONyO:P]* ]E‘fl'p—l,o[QD(XO)‘yO:p—l] is

NP
= (I (U))]

P

=

1=

where for i € {1,...,N,}, U’ N Upp,1) and H;(lj is the (generalized) inverse CDF
of I, o. If we do this independently for each p € {1,...,n} and use an independent
estimator N%, Zf\; oI5 (U?)) for Er, ,[¢(Xo)|yo] one can estimate E[p(Xo)|yo:n]-
The utility of the coupling is that it is optimal in terms of 2-Wasserstein distance.
We have the following result, where the assumption and proof are in the appendix.

THEOREM 2.1. Assume (A1). Then there exists p € (0,1), C < +oo such that
for any ¢ € By(X) NLip(X), n* > p>1, N, > 1, we have

N, ‘ ‘ o ) 5
V"”[Ni 2L, () - P o (U))]] < P”N%

The main implication of the result is the following. In the approach to

be considered later in this paper the cost of computing (an approximation of)
(Hp 0 1L, 1 0) 18 O(1) per time step. So the cost of this method is C(n* +>_7_( Np)-
Thus the MSE and cost associated to this algorithm are (at most in the first case)

1 " ,op_1
C 2y 2 (7 Qn)
(et v el (7 + 32 -+

and
(2.1) C(n*+ > Np)
p=0

Let € > 0 be given. To achieve an MSE of O(€?) we can choose n* = |log(e)/ log(p)|
(here we of course mean n* = [|log(e)/log(p)|], but this is omitted for simplicity)
and N, = € 2(p+ 1)~ for any 6§ > 0 yields that the associated cost is O(e~2). If
one just approximates Er,  [¢(Xo)|yo:n] using

z
nOU

HMZ

then, to achieve an MSE of O(e?) the cost would be O(ne~2) which is considerably
larger if n is large. That is, the cost of the ML approach is essentially O(1) w.r.t. n.
If one stops at n* = |log(e)/ log(p)| and uses the estimate

1
-1
N;@(H

to achieve an MSE of O(e?), the cost is O(e~2|log(¢)|). A similar approach can show
that these results are even true when smoothing for E[p(Xo.x)|yo.n] for k fixed (and
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 5

hence E[o(Xs.s1%)|yo:n])- The strategy of choosing n* and Ny.,- detailed above, is
the one used throughout the paper. Note that in practice, we do not know p, so we
choose a value such as p = 0.8 which should lead to an n* which is large enough. This
is also the reason for setting N, = ¢ "2(p + 1)7'7% and not N, = e 2(p'/2)P~! say.

It is remarked that the compactness of X could be removed by using Kellerer’s
extension of the Kantorovich-Rubenstein theorem (see [9] for a summary) and then,
given that the latter theory is applicable, to show that there exists a C < 4o0,
p € (0,1) such that for any n* >p >1

sup  |Ex, ,[0(X0)|yo:p] — B, _, o [0(Xo0)|yosp—1]| < CpP~*
@€ELip, (X)’

where Lip, (X)’ is the collection of functions ¢ : X — R such that for every (z,y) € X2,
lo(z) — ¢(y)] < |z — y|?>. This can be achieved using the techniques in [17]. Such
an extension is mainly of a technical nature and is not required in the continuing
exposition. We now establish that the construction here can be extended to the case
X C RY,

2.2. Case X C R? We consider the Knothe-Rosenblatt rearrangement, which
is assumed to exist (see e.g. [26]). For simplicity of notation, we set X = E¢ for some
compact E C R. Denote by II, o(-|z1.;) the conditional CDF of 7, o(2j41|21:5) with
1 < j <d-1. Note that here we are dealing with the d—dimensional co-ordinate at
time zero and we are considering conditioning on the first j of these dimensions. Then
to approximate Er ,[0(X0)|y0:p) —Ex,_, o[¢(X0)|yo:p—1], sample U, ..., U'r where

forie {1,...,N,}, Ui, Ny Upp,17¢- Then we have the estimate for ¢ € By, (X)NLip(X)

N,
1 . ,
N 2e(&pa) = ¢(&p-1.4)]

P =1

where for ease of notation, we have set & | = H;(l)(Uf), (vesp. & 1, = H;El,O(Uli))
i i i —1(77i|ci ; i

and ﬁp,j :4 (gp,17' ] p,jflv'Hp,O(Uij,jfl)): 2 < J < d, (resp. é.pfl,j
(& a0 & I o(UHE 1 5-1)), 2 < j < d). We have the following result,

whose proof and assumptions are in the appendix.

