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Abstract

Leading-edge serrations are studied extensively as a way of reducing leading-edge

noise and have been shown to be able to reduce leading-edge noise significantly.

Previous experiments showed that different serration geometries have different

noise reduction capabilities. However, the optimal serration geometry has not

been known. Consequently, there are no guides that can be used at the design

stage of serrations. In this paper, by performing an asymptotic analysis, we

show that in order to achieve greater noise reduction in the high frequency

regime (k1h� 1, where k1 denotes the streamwise hydrodynamic wavenumber

and h half of the root-to-tip amplitude of serrations), the serration profile cannot

have stationary points. Therefore, piecewise smooth profiles free of stationary

points are more desirable. Moreover, we show that greater noise can be achieved

in the high frequency regime by using serrations that are sharper around the

non-smooth points. The underlying physical mechanisms of these findings are

discussed. Based on these findings, a new type of serration profile is proposed,

and analytical model evaluations confirm its improved acoustic performance

in the frequency range of interest. At low frequencies, a slight deterioration

may be expected, but this is often negligible. To verify the conclusion drawn

from the analysis, we perform an experimental study to investigate the acoustic

performance of this new serration design. The results show that it is indeed

superior than conventional sawtooth serrations. For example, a remarkable 7 dB

additional noise reduction is observed in the intermediate frequency range with

no perceivable noise increase elsewhere. The trends predicted by the analysis are

well validated by the experiment. It is expected that these findings can serve

as an essential guide for designing serrations, and lead to more acoustically
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optimized serration geometries.
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1. Introduction

Aerofoil noise is of great importance in a wide range of applications, such as

wind turbines, aero-engines, high-speed propellers and fans. The overall aerofoil

noise is complicated, consisting of more than one physical mechanisms of noise

generation [5, 32]. These include the noise due to the scattering of the turbulent5

boundary layer by the trailing edge, the tip vortex formation noise, and the noise

due to the scattering of incoming turbulence/unsteady gusts by the leading edge

etc.

In many applications, in particular where more than one row of rotors are

installed, the scattering of the unsteady flow by an aerofoil leading edge plays a10

crucial role in the noise generation. For example, in contra-rotating open rotor

systems, the wakes from the front row impinge on the downstream blades. This

leads to a strong interaction between the unsteady wakes and the leading edge

of the downstream blades, resulting in efficient noise radiation. This noise is

often referred to as leading-edge noise, and it is considered as the main source in15

similar multi-row rotor systems such as the jet engines. The problem of leading-

edge noise is especially important in modern aeroengines with ultra-high bypass

ratios, where the distance between the rotor and stator becomes increasingly

short.

The research on leading-edge noise dates back to the 1940s. As one of the20

early attempts, Sears [36] investigated the aerodynamic response of a flat plate

subject to an sinusoidal gust. This study focused on an incompressible flow,

and this was extended to compressible flows by Graham [14] and Amiet [1]. In

Amiet’s work, the acoustic response due to a single sinusoidal incoming gusts

was obtained using the Schwarzschild method and the theory of Kirchhoff and25

Curle [12]. The far-field sound was then related to the wavenumber spectral den-

sity of the vertical velocity fluctuations. Provided that this wavenumber spectral

density can be modelled accurately, the far-field sound can be predicted robustly

using Amiet’s approach and agrees well with experimental results. Amiet’s ap-

proach has been shown to work fairly well and become an important method30

for following studies.

Due to the importance of leading-edge noise in many applications, techniques

for its reduction have been of research interest for many years. One of the most

widely studied approaches is to use bio-inspired serrated leading edges [6, 13, 28].
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One of the earliest studies of the acoustic effects of leading edge serrations is35

that by Soderman [38] in the 1970s, and some recent studies such as Clair

et al. [10] and Roger et al. [33]. It has been shown experimentally that the

use of serrations leads to reduced leading-edge noise and improved aerodynamic

performance at high angles of attack [16, 27]. The acoustic benefit of using

serrations was also studied numerically in a number of recent works, such as40

those by Lau et al. [18], Kim et al. [17] and Turner and Kim [39]. Lau et al.

[18]’s work showed that the dimensionless quantity k̃1h̃, where k̃1 denotes the

hydrodynamic wavenumber in the streamwise direction and h̃ denotes half of

the root-to-tip length of serrations, plays an important role in determining the

effectiveness of the serrations. Kim et al. [17] argued that both source cut-off45

and destructive interference effects contributed to the noise reduction achieved

by using serrations. The recent work of Lyu and Azarpeyvand [19] extended

Amiet’s work and developed a noise prediction model for serrated leading edges.

It showed that the destructive interference plays a central role in the noise

reduction, and proposed two geometric criteria for designing effective serrations.50

Though the serrations have been shown to be able to reduce leading-edge

noise effectively, both experimentally and numerically with a number of designs

proposed (see for example Chaitanya et al. [8, 9], Chaitanya and Joseph [7]), it

remains unclear what serration geometry leads to the maximum noise reduction.

Previous experiment mostly focused on serrations of sinusoidal profiles [16, 27].55

However, a recent study [8, 9] showed that a new type of serration geometry,

which was formed by a superposition of two sinusoidal profiles of different fre-

quency, amplitude and phase, could result in greater noise reduction than the

single wavelength serrations for specific frequency bands. Note that this acous-

tic performance improvement occurred in a relative low frequency band and60

there was little change to the noise levels at high frequencies. Nevertheless, this

study showed that it is possible to achieve greater noise reduction via changing

the serration geometries. It is therefore desirable to understand how the serra-

tion geometry changes the acoustic performance and how we can design more

acoustically effective serrations.65

In this paper, we address this need. We do so by using the recent model

developed by Ayton and Chaitanya [3, 4] and then examining the asymptotic

behaviour of the scattered noise power spectral density. In the following sections,

in order to introduce necessary notations, the essential steps to reproduce the

results obtained by Ayton and Chaitanya [4] are presented first in section 2.70

Section 3 derives the formula for the sound power spectral density in the far-

field, based on which the following section performs an asymptotic analysis
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Figure 1: Schematic illustration of the leading-edge serration and the Cartesian coordinates.

to assess the acoustic performances of different serration geometries. The last

section concludes this paper and lists some of our future work.

