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1  | INTRODUC TORY PAR AGR APH

Advances in DNA sequencing technologies and associated down‐
stream analyses over the last decade have transformed research on 
nonmodel species in evolutionary ecology (da Fonseca et al., 2016). 
These advancements are now being coupled with improved methods 
for extracting DNA from archaeological specimens to gain insights 

into complex historical patterns and processes (Hofreiter et al., 
2015). The term ancient DNA (aDNA) refers to DNA derived from 
plants and animals that have been dead for a prolonged period of 
time, typically for more than 100 years. The application of improved 
DNA extraction methods and the subsequent move to ancient ge‐
nome‐wide sequencing allows exciting, and so far little explored, 
questions to be investigated with increased power. These questions 
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Abstract
Fish are the most diverse group of vertebrates, fulfil important ecological functions 
and are of significant economic interest for aquaculture and wild fisheries. Advances 
in DNA extraction methods, sequencing technologies and bioinformatic applications 
have advanced genomic research for nonmodel organisms, allowing the field of fish 
ancient DNA (aDNA) to move into the genomics era. This move is enabling research‐
ers to investigate a multitude of new questions in evolutionary ecology that could 
not, until now, be addressed. In many cases, these new fields of research have rel‐
evance to evolutionary applications, such as the sustainable management of fisheries 
resources and the conservation of aquatic animals. Here, we focus on the application 
of fish aDNA to (a) highlight new research questions, (b) outline methodological ad‐
vances and current challenges, (c) discuss how our understanding of fish ecology and 
evolution can benefit from aDNA applications and (d) provide a future perspective 
on how the field will help answer key questions in conservation and management. 
We conclude that the power of fish aDNA will be unlocked through the application 
of continually improving genomic resources and methods to well‐chosen taxonomic 
groups represented by well‐dated archaeological samples that can provide tempo‐
rally and/or spatially extensive data sets.
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are manifold and include research topics such as the past distri‐
bution of species and their migration patterns (Palkopoulou et al., 
2015). If aDNA data can be generated with sufficient resolution and 
collected across large time scales, then these studies can also reveal 
past diversification (Nielsen et al., 2017) and introgression events 
(Huerta‐Sanchez et al., 2014; Vernot & Akey, 2014). Such time se‐
ries can further be used to investigate changes in genetic variation 
among populations (Díez‐del‐Molino, Sánchez‐Barreiro, Barnes, 
Gilbert, & Dalén, 2018; Hofman, Rick, Fleischer, & Maldonado, 
2015), and responses to anthropogenic factors and climate change 
(de Bruyn, Hoelzel, Carvalho, & Hofreiter, 2011; Dalen et al., 2007; 
Lagerholm et al., 2017). So far, the majority of aDNA research has 
focused on species in terrestrial ecosystems, such as studies of an‐
cient humans, domestic animals or extinct megafauna (Hofreiter et 
al., 2015). Significantly fewer studies have focused on fish aDNA, 
despite the abundance of preserved material. This rich archaeolog‐
ical reservoir holds a fantastic potential for addressing a range of 
outstanding evolutionary, environmental and taxonomic questions 
about aquatic species. Here, we synthesize recent developments in 
the field of aDNA that could be used to explore the evolutionary 
history of teleost fish species and yield insights into the eco‐evolu‐
tionary dynamics of populations over time. We focus on this group 
because it is the most diverse vertebrate assemblage, occupies the 
majority of existing habitats on earth, has abundant representatives 
on most food webs, has been an important resource for humans for 
millennia and is currently of significant economic interest for aqua‐
culture and wild fisheries. We also believe that the current advances 
in sequencing technologies will enable the field of fish aDNA to pro‐
liferate in the near future, making the focus timely. Lastly, by unlock‐
ing the real potential of fish aDNA by moving into the genomic era 
and capitalizing on the latest DNA extraction, library prep and se‐
quencing technologies, we can begin to gain insights and develop an 
understanding of evolutionary questions that have relevance to the 
field of fisheries management, wildlife conservation and practices 
used for governing biodiversity in general.