THEOREM 2.2. Assume (A1-2). Then there exists p € (0,1), C < +oo such that
for any ¢ € By(X) NLip(X), n* > p>1, N, > 1, we have

N.
1 - i i CppilnSO”%lp
Var[ﬁp ;[@( pa) — 21| < N,

As will be detailed in the following section and in particular in Algorithm 3.1,
it is often more convenient in practice to use the standard normal distribution
instead of the uniform distribution as a base distribution. The only difference is
that samples from the standard normal distribution first have to be mapped through
the corresponding CDF before taking the inverse image through the CDF of interest,
e.g. H;(l)(-|x1:j) for some p > 0 and some 1 < j <d—1.

We end this section with some remarks. Firstly, the MLMC strategy could be
debiased w.r.t. the time parameter using the trick in [25], which is a straightforward
extension. One minor issue with this methodology, is that the variance can blow up in
some scenarios. Secondly, the idea of using the approach in [25], when approximating
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6 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

El¢(Xo:n)|Yo:n] has been adopted in [16]. The authors use a conditional version of the
coupled particle filter (e.g. [5, 18]) to couple smoothers, versus the optimal Wasserstein
coupling. The goal in [16] is unbiased estimation which is complementary to ideas in
this article, where we focus upon reducing the cost of large lag smoothing.

3. Transport methodology.

3.1. Standard Approach. The basic principle of the transport methodology
introduced in [26] is to determine a mapping 7T relating a base distribution 7, e.g. the
normal distribution, to a potentially sophisticated target distribution 7 related to the
problem of interest. The distribution n should be easy to sample from so that, given
the map T, we can obtain samples from 7 by simply mapping samples from 7 via T.
More precisely, the considered mapping 7T is characterised by

Tyn(x) = (T~ (2))|det VT~ ()| = 7(x),

that is, the push-forward distribution of n by T is #. Such a mapping can be
approximated using deterministic or stochastic optimisation methods. However, the
underlying optimisation problem is only amenable when the space on which 7 is
defined is of a low dimension, e.g. up to 4. This is not the case in general for the
smoothing distributions introduced in the previous sections, especially as the number
of observations increases. This is addressed in [26] by identifying the dependence
structure between the random variables of interest. In particular, for a hidden
Markov model on R?, it is possible to decompose the problem into transport maps
of dimension 2d, which does not depend on the number n of observations that define
the smoother. The problem at time p can be solved by introducing a mapping 7}, of

the form .
Tp (lxpa xp—&-l)]
Tp (prrl)
which will transform the 2d-dimensional base distribution 754 into a target distribution

related to the considered hidden Markov model, as detailed below. This target
distribution can be expressed as

Tp(p, Tpt1) = [

Tp(Tp, Tpi1) X nd(xp)f(T;}fl(xp)u $p+1)9(mp+lyyp+l)a

for any p > 0, which can be seen to be related to the 1-lag smoother. When p = 0, we
simply define 7o(xo, 1) = f(x0) f(x0,x1)9(x0,y0)g(x1,y1). The base distribution 794
(resp. ng) is the standard normal distribution of dimension 2d (resp. d). The mapping
T, can be embedded into the 2d(n + 1)-dimensional identity mapping as

Ty(z0, ..., 70) = (20, ,xp,l,Tz?(xp,po),Tpl(po),pr, ey )

with -* denoting the matrix transposition. It follows that

TTL:TOO"'OTn

is the map such that the pushforward (T,)x7q¢n+1) is equal to the probability
density function of the smoother at time n. Obtaining samples from the smoothing
distribution is then straightforward: it suffices to sample from 74,41y and to map the
obtained sample via T,.