2. Analysis75

The serrated aerofoil is assumed to be a semi-infinite plate [1, 31, 19] placed

in a uniform incoming flow of density ρ̃ and velocity Ũ at zero angle of attack,

as shown in figure 1. When the angle of attack is not zero, or the aerofoil

has both finite thickness and camber, the incoming turbulence experiences a

distortion process [25, 26, 35]. This is likely to affect the spectrum of the80

incoming turbulence; however, as far as the acoustic scattering is concerned, the

assumptions of zero angle of attack and flat plate are likely to be permissible and

we may use the frozen-turbulence assumption in the subsequent development

of models. In addition, the speed of sound is assumed to be uniformly c̃0.

In the rest of this paper, the serration wavelength λ̃ is used to normalise the85

length dimension, while ρ̃ and Ũ are used to non-dimensionalize other dynamic

variables such as the velocity potential and pressure. For example the angular

frequency ω̃ is non-dimensionalized by ω = ω̃λ̃/Ũ . In the rest of this paper,

unless noted otherwise, all the quantities without tildes are dimensionless.

We restrict our attention to periodic serrations. Because the geometric pa-90

rameters are normalised by the serration wavelength, the serrations have a pe-

riod 1. The normalised root-to-tip length is 2h. Let x, y, z denote the stream-

wise, spanwise and normal to the plate directions, respectively. The coordinate

origin is fixed in the middle between the root and tip. In such a coordinate frame,
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the serration profile can be described by hF (y), where F (y) is a single-valued95

function that has a maximum value 1 and minimum value −1. Moreover, we

require 1 to be the smallest period. Other than these constraints, the function

F (y) is arbitrary.

When the turbulence in the mean flow passes the leading edge, a scattered

potential flow is induced. The scattered potential ensures appropriate boundary

conditions to be satisfied. In the leading-edge noise problem, the vertical velocity

fluctuation is of our primary concern. The turbulence in the mean flow consists

of a wide range of time and length scales. However, one can always perform

a Fourier Transformation on the incoming vertical velocity field, such that one

only needs to consider a harmonic gust

wi = w0ei(−ωt+k1x+k2y), (1)

where t denotes time (normalised, so are the following quantities unless noted

otherwise), w0 the velocity fluctuation in the z direction, ω the angular fre-100

quency and k1 and k2 the wavenumbers in the streamwise and spanwise di-

rections, respectively. The turbulence is assumed to be frozen and convects

downstream at the speed Ũ . Therefore, one has k1 = ω.

Let φs denote this scattered velocity potential. One can show that, with a

uniform mean flow, φs satisfies the convective wave equation [2]

∇2φs −M2

(
∂

∂t
+

∂

∂x

)2

φs = 0, (2)

where M = Ũ/c̃0. To ensure that the normal velocity on the plate vanishes, we

require
∂φs
∂z

∣∣∣∣
z=0

= −w0ei(−ωt+k1x+k2y), x > hF (y). (3)

The scattering problem is anti-symmetric across z = 0, therefore we also have

φs|z=0 = 0, x < hF (y). (4)

This is a mixed boundary condition problem. The recent work from Ay-

ton and Chaitanya [4] shows that this scattering problem can be solved using105

Wiener-Hopf method. For the sake of completeness we describe the essential

steps as follows.

With the harmonic time dependence (φs = Φse
−iωt), the convective wave

equation becomes

β2 ∂
2Φs
∂x2

+
∂2Φs
∂y2

+
∂2Φs
∂z2

+ 2ikM
∂Φs
∂x

+ k2Φs = 0, (5)
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where β2 = 1 −M2 and k = k1M . We emphasize again that the variables in

equation (5) are non-dimensionalized as described above.

To eliminate the first-order differential term in equation (5), let a new depen-

dent variable Φ = Φse
ikMx/β2

. With the change of variable ξ = [x− hF (y)]/β,

η = y and ζ = z, we have [4, 19]

∂2Φ

∂ξ2
+
∂2Φ

∂η2
+
∂2Φ

∂ζ2
−2h̄F ′(η)

∂2Φ

∂ξ∂η
− h̄F ′′(η)

∂Φ

∂ξ
+ h̄2F ′2(η)

∂2Φ

∂ξ2
+ k̄2Φ = 0, (6)

where h̄ = h/β and k̄ = k/β. Upon defining k̄1 = k1/β, we can show that the

boundary conditions are now

∂Φ

∂ζ

∣∣∣∣
ζ=0

= −w0ei(k̄1ξ+k̄1h̄F (η)+k2η), ξ > 0, (7)

and

Φ|ζ=0 = 0, ξ < 0. (8)

Considering the spanwise periodicity of the serrations, we require that Φ also

satisfies the following periodicity condition:

Φ|η=0 = Φ|η=1 e−ik2 ,
∂Φ

∂η

∣∣∣∣
η=0

=
∂Φ

∂η

∣∣∣∣
η=1

e−ik2 . (9)

We can now perform Fourier Transformations in the streamwise direction,

i.e.

Φ̃(s, η, ζ) =

∫ ∞
−∞

Φ(ξ, η, ζ)eisξdξ. (10)

Then it is straightforward to show that

(k̄2− s2)Φ̃ +
∂2Φ̃

∂ζ2
+
∂2Φ̃

∂η2
+ 2ish̄F ′(η)

∂Φ̃

∂η
+ ish̄F ′′(η)Φ̃− s2h̄2F ′(η)Φ̃ = 0. (11)

Trying separable solutions Φ̃(s, η, ζ) = Y (η; s)Z(ζ; s) yields two ordinary differ-

ential equations [4]. Using the method of separation of variables, the general

solution Φ̃ can be written as

Φ̃(s, η, ζ) =

∞∑
n=−∞

An(s)

∞∑
n=−∞

An(s)sgn(ζ)e−γn|ζ|e−ishF (η)eiχnη, (12)

where χn = 2nπ + k2, γn =
√
s2 − κ2

n, κ2
n = k̄2 − χ2

n, An(s) are analytical

functions of the complex variable s and the sign function sgn(x) obtains 1 when

x ≥ 0 and −1 when x < 0. Because of the orthogonality of the functions Y (η; s)
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with their Schwartz conjugates, each mode can be calculated individually using

the Wiener-Hopf method (see Appendix A for details) to obtain

Φ̃(s, η, ζ) =

∞∑
n=−∞

iw0En(s)

(s+ k̄1)
√
s+ κn

√
−k̄1 − κn

sgn(ζ)e−γn|ζ|e−ishF (η)eiχnη,

(13)

where

En(s) =

∫ 1

0

ei(k̄1+s)h̄F (η)e−i2nπηdη. (14)

