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Abstract

Title: Synthesis of electrical and mechanical networks of restricted complexity

Author: Alessandro Morelli

This dissertation is concerned with the synthesis of linear passive electrical and me-

chanical networks. The main objective is to gain a better understanding of minimal

realisations within the simplest non-trivial class of networks of restricted complexity—

the networks of the so-called “Ladenheim catalogue”—and thence establish more general

results in the field of passive network synthesis. Practical motivation for this work stems

from the recent invention of the inerter mechanical device, which completes the analogy

between electrical and mechanical networks.

A full derivation of the Ladenheim catalogue is first presented, i.e. the set of all

electrical networks with at most two energy storage elements (inductors or capacitors)

and at most three resistors. Formal classification tools are introduced, which greatly

simplify the task of analysing the networks in the catalogue and help make the procedure

as systematic as possible.

Realisability conditions are thus derived for all the networks in the catalogue, i.e.

a rigorous characterisation of the behaviours which are physically realisable by such

networks. This allows the structure within the catalogue to be revealed and a number

of outstanding questions to be settled, e.g. regarding the network equivalences which

exist within the catalogue. A new definition of “generic” network is introduced, that is

a network which fully exploits the degrees of freedom offered by the number of elements

in the network itself. It is then formally proven that all the networks in the Ladenheim

catalogue are generic, and that they form the complete set of generic electrical networks

with at most two energy storage elements.

Finally, a necessary and sufficient condition is provided to efficiently test the gener-

icity of any given network, and it is further shown that any positive-real function can

be realised by a generic network.
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Chapter 1

Introduction

This dissertation is concerned with the study of passive electrical and mechanical net-

works in the context of network synthesis. Network synthesis is a classical field which

seeks to describe rigorously the behaviours which are physically realisable in a given

domain, with certain specified components. The results in this dissertation will be

presented in terms of linear passive electrical networks, with a particular focus on two-

terminal networks, built from resistors, inductors and capacitors (RLC networks). Re-

cently a new fundamental element for mechanical control, the inerter [74], was intro-

duced, alongside the spring and the damper: it completes the so-called force-current

analogy between the mechanical and electrical domain, thus allowing all the results

presented here to be equivalently expressed in terms of passive mechanical networks,

comprising springs, dampers and inerters. Given an arbitrary electrical or mechanical

passive network, it is well-known how to characterise its driving-point behaviour (e.g.

in terms of the driving-point impedance). Network synthesis can be thought of as the

inverse problem, that is how to design a passive (RLC or spring-damper-inerter) network

to realise a given driving-point behaviour.

Research in electrical network synthesis developed rapidly in the first half of the

twentieth century, due to the broad scope it offered and due to the practical motivation

of deriving useful results for analogue filter design, only to start petering out in the 1960s

with the advent of integrated circuits. Some of the major results from the classical

period include Foster’s reactance theorem [23], which characterised the impedance of

networks of inductors and capacitors only, Brune’s concept of positive-real functions and

his construction method for a general positive-real function using resistors, inductors,

capacitors and transformers [8], and the Bott-Duffin theorem [7], which proved that

transformers were unnecessary in the synthesis of positive-real impedances.

1



2 1. Introduction

In recent years there has been renewed interest in network synthesis motivated in part

by the introduction of the inerter, and independently due to the advocacy of R. Kalman

[47]. These modern developments have highlighted the need for a better understanding

of RLC synthesis, and represent the main motivation for the present work. Despite

the wealth of classical results, a number of long-standing questions remain unanswered

in fact. Notably, while the Bott-Duffin theorem provides a construction method for

the synthesis of any positive-real function that makes use of resistors, inductors and

capacitors only, one of its most striking features is that the number of reactive elements

in the realisation (inductors and capacitors) appears excessive compared to the degree

of the impedance function. Despite some progress in recent years [33, 38], very little

is known on the question of obtaining a minimal realisation of a given positive-real

function, since a great many positive-real functions can be realised in a much simpler

manner than with the Bott-Duffin method.

It is worth noting that minimising network complexity is crucial in mechanical re-

alisations of positive-real impedances. Numerous applications of the inerter have been

recently researched and implemented in the field of mechanical control, ranging from

vehicle suspension design [40, 59, 83] to vibration suppression [13, 72, 80, 82]. All these

applications have highlighted the need for a better understanding of the most “econom-

ical” way to realise a given passive impedance, in order to obtain control mechanisms of

limited volume and weight. More broadly, much remains to be discovered in the field,

and the study of apparently simple classes of networks has given evidence of a deep com-

plexity and structure within passive network realisations [43, 45]. This was highlighted

by Kalman, whose advocacy of a renewed attack on the subject of network synthesis

stemmed from his interest in obtaining further insight into a fundamental, classical dis-

cipline for which a general theory was missing [76], and which could have important and

wider implications in other areas of science [47].

In this dissertation we seek to obtain further understanding on (1) the synthesis

of low-complexity impedances and (2) non-minimality in RLC networks. The approach

that we adopt is the enumerative approach, with the intent to uncover as much structure

as possible within what can be seen as the simplest, yet non-trivial class of networks of

restricted complexity. This class was first defined in the Master’s thesis of E.L. Laden-

heim [52], a student of Foster at the Polytechnic Institute of Brooklyn. Ladenheim

determined the set of all essentially distinct two-terminal electrical networks comprising

at most two reactive elements and at most three resistors—now known as the “Laden-

heim catalogue”. Until recent years Ladenheim’s thesis appears to have been virtually

unknown. A single citation in [25] independently led to two publications: one by Jiang
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and Smith [43], the other by Kalman [47]. The catalogue was subsequently a central

part of discussions at the four workshops on Mathematical Aspects of Network Synthesis

initiated by Uwe Helmke which were held alternately in Würzburg and Cambridge from

2010 to 2016. In the Ladenheim catalogue the impedance of each network is computed,

and the (more challenging) inverse process is performed, i.e. given the impedance an

expression for each element of the network is stated. There are, however, no derivations

in Ladenheim’s work and, more crucially, no conditions are given on the impedance

coefficients which ensure positivity of the network parameters.

Some important networks of the Ladenheim catalogue were studied in [43] and re-

alisability conditions for a “generating set” were obtained. A canonical form for bi-

quadratics was also introduced which, through a graphical interpretation, helped better

understand the realisation power of the class. A complete analysis of all the networks

of the catalogue outside the generating set was however not attempted, and the un-

derlying structure which relates the networks remained to be uncovered. In this work

we present a formal derivation, analysis and classification of the complete Ladenheim

catalogue, in order to uncover as much structure as possible and obtain more insight

into the realisation of this (apparently simple) class within the biquadratic positive-real

functions. This approach will lead to a number of more general results being established.

Among these, a key outcome of the classification of the catalogue is a new definition of

generic network, a concept that appears to be implicit in Ladenheim and Foster’s work.

This notion is developed here for networks of arbitrary size and is particularly useful in

identifying networks which inevitably lead to non-minimal realisations.

1.1 Structure of the dissertation

Chapters 2 and 3 will present an extensive literature survey of fundamental topics of

classical and modern network synthesis. Most of the content of these chapters, along

with the results presented in Chapters 4, 5, 6, has been accepted for publication as a

monograph in the SIAM Advances in Design and Control series [55]. The approach

of Chapter 4 was included in a survey of recent work on electrical network synthesis,

in collaboration with T.H. Hughes [34], while preliminary results in the study of the

Ladenheim catalogue were presented as an extended abstract in [54]. Chapter 7 is the

result of work carried out in collaboration with T.H. Hughes, which was presented in [35]

and submitted for publication in [36].



4 1. Introduction

Chapter 2 - Background on classical network synthesis

Fundamental notions of two-terminal electrical networks are reviewed in this chapter,

and more detail is given on the main results from passive network synthesis mentioned

in the Introduction, as well as other classical synthesis methods.

Chapter 3 - Recent developments in passive network synthesis

Modern developments in the field are summarised in this chapter, where relevant results

from the literature on the classification of biquadratics are introduced. More details

on the inerter device and on the mechanical-electrical analogy are given at the end of

the chapter, where some of the applications of passive network synthesis to mechanical

networks are mentioned.

Chapter 4 - The enumerative approach to network synthesis

One of the main contributions of this work is a complete, fresh analysis of the Ladenheim

catalogue. The formal derivation of the catalogue is described in this chapter, and the

notions of realisability set, equivalence and group action are introduced. These notions

will provide the basis for an efficient classification and analysis of the catalogue.

Chapter 5 - Structure of the Ladenheim catalogue

For each equivalence class in the catalogue, the set of impedances that can be realised

is derived in explicit form as a semi-algebraic set. Realisability conditions, expressed

in terms of necessary and sufficient conditions, are then given in this chapter for each

equivalence class, along with plots of the graphical representation of the realisability

sets through the canonical form for biquadratics. The underlying structure that emerges

from the catalogue is presented here in diagrammatic form, highlighting the interlacing

partitions into orbits, equivalence classes and subfamilies.

Chapter 6 - Main results and discussion on the Ladenheim catalogue

With the knowledge of the realisability power of each network in the catalogue, the main

results of our analysis of this class of networks are formally proven in this chapter. A

new notion of generic network is introduced, and observations are made on the complete

set of equivalences, on the smallest generating set for the class, and on Kalman’s latest

work. The class of six-element networks with four resistors is also analysed here, and

two new equivalences are presented.
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Chapter 7 - On a concept of genericity for RLC networks

The notion of generic network is further developed in this chapter, and a necessary

and sufficient condition is provided to efficiently test this property without requiring

the knowledge of the realisability set of the network. The result that any positive-real

impedance can be realised as a generic network is also proven here.

Chapter 8 - Conclusions

The concluding chapter summarises the main contributions of the dissertation and sug-

gests some directions for future research.

Appendices

A series of appendices which are useful in the study of the catalogue are provided. These

include a table of all non-2-isomorphic planar graphs with at most five edges, the list of

the 108 networks in the Ladenheim catalogue (in numerical and subfamily order) and

proofs of the realisation theorems for all the five-element networks in the catalogue.

1.2 Notation

Throughout the dissertation we will adopt the following notation:

R real numbers

R>0 positive real numbers

R≥0 non-negative real numbers

Rn (column) vectors of real numbers

(x1, . . . , xn) column vector
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Chapter 2

Background on classical network

synthesis

A survey is undertaken in this chapter of general background and classical results of

passive network synthesis to provide a broader context for the subsequent analysis.

More recent developments and applications of passive network synthesis are presented

in Chapter 3. Further details and material on the results discussed in this chapter can

be found in [1], [11], [27], [78], [90].

2.1 Preliminaries of electrical networks

This dissertation is concerned with linear passive electrical networks, with a particular

focus on one-ports. A one-port network (also know as a two-terminal network), as

shown in Figure 2.1, has two external terminals (nodes, vertices), 1 and 1′. The voltage

v between the terminals of the port and the current i entering one terminal and leaving

from the other are taken with the sign convention of Figure 2.1. One-ports may be

connected to other one-ports, for instance another element, network or a driving source

(voltage or current generating source). The driving-point impedance of N is defined by

Z(s) = v̂(s)/̂i(s), where ˆ denotes the Laplace transform, and Y (s) = Z−1(s) is the

driving-point admittance.

Networks will comprise finite interconnections satisfying Kirchoff’s laws that contain

resistors, inductors and capacitors, and will be referred to as RLC networks. See Fig-

ure 2.2 for the standard symbols of the network elements. From time to time we shall

refer to more general one-ports and multi-ports containing ideal transformers or coupled

coils, though they do not form part of this study. The inductor and capacitor are termed

7
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1

sL1 +
1

sC1 +
1

sL2 +
1

sC2 + . . .

Z(s)

i

v

1

10

N

R L C

1

10

1 10

Figure 2.1: Electrical network N with two external terminals 1 and 1′, terminal voltage
v, terminal current i and driving-point impedance Z(s).

1

sL1 +
1

sC1 +
1

sL2 +
1

sC2 + . . .

i

v

1

10

N

R L C

1

10

1 10

101

Figure 2.2: The three fundamental two-terminal electrical elements (one-ports): resistor,
inductor and capacitor.

reactive elements and have impedance sL and 1/(Cs), respectively, where L > 0 and

C > 0 denote inductance and capacitance. The resistor has impedance R, where R > 0

denotes the resistance.

Associated to each network is an undirected connected graph in which each edge

(branch) corresponds to a network element and two special vertices (nodes) are identified,

i.e. the external terminals. We restrict our attention to planar networks, whose graph

can be embedded in a plane in such a way that no two edges intersect. For such an

embedding of a planar graph, we define as faces of the graph each of the regions in

which the plane is divided. A corollary of a famous theorem by Kuratowski establishes

that graphs with fewer than five nodes or nine edges must be planar [69, Theorem 3-17].

In this study we deal with networks with fewer than nine edges therefore we do not need

to worry about non-planarity.

A graph has a dual if and only if it is planar [69, Theorem 3-15]. Given a planar

graph G, the vertices of its dual G′ each correspond to a face of G, while faces of G′

each correspond to a vertex of G. Two vertices in G′ are connected by an edge if

the corresponding faces in G have an edge in common. A graph and its dual always

have the same number of edges, since there is a one-to-one correspondence between

them [69, Section 3-3], while the number of vertices need not be the same. The dual

of a planar graph is not necessarily unique, in the sense that the same graph can have

non-isomorphic dual graphs (which can stem from distinct planar embeddings of the

same graph). However, if G1 and G2 are dual graphs of the same planar graph then G1
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and G2 are 2-isomorphic [69, Theorem 3-18] (see also Section 4.2 and [85, 86] regarding

2-isomorphism).

In the case of two-terminal electrical networks, the first step to obtain the dual of

a network N is to consider a (voltage or current) driving source connected to the two

external terminals: this step is needed in order to preserve the port in the duality process,

since it would otherwise be replaced by a short circuit in the dual network. We then

consider the graph G associated to the network and construct its dual G′ according to

the method outlined above. The dual network N ′ can then be obtained from G′ by

populating each edge in G′ with the dual of the corresponding element in N : inductors

are replaced by capacitors of equal value and vice versa, and resistors are replaced by

resistors of reciprocal value [69, Section 6-6]. The voltage source is replaced by a current

source and vice versa, which allows us to identify the two external terminals in the dual

network [26, Chapter 10.9]. An example of a simple three-element RLC network and its

dual is given in Figure 2.3, while Figure 2.4 illustrates the procedure which leads to the

graph dual of the given network. 1

1/sa
b

sg

sa

1/b 1/sg
dual

Figure 2.3: Two-terminal electrical network and its dual, with element values α, β, γ > 0.
The impedance of each element in the network is the reciprocal of the corresponding
element in the dual network.

if and only if it is planar [52, Theorem 3-15]. Given a planar
, while faces of G0

are connected by an edge if the

2.2. Foster and Cauer canonical forms 5
1

1/sC
R

sL

sC

1/R 1/sL
dual

Figure 2.3: Two-terminal electrical network and its dual. The impedance of each ele-
ment in the network is the reciprocal of the corresponding element in the dual network.

�1

Figure 2.4: Graphical illustration of the procedure to obtain the graph dual. The original
graph G is drawn in black, with the dashed line indicating the additional edge connect-
ing the driving-point terminals of G. The same holds for the dual graph G0, which
is drawn in grey. Note that G0 has a vertex for every face of G, and that there is a
one-to-one correspondence between edges of G and edges of G0.

2.2 Foster and Cauer canonical forms
Network synthesis in its modern sense originated in a famous theorem of Foster: the
Reactance Theorem [20]. The result completely characterises the one-ports that can be
built with reactive elements only. The proof of the theorem is based on the solution of
an analogous dynamical problem of the small oscillations of a mechanical system given
by E.J. Routh [51]. The theorem takes the following form.

Theorem 2.1. The most general driving-point impedance obtainable in a passive net-
work without resistors (LC network) takes the form:

Z(s) = k


(s2 + !2

1)(s2 + !2
3) . . . (s2 + !2

2n±1)

s(s2 + !2
2)(s2 + !2

4) . . . (s2 + !2
2n)

�±1

(2.1)

where k � 0, 0 < !1 < !2 . . . and n � 0. Any such impedance may be physically re-
alised in the form of Figure 2.5(a) or Figure 2.5(b) through a partial fraction expansion
of Z(s) or Z�1(s) in the form:

k0s +
k1
s

+

mX

r=1

skr

s2 + p2
r

.

where kr � 0, pr > 0 and m � 1.

Two alternative realisations of purely reactive networks were introduced soon af-
terwards by W. Cauer [10] and arise from continued fraction expansions of Z(s)—see
Figure 2.5(c) and Figure 2.5(d). Such expansions may be developed from Z(s) by an
alternating sequence of operations of the form “extract a pole” and “invert” where the

�1

Figure 2.4: Graphical illustration of the procedure to obtain the dual of a given graph.
The original graph G is drawn in black, with the dashed line indicating the additional
edge corresponding to a voltage or current source connecting the driving-point terminals
of G. The same holds for the dual graph G′, which is drawn in grey. Note that G′ has a
vertex for every face of G, and that there is a one-to-one correspondence between edges
of G and edges of G′.
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Series-parallel (SP) networks are two-terminal networks which can be constructed

inductively by combining other SP networks either in series or parallel, with single-

element networks being SP. Networks that are not SP are termed bridge networks. Net-

works obtained through a series (parallel) connection of two SP networks are termed

essentially series (essentially parallel) [64]. Simple series-parallel (SSP) networks are

series-parallel networks which can be constructed inductively by combining a single el-

ement in series or in parallel with a SSP network, with single-element networks being

SSP. Similar definitions can be given for the graphs associated to the networks.

2.2 Foster and Cauer canonical forms

Network synthesis in its modern sense originated in the famous Reactance Theorem

of Foster [23]. The result completely characterises the one-ports that can be built

with reactive elements only. The proof of the theorem is based on the solution of an

analogous dynamical problem of the small oscillations of a mechanical system given by

E.J. Routh [66]. The theorem takes the following form.

Theorem 2.1. The most general driving-point impedance obtainable in a passive net-

work without resistors (LC network) takes the form:

Z(s) = k

[
(s2 + ω2

1)(s2 + ω2
3) . . . (s2 + ω2

2n±1)

s(s2 + ω2
2)(s2 + ω2

4) . . . (s2 + ω2
2n)

]±1

(2.1)

where k ≥ 0, 0 < ω1 < ω2 . . . and n ≥ 0. Any such impedance may be physically realised

in the form of Figure 2.5(a) or Figure 2.5(b) through a partial fraction expansion of Z(s)

or Z−1(s) in the form:

k0s+
k∞
s

+
m∑

r=1

skr
s2 + p2

r

. (2.2)

where kr ≥ 0, pr > 0 (distinct) and m ≥ 1.

Two alternative realisations of purely reactive networks were introduced soon af-

terwards by W. Cauer [9] and arise from continued fraction expansions of Z(s)—see

Figure 2.5(c) and Figure 2.5(d). Such expansions may be developed from Z(s) by an

alternating sequence of operations of the form “extract a pole” and “invert” where the

simple pole extracted is at s = 0 or s = ∞. The continued fraction for Figure 2.5(c)
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takes the form

Z(s) = sL1 +
1

sC1 +
1

sL2 +
1

sC2 + . . .

,

while that for Figure 2.5(d) takes the form

Z(s) =
1

sC1
+

1
1

sL1
+

1
1

sC2
+

1
1

sL2
+ . . .

.

Theorem 2.1 shows that the impedance of a purely reactive network has by necessity

only simple poles and zeros which alternate on the imaginary axis, with s = 0 and

s = ∞ always a simple pole or zero. Cauer [9] showed that a similar situation applies

to other two-element-kind networks, for which canonical networks analogous to those of

Figure 2.5 can be obtained. By analogy to the LC case, these networks are also termed

Foster and Cauer canonical forms.

Theorem 2.2. The most general driving-point impedance obtainable in a passive net-

work which contains only resistors and capacitors (RC network) takes the form

Z(s) = k
(s+ λ1)(s+ λ3) . . . (s+ λ2n±1)

(s+ λ0)(s+ λ2) . . . (s+ λ2n)
, (2.3)

where k ≥ 0, 0 ≤ λ0 < λ1 < λ2 . . . and n ≥ 0. Any such impedance may be physically re-

alised in the form of Figure 2.5(a) or Figure 2.5(b) (with inductors replaced by resistors)

through a partial fraction expansion of Z(s) or Y (s)/s, or in the form of Figure 2.5(c)

or Figure 2.5(d) through a continued fraction expansion.

Theorem 2.3. The most general driving-point impedance obtainable in a passive net-

work which contains only resistors and inductors (RL network) takes the form

Z(s) = k
(s+ λ0)(s+ λ2) . . . (s+ λ2n)

(s+ λ1)(s+ λ3) . . . (s+ λ2n±1)
, (2.4)

where k ≥ 0, 0 ≤ λ0 < λ1 < λ2 . . . and n ≥ 0. Any such impedance may be physically re-

alised in the form of Figure 2.5(a) or Figure 2.5(b) (with capacitors replaced by resistors)

through a partial fraction expansion of Z(s)/s or Y (s), or in the form of Figure 2.5(c)

or Figure 2.5(d) through a continued fraction expansion.

It is worth pointing out that the general form of the impedance in (2.1), (2.3) and
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(2.4) is not altered if the networks contain transformers, and yet transformers are not

needed in the canonical forms.
1

(a) First Foster
form

(b) Second Foster
form

(c) First Cauer
form

(d) Second Cauer
form

Figure 2.5: Foster and Cauer canonical forms for two-element-kind networks (LC case).
For the RC case replace L by R; for the RL case, replace C by R.

2.3 Positive-real functions and passivity

A significant further step in the development of passive network synthesis was the paper

of O. Brune [8]. His first important contribution was to introduce and give a complete

characterisation of the class of positive-real (p.r.) functions, and further to show that

the driving-point impedance of any passive one-port network must be positive-real.

Brune’s derivation in [8] that the driving-point impedance is p.r. if and only if the

network is passive is based on a physical argument which we now outline. Given the

one-port passive network N in Figure 2.1 with driving-point impedance Z(s), consider

a voltage impulse applied to its terminals. For a passive network the resulting transient

current will be bounded, hence it is necessary that all the zeros in Z(s) have non-
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positive real part. By a similar argument, considering a current impulse at the port, it

is necessary that all the poles in Z(s) have non-positive real part. As we will see next,

much stronger properties hold for the driving-point impedance of a passive network.

Consider now an applied voltage v(t) = 0 for t < 0 and v(t) = eγt cos(ωt) for t ≥ 0,

with γ > 0. We can calculate that the forced response takes the form

i(t) =
eγt

|Z(γ + jω)| cos(ωt− θ) , where θ = argZ(γ + jω) ,

and that this dominates any free response (transient) terms. Neglecting the transient

terms, the energy delivered to the network can be computed as

W =

∫ τ

0
v(t)i(t) dt =

1

4 |γ + jω| · |Z(γ + jω)|

{
e2γτ cos(2ωτ − θ − χ)

− cos(θ + χ) +
cos θ

cosχ
(e2γτ − 1)

}
,

where χ = arg(γ + jω). If τ is large enough, the terms in e2γτ will be dominant, and we

can conclude that cos θ/ cosχ ≥ 1 necessarily, where both numerator and denominator

must be positive, since γ > 0. If s = γ + jω, this can be rewritten in the form of the

following two conditions, which represent the base for Brune’s definition of positive-real

functions from which all other necessary conditions follow:

Re(Z(s)) ≥ 0 for Re(s) ≥ 0 , (2.5)

| argZ(s)| ≤ | arg s| for | arg s| ≤ π/2 . (2.6)

We note that (2.6) can be interpreted as a contraction property of such functions: the

phase of the function is always smaller in absolute value than the phase of its argument.

Condition (2.6) clearly implies (2.5), and Brune proved the remarkable result that the

converse also holds using Pick’s theorem, a generalisation of Schwarz’s lemma [8, The-

orem VII]. The two conditions can therefore be considered as equivalent definitions of

positive-realness for a real-rational function Z(s).

We now state two more commonly used definitions of positive-real functions, which

are entirely equivalent to the definitions given in (2.5) and (2.6) [1, Section 2.7], [8,

Theorem V]. We note that conditions similar to those in Theorem 2.2 can be given in

terms of the zeros of Z(s) [8, Theorem V, Corollary 1].