Even in low dimension, the optimisation problem underlying the computation of
the transport maps of interest is not trivial. One first has to consider an appropriate
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 7

parametrisation of these maps, e.g. via polynomial representations. The parameters
of the considered representation then have to be determined using the following
optimisation problem

(3.1) T, = arg;nin —E|log7,(T(X)) + log (det VT(X)) —lognaq(X) |,

where the minimum is taken over the set of monotone increasing lower-triangular
maps. This minimisation problem can be solved numerically by considering a
parametrised family of maps and deterministic or stochastic optimisation methods.
Let T be any acceptable map in the minimisation (3.1) and denote by T® the 4P
component of T, which only depends on the i*! first variables, i € {1,...,2d}, then
the considered parametrisation can be expressed as

T(i)(mwuafﬂi):ai($1,~-.,$i71)+/ bi(21,...,zi-1,t)2dt
0

for some real-valued functions a; and b; on R*~! and R? respectively. It is assumed

that the functions z; — a;(z1,...,2;—1) and x; — b;(z1,...,x;-1,t) are probabilists’
Hermite functions [2] extended with constant and linear components for any j < ¢ —1,
and the function t — b;(z1,...,2;-1,%) is also a probabilists’ Hermite function which

is only extended with a constant component. In particular, these functions take the
form

2d(omap+1)
(17;(1'1,...,.%1',1): Z Ckcbk(fﬂl,...,l'ifl)
k=1
2domap
bi(xl, NN ,$i_1,t) = Z ng\Ifk(]}h .. ,in_l,t)
k=1

with omap the map order, with {cg }x>1 and {¢} } x>1 some collections of real coefficients
and with ®; and V¥, basis functions based on the above mentioned probabilists’
Hermite functions. The expectation in (3.1) is then approximated using a Gauss
quadrature of order oy, in each dimension and the minimisation is solved via the
Newton algorithm using the conjugate-gradient method for each step.

The desired function T}, can be recovered through the relation

(32) Tp((xp1s---sTpa)s (Tpta,1s-- -5 Tpt1,d)) =
(SO' o T; © So’)(xp,la <oy Lpdy Tp41,15 - - - 7xp+1,d>7

where 0 = (2d,2d — 1,...,1) and S, is the linear map corresponding to the
permutation matrix of o, which verifies S;1 = S,,.

3.2. Fixed-Point Smoothing with Transport Maps. The approach
described in Section 3.1 allows for obtaining samples from the distribution m, ¢ of
Xo given (Yo,...,Y,n) = (yo,...,yn) by simply retaining the first d components of
samples from 7g(,,4+1) after mapping them through T;,. However, the computational
cost associated with the mapping of samples by T, increases with n, making the
complexity of the method of the order O(n?).

This can however be addressed by considering X, as a parameter and by
only propagating the transport map corresponding to the posterior distribution of
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8 J. HOUSSINEAU, A. JASRA AND S.S. SINGH

(X0, X,). This approach has been suggested in [26, section 7.4]. We assume in the
remainder of this section that observations start at time step 1 instead of 0. When
considering X, as a parameter, the elementary transport maps take the form
T,%° (o)
Tp(xo, Tp, Tpt1) = Tg?(anxp:po)
T;} (3507 xp-&-l)

and the corresponding target distributions become

71(%0, 71, T2) o po(z0) f (w0, 71) f (21, T2)g(w1, Y1) 9(T2, Y2),
and
7~1’-p(x[)a Tp, xp+1) X 772d(330> :L‘p)f(Tgfl(an mp)7 xp+1)g(mp+1> yp+1>7
for any p > 1. The transport map associated with the posterior distribution of
(Xo, Xn) is
. TX0 6 oo 0TX0 (g
Tn(wo, an) — |1 L n—l( 0)
Tn—l (Z‘o, ‘Tn)
By recursively approximating the composition T1X° 0--+0 Tf_ol by a single map, the
computation of samples from the posterior distribution of Xy becomes linear in time.
The pseudo-code for this approach is given in Algorithm 3.1.
4. Case Studies.
4.1. Linear Gaussian.