2  | A SHORT OVERVIE W OF FISH ADNA 
STUDIES

2.1 | Mitochondrial DNA—the basis for fish aDNA 
research

A number of studies have targeted mitogenomic (mtDNA) loci using 
the polymerase chain reaction (PCR) combined with Sanger se‐
quencing to identify species and within‐species diversity, to perform 
demographic reconstructions and to retrace the geographic origin 
of traded specimens (Figure 1). Species identification of archaeo‐
logical bones is a crucial first step for reconstructing past geographic 
ranges. Nonetheless, morphological identification can be difficult 
for species with similar phenotypic characteristics or when dealing 
with degraded samples that have lost their diagnostic characters. 
In the past, aDNA data have been used to identify specific species 
of salmon (Oncorhynchus spp.) (Yang, Cannon, & Saunders, 2004), 

sturgeon (Acipenser spp.) (Ludwig, Arndt, Debus, Rosello, & Morales, 
2009) and other fish species (Kemp & Huynen, 2014; Longenecker et 
al., 2014; Silva, Malabarba, & Malabarba, 2017; Zivaljevic, Popovic, 
Snoj, & Maric, 2017). Moreover, the identification of a locally ex‐
tinct species of sturgeon (A. sturio) in the Rhône River provided 
essential baseline data for the reintroduction of this species in the 
area (Nikulina & Schmolcke, 2016; Pagès et al., 2008). Similarly, the 
temporal analyses of mtDNA haplotypes have been used to map 
the distributional changes of species in response to past climatic 
change (e.g., salinification, global warming or access to new migra‐
tion routes) (Ciesielski & Makowiecki, 2005; Splendiani et al., 2016; 
Wooller, Gaglioti, Fulton, Lopez, & Shapiro, 2015), in one example 
going as far back as 14,000 years (Splendiani et al., 2016). Such 
temporal perspectives help provide an understanding of species re‐
sponses to past climate change, which could be a helpful predictor 
of adaptations to future climate change. Furthermore, the incorpora‐
tion of data from aDNA analyses into data sets from contemporary 
populations enables the demographic features of historic popula‐
tions to be reconstructed more precisely. In some cases, temporal 
sampling can be used to replace key assumptions that underlie a 
model with empirical information. Reconstruction of genetic di‐
versity of >3,000‐year‐old Chinook salmon (O. tshawytscha) in the 
Columbia River basin identified the loss of genetic variation prior to 
human arrival (Johnson, Kemp, & Thorgaard, 2018). Using a similar 
approach, 1,500‐year‐old Atlantic cod (Gadus morhua) samples from 
Iceland were used to reconstruct population abundance trends, 
identifying higher levels of genetic diversity in the historic popula‐
tion (Olafsdottir, Westfall, Edvardsson, & Palsson, 2014). Metcalf et 
al. (2012) used up to 155‐year‐old cutthroat trout (O. clarkia) samples 
collected prior to historical stocking in North America, compared 
them with contemporary samples and showed a history of lineage 
extinction, taxonomic errors and range changes as a result of human 
movement and stocking activities. Finally, ancient mtDNA has pro‐
vided novel findings about the cultural use of fish and traced early 
trading routes, highlighting the value of aDNA in anthropological 
and archaeological research (Arndt et al., 2003; Grier et al., 2013; 
Speller, Yang, & Hayden, 2005). These studies have demonstrated 
how temporally spaced sampling using aDNA methods is able to 
provide a range of new insights, which cannot be obtained using 
contemporary samples alone. However, due to technological and 
economic constraints associated with retrieving aDNA data, these 
studies have been limited to using mitochondrial markers and some‐
times investigating a relatively small number of individuals.

2.2 | Moving towards genome‐wide inference

Over the last few years, fish aDNA studies have started to report 
results from genome‐wide sequence data. A notably early study 
reported loss of genetic variation in Atlantic Salmon (Salmo salar) 
using microsatellite data obtained from 60‐year‐old scales (Nielsen, 
Hansen, & Loeschcke, 1997). More recently, aDNA data based on 
a diverse set of genetic markers (i.e., mtDNA, microsatellites and 
nuclear single nucleotide polymorphisms, SNPs) provided evidence 



     |  1515OOSTING eT al.