Definition 2.1. A rational function Z(s) is defined to be positive-real if:

1. Z(s) is real for real s;
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2. Z(s) is analytic for Re(s) > 0;

3. Re(Z(s)) ≥ 0 for Re(s) > 0.

Definition 2.2. A rational function Z(s) is defined to be positive-real if:

1. Z(s) is real for real s;

2. Z(s) is analytic for Re(s) > 0;

3. Poles on the imaginary axis are simple and have positive real residues;

4. Re(Z(jω)) ≥ 0 for all ω.

We further state some useful properties of p.r. functions which appear in Brune’s

work and which all follow from the definition of positive realness.

Theorem 2.4. If Z(s) is a positive-real function then the following properties hold:

1. 1/Z(s) is positive-real;

2. Z(1/s) is positive-real;

3. The degree of the numerator and denominator of Z(s) can differ by at most one;

4. The real part of Z(s) in the right half plane attains its minimum value on the

imaginary axis;

5. Any poles on the extended imaginary axis can be extracted as in a partial fraction

expansion, with the terms extracted and the remainder necessarily positive-real;

6. | argZ(s)| ≤ | arg s| for | arg s| ≤ π/2.

We conclude by stating a more formal definition of passivity [56, Definition 2.5], which

can be shown to be equivalent to positive-realness [56, Theorem 4.3]. The definition

formalises the notion that the total energy delivered to the network up to time τ is

non-negative, meaning that no energy can be delivered to the environment.

Definition 2.3. A one-port network with driving-point voltage v(t) and driving-point

current i(t) is passive if ∫ τ

−∞
v(t)i(t) dt ≥ 0

for all τ and for all compatible pairs v(·), i(·) which are square integrable on (−∞, τ ].

A similar definition with the lower limit replaced by t0 is given in [1], with the

additional assumption that the network is storing no energy at time t0. A proof of the

equivalence with positive-realness is given in [1, Theorem 2.7.3].
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2.4 The Foster preamble and Brune cycle

The second important contribution of Brune [8] was to formulate a procedure to find

a network that realises an arbitrary positive-real function. The procedure begins with

a sequence of steps known as the Foster preamble. This involves the removal of any

imaginary axis poles or zeros from Z(s) and the reduction of its minimum real part to

zero. For example, if Z(s) has a pole at s =∞ then we can write

Z(s) = sL+ Z1(s)

where L > 0 and Z1(s) is positive-real with no pole at s = ∞. In network terms

this corresponds to the removal of a series inductor as shown in the top left figure in

Table 2.1. Poles at the origin or on the imaginary axis are dealt with in a similar way.

Zeros are similarly extracted by the corresponding operations on Y (s) = 1/Z(s). At

any point a constant equal to the minimum value of the real part of the function can be

subtracted from Z(s) or Y (s) = 1/Z(s). A summary of the different operations which

can be performed on either Z(s) or 1/Z(s) is given in Table 2.1, in terms of network

representations. The process is not unique.

If the process described above does not succeed in completely realising the function,

then a p.r. function Z(s) remains which has no poles or zeros on the extended imaginary

axis and with the real part of Z(jω) equal to zero at one or more finite, non-zero

frequencies. Such functions are termed minimum functions. There then follows an

operation known as a Brune cycle which extracts three inductors in a Y-configuration

together with a capacitor. No matter how this extraction is performed, one of the

inductors is required to have a negative inductance—which is not realisable passively.

Brune’s decisive step is to show that the Y-configuration can always be replaced by a pair

of coupled coils of positive inductance and with a unity coupling coefficient (Figure 2.6).

Such a transformer is in principle realisable passively, though difficult in practice.

We conclude by highlighting the main result from Section 2.3 and the present section

in the following theorem, known as Brune’s theorem:

Theorem 2.5.

1. The driving-point impedance Z(s) of any linear passive one-port network is positive-

real;

2. If Z(s) is positive-real then it is realisable by a network containing resistors, in-

ductors, capacitors and ideal coupled coils.
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from impedance

function Z(s)

from admittance

function Y (s)

Removal of a pole
at infinity

1

Z1(s)

Z1(s)

Z1(s)

Z1(s)

Z1(s)

Z1(s)

1

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Removal of a pole
at zero

1

Z1(s)

Z1(s)

Z1(s)

Z1(s)

Z1(s)

Z1(s)

1

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Removal of a pair
of imaginary-axis
poles

1

Z1(s)

Z1(s)

Z1(s)

Z1(s)

Z1(s)

Z1(s)

1

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Removal of a
constant

1

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

1

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Z1(s)

Y1(s)

Table 2.1: Summary of the possible removal operations on an impedance function Z(s)
or admittance Y (s). In each case the remainder of this extraction (Z1(s) or Y1(s)) is p.r.
by Theorem 2.4. The removal of zeros on the extended imaginary axis corresponds to
the removal of poles from the reciprocal function. See [78] for a textbook explanation.

1

L2

L1

C1

L3

Z1(s)
Z(s)

Lp Ls

C1

Z1(s)
Z(s)

• •
M

Figure 2.6: Replacement of the Y-configuration of inductors (where L1 > 0, and one
of L2 and L3 is negative) with coupled coils in a Brune cycle, with Lp, Ls > 0 and
M2/(LpLs) = 1 (unity coupling coefficient).
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2.5 The Bott-Duffin construction and its simplifications

The remarkable fact that coupled coils or ideal transformers can be dispensed with in

the realisation of positive-real functions was shown by R. Bott and R.J. Duffin [7]. Their

construction begins in the same way as Brune’s method, leading to a minimum function

by the Foster preamble. The key step of the method is a replacement for the Brune

cycle. This makes use of the Richards transformation [63] which states that, for any p.r.

function Z(s) and any k > 0,

R(s) =
kZ(s)− sZ(k)

kZ(k)− sZ(s)

is p.r. of degree no greater than Z(s). Now suppose that Z(s) is a minimum function

with Z(jω1) = jω1X1 where ω1 > 0 and assume that X1 > 0 (otherwise the argument

is applied to Z−1(s)). Then we can find a k > 0 so that R(s) has a zero at s = jω1, by

choosing Z(k)/k = X1. We now write:

Z(s) =
kZ(k)R(s) + Z(k)s

k + sR(s)

=
1

1

Z(k)R(s)
+

s

kZ(k)

+
1

k

Z(k)s
+
R(s)

Z(k)

(2.7)

=
1

1

kZ(k)

s
+
Z(k)

R(s)

+
1

Z(k)R(s) +
sZ(k)

k

(2.8)

and note that (2.7) and (2.8) correspond to the circuit diagrams of Figure 2.7(a)–(b).

1

Z1(s)

Z2(s)

(a)

Z1(s)

Z2(s)

(b)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(a)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(b)

Z1(s)

Z2(s)

Z1(s)

Z2(s)

Figure 2.7: Networks realising the inverse of the Richards transformation.
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We can then write:
1

R(s)
=

γs

s2 + ω2
1

+
1

R1(s)

for some γ > 0 and R1(s) being p.r. of strictly lower degree than R(s), which allows series

or parallel resonant circuits to be extracted to obtain the networks shown in Figure 2.8.

The Bott-Duffin method continues as necessary on the reduced degree impedances until

resistors are obtained. 1

Z1(s)

Z2(s)

(a)

Z1(s)

Z2(s)

(b)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(a)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(b)

Z1(s)

Z2(s)

Z1(s)

Z2(s)

Figure 2.8: Bott-Duffin cycle for the minimum function Z(s) in which Z1(s), Z2(s) have
lower degree than Z(s) in the case X1 > 0.

Given the above construction method, we can now state the Bott-Duffin theorem:

Theorem 2.6. Any positive-real function can be realised as the driving-point impedance

of a network containing resistors, inductors and capacitors only.

It should be noted that the networks of Figure 2.8(a)–(b) contain six reactive elements

for a degree reduction of two from Z(s) to Z1(s) and Z2(s). If Z(s) is a biquadratic

minimum function, then Z1(s) and Z2(s) are resistors and six reactive elements in total

are used in the network realisation of Z(s). This apparent extravagance prompted

attempts to seek simpler realisations. Several authors independently found that the six

reactive elements could be reduced to five if bridge networks were allowed [21,57,62]. The

resulting network can be most easily derived by noting that the network in Figure 2.8(a)

is a balanced bridge. Hence it must be entirely equivalent to the network of Figure 2.9.

It turns out that by judicious choice of the additional inductance a Y -∆ transformation

can be made which results in a pair of reactive elements being duplicated, and hence

such a pair can be removed. The resulting network is shown in Figure 2.10. See [27] for

a textbook explanation.

Despite the non-intuitive nature of these constructions, it has recently been shown

that the Bott-Duffin construction is the simplest possible among series-parallel net-
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1

Z1(s)

Z2(s)

(a)

Z1(s)

Z2(s)

(b)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(a)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(b)

Z1(s)

Z2(s)

Z1(s)

Z2(s)

Figure 2.9: Bott-Duffin network with additional inductor.

1

Z1(s)

Z2(s)

(a)

Z1(s)

Z2(s)

(b)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(a)

kZ(k)/s

Z(k)/R(s)

Z(k)R(s)
sZ(k)/k

(b)

Z1(s)

Z2(s)

Z1(s)

Z2(s)

Figure 2.10: Pantell-Fialkow-Gerst-Reza simplification of the Bott-Duffin cycle.

works for the biquadratic minimum function [38] and that the Pantell-Fialkow-Gerst-

Reza simplification cannot be improved upon in the generic case [33]. It follows that

“non-minimality” is intrinsic to the RLC realisation of some driving-point impedances.

This has prompted a fundamental treatment of this non-minimality using Willems’ be-

havioural framework [32], [39]. See Section 3.4 for a discussion on the behavioural

approach to passivity.

2.6 Darlington synthesis

Roughly midway between the appearance of the methods of Brune and Bott-Duffin a

completely different procedure to realise driving-point impedances was devised by S.

Darlington [17]. As in Brune’s approach, ideal transformers are an integral part. Re-

markably, only one resistor is needed, no matter how complex the positive-real function.

In the present context this serves to emphasise the extra freedom that is obtained when

transformers are allowed. The Darlington theorem states the following:

Theorem 2.7. Given a positive-real impedance, it can always be realised as the driving-

point impedance of a lossless (i.e. comprising no resistive elements) two-port network

terminated in a single resistance, as shown in Figure 2.11.

We now provide an outline of Darlington’s realisation procedure, which proves the
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1

Lossless
network R

Z(s)

X1(s) X2(s)

X3(s)

1 : n

Network 1

Network 2

Figure 2.11: Network structure for the Darlington method.

above result. We note that the resistance R which is extracted is often chosen to be 1Ω,

though it may be set to any positive value.

Darlington’s procedure made use of a lossless two-port containing inductors, capac-

itors and transformers only. Such a two-port is “reciprocal”, which means that the

impedance matrix is symmetric [1]:

X(s) =


x11(s) x12(s)

x12(s) x22(s)


 (2.9)

Assuming that the two-port lossless network in Figure 2.11 has impedance matrix (2.9),

the driving-point impedance Z(s) is given by

Z(s) = x11
R−1(x11x22 − x2

12)/x11 + 1

R−1x22 + 1
. (2.10)

We now write Z(s) as a ratio of polynomials in the form

Z(s) =
m1 + n1

m2 + n2
, (2.11)

where m1, m2 are polynomials of even powers of s and n1, n2 are polynomials of odd

powers of s. If we factor m1 out of the numerator and n2 out of the denominator we get

Z(s) =
m1

n2

n1/m1 + 1

m2/n2 + 1
,

which, by comparison with (2.10), suggests the identification:

x11 =
m1

n2
, x22 = R

m2

n2
, x12 =

√
R

√
m1m2 − n1n2

n2
,

providing m1m2 − n1n2 is a perfect square. The above corresponds to case A in [27,

Chapter 9.6]. The alternative case B is obtained by factoring n1 out of the numerator

and m2 out of the denominator in (2.11), and leads to the same expressions for x11, x22
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and x12, with the letters n and m interchanged. It is possible to achieve a real-rational

function for x12 in one of the two cases by allowing, as necessary, the introduction of

cancelling factors between numerator and denominator in (2.11).

It can finally be shown that the set of transfer impedances x11, x22 and x12 which

have been identified define an impedance matrix X(s) which allows a realisation as a loss-

less two-port comprising inductors, capacitors and transformers only. This is achieved

through an extension of Foster’s synthesis method of Section 2.2 to the case of two-port

networks, which was derived by Cauer [10]. In particular, a partial fraction expansion

of X(s), similar to (2.2), leads to an expression of the following type:

X(s) = sC0 +
1

s
C1 +

s

s2 + p2
2

C2 +
s

s2 + p2
3

C3 + . . . ,

where pi > 0 and C0, C1 etc are non-negative definite constant matrices. A typical

term in this sum can always be realised in the form of a T-circuit as the one shown in

Figure 2.12, and connected in series to the other two-ports, as shown in Figure 2.13 (see

[27, Chapter 7] for further details). Note that if Z(s) has poles or zeros on the imaginary

axis then these may be extracted using the relevant steps in the Foster preamble (as

outlined in Section 2.4) and included directly in the lossless two-port.

1

Lossless
network R

Z(s)

X1(s) X2(s)

X3(s)

1 : n

Network 1

Network 2

Figure 2.12: Lossless two-port realisation of a typical term in the Darlington synthesis,
where X1(s), X2(s) and X3(s) are the impedances of an inductor, capacitor or parallel
LC circuit.

1

Lossless
network R

Z(s)

X1(s) X2(s)

X3(s)

1 : n

Network 1

Network 2

Figure 2.13: Series connection of two two-port networks corresponding to the sum of
two terms in the Darlington synthesis.
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2.7 Reactance extraction

A later approach to driving-point synthesis due to Youla and Tissi [91] is complementary

to Darlington’s. The framework is illustrated in Figure 2.14 and the approach is termed

reactance extraction, in contrast to Darlington’s approach of resistance extraction. Youla

and Tissi’s main result is the following:

Theorem 2.8. Given a positive-real impedance, it can always be realised as the driving-

point impedance of a non-dynamic (i.e. comprising only resistors and ideal transformers)

multi-port network where all inductors and capacitors have been extracted, as shown in

Figure 2.14. 1

v

i

Nr

L1

i1

v1

C1

ip+1

vp+1

Figure 2.14: Network structure for the method of reactance extraction, where the net-
work Nr contains only resistors and transformers.

The approach of [91] established a connection with the state-space approach to linear

dynamical systems which allowed matrix methods to be applied to the synthesis problem

(see [1], [90] for textbook treatments). If there are p inductors and q capacitors which

are extracted as in Figure 2.14 and if ia = [i1, . . . , ip]
T , ib = [ip+1, . . . , ip+q]

T denote the

vectors of Laplace-transformed port currents (and similarly for the corresponding port

voltage vectors va and vb) then, under mild conditions, there exists a constant matrix

M such that the multi-port Nr is described by




v

va

ib


 = M




i

ia

vb


 =

(
M11 M12

M21 M22

)


i

ia

vb



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with JM = MTJ , J = diag(Ip+1,−Iq) and M partitioned so that M11 is the (1, 1)

element of M . Writing Λ = diag(L1, . . . , Lp, C1, . . . , Cq) it follows that

Z(s) = M11 −M12

(
sI + Λ−1M22

)−1
Λ−1M21

which is an expression for the impedance in state-space form.

The contribution of [91] was to find all solutions of the multi-port reciprocal synthesis

problem using a minimum number of inductors and capacitors, and making use of multi-

port transformers in the realisation of Nr. The specific idea of extracting reactances in

the form of Figure 2.14 had also been used earlier in [2], and subsequently in [61], to

study the class of all biquadratic impedances that may be realised without transformers.

This use relies on a condition known as paramountcy for the impedance matrix of a

3-port to be realisable using resistors only. In particular, if M is a symmetric n × n
matrix, with n ≤ 3, then a necessary and sufficient condition for M to be realisable

as the impedance matrix of an n-port network comprising resistors only is that M is

paramount, namely each principal minor of the matrix is not less than the absolute value

of any minor built from the same rows [12,73]. We note that if n > 3 then this condition

is only necessary. Also, if we allow transformers to be present in the realisation, then

a general necessary and sufficient condition for M to be realisable is simply that it is

non-negative definite (see e.g. [1, Chapter 9]).

The results of [91] have been exploited recently in [37] to establish algebraic criteria

for the number of inductors and capacitors present in a realisation of an impedance

function of a one-port network, as will be discussed in more detail in Section 3.3.

2.8 Summary

The central goal of network synthesis is to devise a network which realises a prescribed

behaviour. Implicit in this task is the characterisation of the behaviours that are in

principle realisable with certain specified components, and those that are not. In passive

network synthesis the specified components are the standard (passive) electrical elements

such as the resistor, capacitor, inductor or their mechanical equivalents—the latter being

considered in the following chapter.

Network synthesis flourished as an active research topic in the first half of the twen-

tieth century. By the 1960s a corpus of results had been established which is now

considered classical. In this chapter we have introduced some important concepts and

terminology of electrical networks and reviewed the most important results on classical

network synthesis, which will provide a broader context for our subsequent analysis.



24 2. Background on classical network synthesis



Chapter 3

Recent developments in passive

network synthesis

Despite a golden period of advances starting in the 1920s and a wealth of elegant results,

research in network synthesis slowly declined in the second half of the twentieth cen-

tury, following the introduction of integrated circuits and the dwindling importance of

analogue filters. Nevertheless, the basic results retained their fundamental importance,

and the influence of circuit theory and network synthesis extended outside the electrical

domain. Significant results in the systems and control community testify to an endur-

ing importance and relevance of the subject: the Kalman-Yakubovich-Popov lemma (or

“positive real lemma”) relating passivity to positive-realness, dissipativity theory [88],

behavioural modelling [87] etc.

Many questions in network synthesis were however still unanswered and some results

not fully understood, an example being the apparent non-minimality of the Bott-Duffin

networks and its simplifications [33], [38]. Interest in efficient realisations of passive me-

chanical networks, following the invention of the inerter mechanical device [74], prompted

a fresh look at these questions. In this chapter we review the most important results in

relation to these modern developments of network synthesis.

3.1 Regular positive-real functions and the Ladenheim cat-

alogue

The class of all two-terminal electrical networks with at most five elements, of which at

most two are reactive, represents the simplest, non-trivial class of networks of restricted

complexity. It was first defined by E. Ladenheim, a student of R.M. Foster, in his

25
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Master’s thesis [52], which appears to be the first systematic attempt to study electrical

networks by exhaustive enumeration. There are 108 networks in the class, which we

refer to as the “Ladenheim catalogue”, all of which realise impedances which are at

most biquadratic. A formal derivation of the catalogue is given in Chapter 4.

The approach of Jiang and Smith [43], [45] was to study the realisation power of this

class of enumerated networks using the notion of a regular p.r. function.

Definition 3.1. A positive-real function Z(s) is defined to be regular if the smallest

value of Re(Z(jω)) or Re(Z−1(jω)) occurs at ω = 0 or ω =∞.

For biquadratic functions regularity implies that the Foster preamble succeeds in

reducing the function to a resistor, which means that a realisation is possible with at

most two reactive elements and three resistors. It was shown in [43] that six such

networks suffice to realise any regular biquadratic. A series of lemmas also showed

that all but two of the 108 Ladenheim networks can realise only regular biquadratic

impedances, and that the remaining two networks are capable of realising some but

not all the non-regular biquadratics. The Ladenheim class was thus shown to possess a

generating set comprising eight circuits (see also Section 6.3). Reichert’s theorem, which

is discussed in more detail in Section 3.2, shows that additional resistors beyond three

do not extend the class of functions that are realised by the class, which establishes that

not all p.r. functions have an RLC realisation with the total number of reactive elements

being equal to the degree of the impedance.

The regularity concept has been further utilised to seek networks with more than

two reactive elements that are capable of realising non-regular biquadratics. Building

on previous work of Vasiliu, five-element structures with three reactive elements were

investigated in [43] and series-parallel networks with six elements in [45]. The realisability

region for all networks was characterised using a canonical form for biquadratics (which is

reviewed in Section 3.1.2), and taken together, these networks were seen to be insufficient

to cover the whole of the non-regular region for biquadratics.

An interesting survey by Kalman of the development of passive network synthesis

from its early origins until the mid 1970s, when research on the topic gradually petered

out, is given in [47]. Considerable attention is paid to Ladenheim’s dissertation, and

the possibilities for such an enumeration approach to provide a better understanding of

transformerless synthesis. Such an approach is further outlined in [53] (see also [76])

and in [48, 49], where the potential role of algebraic invariant theory as a “natural and

effective tool for the network synthesis problem” is stressed.

The present analysis of the complete Ladenheim catalogue can be seen as a contin-
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uation of several lines of thinking on the problem. Although [43] identified a generating

set for the catalogue, a detailed analysis of the realisation power of all the networks was

not undertaken. Recently Chen et al. [16] derived realisability conditions for the regular

bridge networks of the Ladenheim class. This still left unknown the actual set of realis-

able impedance functions for many networks in the catalogue. Further, the multiplicity

of solutions to the realisation problem was not known for most networks. Also, some

networks are known to be equivalent to others, but the full set of equivalences had not

been determined. Further, the smallest generating set for the catalogue had not been

clearly established. More broadly, the amount of structure in the class was a matter of

conjecture. The analysis carried out in Chapters 4, 5 and 6 is intended to answer, or

improve understanding on, all these questions.

3.1.1 Positive-real and regular biquadratics

In this section we will review some relevant results from [43] on the classification of

biquadratic impedances. As mentioned above, the concept of regularity greatly facilitates

the classification of impedances, and Lemmas 1–8 in [43] provide useful properties of

regular functions. We restrict our attention to biquadratic impedances of the form

Z(s) =
As2 +Bs+ C

Ds2 + Es+ F
, (3.1)

where A, B, C, D, E, F ≥ 0. This function is positive-real if and only if

σ = BE − (
√
AF −

√
CD)2 ≥ 0 (3.2)

(see [15, Corollary 11]). We now look for conditions under which the biquadratic (3.1)

is regular. The resultant of the numerator and denominator in (3.1), that is

K = (AF − CD)2 − (AE −BD)(BF − CE) , (3.3)

plays an important role in answering this question. Its sign determines whether the

reactive elements in a realisation of the biquadratic are of the same kind or of different

kind (see Section 3.3). If K < 0, the reactive elements are of the same kind and the

numerator and denominator in (3.1) have real, distinct roots which interlace each other;

by Lemma 3 in [43] the impedance is regular. If K = 0, the numerator and denominator

have a root in common and the biquadratic function reduces to a bilinear function or a

constant; by Lemma 7 in [43] the impedance is regular. Finally, if K > 0, the network
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will have one inductor and one capacitor and need not be regular. By Lemma 5 in [43]

the biquadratic impedance (3.1) is regular if and only if at least one of the following four

cases is satisfied:

Case 1) AF − CD ≥ 0 and λ1 ≥ 0 , (3.4)

Case 2) AF − CD ≥ 0 and λ2 ≥ 0 , (3.5)

Case 3) AF − CD ≤ 0 and λ3 ≥ 0 , (3.6)

Case 4) AF − CD ≤ 0 and λ4 ≥ 0 , (3.7)

where

λ1 = E(BF − CE)− F (AF − CD) , (3.8)

λ2 = B(AE −BD)−A(AF − CD) , (3.9)

λ3 = D(AF − CD)− E(AE −BD) , (3.10)

λ4 = C(AF − CD)−B(BF − CE) . (3.11)

3.1.2 A canonical form for biquadratics

The analysis of the five-element networks in the Ladenheim catalogue is aided by a canon-

ical form for biquadratics [43, 61]. For the impedance Z(s) two simple transformations

can be defined:

1. Multiplication by a constant α,

2. Frequency scaling: s→ βs.

It is easily seen that these transformations correspond to the following scalings of the

network parameters: R→ αR, L → αβL, C → βC/α. With such transformations the

biquadratic (3.1) with A, . . ., F > 0 can always be reduced to the canonical form

Zc(s) =
s2 + 2U

√
Ws+W

s2 + (2V/
√
W )s+ 1/W

, (U, V,W > 0) , (3.12)

where α = D/A, β = 4
√
CF/(AD), W =

√
CD/(AF ), U = B/(2

√
AC) and V =

E/(2
√
DF ). We note that U corresponds to the damping ratio of the zeros of the

biquadratic (3.1), and V is the damping ratio of the poles, while W is the ratio of the

natural frequencies of zeros and poles.