4.1.1. Theoretical Result. The results in Section 2 do not apply to the linear
Gaussian case. We extend our results to this scenario. We assume that the dynamical
and observations models are one-dimensional as well as linear and Gaussian such that
the state and observation random variables at time n can be defined as
(4.1a) Xp|zn_1 ~ N(az,_1,5%), n>1
(4.1b) Y|z, ~ N(xp, 72), n>0
and Xo ~ N(0,02), for some a € R and some 3,0,7 > 0. We have the following
result, whose proof is in the appendix.

THEOREM 4.1. Assuming that Var(X,, | yo.,) &~ 2 for all p large enough, it holds
that

Var up ﬁ[ﬂné(w _ lel,O(Ui)]} _0 (;p (at (f;) _2’°>.

Theorem 4.1 shows that, under assumptions on the parameters of the model, the
variance of the approximated multilevel term at level p tends to 0 exponentially fast
in p and with an order of 1/N,, for the number of samples. This theorem also indicates
that the behaviour depends on all the parameters in the model, although implicitly
in 7. For instance, if § > 7 then one can consider v = 7 in the above expression. The
assumption about the variance of the filter can be justified in terms of reachability
and observability of the system [20].

This rate can get extremely beneficial for the proposed approach when f is large
and ~ is small, however it can also make it of little use in the opposite case. This
does not come as a surprise since a large § means that the initial condition is quickly
forgotten so that obtaining a high number of samples from the smoother 7, o for large
p would be inefficient, whereas small values of § incur a much higher dependency
between the initial state and the observations at different time steps.

This manuscript is for review purposes only.
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Algorithm 3.1 Multilevel transport

1: input: €, 6, p

2: Output: estimate Xg of ¢(Xo) | Yo:n-

3 n* = log(e)/ log(p)

4: forp=1,...,n" do

5: if p =1 then

6: 7p (w0, ¥1, T2) o< po(To) f (w0, T1) f (71, 22)g(w1, y1)9(22, Y2)

7: else

8: 7~T]D(xOv Lp, xp+1) X nZd(an xp)f(Tz}fl(xOv fp)a $p+1)g(xp+17 yp+1)

9: > T,_, is the second component of Tp_l
10: end if

11: n= N(Ogcb Igd)

12: T, = FilteringDistribution TransportMap(n, 7,)

13: > Compute transport map from 7 to the law of (X, X,) | y1., based on 7,
14: N,=e2(p+1)717° > Compute the number of samples
15: fori=1,...,N, do

16: S~n

17: f;) = Tp(S)

18: if p=1 then

19: ¢ = (&) > Map the first d components of £/, through ¢
20: else R

21: 5;1)—1 = Tp—l(S)

22: ¢ = (€51 — p(&k)

23: end if

24: end for

25: Xo+— Xo+ Nip va:pl C;)

26: end for

4.1.2. Numerical Results. The performance of the proposed method is first
assessed in the linear-Gaussian case where an analytical solution of the fixed-point
smoothing problem is available, this solution being known as the Rauch-Tung-Striebel
smoother [24]. More specifically, we consider the model (4.1) with X, ~ AN(1,02),
o0 =2and o« = f =7 = 1. The transport maps of interest are approximated' to
the order on,p, = 3 while the expectation is approximated to the order ocxp, = 5 and
the minimisation is performed with a tolerance of 10~%. The number of samples at
each time step as well as the time horizon n* is computed according to the method
proposed in Section 2.1 with different values for the parameter ¢ and with p = 0.8.
The performance of the proposed method is compared against the PaRIS algorithm
introduced in [22] using the observations yi,...,ys0 with a varying number N of
samples and with N = 2 terms for the propagation of the estimate of Xy. In the
simulations, it always holds that n* < 50 to ensure the fairness of the comparison.
The criteria for performance assessment is the MSE at the final time step, defined as

1The solver used for the determination of the transport maps is the one provided at
http://transportmaps.mit.edu/docs/index.html
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1071
. —s— Multilevel (—log(£))
—e— PaRIS (loga(N))