of distinct past Pacific herring (Clupea pallasi) populations, implying 
that the contemporary populations represent only a fraction of a 
previous metapopulation that was more abundant and genetically 
diverse (Speller et al., 2012). Similarly, Hutchinson, Oosterhout, 
Rogers, and Carvalho (2003) used Atlantic cod (G. morhua) otoliths 
from the North Sea and showed a significant reduction in genetic 
diversity, strong genetic drift and population replacement between 
1954 and 1998 in one fisheries stock. By genetically determining the 
sex of ancient fish remains, the effects of past sex‐selective fishing 
strategies can also be investigated (Royle et al., 2018). By targeting a 
set of 28 informative nuclear SNPs, the geographic origin of Atlantic 
cod (G. morhua) samples recovered from the Mary Rose, a late medi‐
aeval (AD 1545) navy shipwreck in the United Kingdom (Hutchinson 
et al., 2015) was determined. Combined with stable isotope analy‐
ses, the aDNA data showed that the cod had come from different 
areas, possibly ranging from Newfoundland to Atlantic Europe and 
Arctic Norway. This finding corroborated historical evidence that 
the globalization of commercial fishing started as early as the 16th 
Century. By using whole genome sequencing approach, Atlantic cod 

bones excavated from Haithabu in Germany were shown to originate 
from the far north of Norway (Star et al., 2017). This study analysed 
a SNP data set of 156,695 loci, allowing for the population assign‐
ment of fish by identifying specific combinations of chromosomal 
inversion genotypes among cod populations. Using historic samples, 
Therkildsen, Hemmer‐Hansen, Als, et al. (2013a) screened >1,000 
gene‐associated genomic SNPs in Atlantic Cod (G. morhua) and iden‐
tified 77 SNPs that showed high levels of differentiation over a tem‐
poral scale. Interestingly, changes in allele frequency at different loci 
were correlated with either temperature or probabilistic maturation 
reaction norm (PMRN), a commonly used measurement for identi‐
fying changes in maturation rate (Heino, Diaz Pauli, & Dieckmann, 
2015; Heino & Dieckmann, 2008). The authors were then able to 
relate changes in life‐history traits to specific loci, possibly associ‐
ated with adaptive changes in response to overexploitation (Heino, 
Dieckmann, & Godo, 2002). Finally, studies have used a bulk bone 
metabarcoding (BBM, further discussed below) approach for the 
large‐scale identification of fish species from morphologically in‐
distinguishable bone fragments. This has helped to provide a more 

F I G U R E  1   How advances in sequencing technologies will drive applications of fish aDNA. BBM, bulk bone metabarcoding; WGS, whole 
genome sequencing
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complete view of the zoo‐archaeological records from past coastal 
communities (Douglass et al., 2018; Grealy et al., 2016), thus allow‐
ing for more accurate reconstruction of species past geographical 
distribution (Seersholm et al., 2018).

The relatively young field of fish aDNA has recently been ad‐
vanced by a number of insights, namely (a) that DNA can be pre‐
served for long time periods and (b) high‐quality genomic data can 
be obtained from ancient fish remains, and now questions can be 
addressed about how populations of aquatic species have changed 
over time. Recent studies targeting multiple genomic loci through 
high‐throughput sequencing (HTS) are indicative of the direction the 
field of fish aDNA is heading, although several challenges remain for 
studies of fish aDNA. Below, we discuss how advances in molecular 
methods will progress the field of fish aDNA, describe key questions 
in fish ecology, evolution and resource management that are able 
to be addressed, emphasize the need for interdisciplinary collabo‐
rations and present a future perspective including challenges and 
priorities. By doing this, we aim to show the potential of this emerg‐
ing field.