The introduction of the canonical form reduces the number of coefficients from six

in (3.1) to just three in (3.12) hence allowing an intuitive graphical interpretation of
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the realisable set for a given network. It is in fact possible, for a given value of W , to

illustrate the set of values in the (U, V )-plane corresponding to real positive values of

all inductances, capacitances and resistances in the network. We will call such a set the

realisability region of a network for a given W (see also Section 4.3.1). Figure 3.1 shows

the regions in the (U, V )-plane which correspond to a regular biquadratic for W ≤ 1, as

also shown in [43]. For K ≤ 0 the biquadratic is always regular, while for K > 0 the two

cases (3.4), (3.5) provide the conditions for regularity when AF − CD > 0 (i.e. W < 1

in canonical form).

We will adopt here the following notation, first introduced in [43]: for any rational

function ρ(A,B,C,D,E, F ), the corresponding function for the canonical form is de-

noted by ρc(U, V,W ), where the expressions are obtained by replacing A, B, C, . . . by

1, 2U
√
W , W , . . . , except for a multiplicative positive scaling. (See Table 5.9 for a list

of the commonly used functions). Also, for any rational function ρc(U, V,W ), we define

ρ∗c(U, V,W ) = ρc(U, V,W
−1) and ρ†c(U, V,W ) = ρ(V,U,W ). It is finally observed in [43]

that σ∗c = σ†c = σc and K∗c = K†c = Kc.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 3.1: Regular region for W = 0.5. The expressions for Kc, σc, λc and λ†c can
be found in Table 5.9. The shaded region (σc < 0) corresponds to non positive-real

impedances, while the hatched region (λc ≥ 0 or λ†c ≥ 0) is the regular region.
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3.2 Reichert’s theorem

Reichert’s theorem [61], [44] establishes that the class of impedances which can be re-

alised using two reactive elements is not increased by using more than three resistors.

The theorem can be stated as follows:

Theorem 3.1. Any biquadratic which can be realised using two reactive elements and

an arbitrary number of resistors can be realised with two reactive elements and three

resistors.

An immediate consequence of this is that any impedance which can be realised with

two reactive elements and an arbitrary number of resistors can also be realised by a

network in the Ladenheim catalogue. Since the Ladenheim catalogue does not cover

all the possible positive-real biquadratic impedances (realisability regions for all the

networks in the catalogue will be illustrated in Chapter 5), a consequence of Reichert’s

theorem is that some p.r. functions will necessarily have an RLC realisation with more

reactive elements than the degree of the impedance.

This result was first proven by Reichert in a German language publication [61],

using a complicated topological argument. The proof was later reworked in [44] and

new lemmas were provided to expand and clarify the main topological argument. More

recently, an alternative proof based on a result in [14] was provided in [93]. We provide

here an outline of the proof given in [44].

Proof outline. We first note the necessary and sufficient conditions of Section 3.1.1 for a

biquadratic to be regular and the corresponding realisability region plotted in Figure 3.1

for W = 0.5. It was shown in [43] that any regular biquadratic can be realised by one

of six series-parallel networks with two reactive elements and three resistors. It was also

shown that, among all the networks with two reactive elements and three resistors, only

two realise non-regular biquadratics. The overall realisability region of the class is shown

in Figure 3.2 for W = 0.6. From the figure it is clear that the non-regular biquadratics

corresponding to the region Γ are not realisable by a two-reactive, three-resistor network.

The proof in [44] aims to show that the region Γ is not realisable even if an arbitrary

number of resistors is allowed.

Given a network with one inductor, one capacitor and an arbitrary number of re-

sistors, it can always be arranged in the form of Figure 3.3, following the reactance

extraction method of Section 2.7. Networks with two inductors or two capacitors will

always lead to a regular biquadratic (as already mentioned in Section 3.1.1) and are

therefore not of interest for the proof.
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Figure 3.2: Overall realisability region (hatched) for networks in the Ladenheim cat-
alogue, for W = 0.6. We note that the realisability region includes some non-regular
biquadratics (crossed region). The dark grey region corresponds to non-p.r. biquadratics,
while the light grey region Γ corresponds to non-regular p.r. biquadratics.
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Figure 3.3: Network N with one inductor, one capacitor and an arbitrary number of
resistors.
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For the network in Figure 3.3 we can write under mild conditions:



v1

v2

v3


 =



X1 X4 X5

X4 X2 X6

X5 X6 X3






i1

i2

i3


 =: X



i1

i2

i3


 , (3.13)

where X is a positive semidefinite, real matrix. In order for X to be realisable as a purely

resistive network it is necessary that it is paramount (see Section 2.7). Eliminating i2,

i3, v2, v3 from (3.13), and knowing that the driving-point impedance of the network is

the ratio of the Laplace transforms of v1 and i1, we obtain

Z(s) =
(X1X3 −X2

5 )s2 +
(
X1
C + det(X)

L

)
s+

X1X4−X2
4

LC

X3s2 +
(

1
C +

X2X3−X2
6

L

)
s+ X2

LC

. (3.14)

Using an equivalent characterisation of Auth [2] for the impedance (3.14), and by equat-

ing this parametrisation to the biquadratic canonical form (3.12), the necessary condition

on X is translated into a set of necessary conditions involving U , V and W , which can be

interpreted in a topological way. The main part of the proof is based on this topological

interpretation and is supported by a series of lemmas. In particular, it is shown in [44]

that if it is postulated that there exists a region inside Γ which satisfies the necessary

conditions for X to be realisable then this leads to a contradiction. Therefore, the non-

regular region Γ in Figure 3.2 is not realisable even if an arbitrary number of resistors

are added to the network.

3.3 Algebraic criteria for circuit realisations

In [25] Foster stated the following fact for biquadratic impedances without proof: the sign

of the resultant K of the numerator and denominator determines whether the reactive

elements in a minimally reactive realisation are of the same type or of opposite type.

This fact was highlighted in a more formal statement by Kalman [47], who suggested

that a general proof was urgently needed. A proof was later provided in [37] together

with a generalisation to impedances of any order.

The approach of [37] made use of Youla and Tissi’s reactance extraction approach

[90] together with classical results from matrix theory. A series of equivalent criteria

are presented in [37], and are expressed in terms of the rank, signature or number of

permanences/variations in the sign of the determinants of certain matrices. In particular,
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conditions are given on the Hankel matrix (whose entries are defined from the Laurent

expansion of Z(s)), on an extended Cauchy index, and on the Sylvester and Bezoutian

matrices (whose entries can be obtained from the coefficients of the numerator and

denominator of Z(s)). We present here the conditions given in terms of the Sylvester

matrices.

Given a p.r. impedance function

Z(s) =
ans

n + an−1s
n−1 + . . .+ a0

bnsn + bn−1sn−1 + . . .+ b0
, (3.15)

let the associated Sylvester matrices be defined as

S2k =




bn bn−1 . . . bn−k+1 bn−k . . . bn−2k+1

an an−1 . . . an−k+1 an−k . . . an−2k+1

0 bn . . . bn−k+2 bn−k+1 . . . bn−2k+2

0 an . . . an−k+2 an−k+1 . . . an−2k+2

...
...

. . .
...

...
. . .

...

0 0 . . . bn bn−1 . . . bn−k
0 0 . . . an an−1 . . . an−k




,

for k = 1, . . . , n, where ai = 0 and bi = 0 if i < 0. Then the following theorem holds:

Theorem 3.2. Let Z(s) in (3.15) be the impedance of an RLC network containing

exactly p inductors and q capacitors (with p+ q = n). Then det(S2n) 6= 0 and

q = permanences of sign in the sequence
(
1, det(S2),det(S4), . . . ,det(S2n)

)
,

p = variations of sign in the sequence
(
1,det(S2), det(S4), . . . ,det(S2n)

)
.

Signs for any subsequence of zeros det
(
S2(k+1)

)
= det(S2(k+2)) = . . . = 0, where

det(S2k) 6= 0, are assigned as follows:

sign
(

det(S2(k+j)

)
= (−1)

j(j−1)
2 sign

(
det(S2k)

)
.

We now apply Theorem 3.2 to a biquadratic impedance in the notation of (3.1). The
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associated Sylvester matrices are

S4 =




D E F 0

A B C 0

0 D E F

0 A B C



, S2 =

(
D E

A B

)
,

and it is easily verified that the resultant K = −det(S4) has the expression given in

(3.3), while det(S2) = BD − AE. The number of inductors and capacitors in the

network is therefore determined by the number of permanences and variations of sign

in the sequence
(
1, BD − AE,−K

)
. When K > 0 there will therefore always be one

inductor and one capacitor regardless of the sign of BD − AE, while when K < 0 one

can differentiate between two different cases, as summarised in Table 3.1. We note that

in Table 3.1 the sign of −(AF −CD) is equivalently used instead of sign(BD−AE), as

in [25].

AF − CD > 0 AF − CD < 0 AF − CD = 0

K > 0 (1,1) (1,1) (1,1)

K < 0 (2,0) (0,2) −

Table 3.1: Number of reactive elements (# inductors, # capacitors) in a minimally
reactive realisation of a biquadratic impedance. The case K < 0, AF −CD = 0 cannot
occur, since the two conditions would imply K = 0.

3.4 The behavioural approach to passivity

The long-standing question of the apparent non-minimality of the Bott-Duffin networks,

which was mentioned in Section 2.5, has recently prompted a fresh treatment of the

driving-point behaviour of RLC networks [39] and, more generally, a new analysis of

passive behaviours [32], using Willems’ behavioural approach [60,87].

Given an RLC n-port network, let i and v denote the vectors of length n of driving-

point currents and voltages. Then the driving-point behaviour B of the network can be

described as a linear time-invariant differential behaviour, i.e. the set of solutions to a

system of differential equations of the form

P0i + P1
d

dt
i + . . .+ Pm

dm

dtm
i = Q0v +Q1

d

dt
v + . . .+Qm

dm

dtm
v, (3.16)
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where m ≥ 0, P0, . . . , Pm and Q0, . . . , Qm are square real matrices of dimension n, and

i and v are assumed to be locally integrable functions [31]. The system (3.16) can be

written more compactly as

P

(
d

dt

)
i = Q

(
d

dt

)
v, (3.17)

where P (ξ) = P0 + P1ξ + . . . + Pmξ
m, and similarly for Q(ξ). The following definition

of a passive system in terms of its behaviour was introduced in [88] and later adapted

in [32].

Definition 3.2. The system described by the behaviour B in (3.17) is passive if for any

given (i,v) ∈ B and t0 ∈ R there exists a K ∈ R (dependent on (i,v) and t0) such that

if (̂i, v̂) ∈ B satisfies (̂i(t), v̂(t)) = (i(t),v(t)) for all t < t0 then

∫ t1

t0

î(t)T v̂(t) dt > −K

for all t1 ≥ t0.

In words the definition says that, given an element of the behaviour, i.e. a trajectory

(i,v) which satisfies the representation (3.17), there is a bound K on the energy which

can be extracted from the network from the present time t0 onwards. This bound

depends on the specific past trajectory up to t0, but applies to any future trajectory

after t0. We note that this definition is different from the classic notion of passivity of

a one-port given in Definition 2.3, but still formalises the underlying property that it is

not possible to extract unlimited energy from the network.

In the case of one-port RLC networks, the behaviour of the system takes the form

p

(
d

dt

)
i = q

(
d

dt

)
v, (3.18)

where p(s) and q(s) are polynomials in s with real coefficients. The driving-point

impedance of the network is given by Z(s) = p/q and we would expect the condition of

positive-realness of Z to be equivalent to Definition 3.2, which would be in agreement

with Sections 2.3 and 2.4. In general however, for a behaviour of the form (3.18) to be

passive it is necessary but not sufficient that the function p/q is positive-real: this is due

to the possibility of common roots between p and q, which arise when the behaviour is not

controllable [31]. The following theorem provides a necessary and sufficient condition

for the behaviour of a multi-port network to be passive [32].
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Theorem 3.3. Let λ̄ denote the complex conjugate of λ and Rn[s] the vectors of dimen-

sion n whose entries are polynomials in s with real coefficients. The system (3.17) is

passive if and only if the following three conditions hold:

1. P (λ)Q(λ̄)T +Q(λ)P (λ̄)T ≥ 0 for all λ in the closed right half-plane;

2. rank
(
[P −Q](λ)

)
= n for all λ in the closed right half-plane;

3. If r ∈ Rn[s] and λ ∈ C satisfy r(s)T
(
P (s)Q(−s)T + Q(s)P (−s)T

)
= 0 and

r(λ)T [P −Q](λ) = 0, then r(λ) = 0.

In the case of a one-port characterised by the behaviour (3.18) with Z(s) = p/q we

have n = 1, and the first condition in Theorem 3.3 corresponds to positive-realness of Z,

the second condition establishes that there are no pole-zero cancellations in the function

p/q in the closed right half-plane, while the third condition implies that, in the lossless

case (where Z(s) + Z(−s) ≡ 0), pole-zero cancellations are not allowed even in the left

half-plane, meaning that p and q must be coprime [30]. It is therefore not sufficient that

the function p/q is positive-real (condition 1) for the behaviour to be passive, since there

might be pole-zero cancellations in p/q, which do not satisfy the other two conditions of

the theorem.

3.5 Network analogies and the inerter

We conclude this chapter by describing mechanical applications of passive network syn-

thesis. Many of the modern developments in the field of network synthesis were in fact

motivated by the introduction of a new fundamental component for mechanical control,

the inerter [74], alongside the spring and the damper. This new network element pro-

vided a way to realise passively any positive-real mechanical admittance or impedance

and therefore to directly exploit the wealth of results from electrical network synthesis.

Since its introduction in the early 2000s, the inerter has been successfully employed in

passive suspensions in motorsport including Formula One cars [13] and is being exten-

sively researched for a wide range of other applications.

We consider in this section mechanical networks consisting of a finite interconnection

of mechanical elements. Analogous to the case of electrical networks, a port in a mechan-

ical system is a pair of terminals to which an equal and opposite force F is applied with

a relative velocity v between the terminals. The sign convention is shown in Figure 3.4.

There are two standard analogies between electrical and mechanical systems. Histor-

ically the first of these is the so-called force-voltage analogy (in which force is analogous
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Figure 3.4: One-port (two-terminal) mechanical element or network, with the convention
that a positive F gives a compressive force and a positive v = v2− v1 corresponds to the
terminals moving towards each other.

to voltage and velocity is analogous to current) as evidenced in the terminology elec-

tromotive force. The force-current (also known as mobility) analogy was subsequently

introduced by Firestone [22] (see also [18, 28]), who also introduced the concepts of

through and across variables. A through variable has the same value at the two ter-

minals of the element (e.g. force and current) while an across variable is given by a

difference of the value at the terminals (e.g. velocity, voltage). Insight on whether a

variable is through or across can be gained by considering how measurements of such a

variable are taken: through variables require a single measurement point (and typically

require the system to be severed at that point) while across variables are measured as

a difference between two measurement points (without having to break into the sys-

tem). This framework allowed analogies to be extended to any dynamical system where

through and across measurements can be obtained, such as thermal, fluid and acoustic

systems [51, 71]. We mention that there is a corresponding analogy between electrical

networks and mechanical systems in rotational form.

In the force-current analogy between mechanical and electrical networks, force (re-

spectively velocity) corresponds to current (respectively voltage) and a fixed point in an

inertial frame of reference corresponds to the electrical ground [71]. In this analogy the

element correspondences are often stated in the following form:

spring ←→ inductor

damper ←→ resistor

mass ←→ capacitor

The correspondence is perfect in the case of the spring and damper, but there is a

restriction in the case of the mass due to the fact that it has only one independently

movable terminal, the centre of mass. Since the force-velocity relationship relates the

acceleration of the centre of mass to a fixed point in the inertial frame, the mass element
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is, in effect, analogous to a grounded capacitor. This means that, using the classical

analogy described above, an RLC circuit may not have a direct mass-spring-damper

mechanical analogue, given that in the electrical domain capacitors are not in general

required to be grounded.

To complete the analogy, a new two-terminal device, the “inerter”, was introduced

in [74], with the property that the applied force at its terminals is proportional to the

relative acceleration between them. The constant of proportionality is called inertance

and has the units of kilograms. A table of the circuit symbols of the six basic mechanical

and electrical elements, with the inerter replacing the mass, is shown in Figure 3.5, along

with their defining equations. In order to justify the introduction of the inerter as an

ideal modelling element it should be possible to physically realise inerters which satisfy

a number of practical requirements: it should be a two-terminal device which allows

sufficient linear travel, which does not need to be attached to any fixed point, which works

in any spatial orientation and motion, and which has a mass that is small compared to

the elements to which it is connected and independent of the desired value of inertance.

Many different physical embodiments of the inerter which satisfy these conditions to a

sufficient degree of approximation were devised, ranging from mechanical devices like

the rack and pinion inerter and the ballscrew inerter, to hydraulic mechanisms using a

gear pump [58,74,75,81] and the fluid inerter [77].

An embodiment of the inerter in rotational form was also given in [75], thus com-

pleting (along with the rotary spring and damper) the mechanical-electrical analogy in

rotational form. In this case the two terminals of the device can independently rotate

about a common axis and an equal and opposite torque is applied at the terminals. The

relation between the torque at the terminals and their relative angular displacement,

velocity and acceleration gives the defining equations of the rotary spring, damper and

inerter, respectively.

In the force-current analogy, the mechanical impedance is taken to be the ratio be-

tween the Laplace transforms of velocity and force, i.e. between an across variable and a

through variable (with the admittance being the reciprocal of the impedance). We also

note that the force-current analogy respects the manner of interconnection, therefore in

order to obtain the electrical or mechanical equivalent of a network it is sufficient to

replace each element with the corresponding element in the other domain, while main-

taining the same network topology [22].

The most significant consequence of the introduction of the inerter is the possibil-

ity to exploit the full freedom of passive network synthesis to synthesise mechanical

impedances. The Bott-Duffin theorem (see Theorem 2.6) established that any positive-
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Figure 3.5: The basic mechanical and electrical circuit elements, with their symbols,
admittance function and defining equations.

real function can be realised by an electrical network containing resistors, inductors and

capacitors only; with the introduction of the inerter it is possible to find the mechani-

cal equivalent of any given electrical network, and therefore the following result can be

stated.

Theorem 3.4. Any positive-real rational function can be realised as the impedance of a

one-port mechanical network containing springs, dampers and inerters only.

With the introduction of the inerter, problems of passive mechanical control can be

split into two subproblems: (i) the design of a suitable positive-real mechanical admit-

tance function Q(s) (i.e. a control systems design problem, for example the optimisation

of a given performance index) and (ii) the synthesis of a physical mechanical network

with admittance Q(s) (for which the passive network synthesis methods described in

Chapter 2 and in the remainder of this dissertation can be employed, as explained in

Section 5.5.1). Since Theorem 3.4 guarantees that any function can be realised as the

impedance of a physical mechanism as long as it is positive-real, this design paradigm

offers much more power and flexibility than traditional design methods.

The potential in being able to fully exploit passive network synthesis methods in the

field of mechanical control has led to numerous applications of the inerter, which include
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vehicle suspension design [59,68,74], the control of motorcycle steering oscillations [19,20,

46], rail suspensions [40, 41, 83], building suspensions [80, 89], and vibration suppression

for machine tools [82] or for support and isolation of structures [72]. The common

feature of these and other novel applications is the relatively low complexity of the

passive networks being considered—which is a motivation for the present work.

3.6 Summary

In this chapter we have reviewed relevant literature on modern developments of passive

network synthesis. Special emphasis has been drawn on existing results on the realisation

of biquadratic impedances, which represents the focus of the next chapters.

The recently renewed interest in electric circuit theory follows the introduction of

a new element for mechanical control, the inerter, and the resulting analogy between

electrical networks and passive mechanical networks, which was here reviewed. The

issue of obtaining minimal realisations of general positive-real functions is crucial in the

mechanical domain, and obtaining a better understanding of the minimal realisation of

low complexity impedances has in fact been one of the motivations for the present work.



Chapter 4

The enumerative approach to

network synthesis

We formally define and derive in this chapter the simplest yet non-trivial class of RLC

networks of restricted complexity—the networks of the Ladenheim catalogue. We then

introduce the main tools which allow a more systematic analysis and classification of the

catalogue, i.e. the notions of realisability set, equivalence and group action.

4.1 Ladenheim’s dissertation

In his dissertation [52], Ladenheim considers all two-terminal RLC networks with five

elements or less, of which at most two are reactive (inductors or capacitors), and which

do not simplify to networks with fewer elements by known network transformations.

Considering networks with one reactive element is a trivial case, while the problem

with three or more reactive elements is very complex. Ladenheim restricts his attention

to networks with five elements (that is, networks with no more than three resistors)

in virtue of the observation that the use of additional resistors beyond three does not

change the biquadratic nature of the impedance. A later result, known as Reichert’s

theorem, proves that the class of impedances that can be realised by such networks is

not increased by using more than three resistors, as outlined in Section 3.2, hence it is

indeed not restrictive to consider networks of at most five elements.

The impedances realised by such networks are biquadratics of the form

Z(s) =
As2 +Bs+ C

Ds2 + Es+ F
, (4.1)

41
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where A, B, C, D, E, F ≥ 0. Ladenheim’s derivation and analysis of the canonical set

involves the following steps:

• All possible basic graphs with at most five branches are listed and all the 148 es-

sentially distinct networks which can be built from these graphs are found. Simple

transformations allow some networks to be reduced to equivalent ones with fewer

elements. In this way the set is reduced to 108 distinct networks.

• Ladenheim then computes the impedance of all 108 networks (starting from the

one-element networks, up to the much more interesting five-element networks), i.e.

the explicit form of coefficients A, B, C, D, E, F in (4.1) in terms of resistances,

capacitances and inductances.

• An attempt is made on the inverse problem, namely expressions are stated for

the inductances, capacitances and resistances for each network in terms of the

coefficients A, B, C, D, E, F .

• A basic attempt at grouping some of the networks is then performed.

There are, however, no derivations in [52] and, more crucially, no attempt is made to find

conditions on the coefficients A, B, C, D, E, F which guarantee that the expressions

for the inductances, capacitances and resistances are real and positive. Deriving such

necessary and sufficient conditions is one of the major tasks of the present work, which

will allow the structure and inter-relationships within the catalogue to be illuminated.

In preparation for this task, in the next section we will expand and rework the procedure

to obtain the canonical set.

4.2 Definition and derivation of the Ladenheim catalogue

The first step in the derivation of the canonical set is to list all the connected graphs with

at most five edges and two special vertices (the external terminals of Figure 2.1). These

graphs are enumerated in Appendix B (see also [24,52,64]). They are first grouped based

on the number of branches and, within each group, based on the number of vertices,

and further according to the type of network (as defined in Section 2.1): for graphs

A . . . V simple series-parallel (SSP) graphs appear before series-parallel (SP), which in

turn appear before bridge graphs; for graph duals Ad . . . Ud the order is reversed; SSP

or SP graphs with the same number of branches and vertices are further ordered, with

essentially series graphs appearing before essentially parallel.
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The next step is to populate each branch with a resistor or a reactive element to ob-

tain all the essentially distinct RLC networks. Networks that are not essentially distinct

are related by the operations of deformation, separation and series interchange [24]. The

concept is formalised in graph theory as “2-isomorphism” [85, 86]. The networks that

can be trivially simplified, namely those which contain a series or parallel connection

of the same type of component, are excluded. This enumeration leads to a set of 148

essentially distinct RLC networks with at most five elements of which at most two are

reactive.

Of these 148 networks, 40 networks are further eliminated as follows (see Sections 4.4

and 6.1 for the explicit formulae for the Zobel, Cauer-Foster and Y-∆ transformations):

• Eight networks with four resistors and one reactive element (four with graph struc-

ture S or Sd and four with graph structure V) are eliminated since their impedance

is a bilinear function which can be realised by simpler networks.

• Four networks with four elements (with graph structure G or Gd) can be reduced

by a Zobel transformation to the three-element networks #15 and #17.

• Twenty series-parallel networks with five elements can be reduced by a Zobel trans-

formation to networks with four elements or less. Specifically: four networks with

graph structure L reduce to networks #20, #25, #28, #32; one with graph struc-

ture M reduces to network #72; five with graph structure S reduce to networks

#22, #24, #30, #33, #73; five with graph structure Sd reduce to networks #37,

#40, #45, #48, #72; one with graph structure Md reduces to network #73; four

with graph structure Ld reduce to networks #35, #39, #43, #47.

• The four series-parallel networks (with graph structure O and Od) shown in Fig-

ure 4.1, and thence also the four bridge networks, can be reduced to the four-

element networks #21, #29, #36, #44 with a Cauer-Foster transformation. For

reasons that will become clear in the analysis, this transformation is not considered

as a true equivalence (see Section 6.1). However, for each of these networks one

of the coefficients A, C, D or F in (4.1) is zero, and it is straightforward to show

that any impedance realisable by such networks can hence also be realised by a

network with fewer elements (e.g. by means of the observation that the impedance

function is regular—see [43] and Section 6.2).