—e— Single-level {logz2(\))
1077 5

1073 4

MSE

1074 4

10-7 o

1078

T T T
40 60 a0 100

Cost (s)

Fia. 1. Performance of the proposed method against the PaRIS algorithm and the single-level
transport-map approach for the linear-Gaussian model, averaged over 100 Monte Carlo simulations.
The reference for the computation of the MSE is the Rauch-Tung-Striebel smoother. The displayed
cost for the multilevel approach includes the computation of the transport maps.

where M is the number of Monte Carlo simulations, #; is the estimate of Xg | 1.,
(with n* = 50 for the PaRIS algorithm) and where z* is the corresponding estimate
given by the Rauch-Tung-Striebel smoother.

The values of the MSE at the final time obtained in simulations are shown
in Figure 1 where the proposed approach displays smaller errors than the PaRIS
algorithm for different values of € and N. The comparison is also made with a single-
level transport-map approach, i.e. without the multilevel decomposition, for different
numbers of samples. The advantage when representing the probability distributions
of interest with transport maps is that the computational effort required to obtain a
sample is extremely limited once the maps have been determined. For instance, the
highest and lowest considered values of € in Figure 1 correspond to N; = 1250 and
N1 = 500,000 samples respectively, which induces a comparatively small increase in
computational time.

In this linear-Gaussian case, using maps of order omap, < 3 would have been
sufficient, however this would have been equivalent to making an assumption on
the type of distribution considered for the proposed algorithm whereas the PaRIS
algorithm makes no such assumption. The reason for choosing specifically omap = 3 is
that this value was found to be sufficient for nonlinear models as in the next section.

4.2. Stochastic Volatility Model. In order to further demonstrate the
performance of the proposed approach, the assessment conducted in the previous
section is applied to the estimation of Xy | y1.,+ in a non-linear case. A stochastic
volatility model is considered with

1
Xn=p+¢(Xn_1 —p) + Vo, nz>1, XONN(M,W)
1
Y, =W, exp (§Xn>, n>0

This manuscript is for review purposes only.



216
217
218
219
220
221
222
223

225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241

ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 11

—s— Multilevel (—log(£))
101 4 —e— PaRIS (logz(N))

—e— Single-level {logz2(\))

MSE

1072

T T T T T T
o 20 40 60 80 100 120 140 160
Cost (s)

Fig. 2. Performance of the proposed method against the PaRIS algorithm and the single-
level transport-map approach for the stochastic volatility model, averaged over 100 Monte Carlo
simulations. The reference for the computation of the MSE is the PaRIS algorithm with 2% samples.
The displayed cost for the multilevel approach includes the computation of the transport maps.

with V;, ~ N(0, 8%) and W,, ~ N(0, 1), where u = —0.5, ¢ = 0.95 and 3 = 0.25. In the
absence of an analytical solution, the reference is determined by the PaRIS algorithm
with N = 2'% samples. Since the observation process of this model is generally less
informative than the one of the Gaussian model, the PaRIS algorithm is given the
observations up to the time step 50 and, similarly, it is ensured that n* < 50 for
the proposed approach. The other parameters are the same as in the linear-Gaussian
case, that is maps of order om,p, = 3 are used, the expectation is approximated to the
order o¢xp = 5 and the minimisation is performed with a tolerance of 10~4.

The MSE at the final time obtained for the two considered methods is shown
in Figure 2. Once again, the error for the proposed approach is lower than for the
PaRIS algorithm although the difference is less significant. In particular, the gain
in accuracy between the lowest and the second lowest value of € seem to indicate
that simply increasing the number of samples would not allow for reducing the error
much further. However, increasing the order of the transport maps or decreasing
the tolerance in the optimisation could further reduce the error, although with a
significantly higher computational cost.

The computational costs obtained for the two models considered in simulations
are shown in Figure 3 for different values of €. These results confirm the order O(e~?)
that was predicted in Section 2.