3  | FISH ANCIENT DNA IS MOVING INTO 
THE GENOMIC ER A

One of the main limitations for advancing fish aDNA research is sam‐
ple preservation. Fish bones are brittle, porous and very light, which 
is generally associated with poor DNA preservation because biomol‐
ecules are not as well isolated from its environment compared with 
other types of bone. DNA degradation is influenced by a wide range 
of variables, making it extremely difficult to predict which archaeo‐
logical sites contain high‐quality samples for genomic analyses. The 
aquatic environment in particular exposes biological material to a 
range of chemicals that cause acidification and oxidation of com‐
pounds. Generally, cold and dry environments preserve DNA bet‐
ter compared with hot and humid environments (Boessenkool et al., 
2017; Damgaard et al., 2015; Hansen et al., 2017; Pinhasi et al., 2015; 
Willerslev, Hansen, & Poinar, 2004). Also, dense soil (e.g., clay) has 
been shown to preserve biological material well (Hlinka, Ulm, Loy, 
& Hall, 2002), though this may not be present in coastal archaeo‐
logical sites characterized by harsh, acidic, preservation conditions. 
Conversely, exposure to high heat (e.g., cooking or boiling) alters the 
physical condition of biological material, damaging the DNA, poten‐
tially rendering the sample unsuitable for aDNA analyses. Several 
recent methodological advances have revolutionized our ability to 
utilize fish aDNA and investigate the genetic population structure 
and demographic history of natural populations.

First, the development of improved aDNA extraction methods 
has greatly increased the number of samples suitable for genome‐
wide sequencing (Boessenkool et al., 2017; Dabney et al., 2013; 
Damgaard et al., 2015; Gondek, Boessenkool, & Star, 2018; Hansen 
et al., 2017). Such enhanced methods allowed for the extraction of 
high‐quality aDNA from archaeological fish bone from a wide range 
of species, preservation conditions and ages. For instance, DNA 

(including nuclear DNA) has been consistently amplified from ar‐
chaeological fish bone up to 10,000 years old (Speller et al. (2012), 
sometimes in stretches for up to 250 bp (Seersholm et al., 2018), and 
even includes amplification from bones retrieved from warm tropical 
locations (Douglass et al., 2018; Grealy et al., 2016). This consistent 
success of DNA retrieval shows that archaeological and palaeonto‐
logical fish bone is a previously unrecognised source of potentially 
high‐quality aDNA. Other proven DNA sources from fish consist of 
scales or otoliths that have been stored in collections to inform fish‐
eries management (e.g., Hauser, Adcock, Smith, Ramirez, & Carvalho, 
2002; Nielsen et al., 1997; Therkildsen, Hemmer‐Hansen, Als, et al., 
2013b), although here the temporal perspective is often limited to 
the last century.

Second, while most ancient bones have <5% endogenous DNA 
(e.g., Noonan et al., 2005) (with a few exceptions, e.g., Meyer et al., 
2012), fish bones have been found to carry a high amount of endoge‐
nous DNA (Star et al., 2017), something that needs to be considered 
when conducting whole genome sequencing. Boessenkool et al. 
(2017) and Star et al. (2017) showed ancient Atlantic cod (G. morhua) 
bones over 1,000 years old can contain between 15% and 50% en‐
dogenous DNA content. This observation is remarkable, given that 
high levels of endogenous DNA are usually associated with higher 
density bones (Geigl & Grange, 2018), such as the petrous bone in 
mammals (Gamba et al., 2014). Combined, high levels of endogenous 
DNA, advances in HTS (further discussed below), and the relative 
small size of fish genomes (often <1 Gbp), implies that generating 
genomic aDNA for fish is becoming accessible to a wide scientific 
community. Endogenous DNA content can be increased using cap‐
ture enrichment, where custom DNA baits (generally designed from 
a reference genome from the study species or a close relative) hy‐
bridize with complimentary sequences and subsequently separated 
from foreign DNA (Carpenter et al., 2013; Hofreiter & Shapiro, 
2012). However, such applications can be time and cost expensive.