The 108 networks of the canonical set are shown in Appendix C. The numbering from the

Ladenheim catalogue (although not entirely logical) has been preserved. The derivation

of the canonical set will be discussed again in Section 6.2.
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Figure 4.1: Eight networks which are not part of the catalogue since they realise
impedances which can also be realised by four-element networks.

Abstractly we can therefore think of the Ladenheim catalogue as a set Xc containing

108 elements. The individual elements can be defined with varying levels of structure:

1. An oriented graph with two external terminals (the driving-point terminals) in

which each branch consists of one of three types of elements (resistor, capacitor

and inductor) with at most three resistors and the sum of the capacitors and

inductors being no greater than two;

2. A set of oriented graphs with a fixed structure as described in 1., but with the

branch element parameters varying over all real positive numbers.

Here, we are mostly considering an element to have the additional structure defined in

2., namely each element is actually a set. We refer to each element in the catalogue as a

network, with network numbers according to the Ladenheim enumeration of Appendix C.
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4.3 Approach to classification

To enhance our understanding of the Ladenheim catalogue we seek to uncover as much

structure as possible. Our main tools for this purpose, which we describe in the following

two sections, are: (1) the notion of equivalent network, (2) the use of group actions to

formalise certain well-known transformations. The use of these tools in the classification

of the networks in the catalogue will be described in Chapter 5.

4.3.1 Equivalence and realisability set

For each network in the catalogue we are interested to determine the set of impedance

functions that a given network can realise when expressed in the form of (4.1). Our first

claim is that the set of real numbers that the coefficients A, B, . . . , F may assume for

a given network is a semi-algebraic set. This can be seen as follows. Without loss of

generality we will assume A, B, . . . , F ≥ 0. For a given network, the impedance Z(s)

can be computed as a biquadratic in s,

Z(s) =
f2s

2 + f1s+ f0

g2s2 + g1s+ g0
, (4.2)

with coefficients that are polynomial functions of the network parameters R1, R2, L1,

etc. Equating (4.2) with a candidate biquadratic impedance (4.1) leads to six poly-

nomial equations of the form kA = f2(R1, R2, . . .) etc for some positive constant k.

In addition there are (up to) six inequalities: k > 0, R1 > 0 etc. Taken together

these comprise (up to) six polynomial equations and six polynomial inequalities in

the (up to) 12 variables, which define a semi-algebraic set in the 12 parameters (vari-

ables). If we project this set onto the first six parameters A, B, . . . , F then, using the

Tarski-Seidenberg theorem [5], we again obtain a semi-algebraic set which is a subset of

R6
≥0 = {(x1, x2, . . . , x6) s.t. xi ≥ 0 for i = 1, . . . , 6}. We will call this the realisability set

of the network and we will denote it by Sn where n is the network number (according

to the enumeration in Appendix C). Note that this set may also be defined abstractly

within P5, the real projective space of dimension 5. It may sometimes be convenient

to embed the realisability set in a higher dimensional space, as we have done for the

Ladenheim catalogue, where all realisability sets are considered to belong to R6
≥0, even

if the number of reactive elements is one or zero. In particular we use the notation of

(4.1) for the candidate impedance with A = D = 0 when the driving-point impedance

of the network is bilinear and A = B = D = E = 0 when it is a constant. A more

formal definition of realisability set for an arbitrary two-terminal RLC network will be
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presented in Section 7.1.

We define two networks #p and #q to be equivalent if Sp = Sq. This equivalence

relation induces a partition of the catalogue into equivalence classes. The objective of

the present work is to determine all the semi-algebraic sets Sn for n = 1, 2, . . . , 108. This

allows the complete set of equivalences for the Ladenheim catalogue to be determined,

and hence all equivalence classes. For those networks in which it is convenient to use

the canonical form for biquadratics described in Section 3.1.2, the semi-algebraic set Sn
can be further reduced to a semi-algebraic set Tn in the three variables U , V and W .

We note that the realisability region defined in Section 3.1.2, corresponding to the set

of realisable impedances for a fixed value of W , is also a semi-algebraic set, in the two

variables U and V .

4.3.2 Group action

The classification of networks is further facilitated by the following transformations on

the impedance Z(s):

1. Frequency inversion: s→ s−1,

2. Impedance inversion: Z → Z−1.

As noted in [43], the first transformation corresponds to replacing inductors with capac-

itors of reciprocal values (and vice versa), and the second to taking the network dual.

We refer to these transformations as s and d. We further define a transformation which

is the composition of the two: p = sd.

Defining in addition the identity element e, we see that G = {e, s, d, p} is in fact the

Klein 4-group, which has the following group table:

e d s p

e e d s p

d d e p s

s s p e d

p p s d e

We may then define a group action on the set of networks Xc by: x→ gx, where x ∈ Xc

and g ∈ G. This group action induces a partition of Xc into orbits [4]. In our case the

orbits comprise one, two or four elements. In [43] these orbits were referred to as quartets

and it was noted that sometimes quartets could reduce to two or one element(s).
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It was also noted in [43] that frequency inversion corresponds to the transformation

W ↔ W−1 in canonical form, and duality corresponds to the transformation U ↔ V ,

W ↔ W−1. It is easily seen that the transformation p corresponds to U ↔ V in

canonical form. Therefore, knowing the realisability conditions in canonical form for

a given network in an orbit, the derivation of the conditions for the other networks in

the orbit is immediate. The notation introduced in Section 3.1.2 is useful in writing

the realisability conditions for all the networks in a given orbit, as frequency inversion

corresponds to ∗ and the transformation p corresponds to †.
In this work we depart from previous convention by depicting orbits in terms of

the two actions s and p, rather than s and d. This is in part motivated by the fact

that s-invariance can occur independently of p-invariance, while d-invariance always

implies s-invariance within the catalogue—a matter that will be studied in more detail

in Section 6.5. (We say that a network is s-invariant if the network remains the same

after the s transformation, and similarly with d and p.) It is also the case that the

p transformation takes a simpler form with respect to the canonical form than the d

transformation.

4.4 Classical equivalences

We review here two well-known equivalences from linear network analysis. The first

one, hereafter referred to as the “Zobel transformation”, appears in explicit form in

O.J. Zobel [94, Appendix III], together with other transformations, though it is clear

from [94] that this transformation was common knowledge at the time. The well-known

Y-∆ transformation, which follows, was first published by A.E. Kennelly [50].

4.4.1 Zobel transformation

For any two impedances Z1 and Z2, the networks in Figure 4.2 are equivalent in the

sense defined in Section 4.3.1 when

a′ =
a(a+ b)

b
, b′ = a+ b, c′ = c

(
a+ b

b

)2

[
a =

a′b′

a′ + b′
, b =

(b′)2

a′ + b′
, c = c′

(
b′

a′ + b′

)2 ]
,

for any real positive numbers a, b, etc. It is clear from the expressions above that, for
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any positive and finite value of a, b and c (respectively a′, b′, c′) in the transformation,

coefficients a′, b′ and c′ (respectively a, b, c) are necessarily finite and strictly positive.1

bZ1

cZ2

aZ1

b0Z1

c0Z2a0Z1

Figure 4.2: Zobel transformation.

4.4.2 Y-∆ transformation

For any real positive values R1, R2 etc the networks in Figure 4.3 are equivalent when

R1 =
RbRc

Ra +Rb +Rc
, R2 =

RaRc
Ra +Rb +Rc

, R3 =
RaRb

Ra +Rb +Rc

[
Ra =

RP
R1

, Rb =
RP
R2

, Rc =
RP
R3

, where RP = R1R2 +R2R3 +R1R3

]
.

1

R1

R3

R2
Rc

Rb Ra
YD

Figure 4.3: Y-∆ transformation.

4.5 Summary

In this chapter we have expanded and reworked the procedure for the derivation of

the Ladenheim catalogue. This new derivation led to the same canonical set of 108

networks as in [52]. We then formalised the notions of realisability set and equivalence

for RLC networks, and reviewed some simple, known network transformations: frequency

and impedance inversion (which taken together with their composition and the identity

allowed us to define a group action), and the Zobel and Y-∆ network equivalences.
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The concepts that were reviewed and introduced in this chapter are at the base of our

classification of the networks in the Ladenheim catalogue, and can more generally be

used in the study of other classes of RLC networks (an example is outlined in Section 6.6,

where the class of six-element networks with four resistors is studied).
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Chapter 5

Structure of the Ladenheim

catalogue

In this chapter we proceed to uncover the structure that underlies the Ladenheim cata-

logue using the notions introduced in Chapter 4. It is routine to verify that the group

action defined in Section 4.3.2 induces a partition of the catalogue Xc into 35 orbits. A

more difficult task is to identify the further structure that is revealed by the notion of

equivalence introduced in Section 4.3.1. Our first step in this regard is to identify all

the equivalences that result from the Zobel and the Y-∆ transformations described in

Section 4.4. This results in a number of orbits “coalescing” through equivalence, and

it is convenient to attach a numbering to the resulting “subfamilies”, which are 24 in

number. Subfamilies are numbered with Roman numerals, according to the number of

elements in the networks, with subscript letters to distinguish the subfamilies according

to types (e.g. subfamilies of four-element networks are numbered IVA, IVB etc).

At this point it is unclear whether there are further equivalences within the catalogue

which cause some of these subfamilies to further coalesce. This turns out not to be the

case with our notion of equivalence (as formalised in Theorem 6.3). To verify this, it

is necessary to determine the realisability set Sn for one representative of each of the

24 subfamilies. This is one of the main contributions of this work, the results of which

are summarised in Section 5.5. From our analysis it also turns out that some networks,

which were classically thought to be equivalent through a Cauer-Foster transformation,

are in fact not equivalent (see Section 6.1 for more detail).

Figures 5.1 and 5.2 in Section 5.1 show the subfamilies and their internal struc-

ture consisting of orbits and equivalence classes. These figures summarise the principal

structure of the catalogue that has been identified. In abstract terms, the 24 subfamilies

51
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represent a partition of the catalogue into the “finest common coarsening” of two parti-

tions generated by (i) orbits of the group action, (ii) equivalence classes due to network

equivalence. This may be viewed as a main theorem of this work whose proof relies on

identifying the realisability sets for every subfamily and showing that they are pairwise

distinct (Theorem 6.4).

The chapter continues with Sections 5.2, 5.3 and 5.4 which show the mapping and

inverse mapping between impedance coefficients and circuit parameters for one, two and

three-element networks, four-element networks and five-element networks, respectively.

A characterisation of the realisability set for one representative of each subfamily is de-

rived, in terms of necessary and sufficient conditions. Such conditions are summarised

in Section 5.5 for all 62 equivalence classes in the catalogue. We note that knowing

the realisability set Sn for a network in a given equivalence class, it can also be easily

determined for all other equivalence classes in the same subfamily, by an appropriate

transformation of the conditions. More specifically, it is easily shown that the frequency

inversion s transformation corresponds to replacing (A,B,C,D,E, F ) in the realisabil-

ity conditions by (C,B,A, F,E,D), while the p transformation corresponds to replacing

(A,B,C,D,E, F ) by (F,E,D,C,B,A) (the transformations in terms of the canonical

form coefficients U , V and W have already been given in Section 4.3.2). These trans-

formations greatly facilitated the derivation of the realisability conditions for all the

networks in the catalogue, by allowing us to study a much smaller subset of networks.

Finally, in Section 5.6, a graphical representation of the realisability region is provided

for one equivalence class in each of the five-element subfamilies.

5.1 Catalogue subfamily structure with orbits and equiv-

alences

A diagrammatic representation of the subfamilies, orbits and equivalence classes of the

catalogue is shown in Figures 5.1 and 5.2. Network equivalences are represented through

dashed arrows and define the equivalence classes shaded in grey (with one-network equiv-

alence classes not shaded). Equivalence classes are identified by a superscript number

(e.g. the two equivalence classes of subfamily VG are V1
G and V2

G). Frequency inversion

(i.e. s) and the p transformation are indicated through arrows, while duality (i.e. d) and

identity (i.e. e) are not shown. Appendix D shows the Ladenheim networks arranged

corresponding to the structure of Figures 5.1 and 5.2.

The representative network for each subfamily is shown in Figure 5.3 and corre-
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sponds in most cases to the network in the upper-left position for each subfamily in the

diagrammatic representations of Figures 5.1 and 5.2.

Table 5.1 shows the number of equivalence classes, orbits and networks in all 24

subfamilies, while in Table 5.2 the subfamilies are classified according to the graph

topology of the networks they comprise.

Subfamily # Eq. classes # Orbits # Networks

1-element
networks

IA 1 1 1
IB 2 1 2

2-element
networks

IIA 4 1 4
IIB 2 1 2

3-element
networks

IIIA 2 1 4
IIIB 2 1 4
IIIC 4 1 4
IIID 2 1 2
IIIE 2 1 2

4-element
networks

IVA 4 3 12
IVB 4 1 4
IVC 4 2 8
IVD 2 2 4
IVE 4 1 4
IVF 2 1 2

5-element
networks

VA 2 3 12
VB 4 2 8
VC 2 1 2
VD 2 1 2
VE 4 3 12
VF 2 2 6
VG 2 2 4
VH 2 1 2
VI 1 1 1

Total 24 62 35 108

Table 5.1: Number of equivalence classes, orbits and networks in each subfamily.
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Figure 5.1: One-, two-, three- and four-element subfamilies, orbits and equivalence
classes. All equivalences (dashed arrows) are the Zobel transformation defined in Sec-
tion 4.4. One-network equivalence classes are not shaded.
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Figure 5.2: Five-element subfamilies, orbits and equivalence classes. Unless indicated
otherwise, all equivalences (dashed arrows) are the Zobel transformation defined in Sec-
tion 4.4. One-network equivalence classes are not shaded.
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Subfamily Network type

1, 2, 3-element
subfamilies

SSP

IVA, IVC, IVD, IVE SSP
IVB, IVF SP

VA, VE SSP
VB, VF SP

VC, VD, VH, VI Bridge
VG SP / Bridge

Table 5.2: Classification of the subfamilies according to the type of networks they con-
tain. Simple series-parallel networks are denoted by SSP and series-parallel networks by
SP (see definitions in Section 2.1).

IA IB IIA IIB3 1 6 4

IIIA IIIB IIIC IIID15 11 41 27

IIIE IVA IVB IVC10 37 38 40

IVD IVE IVF VA72 63 97 52

VB VC VD VE59 60 61 69

VF VG VH VI101 104 70 108

1

Figure 5.3: Representative networks for each of the 24 subfamilies in the catalogue, with
subfamily name (top-left) and network number (top-right) indicated.



One-, two- and three-element networks 57

5.1.1 Minimal description of the Ladenheim catalogue

An important consequence of this new-found underlying structure is a minimal way to

construct all the 108 networks of the Ladenheim catalogue, starting from a much smaller

subset of 25 networks.

For 23 of the 24 subfamilies, the set of networks can be deduced uniquely from the

information contained in Figures 5.1, 5.2 and 5.3. In fact, by applying the Y-∆ and Zobel

transformations as illustrated in Figures 5.1 and 5.2, as well as the s and p network

transformations, the remaining networks in each subfamily can be identified uniquely

starting from the representative networks of Figure 5.3. The exceptional subfamily is

VA. For the latter, a Zobel transformation can be applied to network #52 to uniquely

obtain network #50. On network #50, however, a Zobel transformation can be further

applied in two different ways to obtain networks #51 and #55 (see the corresponding

networks in Appendix D). It is therefore necessary to provide the 24 networks shown

in Figure 5.3 along with one of networks #51, #55, #80 or #76 to be able to uniquely

derive the Ladenheim catalogue from the structure shown in Figures 5.1 and 5.2.

5.2 One-, two- and three-element networks

The derivation of the realisability set for a given network begins with the formulae for

the impedance coefficients in terms of the network parameters, from which the inverse

mapping may be studied. Table 5.3 contains expressions for coefficients A, B, . . . , F for

the representative network in each subfamily of one-, two- and three-element networks.

Such expressions can be easily found by computing the impedance of each network.

Table 5.4 shows the result of the inverse problem, i.e. expressions for the inductances,

capacitances and resistances in each network are shown in terms of coefficients A, B,

. . . , F . The inverse problem is quite straightforward for networks with at most three

elements, hence the elimination procedure which leads to the expressions in Table 5.4 is

not shown.

Realisability conditions are summarised in Section 5.5 for all equivalence classes of

one-, two- and three-element networks. These conditions are easily deduced for the

representative equivalence classes from the requirement of positivity of the expressions

in Tables 5.3 and 5.4. Realisability conditions for all other equivalence classes in the

subfamilies can be easily found by an appropriate transformation of the polynomials

appearing in the conditions, as described at the beginning of this chapter.
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Network
No.

Equiv.
class

A B C D E F

3 I1A 0 0 R1 0 0 1

1 I1B 0 L1 0 0 0 1

6 II1A 0 L1 R1 0 0 1

4 II1B L1C1 0 1 0 C1 0

15 III1A 0 L1(R1 +R2) R1R2 0 L1 R1

11 III1B L1L2 R1(L1 + L2) 0 0 L1 R1

41 III1C R1L1C1 L1 0 L1C1 R1C1 1

27 III1D R1L1C1 L1 R1 L1C1 0 1

10 III1E L1C1 R1C1 1 0 C1 0

Table 5.3: Expressions for A, B, . . . , F in terms of resistances, inductances and capaci-
tances for one-, two- and three-element networks.

Network
No.

Equiv.
class

R1 R2 L1 L2 C1

3 I1A C/F – – – –

1 I1B – – B/F – –

6 II1A C/F – B/F – –

4 II1B – – A/E – E/C

15 III1A
BF − CE

EF
C/F

BF − CE
F 2

– –

11 III1B
−(AF −BE)

E2
–

−(AF −BE)

EF
A/E –

41 III1C A/D – B/F – D/B

27 III1D C/F – B/F – D/B

10 III1E B/E – A/E – E/C

Table 5.4: Expressions for inductances, capacitances and resistances in terms of coeffi-
cients A, B, . . . , F for one-, two- and three-element networks.
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5.3 Four-element networks

The analysis of four-element networks is slightly more complicated than the case with

three or fewer elements. Table 5.5 shows the expressions for coefficients A, B, . . . , F

for the representative network in each subfamily of four-element networks, which again

can be easily found by computing the impedance of the network. Table 5.6 contains

expressions for inductances, capacitances and resistances for each network in terms of

coefficients A, B, . . . , F . For all subfamilies other than IVB the derivation of such

expressions in explicit form is quite straightforward.

The following remarks should be made regarding the derivation of the realisability

conditions given in Table 5.6 for four-element networks:

• For network #37 in equivalence class IV1
A and for network #40 in equivalence class

IV1
C it is easily seen that

K|C=0 = F
[
A(AF −BE) +B2D

]
, (5.1)

where the expression for K can be found in Table 5.9. From (5.1), K < 0 im-

plies AF −BE < 0, hence the condition on AF − BE can be omitted from the

realisability conditions for equivalence class IV1
A if the condition on K is included.

• For network #72 in equivalence class IV1
D, condition AF−CD = 0 follows from the

expressions for A, F , C and D in Table 5.5 and implies that R2 = A/D = C/F .

• For network #63 in equivalence class IV1
E, the condition λ1 = 0 follows from the

expressions for A, B, . . . , F in Table 5.5.

• For network #97 in equivalence class IV1
F, τ1 is defined in Table 5.9, and condition

τ1 = 0 once again follows from the expressions for A, B, . . . , F in Table 5.5.

The realisability conditions summarised in Section 5.5 follow. For subfamily IVB a more

thorough analysis of the realisability conditions is needed, and Theorem A.1 provides a

full characterisation of the realisability set.
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Network A B C D E F

#37 (IV1
A) L1L2(R1 +R2) L2R1R2 0 L1L2

L1(R1 +R2) +
L2R1

R1R2

#38 (IV1
B) L1L2(R1 +R2) R1R2(L1 + L2) 0 L1L2 L1R2 + L2R1 R1R2

#40 (IV1
C) R1R2L1C1 L1(R1 +R2) 0 R1L1C1 L1 +R1R2C1 R1 +R2

#72 (IV1
D) R2L1C1 R1R2C1 R2 L1C1 (R1 +R2)C1 1

#63 (IV1
E) L1C1(R1 +R2) L1 +R1R2C1 R2 L1C1 R1C1 1

#97 (IV1
F) R1L1C1 R1R2C1 + L1 R2 L1C1 (R1 +R2)C1 1

Table 5.5: Expressions for A, B, . . . , F in terms of resistances, inductances and capaci-
tances for four-element networks.

Network R1 R2 L1 L2 C1

#37 (IV1
A)

K

DF (AF −BE)

−B2

AF −BE
−BK

F (AF −BE)2
B/F –

#38 (IV1
B) See Theorem A.1

#40 (IV1
C)

−K
DF (AF −BE)

A/D B/F –
BD2F

K

#72 (IV1
D)

−BC
BF − CE A/D

−DC2

F (BF − CE)
–

−(BF − CE)

C2

#63 (IV1
E)

AF − CD
DF

C/F
AF − CD

EF
–

DE

AF − CD

#97 (IV1
F) A/D C/F

AF + CD

EF
–

DE

AF + CD

Table 5.6: Expressions for inductances, capacitances and resistances in terms of coeffi-
cients A, B, . . . , F for four-element networks.

5.4 Five-element networks

We finally consider the most interesting case of five-element networks. Table 5.8 shows

the expressions for coefficients A, B, . . . , F for the representative network in each of

the nine five-element subfamilies, which can be found by computing the impedance of

the network (see e.g. [69, Section 7.2]). Table 5.7 contains expressions for inductances,

capacitances and resistances for subfamilies VA and VE; for all the other subfamilies,
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Network R1 R2 R3 L1 L2 C1

#52 (V1
A)

−K
Dλ1

(BF − CE)2

F λ1

C

F

−K(BF − CE)

λ21

BF − CE
F 2

–

#59 (V1
B) See Theorem A.3

#60 (V1
C) See Theorem A.4

#61 (V1
D) See Theorem A.5

#69 (V1
E)

K

Dλ1

AF − CD
DF

C

F

BF − CE
F 2

–
D2(BF − CE)

K

#101 (V1
F) See Theorem A.7

#104 (V1
G) See Theorem A.8

#70 (V1
H) See Theorem A.9

#108 (V1
I ) See Theorem A.10

Table 5.7: Expressions for inductances, capacitances and resistances in terms of coeffi-
cients A, B, . . . , F for five-element networks.

expressions for the network elements can be found in the theorems referenced in the

table.

The characterisation of the realisability set Sn for each representative network in

terms of necessary and sufficient conditions has been derived in this programme of work

in Theorems A.2–A.10.

We note that realisability conditions for the regular bridge networks in the Laden-

heim catalogue have also been independently derived in Chen et al. 2016 [16], while

the realisability conditions for subfamilies VA, VE and VH are already know from [43].

In [16], the multiplicity of solutions is not taken into account, and some conditions are

expressed in a different form. Some considerations on the smallest generating set are

made in Section 6.3 in relation to results found in [16].