5. Summary. In this article we have considered large lag smoothing for HMMs,
using the MLMC method. We showed that under an optimal coupling when the
hidden state is in dimension 1 or higher, but on a compact space that, essentially,
the cost can be decoupled from the time parameter of the smoother. As this optimal
method is not possible in practice, we showed how it could be approximated and
established numerically that our theory still holds in this approximated case. Several
extensions to the work are possible. Firstly, to extend our theoretical results to the
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@ Gaussian - experimental
14 4 —— Gaussian - fitting

@® Stochastic volatility - experimental
- Stochastic volatility - fitting

12 1

1073 1072
&

Fia. 3. Computational cost as o function of €, averaged over 100 Monte Carlo simulations.
The fitted curves are based on a function of the form ¢ — —ae~2 — blog(e), with a and b some
parameters, which is justified by the form of the cost (2.1).

case of the approximated coupling. Secondly, to investigate whether the coupling used
in [16] can also yield, theoretically, the same improvements that have been seen in the
work in this article.

Appendix A. Variance Proofs. We write the density (or probability measure)
of the smoother, at time p, on the co-ordinate at time zero as 7, o and the associated
CDF as I, o (with generalized inverse II o). Recall that throughout X is a compact
subspace of R?. Throughout the observations are fixed and often omitted from the
notations. The appendix gives our main assumptions, followed by a technical Lemma
(Lemma A.1) which features some technical results used in the proofs. Then the proof
of Theorem 2.1 is given. The appendix is concluded by a second technical Lemma
(Lemma A.2) followed by the proof of Theorem 2.2.

(A1) There exists 0 < C < C < +oo such that

. . . ! /
inf g(x,y0)f(x) A Inf il 9" yp) f(z,2") =2 C

supg(z,yo)f(z) Vsup sup g(a',yp)f(z,2") < C.
xeX p>1 (z,27)EX?

(A2) There exists C' < +oo such that for every (x,z') € X2

lg(z,y0) — g(z',y0)| < Clo — 2|
sup |f(x,2) — f(2,2)| < Clz — 2|
zeX

[f(2) = f(&)] < Cle — 2|.

Below 7, 0(-|71.;) denotes the probability of the (j + 1) co-ordinate of the
smoother at time 0, given the first j—co-ordinates at time 0, and conditional upon
the observations up-to time p.

LEMMA A.1. Assume (A1-2). Then there exists (C,C") € (0,00)2, p € (0,1) such
that
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. forany 1 < j < d, sup,>q7p0(%0,1:5) < O, infy>omp0(w0,1:5) > C'

. fOT any p 2 ]-; ||7rp,0 - 7Tp—1,0||tv g Cpp71

- forany 1 < j <d, p>1, sup,, cgi |7p0(215) = mp-1,0(715)lew < CpP~?

. for any p >0, (z,2") € X2, |mp0(x) — mp0(2’)] < Clz — 2|

forany p > 0, 1 < j < d, (x15,2),) € (F))?, |mpo(z1) — mpo(ah,)] <
C|$1;j - x,1]|

T W N =

Proof. 1. follows trivially from (A1) and the compactness of E. 2. follows from
the backward Markov chain representation of the smoother and (A1); see for instance
[4] and the references therein.

3. to prove this result, we first consider controlling for any fixed 1 < j < dp > 1,

17p,0(%1:5) — Tp—1,0(T1:5)]-

Denoting m(,) as the filter at time p and setting for k > 0

Bu(wps1, z1) = 7y () f Tk Thot1)
e fx”(k)(xk)f(xkawkﬂ)dmk

we can write
(A1) |mpo(z1y) — mp—10(21:5)| =

OSC(BO(.’xl:j))‘[ﬂ(p)Bp—l_W(pfl)](Bp—m)( Bo(, 215) )‘

Osc(By(-, z1:5))
Using standard results for the total variation distance

p—2

Tp.0(21:5) — Tp-1.0(z15)| < Osc(Bo(-,z15)) [ w(Bs)
s=1

where w(B;) is the Dobrushin coefficient of the Markov kernel Bs. Standard
calculations yield that there exists a p € (0, 1) such that Osc(By (-, z1.5)) Vw(Bs) < Cp,
where C' does not depend upon z1.;. Hence we have shown that