In the far-field, equation (13) can be inverse Fourier transformed using the

method of stationary phase (see Appendix A) to be

Φ(r, θ, y) =

∞∑
n=−∞

eiπ/4

√
π

eiκnr

√
r

cos
θ

2

w0En(−κn cos θ)

(−κn cos θ + k̄1)
√
−k̄1 − κn

eiχny. (15)

Φs is directly given by Φs = Φe−ikMx/β2

and the pressure is related to Φs via

p(r, θ, y) = ik1Φs −
∂Φs
∂x

. (16)

Equation (15) shows that the effects of serrations on velocity potential and the

pressure are solely determined by the functions En(−κn cos θ). Because at no

other locations does the function F (η) appear. This implies that one may be

able to optimize the serration profile by studying the functions En, which will

be shown in the rest of this paper. Equation (16) can be readily shown to be

equivalent to

p(r, θ, y) =

(
i
k1

β2
Φ− ∂Φ

∂x

)
e−ikMx/β2

. (17)

Equation (17) is still quite complicated. This is because equation (15) has

a complicated dependence on the azimuthal angle θ, hence making the differ-

entiation over x troublesome. However, considering that we are only interested

in the far-field, we can greatly simplify the final results by only keeping the

leading-order terms, i.e. ignoring the r−3/2 and higher-order terms. This yields

p(r, θ, y) ≈
∞∑

n=−∞
i(
k1

β2
−κn cos θ)

eiπ/4

√
π

eiκnr

√
r

cos
θ

2

w0En(−κn cos θ)e−ikMx/β2

(−κn cos θ + k̄1)
√
−k̄1 − κn

eiχny.

(18)

To write equation (18) in a more compact form, let H(ω,x, k2) denote

eiπ/4

√
π

e−ikMx/β2

cos
θ

2

∞∑
n=−∞

k1
β2 − κn cos θ

k̄1 − κn cos θ

1√
k̄1 + κn

eiκnr

√
r

eiχnyEn(−κn cos θ).

(19)
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Then equation (18) can be written in a more compact form as

p(r, θ, y) ≈ H(ω,x, k2)w0 (20)

Equation (18) is the induced far-field sound pressure by a single gust with

a spanwise wavenumber k2. The incoming turbulence can be modelled using a

series of these gusts with different k2 with a fixed value of k1 = ω, i.e.

wt =

∫ ∞
−∞

w0(ω, k2)ei(−ωt+k1x+k2y)dk2. (21)

Because of the linearity, the total sound pressure in the far-field induced by such

turbulence, pt, is given by

pt(r, θ, y) ≈
∫ ∞
−∞

H(ω,x, k2)w0(ω, k2)dk2. (22)

3. Far-field sound power spectral density110

Since the incoming turbulence is statistically stationary, the far-field sound

is best formulated statistically. Routine procedure shows that the sound Power

Spectral Density (PSD) of the far-field sound is given by

Ψ(ω, r, θ, y) = lim
T→∞

π

T
pt(r, θ, y)p∗t (r, θ, y), (23)

where 2T is the time interval used to performed temporal Fourier Transforma-

tion to obtain pt and the asterisk denotes the complex conjugate. Substituting

equations (22) into 23, we can show that

Ψ(ω, r, θ, y) ≈
∫ ∞
−∞
|H(ω,x, k2)|2Φww(ω, k2)dk2 (24)

where Φww(ω, k2) is the wavenumber power spectral density of the vertical ve-

locity fluctuations defined by

Φww(ω, k2) = lim
T→∞

π

T
w0(ω, k2)w∗0(ω, k2). (25)

Writing |H|2 explicitly, one obtains

|H(ω,x, k2)|2 =
1

π
cos2 θ

2

∣∣∣∣∣
∞∑

n=−∞

k1
β2 − κn cos θ

k̄1 − κn cos θ

1√
k̄1 + κn

eiκnr

√
r

eiχnyEn(−κn cos θ)

∣∣∣∣∣
2

.

(26)

As mentioned in the preceding section, the effects of serrations profiles (for fixed

serration wavelength and root-to-tip amplitudes) on the scattered sound are

solely determined by the functions En(−κn cos θ). Therefore, in the following

section, we will focus on investigating the behaviour of En(−κn cos θ) when the

serration profiles change.115
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4. Optimizing serration geometries

Equation (24) gives the form of the far-field PSD at the azimuthal angle θ.

To investigate the effects of serration shapes on far-field noise, it is convenient

to restrict our attention to a specific observer point. We choose θ = π/2 as

a starting point, and we will see at the end of this section that the following

analysis also holds for other observer angles. When θ = π/2, equation (24)

simplifies to

Ψ(ω, r, π/2, y) ≈ 1

πβ2
cos2 π

4

∫ ∞
−∞

∣∣∣∣∣
∞∑
−∞

1√
k̄1 + κn

eiκnr

√
r

eiχnyEn(0)

∣∣∣∣∣
2

Φww(ω, k2)dk2.

(27)

Equation (27) shows the sound reduction performance of the various serrations

at θ = π/2 is determined by the summation involving the functions En(0),

which do not depend on k2.

From equation (46), we see

En(0) =

∫ 1

0

e−i2nπηeik̄1h̄F (η)dη. (28)

At low frequencies, we see that the exponent in the integral k̄1h̄F (η) → 0.120

Consequently, no matter what serration profile is used, En(0) → δn0, where

δnm is the Kronecker delta. This is the same as that one would get for straight

leading edges. Hence at low frequencies, virtually no sound reduction is possible,

and the serration shape does not play any meaningful role as far as the leading-

edge noise is concerned.125

As the frequency increases, the exponent k̄1h̄F (η) varies from negative to

positive values, and when this varying range is large enough, for example from

−π to π, the integrand (both real and imaginary parts) varies from negative to

positive values. This results in oscillatory cancellation and the integrals obtain

an amplitude of less than 1. However, in this intermediate frequency range, the130

serration shape plays a complicated role, and the exact optimal shape closely

depends on which particular frequency we are more interested in. In general,

therefore, it is unlikely to have one specific serration profile that outperforms

any others in this entire frequency range.

Effective noise reduction can be achieved at relatively high frequencies, e.g.135

k̄1h̄ > π, where the oscillatory of the integrand becomes stronger and the can-

cellation becomes more effective. It is this frequency range that we are more

interested in practical applications, which is also of our primary interest in this

paper. To maximize the sound reduction at these relatively high frequencies,

9



we wish to start by minimizing |En(0)| for each n as k̄1h̄ → ∞. In the rest of140

this paper, we write the large number k̄1h̄ = ∆ for clarity. Note here ∆ simply

denotes the non-dimensionalized hydrodynamic wavenumber (hence frequency)

based on a half of the root-to-tip amplitude of the serration.