Table 5.9 lists the expressions for all the polynomials which appear in the realisabil-

ity conditions summarised in Table 5.10, both in terms of the biquadratic impedance

coefficients A, B, . . . , F of (4.1) and in terms of the coefficients U , V and W of the

canonical form (3.12). The notation for the polynomials in canonical form is described

in Section 3.1.2.
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Network A B C

#52 (V1
A) L1L2(R1 +R2 +R3)

L1R3(R1 +R2) +
L2R1(R2 +R3)

R1R2R3

#59 (V1
B) L1L2(R2 +R3)

L1R2R3 + L2(R1R2 +
R1R3 +R2R3)

R1R2R3

#60 (V1
C) L1L2(R1 +R3)

L2(R1R2 +R1R3 +
R2R3) +R2L1(R1 +R3)

R1R2R3

#61 (V1
D) L1L2(R1 +R2 +R3)

L1R1(R2 +R3) +
L2R2(R1 +R3)

R1R2R3

#69 (V1
E) R1L1C1(R2 +R3)

L1(R1 +R2 +R3) +
R1R2R3C1

R3(R1 +R2)

#101 (V1
F) L1C1R1R3 R3(R1R2C1 + L1) R2R3

#104 (V1
G) L1C1(R1 +R3)

L1 + C1(R1R2 +R1R3 +
R2R3)

R2 +R3

#70 (V1
H)

L1C1(R1R2 +R1R3 +
R2R3)

R1R2R3C1 + L1(R1 +R3) R2(R1 +R3)

#108 (V1
H) L1C1R3(R1 +R2)

C1R1R2R3 + L1(R1 +R2 +
R3)

R1(R2 +R3)

Network D E F

#52 (V1
A) L1L2 L2R1 + L1(R1 +R2) R1R2

#59 (V1
B) L1L2 L1R2 + L2(R1 +R3) R2(R1 +R3)

#60 (V1
C) L1L2

L2(R1 +R2) + L1(R1 +
R2 +R3)

R3(R1 +R2)

#61 (V1
D) L1L2 L1(R2 +R3) + L2(R1 +R3)

R1R2 +R1R3 +
R2R3

#69 (V1
E) R1L1C1 L1 +R1R2C1 R1 +R2

#101 (V1
F) L1C1(R1 +R3)

C1(R1R2 +R1R3 +
R2R3) + L1

R2 +R3

#104 (V1
G) L1C1 C1(R1 +R2) 1

#70 (V1
H) L1C1(R2 +R3) C1R1(R2 +R3) + L1 R1 +R2 +R3

#108 (V1
H) L1C1(R1 +R2)

C1(R1R2 +R1R3 +
R2R3) + L1

R2 +R3

Table 5.8: Expressions for A, B, . . . , F in terms of resistances, inductances and capaci-
tances for five-element networks.
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Special polynomials in terms
of A, B, . . . , F

Reduced expressions in terms
of U , V , W

K = (AF−CD)2−(AE−BD)(BF−CE)
Kc = 4(U2 + V 2)− 4UV (W−1 +W )

+(W−1 −W )2

σ = BE − (
√
AF −

√
CD)2 σc = 4UV + 2− (W−1 +W )

λ1 = E(BF − CE)− F (AF − CD) λc = 4UV − 4V 2W − (W−1 −W )

λ2 = B(AE −BD)−A(AF − CD) λ†c = 4UV − 4U2W − (W−1 −W )

λ3 = D(AF − CD)− E(AE −BD) λ∗c = 4UV − 4V 2W−1 − (W −W−1)

λ4 = C(AF − CD)−B(BF − CE) λ∗†c = 4UV − 4U2W−1 − (W −W−1)

η = (AF +CD)2−(AE−BD)(BF −CE)
ηc = 4(U2 + V 2)− 4UV (W +W−1)

+(W−1 +W )2

µ1 = K − 4CD(2AF − 2CD −BE)
µc = 4(U2 + V 2) + 4UV (3W −W−1)

+(1−W−2)(9W 2 − 1)

µ2 = K − 4AF (2CD − 2AF −BE)
µ∗c = 4(U2 + V 2) + 4UV (3W−1 −W )

+(1−W 2)(9W−2 − 1)

τ1 = K −DF (B2 − 4AC)
τc = 4V 2 − 4UV (W−1 +W )

+(W−1 +W )2

τ2 = K −AC(E2 − 4DF )
τ †c = 4U2 − 4UV (W−1 +W )

+(W−1 +W )2

δ = BE − 2(AF + CD) δc = 4UV − 2(W−1 +W )

ζ1 = −E(BF − CE) + 2F (AF − CD) ζc = 4V (V − UW−1) + 2(W−2 − 1)

ζ2 = −B(AE −BD) + 2A(AF − CD) ζ†c = 4U(U − VW−1) + 2(W−2 − 1)

ζ3 = E(AE −BD)− 2D(AF − CD) ζ∗c = 4V (V − UW ) + 2(W 2 − 1)

ζ4 = B(BF − CE)− 2C(AF − CD) ζ∗†c = 4U(U − VW ) + 2(W 2 − 1)

ψ = (AF + CD)(K + 4ACDF )
−2ABCDEF

ψc = 4(W−1 +W )(U2 + V 2)−
4UV (W 2 + 4 +W−2) + (W−1 +W )3

ρ1 = −K + 2CD(AF − CD)
ρc = −4(U2 + V 2) + 4UV (W +W−1)

−(1−W−2)(3W 2 − 1)

ρ2 = −K + 2AF (CD −AF )
ρ∗c = −4(U2 + V 2) + 4UV (W +W−1)

−(1−W 2)(3W−2 − 1)

AF − CD W−1 −W
E2 − 4DF 4W−1(V 2 − 1)

B2 − 4AC 4W (U2 − 1)

Table 5.9: Polynomials appearing in the realisability conditions, expressed in terms of
both A, B, . . . , F and U , V , W . The expressions in U , V , W are obtained by replacing
A, B, C, . . . by 1, 2U

√
W , W , . . . (from (3.12)), except for a multiplicative positive

scaling.
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5.5 Summary of realisability conditions

Table 5.10 summarises the realisability conditions for all equivalence classes in the cata-

logue. Expressions for the symbols appearing in the conditions can be found in Table 5.9.

Unless indicated otherwise, we assume A, B, . . . , F > 0. The notation regarding the

multiplicity of solutions has the following meaning:

1/2 Depending on the orbit, there can be one or two solutions.

∞ There are infinitely many solutions, since one of the network elements can take

any value within a certain interval (while the other elements can be computed

according to the formulae in the realisation theorems).

∗ When any of the quantities in the conditions is zero, there is only one solution.

In networks with one, two or three elements, the cases in which C = F = 0 have not

been considered, since they would lead to a trivial cancellation of the frequency variable

s at the numerator and denominator.

Subf. Eq. class Networks Realisability conditions # sol.

IA I1
A 3 A = B = D = E = 0 1

IB

I1
B 1 A = C = D = E = 0 1

I2
B 2 A = B = D = F = 0 1

IIA

II1
A 6 A = D = E = 0 1

II2
A 8 A = C = D = 0 1

II3
A 5 A = D = F = 0 1

II4
A 9 A = B = D = 0 1

IIB

II1
B 4 B = D = F = 0 1

II2
B 7 A = C = E = 0 1

IIIA

III1
A 15, 16 A = D = 0, BF − CE > 0 1

III2
A 17, 18 A = D = 0, BF − CE < 0 1

IIIB

III1
B 11, 12 C = D = 0, AF −BE < 0 1

III2
B 13, 14 A = F = 0, BE − CD > 0 1
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Subf. Eq. class Networks Realisability conditions # sol.

IIIC

III1
C 41 C = 0, AF −BE = 0 1

III2
C 34 D = 0, AF −BE = 0 1

III3
C 49 A = 0, BE − CD = 0 1

III4
C 26 F = 0, BE − CD = 0 1

IIID

III1
D 27 E = 0, AF − CD = 0 1

III2
D 42 B = 0, AF − CD = 0 1

IIIE

III1
E 10 D = F = 0 1

III2
E 19 A = C = 0 1

IVA

IV1
A 35, 36, 37 K < 0, C = 0 1

IV2
A 28, 29, 30 K < 0, D = 0 1

IV3
A 43, 44, 45 K < 0, A = 0 1

IV4
A 20, 21, 22 K < 0, F = 0 1

IVB

IV1
B 38

1. C = 0, K < 0

2. C = 0, K = 0, E2 − 4DF = 0

1

∞

IV2
B 31

1. D = 0, K < 0

2. D = 0, K = 0, B2 − 4AC = 0

1

∞

IV3
B 46

1. A = 0, K < 0

2. A = 0, K = 0, E2 − 4DF = 0

1

∞

IV4
B 23

1. F = 0, K < 0

2. F = 0, K = 0, B2 − 4AC = 0

1

∞

IVC

IV1
C 39, 40 K > 0, C = 0, AF −BE < 0 1

IV2
C 32, 33 K > 0, D = 0, AF −BE < 0 1

IV3
C 47, 48 K > 0, A = 0, BE − CD > 0 1

IV4
C 24, 25 K > 0, F = 0, BE − CD > 0 1

IVD

IV1
D 71, 72 AF − CD = 0, BF − CE < 0 1

IV2
D 73, 74 AF − CD = 0, BF − CE > 0 1
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Subf. Eq. class Networks Realisability conditions # sol.

IVE

IV1
E 63 λ1 = 0, AF − CD > 0 1

IV2
E 62 λ2 = 0, AF − CD > 0 1

IV3
E 87 λ3 = 0, AF − CD < 0 1

IV4
E 88 λ4 = 0, AF − CD < 0 1

IVF

IV1
F 97 τ1 = 0 1

IV2
F 96 τ2 = 0 1

VA

V1
A

50, 51, 52,

54, 55, 56
K < 0, AF − CD > 0 1

V2
A

75, 76, 77,

79, 80, 81
K < 0, AF − CD < 0 1

VB

V1
B 53, 59

1. AF − CD > 0, K < 0

2. AF − CD > 0, K = 0, E2 − 4DF = 0

1/2

∞

V2
B 57, 58

1. AF − CD > 0, K < 0

2. AF − CD > 0, K = 0, B2 − 4AC = 0

1/2

∞

V3
B 82, 83

1. AF − CD < 0, K < 0

2. AF − CD < 0, K = 0, E2 − 4DF = 0

1/2

∞

V4
B 78, 84

1. AF − CD < 0, K < 0

2. AF − CD < 0, K = 0, B2 − 4AC = 0

1/2

∞

VC

V1
C 60 η ≤ 0, AF − CD > 0 2∗

V2
C 85 η ≤ 0, AF − CD < 0 2∗

VD

V1
D 61 K ≤ 0, µ1 ≤ 0, AF − CD > 0 2∗

V2
D 86 K ≤ 0, µ2 ≤ 0, AF − CD < 0 2∗

VE

V1
E 67, 68 ,69 K > 0, λ1 > 0, AF − CD > 0 1

V2
E 64, 65, 66 K > 0, λ2 > 0, AF − CD > 0 1

V3
E 92, 93, 94 K > 0, λ3 > 0, AF − CD < 0 1

V4
E 89, 90, 91 K > 0, λ4 > 0, AF − CD < 0 1
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Subf. Eq. class Networks Realisability conditions # sol.

VF

V1
F

101, 102,
103

1. K > 0, τ1 < 0

2. K = τ1 = 0

1

∞

V2
F

98, 99,
100

1. K > 0, τ2 < 0

2. K = τ2 = 0

1

∞

VG V1
G 104, 105

1. AF − CD > 0

a. τ1 < 0, λ1 = 0

b. λ1 > 0, τ1 = 0, δ > 0

c. τ1 < 0, λ1 > 0, K ≥ 0, δ > 0, ζ1 > 0

2. AF − CD ≥ 0, τ1λ1 > 0

3. AF − CD = 0, K = 0

4. AF − CD < 0 and one of

a. τ1 < 0, λ3 = 0

b. λ3 > 0, τ1 = 0, δ > 0

c. τ1 < 0, λ3 > 0, K ≥ 0, δ > 0, ζ3 > 0

5. AF − CD ≤ 0, τ1λ3 > 0

1

1

2∗

1

∞

1

1

2∗

1

VG V2
G 106, 107

1. AF − CD > 0

a. τ2 < 0, λ2 = 0

b. λ2 > 0, τ2 = 0, δ > 0

c. τ2 < 0, λ2 > 0, K ≥ 0, δ > 0, ζ2 > 0

2. AF − CD ≥ 0, τ2λ2 > 0

3. AF − CD = 0, K = 0

4. AF − CD < 0 and one of

a. τ2 < 0, λ4 = 0

b. λ4 > 0, τ2 = 0, δ > 0

c. τ2 < 0, λ4 > 0, K ≥ 0, δ > 0, ζ4 > 0

5. AF − CD ≤ 0, τ2λ4 > 0

1

1

2∗

1

∞

1

1

2∗

1
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Subf. Eq. class Networks Realisability conditions # sol.

VH

V1
H 70

µ1 ≥ 0, AF − CD > 0 and one of

1. signs of λ1, λ2, ρ1 not all the same

2. λ1 = λ2 = 0, ρ1 = 0

2∗

∞

V2
H 95

µ2 ≥ 0, AF − CD < 0 and one of

1. signs of λ3, λ4, ρ2 not all the same

2. λ3 = λ4 = 0, ρ2 = 0

2∗

∞

VI VI 108

K ≥ 0 and one of

1. τ1τ2 < 0

2. τ1 = 0, τ2 < 0, ψ > 0

3. τ2 = 0, τ1 < 0, ψ > 0

4. τ1 < 0, τ2 < 0, ψ > 0

5. τ1 = τ2 = 0, ψ = 0

1

1

1

2∗

∞

Table 5.10: Realisability conditions and multiplicity of solutions for all equivalence
classes in the catalogue.

5.5.1 Realisation procedure for a biquadratic impedance

We illustrate here a possible approach for the synthesis of a candidate biquadratic

impedance which makes use of the information summarised in Table 5.10. Given a

p.r. impedance in the form (4.1), the first step is to verify whether it is realisable by

a network in the Ladenheim catalogue. We recall that networks in the catalogue can

realise all the regular biquadratics, and a subset of the non-regular biquadratics (namely

the non-regular impedances realised by equivalence classes V1
H and V2

H). Using the re-

sults summarised in Section 3.1.1 we can easily check whether the impedance is regular,

from which these three cases follow:

1. The impedance is regular, hence realisable by one or more networks in the cat-

alogue. By computing some of the polynomial quantities which appear in the

realisability conditions in Table 5.10 (e.g. K, AF − CD, τ1, τ2 etc) it is possi-

ble to find all the equivalence classes within the catalogue that realise the given

impedance, as well as the multiplicity of the solutions.

2. The impedance is non-regular, but the realisability conditions of either V1
H or V2

H
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hold, hence the impedance is realisable by either network #70 or network #95.

3. The impedance is non-regular and not realisable by a network in subfamily VH.

A realisation of the impedance with five elements or less is therefore not possible,

and an alternative synthesis method among those described in Chapters 2 and 3

must be used, for example a possible realisation with six elements as in [45] or the

Bott-Duffin method.

By way of illustration, we consider the synthesis of the following biquadratic impedance

Z(s) =
3212.9s2 + 99696s+ 13.9226

s2 + 7.6735s+ 52.6273
, (5.2)

which is the mechanical impedance of a train suspension system, obtained in [84] as the

result of the optimisation of a passenger comfort index over the class of all second-order

positive-real impedances. The Bott-Duffin method is used in [84] to realise (5.2), which

leads to the nine-element network shown in Figure 5.4 (without loss of generality we

consider here only the electrical equivalent of the mechanical networks in question). 1

Figure 5.4: Realisation of the biquadratic impedance (5.2) using the Bott-Duffin method.

By applying instead the procedure described above, we can verify that K > 0,

AF−CD > 0 and λ1 > 0, hence Case 1 in (3.4) is satisfied and the impedance is regular.

It can then be easily verified that λ2 < 0, τ1 < 0 and τ2 > 0 (from the expressions in

Table 5.9). Therefore, from Table 5.10, the impedance is realisable by equivalence classes

V1
E, V1

F, V1
H and VI. More specifically, networks #67, #68, #69, #101, #102, #103,

#108 realise the impedance with multiplicity one, while for network #70 two distinct

combinations of the element values exist which lead to the same impedance—that is, a

total of nine solutions to the realisation problem exist within the Ladenheim catalogue.

The values of the network elements in each realisation can be found in the corresponding

realisation theorems for networks #69, #70, #101, #108, and can be obtained following

a similar approach for the remaining networks.
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We note that the eight five-element networks which were here found to realise

impedance (5.2) represent the full set of networks which realise minimally the given

impedance.

5.6 Realisability regions for five-element networks

We conclude this chapter by showing a graphical representation of the realisability region

for one equivalence class in each of the nine five-element subfamilies. The realisability

regions are obtained from the conditions summarised in Table 5.10 expressed in canonical

form (see Table 5.9 for expressions for all the polynomials appearing in the realisability

conditions in terms of U , V and W ). The regions are then plotted in the (U, V )-plane

for significant values of W , as shown in Figures 5.5–5.13 (hatched regions). We recall

that in every figure the grey region corresponds to σc < 0 and represents non positive-

real biquadratics, whereas the region corresponding to λc > 0 and/or λ†c > 0 represents

regular biquadratics for W ≤ 1: it can be seen that all but one subfamily (i.e. subfamily

VH) realise regular biquadratics, as pointed out in [43].

Figures 5.14 and 5.15 show the number of distinct networks which can realise impedances

in a given region of the (U, V )-plane, again for significant values of W , as well as the

equivalence classes such networks belong to. If a network can realise a given impedance

with two distinct combinations of values of resistances, inductances and capacitances,

we consider that there are two distinct solutions and the network is counted twice.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Figure 5.5: Equivalence class V1
A. The interior of the hatched region is realisable, with

multiplicity of solution equal to one.



Realisability regions for five-element networks 71

0 0.5 1 1.5 2 2.5
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1

1.5

2

2.5

Figure 5.6: Equivalence class V1
B. We note

that the realisability region is the same as
equivalence class V1

A, with the addition of
the point on the boundary of Kc in which
V = 1 (i.e. E2 − 4DF = 0), which corre-
sponds to infinitely many solutions. In the
interior of the realisability region there are
always two solutions, which may coincide
depending on which orbit is considered.
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Figure 5.7: Equivalence class V1
C. There

are always two solutions for this subfam-
ily, which coincide on the boundary of the
realisability region.
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Figure 5.8: Equivalence class V1
D. There

are always two solutions for this subfam-
ily, which coincide on the boundary of the
realisability region.
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Figure 5.9: Equivalence class V1
E. The in-

terior of the hatched region is realisable
with multiplicity of solution equal to one.
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0 0.5 1 1.5 2 2.5
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1.5
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Figure 5.10: Equivalence class V1
F. The

realisability region is given by the interior
of the hatched region, where there is one
solution, with the addition of the point
where Kc = τc, which corresponds to in-
finitely many solutions.
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Figure 5.11: Equivalence class V1
G. Only

the active boundaries for the realisability
region have been plotted. See Figure A.10
for more details on the boundaries and on
the multiplicity of solutions.
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Figure 5.12: Equivalence class V1
H. See

Figures A.12, A.13 and Theorem A.9 for
more details on the boundaries and on the
multiplicity of solutions.
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Figure 5.13: Subfamily VI. Only the ac-
tive boundaries for the realisability region
have been plotted. See Figure A.15 for
more details on the boundaries and on the
multiplicity of solutions.
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Figure 5.14: Number of distinct networks (and name of the corresponding equivalence
classes) which can realise impedances in all realisable regions with Kc > 0, for W = 0.5.
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Figure 5.15: Number of distinct networks (and name of the corresponding equivalence
classes) which can realise impedances in all realisable regions with Kc < 0, for W = 0.3.

5.7 Summary

In this chapter the set of 108 networks which forms the Ladenheim catalogue was parti-

tioned into 24 subfamilies, each comprising a number of equivalence classes and orbits,

thus uncovering the structure which is intrinsic to this class of networks. The realisability

set for one representative network in each subfamily was derived, and the corresponding

realisability regions were plotted for all five-element subfamilies. The main results which

emerged from this classification are more formally stated and proven in Chapter 6.



Chapter 6

Main results and discussion on

the Ladenheim catalogue

Following the realisability analysis for the 108 networks of the Ladenheim catalogue of

Chapter 5 we are ready to assess the structure that has been revealed in the catalogue.

Our first task is to consider in more depth the classical Cauer and Foster canonical forms

in Section 6.1. We then develop formally some of the main results of our analysis of the

catalogue in Section 6.2. A discussion is then given on the smallest set of networks

needed to realise any regular biquadratic in Section 6.3, and some remarks are made on

conjectures contained in Kalman’s latest work in Section 6.4. We conclude the chapter

by studying in Section 6.5 properties of invariance to duality in RLC networks, and

presenting in Section 6.6 two new equivalences which were found by analysing the class

of six-element networks with four resistors.

6.1 Cauer-Foster transformation

Below are the transformations between the so-called Cauer canonical form and Foster

first and second canonical forms (cf. Section 2.2 and [9, 23]). By applying the Zobel

transformation of Figure 4.2 to the networks on the left-hand side of Figures 6.1 and

6.2, one can define a number of additional “quasi-equivalences” (a concept that will

become clearer at the end of this section). A number of these quasi-equivalences can

also be found in [94, Appendix III].

The networks in Figure 6.1 are related by the following transformation:

a′ =
ac(b+ d)2

ad2 + b2c
, b′ = b+ d, c′ =

(ad− bc)2

ad2 + b2c
, d′ =

bd(b+ d)(ad− bc)2

(ad2 + b2c)2

75
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[
a =

(b′c′)2 − (a′d′ + c′d′ −M)2

4d′M
, b =

−b′(a′d′ + c′d′ − b′c′ −M)

2M
,

c =
−(b′c′)2 + (a′d′ + c′d′ +M)2

4d′M
, d =

b′(a′d′ + c′d′ − b′c′ +M)

2M
,

where M =
√

(a′d′ − b′c′)2 + c′d′(2a′d′ + 2b′c′ + c′d′)
]
,

for any real positive numbers a, b, etc, where Z1(s) and Z2(s) are arbitrary impedances.
1

b0Z2

a0Z1

c0Z1

d0Z2

aZ1

bZ2

cZ1

d Z2

CF

Figure 6.1: Cauer-Foster quasi-equivalence.

The networks in Figure 6.2 are related by the following transformation:

a′ =
bd

b+ d
, b′ =

ad2 + b2c

(b+ d)2
, c′ =

ac(ad2 + b2c)

(ad− bc)2
, d′ =

(ad2 + b2c)2

(b+ d)(ad− bc)2

[
a =

(a′b′ + a′c′ + b′d′ +N)N

d′(−a′b′ − a′c′ + b′d′ +N)
, b =

2a′N
−a′b′ − a′c′ + b′d′ +N

,

c =
(a′b′ + a′c′ + b′d′ −N)N

d′(a′b′ + a′c′ − b′d′ +N)
, d =

2a′N
a′b′ + a′c′ − b′d′ +N

,

where N =
√

(a′b′ + a′c′)2 + b′d′(2a′b′ − 2a′c′ + b′d′)
]
,

for any real positive numbers a, b, etc, where Z1(s) and Z2(s) are arbitrary impedances.1

a0Z2

b0Z1

c0Z1 d0Z2

aZ1 bZ2

cZ1 d Z2

CFp

Figure 6.2: p-transformation of Cauer-Foster quasi-equivalence.

From the formulae for the transformation in Figure 6.1 it follows that if ad − bc = 0,
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with a, b, c and d finite and positive, then c′ = d′ = 0, and the network reduces to a

two-block structure (i.e. the parallel connection of a′Z1 and b′Z2). This means that the

network on the right-hand side can be reduced to a two-block structure with a suitable

choice of strictly positive and finite coefficients a, b, c and d, while a similar reduction for

the network on the left-hand side requires the coefficients c′ and d′ to be zero. Similar

considerations hold for the transformation in Figure 6.2, which is the dual form of the

transformation in Figure 6.1, in the sense of duality of the graph but not of the network

elements (i.e. the p transformation).

Subfamilies IVA–IVB and VA–VB (which are, respectively, Cauer forms and Foster

forms) are related by the transformations above, as shown in Figures 6.3 and 6.4. In

the classical development of the subject (see e.g. [27], [78]), the networks of these two

pairs of subfamilies were considered to be equivalent. However, the derivation of the

realisability conditions for such networks (which are summarised in Section 5.5) led to

the following observations:

• For the Cauer forms, the resultant of the numerator and denominator K is strictly

negative, while in the Foster forms we can have K = 0 (i.e. a pole-zero cancella-

tion).

• There is only one solution to the realisation problem for the Cauer forms, while

there are two solutions for the Foster forms. These solutions are identical for the

networks in subfamily IVB and in the inner orbit of subfamily VB, due to the

symmetry of such networks, while for the networks in the outer orbit of VB the

two solutions are distinct.

The two forms therefore define different realisability sets (as can be also seen from

Figures 5.5 and 5.6), hence the networks are not truly equivalent according to our

definition. We can define a “weaker” type of equivalence, or quasi-equivalence, com-

pared to the transformations of Section 4.4 if the realisability sets of two networks differ

only on a subset of lower dimension (cf. Definition 6.1). We also note that, by con-

sidering all the networks of the above-mentioned four subfamilies (which are related

through the Zobel transformation and p-transformation/frequency inversion as illus-

trated in Figures 6.3 and 6.4), we obtain the complete set of quasi-equivalences for the

catalogue.
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Figure 6.3: Relation between subfamilies IVA–IVB through Cauer-Foster transforma-
tions. CF indicates the Cauer-Foster transformation of Figure 6.1, while CFp indicates
the transformation of Figure 6.2.
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Figure 6.4: Relation between subfamilies VA–VB through Cauer-Foster transformations.
CF indicates the Cauer-Foster transformation of Figure 6.1, while CFp indicates the
transformation of Figure 6.2.
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6.2 Formal results on the Ladenheim catalogue

Table 5.10 in Section 5.5 summarises the realisability conditions for the networks of

the catalogue as polynomial equations and inequalities in the variables A, B, . . . , F .