(A.2) sup |mp,0(21:5) — Tp-1,0(z155)| < CpP "

Ty cEJ
To prove the result of interest we have for any ¢ € Oscy (E)

1

Tp,0(T1:5-1)

Wp—l,o(iﬂlzj—l) *Wp,o($1:j—1)/
Z5)Tp—1,0(T1:5)dx;.
Tp,0(T1:j-1)Tp—1,0(1:5-1) Ew( $)Tr=0(m;)de;

[Tp,0(plT1:5) — Tp—1,0(Pl21:5)| = /E<P($j)[77p,0(fﬂ1:j) — mp—1,0(T1:5)]dz; +

The conclusion then follows by using (A.2) and 1..
4. follows almost immediately from (A2) and the definition of the smoother. 5.
follows from 4. on marginalization and the compactness of E. d

Proof of Theorem 2.1. Standard calculations for i.i.d. random variables and the
Lipschitz property of ¢ clearly yields:

1 N

v [ Sl ot )] < L [0 = 12 P
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Now we note that
/[O : L, 6 (w) — I, o (w)Pdu = Wa(mp0, mp—1,0)°

where Wa(mp, 0, mp—1,0) is the 2-Wasserstein distance between 7, o and m,_1 9. As X
is compact it follows

2
Wa(7p,0, Tp-1,0)> < (/ dx) [7mp,0 = Tp—1,0/ltv
X

where | - ||4v is the total variation distance. Under our assumptions one can show that
there exists p € (0,1), C < +oo such that for any p > 1 (see Lemma A.1 2., which
holds when d = 1)

17,0 = Tp—1,0llv < CpP~t.
The proof is then easily concluded. q

LEMMA A.2. Assume (A1-2). Then there exists C < +oo, p € (0,1) such that
for anyp >1

EHfl,d - 5;—1,d|2] < CpPL.

Proof. The proof is by induction on d, the case d = 1 being proved by the approach
in the proof of Theorem 2.1. Throughout C' is a finite constant whose value may
change from line-to-line, but does not depend upon p.

We suppose the result for d — 1 and consider d. For simplicity of notation, we
drop the superscript 1 from the notation, e.g. we write &, 4 instead of fé,d. We have

Elp,a — &p—1,4l°] = E[E[l&5 4 — &p1.al*Ur:a—1]]
(A.3) < CE[l|mp,0(-[€p,a—1) = Tp—1,0(-[&p—1,a—1)[ev]
where, to go to the second line, we have used (conditional upon Us.4) the relationship

between the squared 2-Wasserstein distance and the (generalized) inverse CDF, along
with the total variation bound as used in the proof of Theorem 2.1.
Now, we have

17p.0(-1€p.a=1) — Tp—1,0(-1€p=1,d—=1)|ltv <
(Ad) [lmp0(-1€p,a—1) = Tp-1,0(-€p,a—1)lew + 1Tp—1,0(-[§p,a—1) = Tp—1,0(-[§p—1,d—1) |t
By Lemma A.1 3. it follows that

(A.5) [7p.0(|€p.a=1) = Tp—1,0(|€p.a—1)llev < CpP~*

so we consider ||mp—1,0(-|§p,d—1) — Tp—1,0(:|€p—1,a—1)|ltv. For any ¢ € Osc;(E)

Tp,0(Pl€p,d—1) — Tp—1,0(¢1p,d—1) =

1
7r1{)_170(&[)_1701_1)/ESD(UL")[%LO(fp,clth) —Wp71,0(§p71,d71733)}d33+

Tp—1,0(€p—1,d—1) — Tp—1,0({p,d—1) /
’ : : : T)m,_ 1.d-1,x)dx.
Tp—1,0(&p,a—1)Tp—1,0(§p—1,d-1) EQD( JTo-1.0(6p-14-1,7)
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Applying Lemma A.1 4. to the first term on the R.H.S. and Lemma A.1 5. to the
second term on the R.H.S. along with the boundedness of ¢ and compactness of E,
we have that