Finally, advances in HTS has made the genome‐wide acquisition 
of thousands to millions of genetic markers—including rare variants—
increasingly affordable for nonmodel organisms (Figure 1) (Mardis, 
2008). Such genome‐wide DNA sequencing provides an unparal‐
leled opportunity to detect fine‐scale differentiation in otherwise 
homogenous populations and species (Barth et al., 2017; Martin et 
al., 2018; Milano et al., 2014). Another novel approach is bulk bone 
metabarcoding (BBM) which simultaneously analyses hundreds of 
nondiagnostic specimens for species identification (Grealy et al., 
2015; Haouchar et al., 2014; Murray et al., 2013). BBM is thus a use‐
ful technique to quickly assess the level of DNA preservation in ar‐
chaeological sites across a range of species. BBM is especially useful 
in fish as fragmentary cranial and postcranial bones can be difficult 
to identify in teleost species. Indeed, while morphological identifica‐
tions of complete bones may be possible to family level, genus and 
species level assignments may not be possible due to the absence 
of distinct morphological characters. Incorporating aDNA and BBM 
methods would exponentially increase the research questions that 
archaeological fish bone can answer. For instance, a combination of 
both methods would allow to reconstruct prehistoric fishing zones 
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in tropical reef contexts with high regional biodiversity (Giovas, 
Lambrides, Fitzpatrick, & Kataoka, 2017), or temporal changes 
in the range of marine habitats that are exploited through fishing. 
Seersholm et al. (2018) used BBM and found genetic evidence for the 
presence of both freshwater (Anguilla australis) and marine (Conger sp. 
and Gnathophis sp.) eels at archaeological sites from New Zealand's 
indigenous	Māori.	 Although	 eels	 were	 known	 to	 be	 an	 important	
traditional	food	source	for	Māori,	this	is	the	first	time	such	remains	
have been identified due to their poor preservation in the archae‐
ological record. This study shows how BBM can be a valuable tool 
that complements more traditional archaeological and palaeontolog‐
ical approaches as it is able to identify species without the need for 
traditional morphological characteristics. Methodological advances 
in aDNA, including the use of “rescue PCR” (Johnson et al., 2018) 
and PCR enhancers (e.g., PEC‐P; Zhang, Kermekchiev, & Barnes, 
2010) for suboptimal samples, should be combined with BBM to in‐
crease the power of this technique. Using these techniques, Palmer, 
Tushingham, and Kemp (2018) were able to better understand sub‐
sistence fishing practices, especially those of small forage fish, of in‐
digenous prehistoric communities in northern California.

4  | GENOMIC ADNA ANALYSES TO 
INFORM FISHERIES MANAGEMENT AND 
CONSERVATION

The novel applications of fish aDNA now allow us to better under‐
stand how fish stocks have changed over time, both in terms of natu‐
ral variation in abundance and range, and from the anthropogenic 
impacts of fishing. The rise of industrial‐scale fishing during the 
1950s and the lack of any significant genetic sampling of stocks prior 
to the 1970s mean it has been difficult to get an accurate picture of 
how harvesting has affected the genetic diversity and distribution of 
fisheries species. A key goal of research for fisheries management is 
to detect and ultimately reduce the negative effects of overexploita‐
tion (Ovenden, Berry, Welch, Buckworth, & Dichmont, 2015; Ward, 
2000), so that species can be fished sustainably over long time pe‐
riods. The advantage of aDNA is that it represents a sample of the 
fish stock before the onset of commercial fishing, which can be com‐
pared with samples taken from a contemporary fish stock. Temporal 
population sampling could enable testing for the loss of genetic di‐
versity due to stock depletion and the genetic effects of size‐selec‐
tive harvesting (Allendorf, England, Luikart, Ritchie, & Ryman, 2008), 
and whether the stock structure and distribution has changed over 
time (Perry, Low, Ellis, & Reynolds, 2005). Understanding changes 
to genetic diversity from sampling past populations and compar‐
ing them to contemporary populations can thus provide invaluable 
information about how genetic baselines may be shifting. Fisheries 
managers could then adjust fishing pressures in certain areas to pre‐
vent further loss of genetic diversity. Furthermore, an understand‐
ing of population responses to earlier climate change events could 
provide important insights about the possible changes that will hap‐
pen to stocks in the future.