These implicitly define the semi-algebraic sets Sn of Section 4.3.1 as subsets of R6
+. We

state a standard definition for the dimension of a semi-algebraic set [3] and propose a

definition of a generic network (further general results on this new concept of genericity

for RLC networks will be discussed in Chapter 7). We note that a similar notion of

“non-redundant” system appears in [70].

Definition 6.1. The dimension dim(S) of a semi-algebraic set S is defined as the

largest d such that there exists a one-to-one smooth map from the open cube (−1, 1)d ⊂
Rd into S.

Definition 6.2. An RLC two-terminal network containing m elements is generic if

dim(S) = m+ 1 where S is the realisability set of the network.

Theorem 6.1. All 108 networks of the Ladenheim catalogue are generic.

Proof. We begin with the five-element networks. For each network we observe that there

exists a point (A0, B0, . . . , F0) ∈ Sn and ε̄ > 0 such that (A0+ε1, B0+ε2, . . . , F0+ε6) ∈ Sn
providing |εi| < ε̄ for i = 1, . . . , 6. (All that is required is to find a point whose feasibility

is determined only by polynomial strict inequalities. For example, for n = 104, it is

sufficient to find a point satisfying 2. in the corresponding entry in Table 5.10 with

AF − CD > 0.) For such a point we have the smooth mapping

(x1, x2, . . . , x6) ∈ (−1, 1)6 → (A0 + x1ε̄, B0 + x2ε̄, . . . , F0 + x6ε̄) ∈ Sn

which is one-to-one, hence the network is generic.

For the four-element networks we will take as example network #71 for which

the realisability conditions are: AF − CD = 0, BF − CE < 0. Consider any point

(A0, B0, . . . , F0) ∈ S71 and let A = A0 + ε1, B = B0 + ε2, . . . , E = E0 + ε5, F = CD/A.

Then there exists an ε̄ > 0 such that (A,B, . . . , F ) ∈ S71 providing |εi| < ε̄ for

i = 1, . . . , 5. Now define a mapping

(x1, x2, . . . , x5) ∈ (−1, 1)5 → (A0 + x1ε̄, . . . , E0 + x5ε̄, F1) ∈ S71

where F1 = (C0 + x3ε̄)(D0 + x4ε̄)/(A0 + x1ε̄). This mapping is smooth, one-to-one

and onto a neighbourhood of (A0, B0, . . . , F0) ∈ S71. We have thus found an open



Formal results on the Ladenheim catalogue 81

neighbourhood of a general point in S71 which is homeomorphic (having a bi-continuous

invertible mapping) to the open cube (−1, 1)5, and hence the unit sphere, in R5. It

is not possible for such a neighbourhood to be homeomorphic to a sphere of different

dimension [29, Theorem 2.26] hence the network is generic. The proof for other four-

element networks is similar.

For the three-element networks we will take as example network #31 for which the

realisability conditions are: C = 0, AF −BE = 0. Consider any point

(A0, B0, 0, D0, E0, F0) ∈ S31

and let A = A0 + ε1, B = B0 + ε2, C = 0, D = D0 + ε3, E = E0 + ε4, F = BE/A. Then

there exists an ε̄ > 0 such that (A,B, . . . , F ) ∈ S31 providing |εi| < ε̄ for i = 1, . . . , 4.

Now define a mapping

(x1, x2, x3, x4) ∈ (−1, 1)4 → (A0 + x1ε̄, B0 + x2ε̄, 0, D0 + x3ε̄, E0 + x4ε̄, F1) ∈ S31

where F1 = (B0+x2ε̄)(E0+x4ε̄)/(A0+x1ε̄). This mapping is smooth, one-to-one and onto

a neighbourhood of (A0, B0, . . . , F0) ∈ S31. We have thus found an open neighbourhood

of a general point in S31 which is homeomorphic to the open cube (−1, 1)4, and hence

the network is generic. The proof for other three-element networks is similar. For the

two- and one-element networks the proof is elementary.

Theorem 6.2. The 108 networks of the Ladenheim catalogue form the complete set

of all essentially distinct (up to 2-isomorphism), generic, two-terminal RLC networks

comprising at most two reactive elements.

Proof. The enumeration procedure to determine the 148 essentially distinct networks is

as described in Section 4.2. The 40 networks that were eliminated to produce the canon-

ical set are now easily seen to be non-generic (see also Example 7.2 in Chapter 7): eight

networks with four resistors and one reactive element have a realisability set of dimension

4; four networks with four elements which can be reduced by a Zobel transformation

to three-element networks have a realisability set of dimension 4; twenty series-parallel

networks with five elements which can be reduced by a Zobel transformation to networks

with four elements or less have a realisability set of dimension at most 5; and finally, the

eight networks shown in Figure 4.1 have one of the coefficients A, C, D or F in (4.1)

equal to zero and hence have a realisability set of dimension at most 5.
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Theorem 6.3. The Ladenheim catalogue comprises 62 equivalence classes as listed in

Table 5.10 according to the definition of equivalence in Section 4.3.1.

Proof. The networks within each class in Table 5.10 have already been seen to be equiv-

alent by a Zobel or Y-∆ transformation. It remains to show that each class is distinct,

i.e. the corresponding realisability sets are distinct. From Theorem 6.1 we can imme-

diately conclude that networks with a different number of elements are distinct, since

they define realisability sets of different dimension. To complete the proof we must

show that any two equivalence classes of networks with the same number of elements

are distinct, i.e. there is a point in one realisability set that is not in the other. This

is easily seen for equivalence classes within the same subfamily, and is trivial for the

one-, two- and three-element cases. For any pair of five-element equivalence classes it

is straightforward to find points in one realisability region which are not in the other

through the graphical representations in Figures 5.5–5.13, in Section 5.6. Finally, for

the four-element networks, we first observe that the equivalence classes of subfamilies

IVA and IVB (for which K < 0) are necessarily distinct from the remaining subfamilies

(for which K > 0, which is implied by the realisability conditions); subfamilies IVA and

IVB are distinct from each other, since there is always an extra point in the realisability

set for the latter; in IVC one coefficient is always zero, hence it is different from IVD,

IVE and IVF; IVD is necessarily distinct from IVE (due to the condition on AF − CD)

and IVF (since we can have τ1 = 0 or τ2 = 0 with AF − CD 6= 0 in the latter); finally,

by plotting the corresponding curves of the realisability region, we easily find distinct

points in the realisability sets for IVE and IVF.

It should be remarked that the above theorem shows that, within the Ladenheim

catalogue, there are no new equivalences among the circuits that are not derived through

the Zobel or Y-∆ transformations.

We now proceed to show that the 24 subfamilies of the Ladenheim catalogue comprise

the finest common coarsening of the partitions induced by the equivalence relations of

(1) group action and (2) network equivalence. This is also known as the join of the two

equivalence relations [6, Definition 7, §18]. We will be content to state this formally in

terms of the notion of transitive closure of a relation. A relation on a set X is a subset

R of X ×X, and when (a, b) ∈ R we write aRb and say that a and b are related by R.

The union T = R ∪ S of two relations R and S on X is the union of the corresponding

subsets of X ×X, hence aTb iff aRb or aSb (we note that the union of two equivalence

relations is not in general an equivalence relation). Similarly, we say that S contains R

and write R ⊆ S iff aRb ⇒ aSb, ∀a, b ∈ X [65, pp. 573–581]. The transitive closure of
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a relation R is the smallest transitive relation containing R.

Theorem 6.4. The 24 subfamilies of the Ladenheim catalogue comprise the partition

induced by the transitive closure of the union of the two equivalence relations given by

(1) group action and (2) network equivalence.

Proof. The two equivalence relations (which we will refer to as R1 and R2) generate

two partitions of the catalogue X, π1 and π2, into 35 orbits and 62 equivalence classes,

as shown in Figures 5.1 and 5.2. The 24 subfamilies also form a partition π of the

catalogue, which is generated by an equivalence relation W . If we define the relation

T = R1∪R2, we observe that within each block of π there is a finite path in T between any

two networks. Therefore W satisfies the property of being the “connectivity relation” of

R1∪R2 [65, p. 600], which is the same as the transitive closure of R1∪R2 [65, Section 9.4,

Theorem 2].

6.3 Smallest generating set of the catalogue

In [43] it was shown that only two networks (one from each of the two equivalence classes

of subfamily VA) are needed to realise any positive-real biquadratic impedance with re-

sultant K ≤ 0, while four networks (one from each equivalence class of subfamily VE) are

needed to realise all regular biquadratics with K ≥ 0. These six networks, taken together

with the only two networks of the catalogue which can realise non-regular impedances

(i.e. the networks in subfamily VH), represent a generating set for the Ladenheim cata-

logue: any impedance which can be realised by a network in the catalogue can also be

realised by one of these eight networks. It should be pointed out that the case K = 0

involves some element values being taken to be zero or infinity. If one maintains the

condition that all element values are finite and non-zero, then the K = 0 cases should

be covered by an appropriate set of simpler networks with fewer elements.

In [16, Corollary 1] it is shown that the number of networks required to realise all

regular biquadratics with K > 0 can be reduced by one compared to [43] if one considers

subfamily VI and one network from each of the two equivalence classes of subfamily VG

(i.e. three networks in total). Hence, the generating set can be reduced by one compared

to [43], at the expense of covering the following special cases with four-element networks,

since biquadratics which satisfy the following conditions cannot be realised by networks

in subfamilies VG and VI:

1. either λ1 or λ2 negative and one of τ1 or τ2 zero, (6.1)

2. either λ3 or λ4 negative and one of τ1 or τ2 zero. (6.2)
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(See Table 5.9 for the expressions for the polynomials appearing in the conditions). The

conditions in (6.1) can be deduced by combining the realisability regions of equivalence

classes V1
G, V2

G and VI (plotted in Figures 5.11 and 5.13 for AF−CD > 0), and similarly

for (6.2) (when AF − CD < 0). We note that (6.1) and (6.2) are boundary cases for

the individual networks but end up being in the interior of the region which is realisable

by the whole generating set, as one can see from Figure 5.14. As in [43] certain other

boundary cases such as where K = 0 also require some element values to be zero or

infinity, and these also would need to be covered by simpler networks if one maintains

the condition that all element values are finite and non-zero.

We remark that the new generating set identified in [16], despite having one fewer

network, is not particularly useful in practice, since it introduces more bridge networks

and series-parallel networks, as opposed to the generating set in [43] of mostly simple

series-parallel networks which are easier to realise.

6.4 Remarks on Kalman’s 2011 Berkeley seminar

In this section we will review some of the concepts found in the notes on a talk given by

Kalman in Berkeley (26 October, 2011) on electrical network synthesis [53] and draw a

connection with the results obtained in our analysis of the Ladenheim catalogue.

The following definitions can be found in [53]. Given a network Γ ∈ X defined by an

undirected connected graph GΓ, the impedance of the network is expressed as

ZΓ =
aΓ(s)

bΓ(s)
,

where aΓ(s) and bΓ(s) are relatively prime polynomials in s, with degree αΓ and βΓ, re-

spectively. The following polynomial map is defined, which takes the network parameters

to the impedance ZΓ:

ψΓ : Rr → PαΓ+βΓ+1 .

The domain of the map ψΓ is the space of parameters for the network (where r is

the number of network elements), while the codomain is the projective space PαΓ+βΓ+1

derived from the coefficients of the numerator aΓ(s) and denominator bΓ(s). Abstractly,

the two problems of analysis and synthesis/realisation can be defined through the map

ψΓ and the inverse map ψ−1
Γ .

In [53], a network Γ is defined to be minimal (or generic) if the map ψΓ is finite-to-

one. We have seen that, for networks in the catalogue, when the map ψΓ is finite-to-one
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it can be either one-to-one or two-to-one. In the latter case, there are two distinct

solutions to the synthesis problem, i.e. given a network Γ ∈ X one can find two distinct

combinations of edge weights (network parameters) which lead to the same impedance.

Also, given a network Γ, the multiplicity of solutions can vary with the image point,

from two to one or vice versa. This is not unexpected, given the conditions of positivity

and realness of the solutions.

We note that this notion of generic network is different from the one we proposed in

Definition 6.2. It is interesting to point out that at the image points corresponding to the

resultant K = 0 and/or one (or both) discriminants of the numerator or denominator

equal to zero (i.e. B2−4AC = 0 and/or E2−4DF = 0) the map ψΓ can become infinite-

to-one, as can be seen from Table 5.101. This means that for such image points there

is an infinite number of combinations of network parameters which lead to the same

given impedance (image point in P5), When the resultant K is equal to zero, there is a

pole-zero cancellation in the impedance (or two, if B2 − 4AC = E2 − 4DF = 0), which

results in the impedance becoming bilinear (or constant). It can also be observed that

in some of the subfamilies in which this occurs, the above conditions lead to a bridge

balancing, for some network in the subfamily. We note however, based on our analysis

of the catalogue, that this occurs only on a subset of the realisability set of dimension

d− 2 (or less), if the realisability set has dimension d. Therefore we can say that for all

networks in the catalogue (which are generic according to Definition 6.2) the map ψΓ is

finite-to-one almost everywhere.

The following claim can also be found in [53]:

Claim. The following are equivalent for a network Γ ∈ X with associated graph GΓ:

1. Γ is simple series-parallel,

2. The resultant of aΓ(s) and bΓ(s) is a product of monomials in the parameters,

3. Each coordinate of the inverse to ψ is expressible as a ratio of “invariants” (entries

of the adjoint of the Sylvester matrix).

The equivalence of 1. and 2. does not hold, since it can be easily calculated that the orbit

of networks #69, #66, #90, #94 in subfamily VE and of networks #40, #33, #24, #48

in subfamily IVC both consist of networks which are simple series-parallel but whose

resultants are not the product of monomials. Specifically, it can be checked that the

1For network #70 in equivalence class V1
H it can be easily verified that when conditions λ1 = λ2 = 0,

ρ1 = 0 hold, then B2 − 4AC = E2 − 4DF = 0 and K 6= 0. Similar considerations can be made for
network #95 in equivalence class V2

H.
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resultant for networks #69 and #40 equals R2
1L

3
1C1(R1 + R2)2 in both cases. On the

other hand, the equivalence of 1. and 3. does appear to hold, in the light of the analysis

carried out in this work, with a few remarks. In the notation of the present analysis, the

biquadratic impedance

Z(s) =
As2 +Bs+ C

Ds2 + Es+ F

has the following associated Sylvester matrix, which can be obtained from the definition

of Sylvester matrix given in Section 3.3:

S =




D E F 0

A B C 0

0 D E F

0 A B C



.

The adjoint (or adjugate) matrix of S is

adj(S) =




λ4 λ1 −C(BF − CE) F (BF − CE)

A(BF − CE) −D(BF − CE) C(AF − CD) −F (AF − CD)

−A(AF − CD) D(AF − CD) −C(AE −BD) F (AE −BD)

A(AE −BD) −D(AE −BD) λ2 λ3


 ,

and one can verify from Tables 5.4, 5.6 and 5.7 and from Theorems A.1–A.10 that, for

all simple series-parallel networks in the catalogue2, the network elements can all be

expressed as a ratio of entries of adj(S), while this is not the case for networks which

are not simple series-parallel. Note from Tables 5.4 and 5.6 that, for equivalence classes

III1
B, IV2

A and IV2
C, we have λ2|D=0 = A(BE − AF ) and the result still holds. Similar

considerations hold for the other equivalence classes in these three subfamilies. Also note

that the equivalence of 1. and 3. holds only if we allow multiplication by coefficients A,

B, . . . , F and by the resultant K = −det(S).

6.5 A note on d-invariance of RLC networks

As mentioned in Section 4.3.2, it is the case that, within the catalogue, all networks

which are d-invariant (i.e. left unchanged under duality, namely networks #3 and #108)

are also invariant under the actions s and p. In other words, any network in the catalogue

which is 2-isomorphic to its dual is also 2-isomorphic to the networks obtained through

2See Table 5.2 for a list of subfamilies which contain simple series-parallel networks.
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the s and p transformations. Here we show that this property does not hold in general.

In Figure 6.5 a first example is given of an orbit of networks which are d-invariant

but not s- and p-invariant. By using a Y-∆ transformation in two ways on each net-

work, a resistor can be eliminated to produce the orbit of four non-isomorphic networks

in Figure 6.6. We observe that in the latter there is a Y-∆ transformation connecting

two pairs of networks, which are therefore equivalent. We now show that there is a

further equivalence which allows us to conclude that all four networks in Figure 6.6 are

equivalent.

1

s, p

d d

�1

Figure 6.5: Example of d-invariant networks which are not s- or p-invariant.

1

s

s

d dYΔ YΔ

�1

Figure 6.6: Orbit of non-isomorphic, equivalent networks which realise a biquadratic
impedance.
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1

eZ2 aZ1

cZ1

bZ1

d Z1

f Z3

e0Z3 a0Z1

c0Z1

b0Z1

d0Z1

f 0Z2

Figure 6.7: New equivalence between RLC networks.

It can be shown that the networks in Figure 6.7 are related by the following trans-

formation:

a′ =
c(ac+ P )

d(b+ c)
, b′ =

Pb (ac+ P )

d(b+ c)
[
a(b+ c) + P

] , c′ =
aP

a(b+ c) + P

d′ =
(ac+ P )2

(a+ b)
[
a(b+ c) + P

] , e′ =
f P 2

d2(b+ c)2
, f ′ =

e(ac+ P )2

[
a(b+ c) + P

]2 ,

where P = bc+ bd+ cd ,

for any real positive numbers a, b, . . . , f , where Z1(s), Z2(s) and Z3(s) are arbitrary

impedances. The inverse transformation is given by the same expressions above, by

replacing a, b, . . . , f with a′, b′, . . . , f ′.

Using this new equivalence on the networks of Figure 6.6 we can conclude that the

four networks, although not 2-isomorphic, are all equivalent. This suggests that a weaker

property might hold in general, namely that a network being equivalent to its dual always

implies that it is also equivalent to the networks obtained through frequency inversion

and the p transformation. It was not possible to find a counterexample to this among

the networks with up to six elements. The higher-order networks shown in Figure 6.8,

however, turned out to be an example of networks which are d-invariant but not s- or

p-invariant and not equivalent, as we will now show, thus refuting this last conjecture.

In order to prove that the networks in Figure 6.8 are not equivalent it is sufficient

to find an impedance in the realisability set of one network which is not realisable by

the other network. This is the case for the impedance obtained by setting r1 = r4 = 2

and r2 = r3 = r5 = l1 = l2 = c1 = c2 = 1 in the first network, which gives the biquartic

impedance

Z1(s) =
n1(s)

d1(s)
=

8s4 + 36s3 + 57s2 + 36s+ 9

8s4 + 36s3 + 51s2 + 36s+ 9
, (6.3)
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Figure 6.8: Example of d-invariant networks in the same orbit which are not equivalent.

where n1(s) and d1(s) have no common factor. An expression Z2(s) = n2(s)/d2(s) can

be obtained for the impedance of the second network, where n2(s) and d2(s) are fourth-

order polynomials in s whose coefficients depend on the network parameters R1, R2, L1

etc. By setting Z1(s) = Z2(s) we obtain the eighth-order polynomial equation

n1(s)d2(s)− n2(s)d1(s) = 0 ,

which is satisfied if the coefficients of each power of s are equal to zero. This leads to

nine polynomial equations in the nine network parameters R1, R2, L1 etc. Through an

elimination procedure we obtain R3 = R5 = 1, L2 = C2, C1 = L1 and the following

expressions for R1, C2, R4 which are rational functions of L1 and R2 only

R1 = −3L2
1R2 + 4R2 + 4

3L2
1 − 4R2 − 4

,

C2 =
−8L1(R2 + 1)

3L2
1(R2 − 1)− 18L1(R2 + 1) + 8(R2 + 1)

,

R4 =
3C2

2 (1−R1) + 2R1

3C2
2 (R1 − 1)− 2

,

where L1 and R2 still have to satisfy the following pair of polynomial equations

27(R2 − 1)2 L4
1 − 108(R2

2 − 1)L3
1 + 12(R2 + 1)(19R2 − 1)L2

1

− 288(R2 + 1)2 L1 + 128(R2 + 1)2 = 0 , (6.4)
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− 9(R2 − 1)3 L5
1 + 108(R2 + 1)(R2 − 1)2 L4

1 − 12(R2
2 − 1)(31R2 + 23)L3

1

+ 48(17R2 − 1)(R2 + 1)2 L2
1 − 32(29R2 + 25)(R2 + 1)2 L1

+ 384(R2 + 1)3 = 0 . (6.5)

For a given value of R2, the two equations will have a common root if and only if their

resultant (which is a function of R2 only) is zero. The resultant of (6.4) and (6.5) is a

constant multiple of

(1861R3
2 + 13371R2

2 + 32475R2 + 17093)(R2 − 1)6(R2 + 1)13 ,

and it is easily seen that its only real, positive solution is R2 = 1. For R2 = 1 equations

(6.4) and (6.5) reduce to the quadratics

432L2
1 − 1152L1 + 512 = 0 ,

3072L2
1 − 6912L1 + 3072 = 0 ,

which have no common root. We can therefore conclude that no real, positive values

exist for R1, R2, L1 etc which make Z2(s) equal the candidate impedance (6.3), hence

the two networks of Figure 6.8 are not equivalent.

6.6 Six-element networks with four resistors

In the light of the discussion in Section 6.5 and the introduction of the new equivalence

shown in Figure 6.7, we now consider the entire class of networks containing two reactive

elements and four resistors. Although it was shown that additional resistors beyond three

do not expand the class of functions that are realised by the Ladenheim catalogue (see

Section 3.2 and [61], [44]), it is still interesting to explore the structure of this class and

possibly uncover further equivalences.

Within the Ladenheim catalogue there are 25 basic graph structures with five edges,

of which 24 are series-parallel graphs and only one is a bridge graph (graph V in Ap-

pendix B). We consider now all the distinct graph structures with six edges. There are

72 such graphs, of which 66 are series-parallel [64] and six are bridge graphs. Half of

the 66 series-parallel graphs are presented in [79] (the other half being obtained through

duality), while the six bridge graphs are shown in Figure 6.9, and can be obtained

from [24].

Considering all the essentially distinct RLC networks which can be obtained by
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�1

Figure 6.9: Bridge graphs with six edges. The bottom three graphs are the duals of the
top three graphs.

populating the edges with four resistors and two reactive elements, and eliminating the

networks which further reduce through a Zobel or a Y-∆ transformation, leads to a class

of 52 networks, of which 44 are bridge networks and eight are series-parallel networks.

These 52 networks can be analysed and grouped according to the classification tools

presented in Chapters 4 and 5. Specifically, we can partition the set into 15 orbits

and, identifying all the equivalences that result from Zobel and Y-∆ transformations,

28 disjoint sets of equivalent networks. Considering the finest common coarsening of

these two partitions leads to nine subfamilies. At this point it is not clear whether

new equivalences might further reduce the number of subfamilies. From Section 6.5 we

already know of one further equivalence. We now investigate if there are any additional

equivalences, by comparing the realisability regions of such networks.

The realisability regions were computed numerically and plotted for one network in

each subfamily. We note that letting one of the four resistances go to zero or infinity

leads to networks of the Ladenheim catalogue. It was possible to verify that for all the

networks with one inductor and one capacitor the realisability region is obtained as the

union of the realisability regions of the five-element networks which the network can

reduce to. An example is given in Figure 6.11.