C

7Tp—1,0(§p—1,d—1)
C

Tp—1,0(&p,d—1)Tp—1,0(Ep—1,d-1

1Tp,0(Pl€p.d—1) — Tp—1,0(¢|€p,a—1)] < 1€p,d—1 — Ep—1,a—1] +

)|§p,d—1 —&p—1,d-1]-
Applying Lemma A.1 1. we can then establish that
(A.6) [7p—1,001€p,a—1) — Tp—1,0(-[§p—1,a-1)[lev < Clép,a—1 — Ep—1,a-1]-
Combining (A.5) and (A.6) with (A.4) and noting (A.3), we have shown that
E{l§5.a — §p-1.01%) < C(p7™" + Ellgpa-1 = §-r.a1l]).

The proof is completed by using the Jensen inequality and the induction hypothesis.O
Proof of Theorem 2.2. We have

N,
1y e ; lell;
Var[— (€ a) — $l€h-1.0)]] € TH2Eléha — Ehoral’)
Np i=1 Np
The proof is then completed by applying Lemma A.2. ]

Appendix B. Linear Gaussian Result.

Proof of Theorem 4.1. The Rauch-Tung-Striebel smoother gives an expression of
the smoothed mean my,,, and variance vy, at time p given the observations yo, ..., ¥
as

Mpln = Myp|p + Cp(Mpt1n — Mpi1)p)

2
Upln = Vplp + & (Upt1in = Up+1jp);
with ¢, = amy),/mpyi1)p, where my, i, and v,yq), are the predicted mean and
variance at time p + 1 given the observations yo, ..., yp. It follows that the mean m,

and variance v, of 7, o satisfy similar relations to the filtered means and variances:

P i—1 P i—1
my, = Zmih-ai(l — Lipady) H d; and v, = Zvi‘ia%(l — Licpa’dy) H 3,
i=0 J=0 =0 j=0

where dj, = vy|,/Vpt1)p and where I is the indicator of condition c. The objective is
to compute the order of

H;,(l)(u) - H;—ll,o(u) =mp —Mmp_1 + V2erf™ (2u - 1)(op = 0p-1)

where o), = ,/v,. From the above expression, it follows easily that

p—1 p—1
— =aoP _ ) — — 2P — 2
mp —mp—1 = & (M| — Myp|p—1) H di and vy —vp1 = aP(Up)p — Vppp1) H di.
i=0 i=0
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—— Rhee-Glynn estimator
—— PaRIS

512

1024 |

64

MSE

1024

2048

512

10-2 ] 4096
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Cost (s)

Fia. 4. Performance of the Rhee-Glynn estimator against the PaRIS algorithm with a linear-
Gaussian model, averaged over 100 Monte Carlo simulations, where the number of samples is
indicated on the figure. The reference for the computation of the MSE is the Rauch-Tung-Striebel
smoother. The results for the Rhee-Glynn estimator are averaged over 210 runs of the estimator.

which yields the same order for both m, — m,_; and 0, — 0p—1. The desired result
follows from the fact that

p—1 p—1 Vil p—1 a p—1 52 -1
a? | di=a? LI = (a + ) ;
g ' H av); + 2 H a? + B2 fvy; H Q5|

=0 =0 =0

and from the assumption that vy, = Var(X, | yo.,) ~ 7* for all p large enough. O

Appendix C. The Rhee-Glynn smoothing estimator. We compare the so-
called Rhee-Glynn smoothing estimator described in [16] with the PaRIS algorithm
[22] on the linear-Gaussian model considered in Section 4.1.2. The Rhee-Glynn
smoothing estimator is implemented with ancestor sampling [21] and where all the
generated paths are used in the estimate of Xy | y1.,+, as originally suggested in [1]
in the context of particle Markov chain Monte Carlo.

The result of the comparison is given in Figure 4 where it appears that the PaRIS
algorithm slightly outperforms the Rhee-Glynn smoothing estimator. Although the
scenario considered here is linear and Gaussian, none of the compared methods relies
on these assumptions so that the conclusions made for this case are generalisable to
some other classes of scenarios. This justifies the sole use of the PaRIS algorithm in
Section 4 for comparison against the proposed approach.
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