Evidence for the loss of genetic diversity from the depletion of a 
fish stock has been reported for Australasian snapper (Chrysophrys 
auratus) (Hauser et al., 2002), Atlantic salmon (S. salar) (Nielsen et 
al., 1997) and North Sea cod (G. morhua) (Hutchinson et al., 2003), 
using aDNA extracted from dried scales and otoliths. The tempo‐
ral nature of aDNA samples can be used to test for a loss of ge‐
netic variation as a consequence of stock depletion over time. One 
prediction from prolonged fishing pressure is that the strength of 
genetic drift is predicted to increase and eliminate alleles in a pop‐
ulation if there has been a significant population size reduction due 
to overexploitation (Ovenden et al., 2016). This is supported by the 
finding that the allelic richness appears to be lower in exploited spe‐
cies compared with species that are not heavily affected by fishing 
(Pinsky & Palumbi, 2014). A prefishing sample point provided by 
aDNA would be a direct test of whether an exploited population had 
lost allelic diversity. The recent increase of genome‐wide sequencing 
data (Star et al. (2017) from ancient samples presents a new oppor‐
tunity for conducting genome scans for adaptive loci (Bernatchez & 
Wellenreuther, 2018). Ancient and contemporary sampling could be 
used to discover loci that have been subjected to selection as a re‐
sult of the intense size‐selective force that industrial‐level fishing as 
applied to stocks over the last 50 years. This type of selection is ex‐
pected to produce smaller fish that reach maturation earlier (Heino 
et al., 2015). As more genomic information becomes available from 
studies of quantitative trait loci (QTL) and genome wide association 
studies (GWAS) (Ashton, Ritchie, & Wellenreuther, 2017), the im‐
portant loci underlying fish growth rates and maturation could also 
be more directly investigated.

It has been well documented that past climate change had an im‐
pact on the structure and distribution of marine populations (Perry 
et al., 2005). In particular, the preferred sea temperature for a spe‐
cies is a strong factor that determines range and dispersal success 
(Poloczanska et al., 2013). The range and distribution of many fish 
species will shift in response to future ocean warming, and fisheries 
management will need to adapt to meet the challenge of protect‐
ing new emerging stocks and adjust to lower sustainable yields from 
traditionally productive stocks. However, the genetic patterns and 
evolutionary process involved in past climate‐driven range shifts in 
the marine realm are largely unknown, which means there is a gap 
in information that could be used to support the development of 
a framework for adapting future fisheries management to climate 
change. New methodologies (e.g., BBM) utilizing large sample sizes 
will enable a species’ past range to be estimated and compared 
with the contemporary range. Moreover, as climate‐driven range 
shifts are detected in modern populations it might be possible to 
make comparisons with past populations (Ramos et al., 2018), as 
long as there have been no cryptic biological turnover events in the 
archaeological and palaeontological records (Collins et al., 2014). 
However, for these types of inferences it could be difficult to dis‐
tinguish among the different selective scenarios, for example, natu‐
ral versus anthropogenic processes, particularly given that many of 
these processes often work in concert. Genome‐wide sequencing 
of aDNA samples could be used to test for adaptive loci associated 
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with range expansions and how often fish with k‐selected life‐his‐
tory traits moved compare to those species with late maturation and 
larger body size (McLean et al., 2018). Overall, our understanding of 
the impacts of fishing and climate has much to gain from temporal 
sampling of exploited species using aDNA approaches.

5  | INTERDISCIPLINARY RESE ARCH AT 
THE INTERFACE OF ARCHAEOLOGY AND 
BIOLOGY

One outcome of the advances in genomic approaches and aDNA 
research is the convergence of biology, archaeology and conserva‐
tion management. The integration of these fields can concurrently 
help answer questions of interest to both fields. As presented 
above, biology has assisted archaeological research by being able 
to identify samples to species, or even population level from non‐
diagnostic remains, providing novel insight regarding location and/
or seasons of resource extraction (Bulter, 1998; Ewonus, Cannon, 
& Yang, 2011; Grier et al., 2013; Star et al., 2017). Likewise, the 
intersection of aDNA and archaeology, in the rapidly growing 
field of conservation archaeo‐genomics (Hofman et al., 2015), has 
provided conservation authorities with vital baseline data for the 
management of fisheries stocks (Moss, Rodrigues, Speller, & Yang, 
2016; Rodrigues, McKechnie, & Yang, 2018). While species iden‐
tification is still an important application of molecular biology in 
archaeology, methods such as ZooMS for protein barcoding are 
often applied (Harvey, Daugnora, & Buckley, 2018; Hendy et al., 
2018). ZooMS entails the comparison of peptide mass fingerprints 
derived by mass spectrometry, allowing identifications to genus or 
species level that, like identifications using aDNA, can inform our 
understanding of past fishing and its ecological impacts. Genomic 
research on fish bones can be powerfully combined with traditional 
zoo‐archaeology and stable isotope analyses to infer the relation‐
ship between past human populations and changes in biogeogra‐
phy, the intensity of human exploitation, and the development of 
commodification and long‐range trade (Barrett, 2019). Moreover, 
the application of environmental aDNA is opening the potential to 
see taxa that are otherwise invisible, in lake sediments and archae‐
ological deposits (Hebsgaard et al., 2009; Pedersen et al., 2015; 
Rawlence et al., 2014).