We categorise all possible single-valued serration shapes into those with sta-

tionary points, F ′(η) = 0 for some η, and those without. In the following145

sections we consider the effects of stationary points on the value of |En(0)|. As

we expect only a certain number of modes are cut-on in our frequency range

of interest, we restrict our attention to finite |n| values (which typically will be

small, especially when the serration wavelength is small).

4.1. Serrations profiles with stationary points150

Suppose F (η) has stationary points at ηi, and for simplicity that F ′′(ηi) 6= 0.

We may apply the standard Method of Stationary Phase [11] to (28) as ∆→∞
by expanding the exponent of the integrand as

ei∆(F (ηi)+
1
2F

′′(ηi)(η−ηi)2+o((η−ηi)3)). (29)

Thus as ∆→∞, (28) may be approximated by

En(0) ∼
√

2π

∆

∑
i

e−i2nπηi

√
1

|F ′′(ηi)|
ei∆F (ηi)eisgn(F ′′(ηi))

π
4 . (30)

Note, if F ′′(ηi) = 0 for some i, the contribution from the ith stationary phase

point would be larger than that given above, O(∆−1/p), for p given by the order

of the first non-zero derivative of F at ηi. This would correspond to retaining

the first two non-zero terms in the expansion (29). We may therefore conclude

that in the case of a serration profile with stationary points, |En(0)| = O(1/
√

∆)155

(or larger).

This may be understood from a physical perspective as follows. Recent work

has shown that the primary noise reduction mechanism of using serrations on the

leading- or trailing-edge of an aerofoil is due to the destructive interference [23,

19, 4]. Pressure phase variation is introduced on the serrated edge and leads160

to an effective cancellation. This can be seen clearly from equation (28), where

the term ei∆F (η) oscillates rapidly when ∆ is large. When F (η) is everywhere-

smooth, the main contribution of the integral shown in equation (28) comes

from the region where F (η) varies slowly, e.g. the stationary points. Hence the

integral is determined by the small regions of stationary points in a way shown165

by equation (30).
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For illustration purpose, we can take the serration profile sin(2πy) as an

example. For this serration profile, we can evaluate analytically equation (28)

to be

En(0) = Jn(∆), (31)

where Jn(z) is the nth-order Bessel function of the first kind. For large argu-

ments, the Bessel function tends to

Jn(z) ∼
√

2

πz
cos
(
z − nπ

2
− π

4

)
. (32)

Hence we have

|En(0)| ∼
√

2

π∆

∣∣∣cos
(
z − nπ

2
− π

4

)∣∣∣ . (33)

This is consistent with the results shown in equation (30).

4.2. Serration profiles without stationary points

We now suppose the serration profile does not have any stationary points.

If the serration profile does not have stationary points then it cannot be every-170

where smooth due to Rolle’s theorem which states that any real-valued differ-

entiable function that attains equal values at two distinct points must have at

least one stationary point somewhere between them. Our real-valued serration

function has F (0) = F (1) = 0, thus to not have any stationary points, it must

not be formally differentiable for all points η ∈ [0, 1] (for a function to be for-175

mally differentiable we require that its derivative never has a jump discontinuity,

thus for example a sawtooth is not formally differentiable at its tip or root).

Suppose F (η) is not formally differentiable at points η̃i, ordered such that

η̃0 < η̃1 < . . . . Between neighbouring points, we may assume our function

is continuous and differentiable. We may therefore separate our integral over

[0, 1], (28), to integrals over, [0, η̃0], [η̃0, η̃1], . . . . We may integrate by parts each

sub-region to obtain

En(0) =
∑
i

1

i∆

(
e−i2nπηei∆F (η)

F ′(η)

∣∣∣∣η̃i+1

η̃i

−
∫ η̃i+1

η̃i

ei∆F (η) d

dη

e−i2nπη

F ′(η)
dη

)
. (34)

By the Riemann-Lebesgue lemma, the second term in the above expression is

o(1) as ∆→∞ , thus

En(0) ∼ 1

i∆

∑
i

e−i2nπηei∆F (η)

F ′(η)

∣∣∣∣η̃i+1

η̃i

, (35)

which is O(1/∆). This is much smaller than the contribution in equation (30)

for serrations with stationary points.

11



Hence to have a better noise reduction performance at high frequencies, we180

prefer serration profiles without stationary points.

Equation (35) however tells us more information than just that described

above. In particular, it shows that the asymptotic value of |En(0)| depends

crucially on the slope of the serration profile at the non-smooth points. It is not

very sensitive on the slope at other points. More importantly this shows that185

the larger the absolute value of F ′(η̃i) is, the smaller each term’s magnitude

in the sum shown in equation (35) is. Therefore, to minimize |En(0)|, it is

desirable to have a serration shape that is sharper (large slope magnitude) in

the local vicinity around the non-smooth points. For a sawtooth serration profile

that is commonly used in various application, the slope magnitude is uniformly190

the same as 4. However, by using a serration that is sharper at the non-smooth

points, for example, with the slope magnitude being 8, we would expect a further

noise reduction by around 6 dB.

The results obtained so far may be understood from a physical perspective

as follows. From equation (28), when F (η) is piecewise smooth and contains195

no stationary points, the contribution of integral mainly comes from the end

points, where cancellation is hindered by the abrupt termination of the interval.

To understand the preference of sharper non-smooth points, an illustration is

shown in figure 2. Two serration profiles are shown in this figure. The left

profile is sharper at the non-smooth points whereas the right one is less so. In200

both serration profiles, the spanwise (η) regions which contribute most to the

integral are illustrated by two vertical lines. The regions outside contribute little

to the integral because of effective cancellation due to the phase variation of the

pressure on the serrated edge. This can happen for example when an integral

number of wavelengths of a plane-wave-like pressure gust are fitted within this205

region. Now, compared to the contribution region for the left serration profile,

it is clear that the spanwise distance of the contribution region for the right

serration is much wider. Therefore the integral would obtain a large amplitude

(a large value of dη in equation (28)). This explains why sharper non-smooth

points are desirable.210

But one should bear in mind that these results are obtained for high frequen-

cies. Therefore, in the intermediate frequency regime, e.g. k̄1h̄ < π, we may

see a decrease of the noise reduction performance. In fact, we somewhat ex-

pect this to happen. Compared with the sawtooth serration with uniform slope

magnitude, changing the slope distribution causes the phase patterns along the215

edge to be less uniform, resulting in a less effective destructive interference at

relatively low frequencies, hence a poorer noise reduction performance. For ex-
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1η

regions of integral 

contribution

Uniform flow

Figure 2: Comparison of the integral contribution regions for two different serrations profiles:

left) sharp non-smooth points; right) less-sharp non-smooth points.

ample, when ∆ takes an intermediate value of π, we expect a perfect destructive

interference to occur on the edge of a sawtooth serration, hence a large noise

reduction around this frequency. On the other hand, at the same frequency,220

due to the non-linear variation of F (η) for the new serration type, a perfect

cancellation is not possible, and hence a poorer noise reduction. However, as

frequency increases, the advantage of this new type of serration will quickly

overtake.