Looking at the realisability region of the networks in the orbit shown in Figure 6.12,

and noting that it is symmetric with respect to the U = V bisector, suggests that these

networks are all equivalent to their p-transform. In fact, it can be shown that the net-

works in Figure 6.10 are equivalent. In particular, they are related by the transformation:

a′ =
T (a+ e+ f)

a(c+ f)
, b′ =

(a+ e+ f)2 b

(e+ f)2
, c′ =

(a+ e+ f)
[
T + e(a+ c)

]

(e+ f)2
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1

aZ1

bZ2 cZ1

eZ1

d Z3

f Z1

b0Z2 c0Z1

e0Z1

d0Z3

f 0Z1

a0Z1

Figure 6.10: New equivalence between RLC networks.

d′ =
d(a+ e+ f)2

[
T + e(a+ c)

]2

(T + ce)2 (e+ f)2
, e′ =

(a+ e+ f)2 Te

f(e+ f)(T + ce)
,

f ′ =
T (a+ e+ f)

[
T + e(a+ c)

]

c(e+ f)(T + ce)
, where T = ac+ af + cf

[
a =

a′c′f ′(e′ + f ′)
(a′ + e′ + f ′)T ′)

, b =
(a′)2 b′(c′ + f ′)2

(T ′)2
, c =

c′(c′ + f ′)(T ′ + c′e′)(a′)2

(T ′)2 (a′ + e′ + f ′)
,

d =
(a′)2 d′(c′ + f ′)2(T ′ + c′e′)2

(T ′)2
[
T ′ + e′(c′ + f ′)

]2 , e =
(a′)2 e′(c′ + f ′)2

T ′
[
T ′ + e′(c′ + f ′)

] ,

f =
(a′)2 f ′(c′ + f ′)(T ′ + c′e′)2

(a′ + e′ + f ′)T ′
[
T ′ + e′(c′ + f ′)

] , where T ′ = a′c′ + a′f ′ + c′f ′
]
,

for any real positive numbers a, b, etc, where Z1(s), Z2(s) and Z3(s) are arbitrary

impedances.

Therefore two new equivalences among RLC networks surfaced in this analysis: the

equivalence shown in Figure 6.7 and the one in Figure 6.10. These led to the new

equivalences shown in Figures 6.6 and 6.12 in the class of two-reactive, four-resistor

networks. Using numerical analysis it was shown that there are no further equivalences

in this class. Furthermore the two new equivalences did not cause any of the initial nine

subfamilies to coalesce. Hence we can state the following proposition.

Proposition 6.1. The 52 networks in the class of two-reactive, four-resistor networks

can be partitioned into 23 equivalence classes, which form nine subfamilies. (Table 6.1

provides more detail on the structure of the subfamilies.)
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Figure 6.11: Two-reactive, six-element network and corresponding realisability region,
for W = 0.5. Since the network is s-invariant, the region is the same for W = 2. Allowing
one of the four resistances to be zero or infinity leads to networks of equivalence classes
VI, V2

E, V3
E, V1

F and V2
G. It can be verified from the plots in Section 5.6 that the

realisability region shown above is the union of the realisability regions of the above-
mentioned five-element equivalence classes.
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Figure 6.12: Orbit of six-element networks related by a new equivalence.
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# Eq. classes # Orbits # Networks

Subfamilies
of RL/RC
networks

subf. 1 2 2 8
subf. 2 4 1 4
subf. 3 4 1 4
subf. 4 2 1 4

Subfamilies
of RLC
networks

subf. 5 2 5 14
subf. 6 2 2 8
subf. 7 2 1 2
subf. 8 4 1 4
subf. 9 1 1 4

Total 23 15 52

Table 6.1: Composition of each of the nine subfamilies within the class of two-reactive,
six-element networks.

6.7 Summary

In this chapter the main results on the classification of the Ladenheim catalogue were

presented and proven in a formal way. One of the key outcomes of this work was the

introduction of a new definition of generic network (which will be further explored in

Chapter 7) in terms of the dimension of the realisability set it defines, which allowed us

to prove that the Ladenheim catalogue forms the complete set of all essentially-distinct

generic networks with at most two reactive elements.

Other important results were presented here, including remarks regarding the well-

known Cauer-Foster transformation and on Kalman’s approach to the problem of passive

network synthesis, and the discovery of two new network equivalences.



Chapter 7

On a concept of genericity for

RLC networks

In this chapter we further develop the notion of generic network, introduced in Defi-

nition 6.2, which is of particular interest and importance in relation to the concept of

minimality. Notably, it is in general not known how to find an electric circuit to realise

an arbitrary given impedance function minimally (i.e. using the least possible number

of elements) [14, 34, 47]. Surprisingly, well-known networks which are apparently non-

minimal, such as the Bott-Duffin realisation and its simplifications, have in fact recently

been shown to be minimal for certain impedance functions [33,38].

In this context, the concept of genericity is useful in identifying networks which

do not fully exploit the degrees of freedom offered by the number of elements in the

network, and which will therefore inevitably lead to non-minimal realisations. In other

words, the realisability set of a non-generic network has a smaller dimension than the

dimension that the realisability set of a network with the same number of elements could

in principle have.

We provide here a necessary and sufficient condition for genericity of an RLC network

which can be efficiently tested in practice and which does not require the knowledge of

the realisability set of the network. The genericity concept is illustrated with several

examples throughout this chapter, and a series of useful lemmas and corollaries are pre-

sented. We conclude the chapter by proving that the Bott-Duffin networks are generic,

from which it follows that any positive-real impedance can be realised by a generic RLC

network.

95
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7.1 Preliminaries

We generalise here the notion of realisability set for an arbitrary two-terminal RLC

network. This notion was introduced in Section 4.3.1 for networks of the Ladenheim

catalogue, which all realise (at most) biquadratic impedances.

Consider an RLC two-terminal network N with m ≥ 1 elements (resistors, capac-

itors or inductors) and corresponding parameters E1, . . . , Em ∈ R>0. It follows from

Kirchhoff’s tree theorem [69, Section 7.2] that the driving-point impedance of N takes

the form

Z(s) =
fks

k + fk−1s
k−1 + · · ·+ f0

gksk + gk−1sk−1 + · · ·+ g0
(7.1)

where fi = fi(E1, . . . , Em), gj = gj(E1, . . . , Em) for 0 ≤ i, j ≤ k are polynomials in

E1, . . . , Em with non-negative integer coefficients, at least one gj is not identically zero,

and not both of fk and gk are identically zero. We refer to the integer k as the order

of the impedance, which cannot exceed the number of reactive elements in the network.

Consider also the candidate impedance function

Z(s) =
aks

k + ak−1s
k−1 + · · ·+ a0

bksk + bk−1sk−1 + · · ·+ b0
, (7.2)

where ai, bj ∈ R≥0 for 0 ≤ i, j ≤ k. For the equality of (7.1) and (7.2) it is necessary

and sufficient that
a0 = cf0(E1, . . . , Em),

...

ak = cfk(E1, . . . , Em),

b0 = cg0(E1, . . . , Em),
...

bk = cgk(E1, . . . , Em)





(7.3)

for some c > 0. We define the realisability set of N to be the set

S =
{

(a0, . . . , ak, b0, . . . , bk) such that (7.3) holds,

E1, . . . , Em ∈ R>0 and c ∈ R>0

}
.

Let x = (x1, . . . , xm+1) = (E1, . . . , Em, c) ∈ Rm+1
>0 and define the function h : Rm+1

>0 →
R2k+2
≥0 as follows:

h (x) = c (f0, . . . , fk, g0, . . . , gk)
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Then S is the image of Rm+1
>0 under h.

The set S can also be seen to be the projection onto the first 2k + 2 components of

the real semi-algebraic set

Sf =
{

(a0, . . . , ak, b0, . . . , bk, E1, . . . , Em, c) such that (7.3) holds,

E1, . . . , Em ∈ R>0 and c ∈ R>0

}

in R2k+m+3
≥0 . Hence S is a real semi-algebraic set using the Tarski-Seidenberg theorem [5].

We use the notation π{r1,...,rp}(·) to denote the projection of a real semi-algebraic set onto

the components with indices r1, . . . , rp. Thus, S = π{1,...,2k+2}(Sf ).

7.2 A necessary and sufficient condition for genericity

Considering the definition of dimension dim(S) of a semi-algebraic set S given in Sec-

tion 6.2, the following lemmas hold.

Lemma 7.1. For a semi-algebraic set S ⊂ Rn let π = π{r1,...,rp} for some indices

r1, . . . , rp with p < n. Then dim(π(S)) ≤ dim(S) [3, Lemma 5.30].

Lemma 7.2. Let N be an RLC two-terminal network with m ≥ 1 elements and realis-

ability set S. Then dim(S) ≤ m+ 1.

Proof. Given Ei,0 > 0 for 1 ≤ i ≤ m and c0 > 0 there exists ε > 0 such that Ei =

Ei,0 + εxi > 0 and c = c0 + εxm+1 > 0 for (x1, . . . , xm+1) ∈ (−1, 1)m+1. Hence there

is a smooth one-to-one mapping from (−1, 1)m+1 into some neighbourhood of any point

in Sf , which means that dim(Sf ) = m + 1. Note that this neighbourhood contains all

points in Sf that are sufficiently close to the given point in the Euclidean metric. Such a

neighbourhood in Sf is homeomorphic to the unit cube in Rm+1, hence to the unit sphere

in Rm+1, hence not homeomorphic to a unit sphere in any other dimension [29, Theorem

2.26]. The result now follows from Lemma 7.1.

Given an m-element network with network parameters E1, . . . , Em ∈ R>0 whose
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impedance takes the form (7.1), we now introduce the matrix D(E1, . . . , Em) defined by

D =




∂f0

∂E1
· · · ∂f0

∂Em
f0

...
...

...
∂fk
∂E1

· · · ∂fk
∂Em

fk
∂g0

∂E1
· · · ∂g0

∂Em
g0

...
...

...
∂gk
∂E1

· · · ∂gk
∂Em

gk




(7.4)

and note that the derivative of h is given by h′ = D diag(c, . . . , c, 1). We now prove a

necessary and sufficient condition for a network to be generic, according to the definition

of genericity introduced in Section 6.2.

Theorem 7.1. Let N be an RLC two-terminal network with m ≥ 1 elements and

realisability set S. Then N is generic if and only if there exists E0 = (E1,0, . . . , Em,0) ∈
Rm>0 such that rank(D(E0)) = m+ 1.

Proof. Assume that there exists E0 ∈ Rm>0 such that rank(D(E0)) = m+1 and note that

rank(h′(x0)) = m + 1 for x0 = (E0, c) for any c > 0. Let A be a square submatrix of

h′(x0) consisting of rows l1, . . . , lm+1 for which det(A) 6= 0. Let ĥ(x) be the restriction of

h(x) to the components l1, . . . , lm+1. Then, by the inverse function theorem [67, Theorem

9.24], ĥ(x) is a one-to-one mapping from a neighbourhood of x0 into Rm+1
>0 , which means

that h(x) is a smooth one-to-one mapping from a neighbourhood of x0 into S. Hence

dim(S) = m+ 1 which means that N is generic.

Conversely, assume that dim(S) = m+1. Then there exists x0 = (E1,0, . . . , Em,0, c0) ∈
Rm+1
>0 such that h(x) is a smooth one-to-one mapping from a neighbourhood of x0 into

S. Then there exists a smooth inverse w(y) from a neighbourhood of y0 = h(x0) within

S into a neighbourhood of x0. In particular w(h(x)) = x in a neighbourhood of x0.

Using the chain rule [67, Theorem 9.15] w′(y0)h′(x0) = I, so rank(h′(x0)) = m + 1.

Writing x0 = (E0, c) then rank(D(E0)) = m+ 1, which completes the proof.

Corollary 7.1. If an RLC two-terminal network N contains elements E1, . . . , Em ∈
R>0 and has impedance f(s)/g(s), then N is generic if and only if there exist E0 =

(E1,0, . . . , Em,0) ∈ Rm>0 such that, for x ∈ Rm+1,




∂f
∂E1

∂f
∂E2

· · · ∂f
∂Em

f

∂g
∂E1

∂g
∂E2

· · · ∂g
∂Em

g




E0

x = 0 ⇒ x = 0 . (7.5)
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Proof. It can be easily verified that the left-hand side of (7.5) yields two polynomials

in s whose coefficients are given by the rows of the vector Dx, where D is defined in

(7.4). In order for both polynomials to be zero, each coefficient of each power of s has

to be zero, from which we can conclude that the left-hand side of (7.5) is equivalent to

Dx = 0. By Theorem 7.1, the network N is generic if and only if the matrix D in (7.4)

is full column rank for some E1, . . . , Em ∈ R>0. This is equivalent to

x ∈ Rm+1 and Dx = 0 ⇒ x = 0 .

Therefore N is generic if and only if (7.5) holds for x ∈ Rm+1.

Corollary 7.2. Let N be a generic RLC network whose impedance takes the form of

(7.1). Then the number of resistors in N is less than or equal to k + 1.

Proof. Let n be the number of resistors in N and m be the total number of elements.

Then in order that rank(h′(x0)) = m+ 1 it is necessary that 2k+ 2 ≥ m+ 1. Given that

k ≤ m− n, the result follows.

7.3 Examples

The necessary and sufficient condition in Theorem 7.1, together with the necessary

condition in Corollary 7.2, provides an efficient way of verifying genericity of any given

RLC network which does not rely on obtaining the realisability set of the network.

Throughout this section we will say that rank(D) = p, where the general expression for

D is given in (7.4), if p = maxE1,...,Em∈R>0(rank(D(E1, . . . , Em))).

Example 7.1. The network in Figure 7.1 is a first trivial example of a non-generic

network. This can be verified through Corollary 7.2 or by considering that the network

can be reduced to a network consisting of a single resistor, which defines a realisability

set of dimension two.

1

Figure 7.1: A simple non-generic network.

Example 7.2. It was shown in Theorem 6.1 that the 108 networks in the Ladenheim

catalogue are all generic. We show in this example how this result can be verified using

the necessary and sufficient condition of Theorem 7.1.
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R1
C1

R3

R2
C2

1

Figure 7.2: Non-generic network.

In the derivation of the Ladenheim catalogue, a number of networks are discarded

because non-generic (see also Theorem 6.2). These comprise networks which contain a

series or parallel connection of the same type of component (which can each be shown to

be non-generic in a similar way to Example 7.1) and another 40 networks which also turn

out to be non-generic. An example of one of these 40 networks is shown in Figure 7.2.

The impedance of this network is a biquadratic, with

f2 = C1C2(R1R2 +R1R3 +R2R3) ,

f1 = C1(R1 +R3) + C2(R2 +R3) ,

f0 = 1 ,

g2 = C1C2(R2 +R3) ,

g1 = C1 ,

g0 = 0 .

Since g0 = 0, it follows that one row in the matrix D ∈ R6×6
≥0 is identically zero. Therefore

rank(D) ≤ 5 and from Theorem 7.1 the network is non-generic. It can also be seen,

through a Zobel transformation, that the network reduces to a generic four-element

network. An example of one of the remaining 108 generic networks in the canonical set

(network #95) is shown in Figure 7.3(a). The impedance of this network is a biquadratic

and it can be easily computed that the determinant of the matrix D ∈ R6×6
≥0 is equal to

− C1L1

(
C1R1R2(R1R2 +R2R3) + L1R3(R2 +R3)

)

×
(
C1R1R2(R2 + 2R3)(R1 +R3)− L1(R2 +R3)(2R1 +R3)

)
,

which is not identically zero, hence rank(D) = 6. Therefore, the network is generic by

Theorem 7.1 and defines a realisability set S of dimension six.

The four-element network in Figure 7.3(b) is another generic network from the Laden-

heim catalogue which realises a biquadratic impedance. The determinant of the 5 × 5
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C1 R1

L1

R2 R3

R1
C1

R2 L1

(a) (b)

1

Figure 7.3: Two generic networks (networks #95 and #97, respectively) from the Laden-
heim catalogue.

1

Figure 7.4: Non-generic network.

submatrix obtained from D ∈ R6×5
≥0 by removing the last row is equal to

R2C1(R1R2C1 − L1) ,

which is not identically zero, hence rank(D) = 5. Therefore, the network is generic by

Theorem 7.1 and defines a realisability set S of dimension five. Since all six impedance

coefficients are non-zero, this means that they must be interdependent. In fact we can

show that

(f2g0 + f0g2)(f2g0 + f0g2 − f1g1) + f0f2g
2
1 = 0 ,

as also derived in Table 5.10.

Example 7.3. By considering an additional resistor in the generic network of Fig-

ure 7.3(a) we obtain the network of Figure 7.4. This network is no longer generic, by

Corollary 7.2. In fact, it can be computed that the impedance is a biquadratic and that

D ∈ R6×7
≥0 , hence rank(D) ≤ 6. This network has been considered in [42], [93].

Example 7.4. The impedance of the three-reactive five-element network in Figure 7.5

(which has been analysed in [43]) is a bicubic, and D ∈ R8×6
≥0 in this case. The determi-
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R2
C2

L1

R1

C1

1

Figure 7.5: Three-reactive five-element generic network.

1

Figure 7.6: Three-reactive five-element non-generic network.

nant of the submatrix obtained by removing the last two rows of D is equal to

R3
1L

2
1C

2
1C

3
2 (R1R2C1 −R2

2C2 − L1) ,

which is not identically zero, hence rank(D) = 6. Therefore, the network is generic by

Theorem 7.1 and defines a realisability set of dimension six.

Example 7.5. The impedance of the three-reactive five-element network in Figure 7.6

is a biquadratic, with g0 = 0. This is an example where the order of the impedance k = 2

is strictly less than the number of reactive elements. It can be computed that D ∈ R5×6
≥0 ,

hence rank(D) ≤ 5 necessarily and the network is non-generic by Theorem 7.1.

Example 7.6. The seven-element network in Figure 7.7 (see Figure 3 in [33]) is another

example where the order of the impedance (k = 4) is strictly less than the number of

reactive elements in the network, as pointed out in [33]. This order reduction can be

seen from Kirchoff’s tree theorem (see [69, Section 7.2]) since there can be no spanning

tree of the network which contains all three capacitors. In this case D ∈ R10×8
≥0 and it

can be computed that the determinant of any square submatrix of D formed by deleting

any two rows is non-zero. Hence the network is generic and defines a realisability set of

dimension eight. Note that this means that an impedance of lower order than the number

of reactive elements in the network does not imply that the network is non-generic.
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1

Figure 7.7: Five-reactive element generic network from [33] of fourth order.

C3

L3

L1
C1

R1

L2

C2

R2

1

Figure 7.8: Bott-Duffin network for the realisation of a biquadratic.

Example 7.7. The network in Figure 7.8 has the same structure as the Bott-Duffin

construction for the biquadratic minimum function Z(s) with Z(jω1) = jω1X1, where

ω1 > 0 and X1 > 0 (see Section 2.5). Assuming that all network elements can vary

freely, it is interesting to see whether the network is generic. The network has eight

elements and its impedance is of order six, hence D ∈ R14×9
≥0 . It can be computed that

rank(D) = 9, hence the network is generic and defines a realisability set of dimension

nine. It can also be verified that by adding a resistor in series or in parallel to the

network in Figure 7.8 the resulting network is still generic (with a realisability set of

dimension ten).

7.4 Interconnection of generic networks

In this section we look at the genericity of interconnections of networks, and prove the

result that a non-generic subnetwork embedded within a network leads to non-genericity

of the overall network. A series of lemmas are also proven here, which help to show

the main result that the Bott-Duffin networks are generic, and hence any positive-real

impedance can be realised generically.
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N0 N 0

N

1

Figure 7.9: Two-terminal network N with a two-terminal subnetwork N ′.

Lemma 7.3. Consider an RLC two-terminal network N with the structure shown

in Figure 7.9, in which the network N0 comprises m ≥ 1 elements with parameters

E1, . . . , Em ∈ R>0 and the network N ′ comprises n ≥ 1 elements with parameters

Em+1, . . . , Em+n ∈ R>0. If the driving-point impedance of N ′ is f(s)/g(s), then the

impedance of N takes the form

Z(s) =
u(s)f(s) + v(s)g(s)

w(s)f(s) + x(s)g(s)
, (7.6)

where u(s), v(s), w(s) and x(s) are polynomials in s whose coefficients are polynomials

in E1, . . . , Em, while f(s) and g(s) are polynomials whose coefficients are polynomials

in Em+1, . . . , Em+n.

Proof. Let G be the undirected graph with edges corresponding to the network elements

E1, . . . , Em ofN and one edge corresponding to networkN ′. Let G̃ be the graph obtained

by connecting together the vertices corresponding to the driving-point terminals in G.

Denote by fG(s) the Laurent polynomial given by the sum over all spanning trees in

G of the product of the admittances of all edges in each spanning tree, and similarly

for f
G̃

(s). Then, by Kirchhoff’s matrix tree theorem, the impedance of N is equal to

f
G̃

(s)/fG(s) (see [69, Section 7.2]). Given that the admittance of one of the edges in G

and G̃ is g(s)/f(s), it follows that the impedance of N takes the form (7.6).

Theorem 7.2. Let N and N ′ be as in Lemma 7.3. If the subnetwork N ′ is non-generic

then N is non-generic.

Proof. Let f(s), g(s), u(s), v(s), w(s) and x(s) be as in Lemma 7.3. Then the impedance
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Z(s) = a(s)/b(s) of N takes the form (7.6), and we can write

(
a(s)

b(s)

)
= M

(
f(s)

g(s)

)
, (7.7)

where

M =

(
u(s) v(s)

w(s) x(s)

)

is a matrix of polynomials whose coefficients depend only on E = (E1, . . . , Em), while

f(s) and g(s) are polynomials whose coefficients depend on E′ = (Em+1, . . . , Em+n). By

Corollary 7.1, the network N is generic if and only if

x ∈ Rm+n+1 and Dx = 0 ⇒ x = 0 , (7.8)

where

D =




∂a
∂E1

· · · ∂a
∂Em+n

a

∂b
∂E1

· · · ∂b
∂Em+n

b




Ē

,

for some Ē = (Ē1, . . . , Ēm+n) ∈ Rm+n
>0 . Since M is independent of E′, it follows from

(7.7) that

D =
(
∗
∣∣MD′

)
Ē
,

where the first block of the matrix corresponds to the partial derivatives of a(s) up to

Em and

D′ =




∂f
∂Em+1

· · · ∂f
∂Em+n

f

∂g
∂Em+1

· · · ∂g
∂Em+n

g


 .

Since N ′ is non-generic, given any E′ ∈ Rn>0 there exists a real vector y 6= 0 such that

D′E′y = 0. It follows that, for any given Ē ∈ Rm+n
>0 , there exists 0 6= y ∈ Rn+1 such that

D

(
0

y

)
=
(
∗
∣∣MD′

)
Ē

(
0

y

)
= 0 ,

which contradicts (7.8). Therefore N is non-generic.

Corollary 7.3. A necessary condition for the series or parallel connection of two net-

works N1 and N2 to be generic is that N1 and N2 are generic.

Proof. This follows from Theorem 7.2.
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Remark 7.1. It is worth noting that the necessary condition in Corollary 7.3 is not suf-

ficient for a series connection of two networks to be generic. The networks in Figures 7.1

and 7.2 are simple examples of non-generic networks consisting of a series connection of

two generic networks.

Remark 7.2. By Theorem 7.2, we can conclude that any network containing a series

or parallel connection of the same type of component is non-generic. This allows us to

discard any such network from the canonical set in the Ladenheim catalogue, as discussed

in Example 7.2.

Lemma 7.4. Consider an RLC two-terminal network N with the structure shown in

Figure 7.10, where the subnetwork N1 is generic and does not have an impedance zero

at the origin. Then N is generic.

Proof. Let network N1 have impedance f(s)/g(s) of order n and network elements E =

(E1, . . . , Em) ∈ Rm>0. Then the impedance Z(s) = a(s)/b(s) of N is given by

Z(s) =
R(f(s) + sLg(s)) + sLf(s)

f(s) + sLg(s)
.

Since N1 is generic, it follows from Corollary 7.1 that

y ∈ Rm+1 and D1y = 0 ⇒ y = 0 , (7.9)

where

D1 =




∂f
∂E1

· · · ∂f
∂Em

f

∂g
∂E1

· · · ∂g
∂Em

g




E0

for some E0 = (E1,0, . . . , Em,0) ∈ Rm>0. To prove that N is generic we need to show

that, for x ∈ Rm+3,




∂a
∂R

∂a
∂L

∂a
∂E1

· · · ∂a
∂Em

a

∂b
∂R

∂b
∂L

∂b
∂E1

· · · ∂b
∂Em

b




Ē

x = 0 ⇒ x = 0 , (7.10)

for some Ē = (R̄, L̄, Ē1, . . . , Ēm) ∈ Rm+2
>0 . To show this, we let Ēi = Ei,0 (i = 1, . . . ,m)

and we pick R̄, L̄ ∈ R>0 arbitrarily. Then, since a(s) and b(s) depend on E1, . . . , Em

through f(s) and g(s), by the chain rule (7.10) is equivalent to




∂a
∂R

∂a
∂L

∂a
∂f

∂a
∂g

∂b
∂R

∂b
∂L

∂b
∂f

∂b
∂g




E0

(
I2 0

0 D1

)
x = 0 ⇒ x = 0 (7.11)
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R

L

N1

1

Figure 7.10: Two-terminal network with a generic subnetwork N1.