Key insights from archaeological work also greatly enhance 
the potential of biological research from aDNA. In archaeology, 
context is everything. Knowing the chronology and depositional 
context of a subfossil is fundamental to its interpretation. Accurate 
dating of biological samples can help estimate mutation rates and in 
turn allow for accurate demographic history assessments (Lambert 
et al., 2002). Moreover, an awareness of which specimens might 
represent human translocations, such as the spread of carp aqua‐
culture (Hoffmann, 1994), or the long‐range trade of foods like 
dried cod (G. morhua) or salted herring (C. pallasi) (Barrett, 2016). 
Such findings are as critical to evolutionary inferences regarding 
biogeography as it is to archaeological and historical interpretation. 

Changes in the aquatic environment, such as temperature, with po‐
tential evolutionary implications, can also be demonstrated by re‐
search within archaeology. This palaeo‐ecological information can 
be derived from study of fish remains themselves (Geffen et al., 
2011) and from associated materials such as marine shells (Surge 
& Barrett, 2012).

6  | A FUTURE PERSPEC TIVE:  CHALLENGES 
AND PRIORITIES

We have proposed that the recent insights in aDNA methodology 
and sequencing technologies will enable the field of fish aDNA to 
move into the genomic era and will experience significant growth.

A key challenge will be to integrate genomic and archaeological 
efforts in the future within a collaborative framework. Overall, the 
integration of genomic and archaeological approaches has the poten‐
tial to illuminate a range of questions that cannot be fully addressed 
by either subject in isolation. When did fisheries‐induced evolution 
first emerge within a given taxon? When and where were widely dis‐
tributed species first harvested or traded over long distances? When 
and where were fish first translocated for the purposes of stock‐
ing? To what degree were past changes in fish biogeography caused 
by human impact versus natural environmental change? This list of 
questions will grow as interdisciplinary research proceeds. The vast 
archaeological record holds much more than what can be discovered 
from aDNA alone, and close relations between archaeology and bi‐
ology will surely benefit both sciences.

Collaboration with archaeologists will also allow more informed 
sampling choices to be made, given specimens from most archaeo‐
logical sites are affected by anthropogenic (e.g., trade vs. processing 
sites) and taphonomic biases. Such human‐induced bias (e.g., species 
overrepresentation, selection of certain phenotypes such as size or 
behavioural traits) should be taken into account when interpreting 
results. It should be noted that sample size limitations can become a 
significant issue, as high‐quality samples required for whole genome 
sequencing may be sparsely distributed for some taxa. Especially, 
studies which advocate conservation management decisions will 
require significant spatial or temporal sampling in order to enforce 
legislation. Applications such as BBM and hybridization capture en‐
richment do provide some flexibility in the sample quality.

We further wish to highlight that future efforts should focus on 
expanding the genomic resources that are available for fish, as the 
vast majority of them have limited or no genomic resources. This is 
going to be crucial, as teleost fish are represented by over 33,000 ex‐
tant species, making them the most diverse vertebrate group on the 
planet (Eschmeyer, Fricke, & Laan, 2014) and, at the time of our re‐
view, genome assemblies are only available for 59 fish species (NCBI). 
Having a well‐assembled reference genome for a study species, or at 
least of a phylogenetic closely related species, is an important first 
step that greatly improves the power of aDNA studies and reduces 
the cost for analysing thousands of loci (Star et al., 2017). Moreover, 
the limited number of teleost genomes hampers the development of 
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species‐specific barcodes that are of sufficient short length so that 
they can be used in high‐throughput environmental and palaeo‐en‐
vironmental DNA approaches (Hanfling et al., 2016; Rawlence et al., 
2014; Seersholm et al., 2018). With those considerations, we believe 
that this is an exciting time for the field of fish aDNA and are convinced 
that it will contribute to crucial insights to support evidence‐based de‐
cisions in fisheries management, conservation and invasion biology.
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