Although the above asymptotic analysis is based on one observer point at

θ = π/2, it can be shown that it also serves as a good approximation at other

θ values as follows. Consider

En(−κn cos θ) =

∫ 1

0

ei(k̄1−κn cos θ)h̄F (η)e−i2nπηdη. (36)

We only need to replace ∆ = (k̄1 − κn cos θ)h and the previous asymptotic225

analysis would still hold, because we are only interested in the cut-on modes

where κn is a real number less than k̄.
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5. An illustrative design

With the results shown in section 2 in mind, we propose one of this kind of

serration profiles as an example, which is given by

F (η) =



1

tan b/4
tan(bη), 0 ≤ η < 1/4,

1

tan b/4
tan(b(−η +

1

2
), 1/4 ≤ η < 3/4,

1

tan b/4
tan(b(η − 1)), 3/4 ≤ η ≤ 1,

(37)

where b is a non-negative number quantifying how sharp the serration is at

the non-smooth points. For example, when b → 0, the serration reduces to230

the sawtooth serration. When b → 2π, the slope at the non-smooth points

approaches infinity. Note we should avoid this case, since when b → 2π, the

slope near η = 0 approaches 0, i.e. η = 0 tends to a stationary point which

we have classified as non-ideal. An intermediate value is desirable, for example,

b = 1.5π. Profiles of different b values are shown in figure 3. It can be seen that235

when b = 1.8π, the profile becomes highly non-uniform – in particular, the slope

at the non-smooth points is very large and at η = 0 is close to 0. Note that

the tan(x) function shown in equation (37) represents only one possible form

for the serration profile and is chosen for illustration purposes. Other function

forms would also work.240

5.1. The behaviour of the functions En

To illustrate the potential advantage of using the new type of serration, we

plot 10 log 10|E0(0)|2 in figure 4. We can see that as ∆→∞, the value of |E0|
does indeed decay more quickly compared to that for the sawtooth serration.

The extra noise reduction is up to 10 dB. As another illustration, we plot245

the 10 log 10|E2(0)|2 in figure 5. Comparing with figure 4, it seems that the

compromised frequency regime starts to shift to a higher frequency. Indeed,

this can be shown to be generally true when the mode number n increases.

However, in practical applications, the serration wavelength is small, therefore

the nth-order mode are cut-on only when k2 is close to −2nπ. But when k2250

becomes large, the incoming turbulent wavenumber spectrum decays. Hence

only a finite number of modes N are practically needed in the frequency range of

interest and N decreases as the frequency decreases. As a fixed frequency, it can

be shown that N decreases when the serration wavelength decreases from, for

example, the spectrum model shown in the following section. Consequently, to255
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Figure 3: The serration profiles of the newly proposed serration with different values of b.

When b = 0, the profile reduces to a sawtooth one. When h → 2π the serration becomes

highly non-uniform with the slope at the non-smooth points approaches to infinity and the

point η = 0 approaches to a stationary point.
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Figure 4: Comparison of the decay rates of |E0| for sawtooth and the new illustrative serration

as the frequency increases. |E0| decays faster for the new design at high frequency with a

narrow compromised low frequency range.
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Figure 5: Comparison of the decay rates of |E2| for sawtooth and the new type of serration

as the frequency increases. The compromised region moves to higher frequencies.

maximize the noise reduction benefit, a small serration wavelength is desirable.

This will be further demonstrated in the following section. It should be noted

that when the frequency is extremely high, the number of cut-on modes N might

be large enough such that the additional advantage of using this new serration

is buried by the compromised modes. However, in practical applications, sound260

intensity at these extremely large frequencies is often negligible, consequently we

are only interested in the intermediate-to-high frequency range (π < k1h < 100

for example) where the benefits do exist. The high end of the frequency range

where an improved acoustic performance is possible depends on how quickly the

turbulent spectrum decays with k2. We will discuss the spectrum in detail in265

the following section.

5.2. The overall noise reduction

Section 5.1 shows that the new type of serration does result in a reduced

value of |En(0)|2 at high frequencies. However because there are multiple cut-on

modes, it is still not clear exactly how much additional benefit can be expected270

by using the new type of serration and what the most effective frequency range

is. In this section, we predict the overall benefit by using a realistic wavenumber

spectrum to model the incoming turbulence.

There are many empirical models for the incoming turbulent spectrum avail-

able. As an illustration, we use the one developed from Von Kármàn spectrum.

Based on this, it can be shown that Φww, which is the energy spectrum of the
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Figure 6: The predicted far-field PSD for flat plates with straight edge, sawtooth and the

illustrative serration (b = 1.4π) respectively when h = 2, i.e. for wide serrations.

incoming vertical fluctuation velocity, can be written as [1, 22, 19]

Φww(ω, k2) =
4TI2

9πk2
e

k̂2
1 + k̂2

2

(1 + k̂2
1 + k̂2

2)7/3
, (38)

where TI denotes the turbulent intensity and ke, k̂1 and k̂2 are given by

ke =

√
πΓ(5/6)

LtΓ(1/3)
, k̂1 =

k1

ke
, k̂2 =

k2

ke
. (39)

In the above equations, Lt is the integral scale of the turbulence (also normalised

by the serration wavelength) and Γ(x) is the Gamma function.275

In order to put equation (38) into perspective, we need to have a realistic

set of physical parameters for the incoming flow. For convenience, we use those

in the previous experiment [27, 19], i.e. M = 0.18 and TI = 0.025. In order

to show the effects of serration wavelength, we fix the dimensional serration

amplitude and the dimensional turbulence integral scale and only vary the value280

of dimensional serration wavelength. This implies that the non-dimensional

numbers h varying from 2 to 10 and Lt varying from 0.5 to 2.5. In the rest of

this section, the observer location is fixed at r = 30, θ = π/2 and y = 0 and the

far-field PSDs are evaluated from equation (27).

Figure 6 shows the far-field PSDs for flat plates with straight edge, sawtooth285

and the illustrative serrations of h = 2 and b = 1.4π, respectively. This results

in quiet wide serrations. As discussed in section 5.1, wide serrations imply that

more modes need to be considered. Consequently, the additional benefit may
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Figure 7: The predicted far-field PSD for flat plates with straight edge, sawtooth and the

illustrative serration (b = 1.4π) respectively when h = 5, i.e. for sharp serrations.

not be obtained due to the inclusion of high-order modes. This is in accord

with the results shown in figure 6, where the advantage is negligible in the290

frequency range of interest. There is also a slight but negligible noise increase

in the high-frequency regime compared to the sawtooth serrations, which, as we

discussed in section 5.1, could occur due to the inclusion of many high-order

modes. However, it is worth noting that if we decrease the value of b, i.e. we

decrease the maximum benefit we can expect, advantages of using this new295

serration may be more pronounced. In either case, however, the benefit of using

such a new type of serration is not significant at these parameters.

In order to allow an improved sound reduction to occur in the frequency

range of interest, we need to use sharper serrations. When the serration ampli-

tude is fixed a small serration wavelength implies a large h. Figure 7 shows the300

results when h = 5. Compared to figure 6, the benefit of using the illustrative

profile starts to appear at k1h ≈ 4 and last until k1h ≈ 100. An extra 4 dB

is achieved compared to the traditional sawtooth serration in the intermediate

frequency range. It is worth noting that the predicted spectrum starts to oscil-

late. This is because when the serration wavelength is small, the far-field sound305

is dominated by mode 0. The peaks and troughs are due to the behaviour of

E0(0).

A larger acoustic benefit can be obtained for even sharper serrations. This

is shown in figure 8, where h ≈ 10. A nearly uniform 8 dB extra reduction is

accomplished by using the new design when 5 < k1h < 50. When the frequency310
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Figure 8: The predicted far-field PSD for flat plates with straight edge, sawtooth and the

illustrative serration (b = 1.4π) respectively when h = 10, i.e. very sharp serrations.

is higher than k1h = 50, the benefit of using the new serration starts to dimin-

ish. As mentioned in the preceding section, this is due to the fact that more

modes are now cut-on and the advantage is limited by the compromised modes.

Comparing Figures 6 to 8, we can find that k1h, or k̄1h̄ to be more precise, is

the correct non-dimensional quantity characterizing the noise reduction effects315

of serrations. This is evident from equation (28) and in agreement with our

earlier findings [19].

To show how the additional noise reduction benefit by using the new serra-

tion profile depends on the observer angle, we also compare the noise directivity

patterns for the sawtooth and new serrations. We choose the same set of pa-320

rameters as those used in figure 8. Results are shown in figure 9, where we

have plotted 10 log10(Ψ) + 150 instead of 10 log10(Ψ) to avoid negative deci-

bel values. Figure 9(a) is at a low frequency of k1h = 0.5. As we can see,

both the sawtooth and new serrations result in little noise reduction compare

to straight leading edges. This is consistent with the results shown in figures 6325

to 8. As the frequency increases to k1h = 4, the directivity patterns change to

that shown in figure 9(b). At this frequency, additional noise reduction ben-

efit is achieved for observer angles in the range of 80◦ and 280◦. The slight

noise increase observed at small observer angles is, as mentioned above, due to

the low-frequency penalty, as shown in figure 8. As the frequency increases to330

k1h = 15, the directivity patterns change to those shown in figure 9(c). It is

clear that additional noise reduction due to the use of new serrations is achieved
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Figure 9: Comparison of the noise directivity patterns in dB (10 log10(Ψ)+150) for serrations

of the sawtooth and new profiles: a) k1h = 0.5; b) k1h = 4; c) k1h = 15; d) k1h = 60.

at all observer angles. It is this frequency range that we mainly focused on and

discussed in detail in figures 6 to 8. As the frequency increases to an even larger

value of k1h = 60, the additional benefit starts to drop slightly, but extra noise335

reduction is achieved at all observer angles, as shown in figure 9(d).

In summary, the proposed illustrative design does result in a better noise

reduction performance in the frequency range of interest, and the extra noise

reduction due to the use of new serrations is achieved at all observer angles in this

frequency range. However, in order to gain the full advantage of the new design,340

the serration must be sufficiently sharp. The low-frequency increase caused

by using the new design is largely negligible. In this paper, we focus on the

acoustic effects of leading-edge serrations. But it is worth noting that previous

research has shown that the use of leading-edge serrations may lead to a slight
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(a) The experimental rig was placed in the aeroa-

coustic wind tunnel. The flat plate was placed

near the exit of the wind tunnel and a microphone

arc was suspended above the aerofoil to measure

the far-field noise.

(b) The serrated leading edge was formed by join-

ing the serration insert and the flat plate together.

The serration insert was cut according to equa-

tion (37) and the parameter b was varied between

0, π, 1.2π and 1.5π.

Figure 10: Photographs of the wind tunnel, the microphone arc and the flat plate with a

serrated leading edge.

aerodynamic penalty at a small angle of attack but can also significantly improve345

the lift coefficient at large angles of attack and notably postpone aerodynamic

stall [37, 13, 24, 28, 15, 30]. We expect similar aerodynamic effects by using the

new serration proposed in this paper.

6. Experimental validation

Section 5 shows that the use of the new serration profile can provide up to 8350

dB more noise reduction in the high frequency range without severely affecting

the low-frequency performance. In this section, we wish to experimentally verify

such a conclusion.

6.1. Experimental setup

The experiment was carried out in the aeroacoustic facility in the University355

of Southampton; a photograph of the rig is shown in figure 10a. The experimen-

tal rig was placed inside the anechoic chamber of dimensions 8 m× 8 m× 8 m.

The anechoic chamber has a cut-off frequency around 80 Hz. The low-speed

wind tunnel can go up to a Mach number around 0.3. In the experiment, the

jet velocities were varied between 20, 40, 60 and 80 m/s. The exit of the wind360

tunnel has a dimension of 150 mm× 450 mm.

A number of flat plates with a mean chord length 150 mm and span 450 mm

were placed at 150 mm downstream of the wind tunnel exit. The flat plates were

constructed by joining together two 1 mm thick metallic sheets to allow serrated

21



flat-plate inserts to be inserted between them. All corners of the plates were365

rounded and the trailing edge was sharpened to eliminate vortex shedding noise.

The work of Narayanan et al. [27] contained more details on the construction

of these flat plates. The flat plates used in the experiment included those with

a straight leading edge and serrated leading edges of various profile parameters

by varying b and h. The serration wavelength was also varied independently. To370

prevent tonal noise generation observed in the laminar boundary layer [29, 34],

the flow near the leading edge of the flat plate was tripped on both the pressure

and suction sides to force transition to turbulence using a rough band of tape.

The tape had a width of 1.25 cm and was located at 16.6% of the chord from

the leading edge. The tape had roughness of SS 100, corresponding to a surface375

roughness of 140 µm. Previous noise measurements in this facility have indicated

that self-noise is insensitive to this type of tripping.

A microphone arc was placed above the aerofoil to measure the far-field noise

at different angles in the mid-span plane. The microphone arc has 11, 1.27 cm

condenser microphones (B&K type 4189) located at a constant radial distance380

of 1.2 m from the leading edge of the flat plate, spanning an observer angle from

40◦ to 140◦ measured relative to the downstream jet axis. Noise measurements

were carried out for 10 s at a sample frequency of 50 kHz. The noise spectra were

calculated with a window size of 1024 data points corresponding to a frequency

resolution of 48.83 Hz and a BT product of approximately 500 , which is sufficient385

to ensure negligible variance in the spectral estimate at this frequency resolution.

The noise spectra are presented in terms of the Sound Power Level (PWL)

and Sound Pressure Level (SPL) using the procedure described by Narayanan

et al. [27], i.e. the PWL is calculated by integrating the sound power spectral

density over an observer angle range between 40◦ and 140◦ in the mid-span390

plane (equations (3) and (4) in Narayanan et al. [27]).

6.2. Turbulence spectra

A bi-planar rectangular grid with overall dimensions of 630 mm × 690 mm

was used to generate nearly homogeneous turbulence. The grid was located in

the contraction section of the wind tunnel at 75 cm upstream the nozzle exit.395

Turbulence generated using this grid provided a velocity spectrum at the leading

edge of the plate that is a close approximation to that due to homogeneous

and isotropic turbulence, the energy spectrum of which is known to be well

modelled by a number of empirical formula. We use the aforementioned one

based on the Von Kármàn spectrum to model the energy spectrum for the400

vertical fluctuation velocity. Previous studies have shown that this model can
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Figure 11: The far-field PWL spectra of the leading-edge noise for the baseline and serrated

flat plates. The serrations have a fixed wavelength 5 mm and half tip-to-root amplitude 25 mm.

Also included is the spectrum for the flat plate’s self-noise, where no grid turbulence is present.

agree with experiments excellently (see for example Narayanan et al. [27]). In

this experiment, the turbulence intensity was around 2.5% and the streamwise

integral length-scale was around 6 mm.

6.3. Far-field sound spectra405

The far-field sound spectra are presented using the PWL. PWL is defined

to describe the sound power spectral density integrated over the observer angle.

A detailed definition of PWL is given by equation 4 of Narayanan et al. [27].

The first test case is for serrations with a wavelength 5 mm and half root-

to-tip amplitude 25 mm, corresponding to h = 5, at a jet velocity 60 m/s. The410

value of b is varied between 0, π, 1.2π and 1.5π, respectively. Also included are

the baseline test, where no serration is used, and the self-noise test, where the

serration of b = 1.5π is used without grid turbulence. The results are shown in

figure 11. The self-noise spectrum is shown by the dashed line. We can see that

from the frequency k1h ≈ 0.5 to 10 the leading-edge noise from the baseline test415

case is at least 15 dB higher than the self-noise. We can therefore confidently

regard the measured noise as due to the interaction between the leading edge

and grid turbulence in this frequency range. As the frequency increases, care

must be taken as the self-noise becomes more and more important, and in

particular, when leading-edge noise is reduced significantly by using serrations,420

the total noise would be dominated by the self-noise. The self-noise consists of

a number of sources, including the turbulent boundary layer trailing-edge (TE)
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noise [21, 20], flat plate tip noise and so on, among which TE noise is likely to

be dominant.

As mentioned in section 5, b = 0 implies that the serration reduces to a425

conventional sawtooth profile. Figure 11 shows that the use of the conventional

sawtooth serration leads to significant noise reduction in the frequency range

k1h > 1, which is consistent with numerous earlier findings. However, we are

more interested to see whether a greater reduction can be achieved by using

the new serration profile with b > 0. Figure 11 demonstrates that this indeed430

can be achieved. For example, for the case where b = 1.5π, an additional

sound reduction up to 7 dB is observed in the experiment with little effect on

the low-frequency performance. This is remarkable since we have in essence

achieved an additional 7 dB sound reduction by simply changing the serration

geometry, without paying observable prices. The additional benefit vanishes for435

frequencies larger than k1h = 20. This is because the self-noise mechanisms,

such as the aforementioned TE noise, start to dominant. Hence, although the

leading-edge noise is reduced more effectively, this is hidden by the dominance

of TE noise. Figure 11 also confirms that the larger b is, the more benefit can

be expected. For instance, for b = π, 1.25π and 1.5π, the additional reduction is440

around 2 dB, 3 dB and 7 dB, respectively. This has been predicted in sections 4

and 5.

The second test case is for a serration wavelength 5 mm and half root-to-tip

amplitude h̃ = 12 mm. This corresponds to the value h = 2.4. The results

are shown in figure 12. Due to a smaller value of h, the effective (where the445

self-noise is negligible) non-dimensional frequency (k1h) range is now shifted

to a lower regime. Also it can be seen that the maximum additional benefit

in the frequency range of interest is around 4 dB. This is consistent with our

earlier conclusions, i.e. in order to achieve great benefit in the frequency range

of interest, the serration must be sufficiently sharp (large h).450

In both test cases, however, it is worth mentioning that the use of the new

serrations also results in an additional reduction of the aerofoil self-noise com-

pared to conventional sawtooth serrations. This is important, because it shows

that the use of the new serration can indeed provide additional noise reduc-

tion benefit without in any way jeopardising its performance by other source455

components.

7. Conclusion and future work

Based on an analytical model of the leading-edge noise due to serrated lead-

ing edges of arbitrary shapes, this paper explores the acoustic optimality of
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Figure 12: The far-field PWL spectra of the leading-edge noise for the baseline and serrated

flat plates. The serrations have a fixed wavelength 5 mm and half tip-to-root amplitude 12 mm.

Also included is the spectrum for the flat plate’s self-noise, where no grid turbulence is present.

different serration profiles. An asymptotic analysis is performed to investigate460

the effects of serrations geometry on high-frequency leading-edge noise reduc-

tion.

It is found that in order to accomplish the best sound reduction performance

at high frequencies, the serration profile cannot have any stationary points.

The piecewise smooth functions can be constructed to satisfy this condition.465

For such serrations, improved noise reduction performance may be obtained for

serrations with large slopes at the non-smooth points compared to the widely

used sawtooth serrations. This requires that the serration profile is not uniform

(linear) any more. An illustrative design is proposed as an example.

To study the exact benefit one may obtain by using the new design in prac-470

tical applications, an energy spectrum for the vertical velocity fluctuations of

the incoming turbulence based on the Von Kármàn spectrum is used. The pre-

dicted PSDs at 90◦ above the serration are compared with those for the widely

used sawtooth serrations. It is found that additional noise reduction, up to

8 dB for example, can be achieved in the frequency range of interest with suffi-475

ciently sharp serrations. A comparison of noise directivity patterns shows that

that this additional noise reduction is achieved at all observer angles in this

frequency range.At low frequencies, one may expect a slight noise increase but

this is often negligible. Following the analytical prediction, an experimental

investigation was carried out. The experimental results show that the new de-480

sign is indeed superior than the conventional sawtooth design. For example, a
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remarkable 7 dB additional noise reduction was observed using one of the new

type of serrations compared with conventional sawtooth serration. The trends

predicted in the analytical section are well supported by the experiment. The

current study focuses on the leading-edge noise and its reduction using leading-485

edge serrations. However, the noise reduction mechanism is known to be similar

to that for the turbulent boundary layer trailing-edge noise. Hence, the present

analysis and newly proposed serration profile are expected to work in a similar

manner for the TE problem. This forms part of our future work.
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Appendix A

Wiener-Hopf procedure

The Wiener-Hopf procedure can be performed as follows. First, when ζ = 0

one has

Φ̃′(s, η, ζ)
∣∣∣
ζ=0

=

∞∑
n=−∞

−γnAn(s)e−ishF (η)eiχnη, (40)

and

Φ̃(s, η, ζ)|ζ=0 =

∞∑
n=−∞

An(s)e−ishF (η)eiχnη, (41)

where, we have defined Φ̃′ = ∂Φ̃/∂ζ for simplicity.495

On the other hand, from the boundary conditions, equations (7) and (8),

one obtains

Φ̃′(s, η, ζ)
∣∣∣
ζ=0

=
w0

i(s+ k̄1)
eik̄1h̄F (η)+k2η + Φ̃′−, (42)

and

Φ̃
∣∣∣
ζ=0

= Φ̃+, (43)

where the + and − subscripts indicate that the corresponding functions are

analytic in the upper and lower s planes, respectively.

Comparing equations (40) and (42) and equations (41) and (43), one can

show that

− γnAn(s) =
w0

i(s+ k̄1)
En(s) + Φ̃′n−, (44)

and

An(s) = Φ̃n+, (45)

26



where

En(s) =

∫ 1

0

ei(k̄1+s)h̄F (η)e−i2nπηdη. (46)

The functions Φ̃′n− and Φ̃n+ are defined in a similar manner and still preserve

their analyticity in their own half planes. Combining equations (44) and (45),

we obtain

γnΦ̃n+ + Φ̃′n− =
−w0

i(s+ k̄1)
En(s). (47)

The kernel decomposition is standard, using which equation (47) can be

written as

√
s+ κnΦ̃n+ +

Φ̃′n−√
s− κn

= −w0En(s)

[
1

i(s+ k̄1)
√
s− κn

− 1

i(s+ k̄1)
√
−k̄1 − κn

]
− w0En(s)

i(s+ k̄1)
√
−k̄1 − κn

.

(48)

Routine procedure [4] yields

An(s) = Φ̃n+ =
iw0En(s)

(s+ k̄1)
√
s+ κn

√
−k̄1 − κn

. (49)

Substituting equation (49) to equation (12), we have

Φ̃(s, η, ζ) =

∞∑
n=−∞

iw0En(s)

(s+ k̄1)
√
s+ κn

√
−k̄1 − κn

sgn(ζ)e−γn|ζ|e−ishF (η)eiχnη.

(50)

Method of stationary phase

In the far-field, equation (50) can be inverse Fourier transformed using the

method of stationary phase as follows. When the κn is real, such as when n = 0,

we invert the Fourier transform in the far-field with the deformed path shown in

figure 13. When κn is imaginary, we deformed the integral path to that shown

in figure 14. In both figures, the dashed paths Σ1 and Σ3 are arcs of a large

radius R. It can be shown that the integral over path segments Σ1 and Σ3

vanish when R→∞. The path segment Σ2 are hyperbolas given by

s = −κn cosh(iθ + t), (51)

where the real argument t ranges from −∞ to ∞ and θ is defined as the az-

imuthal angle in the x− z plane, i.e.

x = ξ + hF (η) = r cos θ, z = r sin θ, (52)
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Branch cut
-plane

Figure 13: Deformed path when κn is real.

Branch cut

-plane

Figure 14: Deformed path when κn is imaginary.

28



where r =
√
x2 + z2.

Therefore the inversion of the Fourier transform becomes

Φ(ξ, η, ζ) =
1

2π

∞∑
n=−∞

iw0sgn(ζ)eiχnη√
−k̄1 − κn

∫
Σ2

En(s)

(s+ k̄1)
√
s+ κn

e−γn|ζ|−is(ξ+hF (η))ds.

(53)

Substituting equation (51) yields

Φ(ξ, η, ζ) =
1

2π

∞∑
n=−∞

iw0sgn(ζ)eiχnη√
−k̄1 − κn∫ ∞

−∞

En(−κn cosh(iθ + t))

(−κn cosh(iθ + t) + k̄1)
√
−κn cosh(iθ + t) + κn

eiκnr cosh tdt.

(54)

In the far-field, equation (54) can be evaluated the method of stationary phase

to be

Φ(r, θ, y) =

∞∑
n=−∞

eiπ/4

√
π

eiκnr

√
r

cos
θ

2

w0En(−κn cos θ)

(−κn cos θ + k̄1)
√
−k̄1 − κn

eiχny. (55)
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