R

L

C N1

1

Figure 7.11: Two-terminal network with a generic subnetwork N1.

where I2 is the two-by-two identity matrix. Since (7.9) holds, it then suffices to show

that




∂a
∂R

∂a
∂L

∂a
∂f

∂a
∂g

∂b
∂R

∂b
∂L

∂b
∂f

∂b
∂g







u

v

w(s)

z(s)




= 0 ⇒




u

v

w(s)

z(s)




= 0 (7.12)

for any given real scalars u, v and polynomials w(s), z(s) of degree less than or equal to

n. The left-hand side of (7.12) yields the following two polynomial equations:

u(sLg(s) + f(s)) + v(Rg(s) + f(s))s+ w(s)(sL+R) + sRLz(s) = 0 (7.13)

svg(s) + w(s) + sLz(s) = 0 . (7.14)

Subtracting (7.14) multiplied by R from (7.13) we obtain

u(sLg(s) + f(s)) + vsf(s) + sLw(s) = 0 . (7.15)

We let s = 0 in (7.14) and (7.15) to conclude that w(0) = 0 and u = 0 (since f(0) 6= 0).

Equation (7.15) now reduces to vf(s) + Lw(s) = 0, and again by setting s = 0 we can

conclude that v = 0. Finally, w(s) = z(s) = 0 easily follows from (7.14) and (7.15). We

have therefore shown that (7.12) holds, hence N is generic.
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Lemma 7.5. Consider an RLC two-terminal network N with the structure shown in

Figure 7.11, where the subnetwork N1 is generic. Then N is generic.

Proof. Let network N1 have impedance f(s)/g(s) of order n and network elements E =

(E1, . . . , Em) ∈ Rm>0. Then the impedance Z(s) = a(s)/b(s) of N is given by

Z(s) =
Lsg(s) + (1 + αs2)f(s)

GLsg(s) + (1 + αs2)(Gf(s) + g(s))
,

where α = LC and G = 1/R. By Corollary 7.1, N is generic if and only if

x ∈ Rm+4 and Dx = 0 ⇒ x = 0 , (7.16)

where

D =




∂a
∂G

∂a
∂L

∂a
∂α

∂a
∂E1

· · · ∂a
∂Em

a

∂b
∂G

∂b
∂L

∂b
∂α

∂b
∂E1

· · · ∂b
∂Em

b




E0

,

for some E0 = (G0, L0, α0, E1,0, . . . , Em,0) ∈ Rm+3
>0 . By the same argument as Lemma 7.4,

applying the chain rule we can conclude that (7.16) holds if, for any given (E1, . . . , Em) ∈
Rm>0, there exist G,L ∈ R>0 such that the following holds




∂a
∂G

∂a
∂L

∂a
∂α

∂a
∂f

∂a
∂g

∂b
∂G

∂b
∂L

∂b
∂α

∂b
∂f

∂b
∂g







u

v

w

y(s)

z(s)




= 0 ⇒




u

v

w

y(s)

z(s)




= 0 (7.17)

for any given real scalars u, v, w and polynomials y(s), z(s) of degree less than or equal

to n. The left-hand side of (7.17) yields the following two polynomial equations:

sg(s)v + s2f(s)w + (1 + αs2)y(s) + Lsz(s) = 0 , (7.18)

sg(s)(Lu+Gv + sw) + sG(sf(s)w + Lz(s))

+ (1 + αs2)(f(s)u+Gy(s) + z(s)) = 0 . (7.19)

Subtracting (7.18) multiplied by G from (7.19) we obtain

Lsg(s)u+ (1 + αs2)(f(s)u+ z(s)) + s2g(s)w = 0 . (7.20)

Since g(s) cannot vanish identically on the imaginary axis, then we can pick α > 0 such



Interconnection of generic networks 109

R

C

N1

L

N d
1

| {z }
f(s)/g(s)

| {z }
f̂(s)/ĝ(s)

1

Figure 7.12: Two-terminal network with generic subnetworks N1 and N d
1 .

that g(j/
√
α) 6= 0. Substituting s = j/

√
α in (7.20) we obtain g(j/

√
α)(Lju−w/√α) =

0, the only real solution of which is u = w = 0. From (7.20) it now follows that z(s) = 0.

Equation (7.18) now reduces to

sg(s)v + (1 + αs2)y(s) = 0

from which we conclude, by substituting s = j/
√
α, that v = 0. From the same equation

we then conclude that y(s) = 0. We have therefore shown that (7.17) holds, hence N is

generic.

Lemma 7.6. Let N be an RLC network and N d its dual network. If N is generic then

so is N d.

Proof. Let N have impedance f(s)/g(s) and network elements E1, . . . , Em. Then N d

will have impedance f̂(s)/ĝ(s) = g(s)/f(s) and network elements Ê1, . . . , Êm such that

f(s, E1, . . . , Em) = ĝ(s, Ê1, . . . , Êm) and g(s, E1, . . . , Em) = f̂(s, Ê1, . . . , Êm). We can

then easily conclude by applying Corollary 7.1 that if N is generic then also N d is

generic.

Lemma 7.7. Let N be an RLC two-terminal network with the structure shown in Fig-

ure 7.12, where the network N1 is generic and has no impedance pole at the origin, and

N d
1 denotes its dual. Then N is generic.

Proof. Let network N1 have element values E = (E1, . . . , Em) ∈ Rm>0, and let its dual

N d
1 have element values Ê = (Ê1, . . . , Êm) ∈ Rm>0. Since N1 is generic, by Corollary 7.1

we can find element values E0 = (E1,0, . . . , Em,0) such that

t1 ∈ Rm+1 and D1t1 = 0 ⇒ t1 = 0 , (7.21)
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where

D1 =




∂q
∂E1

· · · ∂q
∂Em

q

∂d
∂E1

· · · ∂d
∂Em

d




E0

, (7.22)

and such that, if the impedance of N1 is q(s)/d(s), q(s) and d(s) are coprime. By taking

the network dual of N1, we then obtain element values Ê0 = (Ê1,0, . . . , Êm,0) for N d
1

such that

t2 ∈ Rm+1 and D2t2 = 0 ⇒ t2 = 0 , (7.23)

where

D2 =




∂d
∂Ê1

· · · ∂d
∂Êm

d

∂q

∂Ê1
· · · ∂q

∂Êm
q




Ê0

, (7.24)

with the resulting impedance of N d
1 being d(s)/q(s).

Let Z(s) = a(s)/b(s) be the impedance of the network in Figure 7.12. Then Z(s)

may be written as

Z(s) =
a(s)

b(s)
=
f(s)

g(s)
+
f̂(s)

ĝ(s)
(7.25)

=
d(s)R+ q(s)(1 + sRC)

d(s) + sCq(s)
+

sLd(s)

d(s) + sLq(s)
,

where f(s)/g(s) and f̂(s)/ĝ(s) are the impedances of the two subnetworks indicated in

Figure 7.12. From the expressions in (7.25) we see that, if L 6= C, then g(s) and ĝ(s) are

necessarily coprime, since d(0) 6= 0 by assumption and q(s) and d(s) are coprime. We

can also easily see from (7.25) that f̂(0) = 0, ĝ(0) 6= 0, f(0) 6= 0, g(0) 6= 0. Furthermore,

denoting deg(g(s)) by n, then deg(ĝ(s)) = n and deg(f(s)), deg(f̂(s)) ≤ n.

We will now show that,

x ∈ R2m+4 and Dx = 0 ⇒ x = 0 , (7.26)

where

D =




∂a
∂R

∂a
∂C

∂a
∂E1

· · · ∂a
∂Em

∂a
∂L

∂a
∂Ê1

· · · ∂a
∂Êm

a

∂b
∂R

∂b
∂C

∂b
∂E1

· · · ∂b
∂Em

∂b
∂L

∂b
∂Ê1

· · · ∂b
∂Êm

b


 , (7.27)

for element values E0, Ê0, R0, L0, C0, where L0 6= C0. By the chain rule, D may be
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expressed as

D =



∂a
∂f

∂a
∂g

∂a
∂f̂

∂a
∂ĝ

∂b
∂f

∂b
∂g

∂b
∂f̂

∂b
∂ĝ




E0,R0,C0,Ê0,L0︸ ︷︷ ︸
M

(
Q1 0

0 Q2

)

︸ ︷︷ ︸
N

, (7.28)

where

Q1 =




∂f
∂R

∂f
∂C

∂f
∂E1

· · · ∂f
∂Em

∂g
∂R

∂g
∂C

∂g
∂E1

· · · ∂g
∂Em




E0,R0,C0

,

Q2 =




∂f̂
∂L

∂f̂

∂Ê1
· · · ∂f̂

∂Êm
f̂

∂ĝ
∂L

∂ĝ

∂Ê1
· · · ∂ĝ

∂Êm
ĝ




Ê0,L0

. (7.29)

We therefore need to show that

x ∈ R2m+4 and Dx = MNx = 0 ⇒ x = 0 . (7.30)

Consider a fixed but arbitrary x ∈ R2m+4, let y = Nx, and note that y takes the form

(u(s), v(s), w(s), z(s)), where u(s), v(s), w(s), z(s) are polynomials of degree less than

or equal to n and w(0) = 0 (since f̂(0) = 0). We will first show that if My = 0 then

y = α(f(s), g(s),−f̂(s),−ĝ(s)) for some real constant α. The matrix equation My = 0

yields the following two polynomial equations:

ĝ(s)u(s) + f̂(s)v(s) + g(s)w(s) + f(s)z(s) = 0 , (7.31)

ĝ(s)v(s) + g(s)z(s) = 0 . (7.32)

Equation (7.32) can be written as z(s)/v(s) = −ĝ(s)/g(s), from which we conclude that

v(s) = αg(s) for some real constant α, since g(s) and ĝ(s) are coprime polynomials with

deg(g(s)) = deg(ĝ(s)) = n, while deg(v(s)), deg(z(s)) ≤ n. From (7.32) it then follows

that z(s) = −αĝ(s). Equation (7.31) now reduces to

ĝ(s)(u(s)− αf(s)) + g(s)(w(s) + αf̂(s)) = 0 . (7.33)

We recall that w(0) = f̂(0) = 0 and ĝ(0) 6= 0. Therefore, for s = 0, (7.33) yields

ĝ(0)(u(0)−αf(0)) = 0, from which we conclude that u(s)−αf(s) is divisible by s. But

by writing (7.33) as

w(s) + αf̂(s)

u(s)− αf(s)
= − ĝ(s)

g(s)
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we can conclude that u(s) − αf(s) is also divisible by g(s), since g(s) and ĝ(s) are

coprime and deg(u(s)− αf(s)) ≤ n. Therefore u(s)− αf(s) is divisible by sg(s) (which

has degree n+ 1), from which it follows that u(s) = αf(s) necessarily. Equation (7.31)

finally gives w(s) = −αf̂(s).

At this point we have shown that

x ∈ R2m+4 and MNx = 0 ⇒ Nx = α




f(s)

g(s)

−f̂(s)

−ĝ(s)



. (7.34)

If we partition x into two vectors x1 and x2 each of dimension m + 2, the right-hand

side of (7.34) may be written as

(
Q1 0

0 Q2

)(
x1

x2

)
− α




f(s)

g(s)

−f̂(s)

−ĝ(s)




= 0 ,

which is equivalent to

(
Q1

f(s)

g(s)

)(
x1

−α

)
= 0 , (7.35)

(
Q2

−f̂(s)

−ĝ(s)

)(
x2

−α

)
= 0 . (7.36)

It follows from (7.21)–(7.24) and the proof of Lemma 7.4 that

t1 ∈ Rm+3 and

(
Q1

f(s)

g(s)

)
t1 = 0 ⇒ t1 = 0 ,

and t2 ∈ Rm+2 and Q2t2 = 0 ⇒ t2 = 0 .

Therefore we can conclude from (7.35) that x1 = 0, α = 0 and from (7.36) that x2 = 0.

Therefore (7.30) holds and, by Corollary 7.1, the network N is generic.

Remark 7.3. Lemma 7.7 may be generalised to the series connection of two RLC

two-terminal networks N1 and N2. Namely, under the following assumptions we may

conclude that the series connection of N1 and N2 is generic:
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• The two networks are generic;

• One of the two networks has an impedance zero at the origin, and the other does

not;

• The two networks do not have any coincident impedance poles for almost all ele-

ment values.

We now have all the ingredients to present a proof of the genericity of the Bott-

Duffin networks. We note that, if the impedance function Z(s) is a biquadratic, then

the Bott-Duffin method leads to a generic network with the structure of Figure 7.8, as

already discussed in Example 7.7. However, it remains to consider the cases for which

the impedance is not biquadratic.

Theorem 7.3. Any positive-real impedance can be realised by a generic RLC network.

Proof. The Bott-Duffin theorem states that any positive-real impedance function can be

realised by an RLC network (see Section 2.5). It therefore suffices to show that each of

the steps involved in the construction of such a network N preserves genericity (see [27]

for a textbook explanation of the Bott-Duffin procedure).

To obtain a network N to realise an arbitrary given positive-real function Z(s), the

steps in the Bott-Duffin procedure (coupled with the so-called Foster preamble) are as

follows:

1. Subtract any imaginary axis impedance poles (resulting in an impedance of lower

order).

2. Subtract a constant equal to the smallest value of Re(Z(jω)) for ω ∈ R ∪ ∞,

resulting in a network whose impedance Ẑ(s) has no imaginary axis impedance

poles and satisfies one of the following properties:

(a) Ẑ(s) has an admittance pole at the origin or at infinity;

(b) Ẑ(s) has an admittance pole elsewhere on the imaginary axis;

(c) Ẑ(s) is a minimum function.

In each case, the impedance can then be reduced to one of lower order.

The network realisations corresponding to cases 1, 2a, 2b and 2c each take the form

of one of the networks in Figures 7.10–7.12, or can be obtained from such networks

through a combination of frequency inversion and duality transformations (in certain
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cases it is necessary to replace the resistor by a short or open circuit). That genericity

is preserved in each case can be shown using Lemmas 7.4–7.7 and minor modifications

thereof. The Bott-Duffin procedure continues inductively until the resulting impedance

has order zero. This final impedance can be realised by a single resistor, which itself

is generic. This establishes the genericity of all of the other networks in the inductive

procedure, whereupon we conclude that N is generic.

7.5 Summary

In this chapter we have further developed the notion of a generic network, that is a

network which realises a set of impedance parameters of dimension one more than the

number of elements in the network. A necessary and sufficient condition was provided

to test the genericity of any given network without requiring the knowledge of its real-

isability set, and was applied to a series of illustrative examples. This test can prove

to be particularly useful in the analysis of high-order networks, for which obtaining re-

alisability conditions expressed in a meaningful way is a virtually impossible task—for

example, a new equivalence might simplify a given network, thus making it not suitable

as a candidate for a network synthesis problem. Finally, we proved that a network with

a non-generic subnetwork is itself non-generic, and that any positive-real impedance can

be realised by a generic network.

This chapter is the result of work carried out in collaboration with T.H. Hughes.

This work was presented in [35] and submitted for publication in [36].



Chapter 8

Conclusions

The main focus of this dissertation has been on obtaining a complete understanding of

the enumerative approach to passive network synthesis in the simplest non-trivial case,

which led to further, more general results being obtained. Some useful notions were first

introduced for the formal classification of the class of networks comprising at most two

reactive elements and at most three resistors—the networks of the Ladenheim catalogue.

Based on the analysis of this fundamental class of networks, a number of results were

proven and a new notion of genericity was introduced, which proves to be useful in

addressing questions of minimality in RLC networks.

We summarise below the main contributions of the dissertation.

8.1 Contributions of the dissertation

• Chapter 4 described a formal derivation of the Ladenheim catalogue. Before this

fresh derivation, no summary of the procedure to obtain the set of 108 networks

exsisted in the literature, and no guarantee that the enumeration carried out in

[52] was error-free. A formal notion of “realisability set” was introduced as a

semi-algebraic set in the space of impedance parameters in order to compare the

realisation power of all the networks. A previous notion of “network quartet” was

replaced by the orbits induced by the group actions s (frequency inversion) and p

(circuit dual without element dual), together with d (dual) and e (identity). The

use of s and p as the primary representatives is new in the present work and was

suggested by the more convenient grouping of the equivalence classes within the

subfamilies.

Together with the notion of equivalence, a systematic analysis of the class of net-

115
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works was made possible. This approach was presented in as formal a way as

possible, in order for it to be generalisable to other classes of networks of restricted

complexity. A possible generalisation of this approach was in fact outlined in

Chapter 6, where the class of six-element networks with four resistors was studied.

• The notions of equivalence and group action allowed an initial partition of the

catalogue into 24 subfamilies, outlined in Chapter 5. Expressions for the net-

work parameters for one representative network in each subfamily were obtained,

and necessary and sufficient conditions on the impedance coefficients were derived

which guarantee positivity of the network parameters. These conditions were ob-

tained from “realisation theorems” for the five-element networks, and were proven

in Appendix A. All algebraic manipulations in the proofs were verified in Maple.

Despite realisability conditions having already been derived for some networks in

the catalogue in [43] and [16], realisability conditions for most of the networks

were still not known, and the issue of the multiplicity of solutions had not been

addressed in some of the existing derivations.

The structure that emerged from the realisability analysis was summarised in Fig-

ures 5.1 and 5.2, which provide a useful diagrammatic representation of the various

relations which connect the 108 networks.

• Knowing the realisability conditions for all the networks in the Ladenheim cata-

logue, it was possible to settle a number of outstanding questions in Chapter 6,

and to provide formal proofs to a series of results. Namely, it was shown that no

new equivalences exist within the catalogue that were not known classically, and

the question of the smallest generating set for the class was settled. It was also

shown that the classical Cauer and Foster forms are almost but not completely

equivalent, and may be termed quasi-equivalent. It was further shown that the

catalogue comprises 62 equivalence classes, arranged in subfamilies which repre-

sent the “join” of the two equivalence relations given by the group action and

network equivalence.

A new notion of generic network was introduced, based on the dimension of the

realisability set that the network defines. It was shown that the Ladenheim cata-

logue forms the complete set of generic, two-terminal RLC networks with at most

two reactive elements.

Other useful results stemmed from the analysis of the catalogue, namely it was

proven that the property of invariance to duality in networks can occur indepen-
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dently of invariance to frequency inversion and p transformation, and two new

equivalences between RLC networks were identified in the study of six-element,

four-resistive networks.

• A necessary and sufficient condition for the genericity of an arbitrary two-terminal

RLC network was proven in Chapter 7. This provided an efficient way to test

whether a network can only lead to non-minimal realisations which does not re-

quire deriving the realisability set of the network itself (which can be a virtually

impossible task for higher-order networks). It was proven that any network with

a non-generic subnetwork is necessarily non-generic, and that any positive-real

impedance has a generic realisation, which is obtained through the Bott-Duffin

method. The contributions of this chapter were the result of joint work with T.H.

Hughes.

8.2 Directions for future research

• In Section 6.5 it was proven that the networks in Figure 6.8 are not equivalent,

by searching for an impedance which is realisable by one network and not by the

other. It would be useful to obtain a more formal procedure that can be automated

to check the equivalence of any two given networks. A conjecture in this regard is

that a necessary condition for two generic networks to be equivalent is that they

have the same total number of elements, and more specifically the same number

of each type of element.

• The so-called “structure-imittance” approach was introduced in [92], in the context

of mechanical network synthesis. This approach seeks an optimal network config-

uration and element values among all networks with a certain number of springs,

dampers and inerters, while also allowing constraints on the element values. The

case of networks with one damper, one inerter and at most two springs is analysed

in [92]. This approach represents a different way to enumerate circuits, and it

would be interesting to see how it relates to the results that were obtained for the

Ladenheim catalogue (i.e. considering networks with one spring, one inerter and

at most three dampers, in mechanical terms).

• The next class of networks that one could analyse in terms of complexity would

be the set of all generic networks with three reactive elements and at most four

resistors. A complete enumeration of the networks in this class has never been
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attempted, and very few studies exist in the literature on impedance functions of

order three (bicubics), with the exception of some special subclasses. We note that

such a classification would prove to be considerably harder than the biquadratic

case, due to both the much larger number of networks in the class and the increased

complexity in deriving realisability conditions. A classification of this class might

lead, however, to new network equivalences being discovered and other general

results in passive network synthesis being established.



Appendix A

Realisation theorems

A.1 Equivalence class IV1
B

1

R1

L1

R2

L2

Fig. 0.1: Network #38, from group IVB. By Lemma 8 in [?] it can only realise regular impedances.

R3

L2

R2

R1

L1

Fig. 0.2: Network #52, from group VA. By Theorem 1 in [?] it can only realise regular impedances.

R2

L2

R3

R1 L1

Fig. 0.3: Network #59, from group VB. By Theorem 1 in [?] it can only realise regular impedances.

L2 R2

L1

R3 R1

Fig. 0.4: Network #60, from group VC. By Lemma 3 in [?] it can only realise regular impedances.

Figure A.1: Network #38, from subfamily IVB. By Lemma 8 in [43] it can only realise
regular impedances.

Theorem A.1. Let A, B, C, D, E, F ≥ 0. The positive-real biquadratic impedance

(4.1) can be realised as in Figure A.1, with R1, R2, L1 and L2 positive and finite, if and

only if

A,B,D,E, F > 0 (A.1)

C = 0 , (A.2)

and either

K < 0 (A.3)

or

K = 0 and E2 − 4DF = 0 , (A.4)

where K is defined in (3.3). If condition (A.3) is satisfied, then R1 and R2 are the two
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roots of the quadratic equation in x

−D(E2 − 4DF )x2 +A(E2 − 4DF )x+ (A2F −ABE +B2D) = 0 , (A.5)

while, if (A.4) holds, then R1 and R2 are any two positive values such that R1 + R2 =

A/D. The two inductances can be obtained as

L1 =
R1(B − ER2)

F (R1 −R2)
, (A.6)

L2 =
R2(B − ER1)

F (R2 −R1)
, (A.7)

if R1 6= R2, and as the two roots of the quadratic equation in y

2EF y2 − 2BE y +AB = 0 (A.8)

if R1 = R2. Due to the symmetry of the network, the two solutions of the quadratic do

not lead to two properly distinct solutions.

Proof. Necessity. The impedance of the network shown in Figure A.1 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.9)

where

n(s) = L1L2(R1 +R2)s2 +R1R2(L1 + L2)s ,

d(s) = L1L2s
2 + (L1R2 + L2R1)s+R1R2 .

Equating impedance (A.9) with (4.1) we obtain, for a positive constant k,

L1L2(R1 +R2) = kA , (A.10)

R1R2(L1 + L2) = kB , (A.11)

0 = kC , (A.12)

L1L2 = kD , (A.13)

L1R2 + L2R1 = kE , (A.14)

R1R2 = kF , (A.15)

which are a set of necessary and sufficient conditions for (4.1) to be realised as in Fig-
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ure A.1. It can be calculated that

K = −k−4 L1L2R
2
1R

2
2(L1R2 − L2R1)2 ≤ 0 , (A.16)

E2 − 4DF = k−2 (L1R2 − L2R1)2 ≥ 0 , (A.17)

from which we can conclude that

K = 0 ⇔ E2 − 4DF = 0 ⇔ L1R2 = L2R1 , (A.18)

hence (A.1)–(A.4) are necessary.

Sufficiency. We now assume that (A.1)–(A.2) hold and either (A.3) or (A.4). We

show that we can find R1, R2, L1, L2 positive which satisfy (A.10)–(A.15) with k > 0.

Eliminating R1R2 from (A.11) and (A.15) we obtain

L2 = B/F − L1 , (A.19)

and from (A.14) and (A.19) we then obtain

k =
L1R2 + L2R1

E
=
FL1(R2 −R1) +BR1

EF
. (A.20)

Substituting (A.20) into (A.15) and solving for L1 we obtain (A.6), and from (A.19)

and (A.6) we obtain (A.7), providing R1 6= R2 (which we assume for the time being).

Eliminating L1L2 from (A.10) and (A.13) we obtain

R2 = A/D −R1 . (A.21)

Substituting the values thus obtained for L1, L2, R2 and k into (A.13) we get the

quadratic (A.5) in R1, and we note from the expression in Table 5.9 that

K|C=0 = F (A2F −ABE +B2D) , (A.22)

which is the third coefficient in (A.5). It is easily seen that the sum of the two roots

of (A.5) is A/D, hence R2 can be obtained as the other root of the same quadratic, as

stated in the theorem.

It can be easily verified that

A2(E2 − 4DF ) = (AE − 2BD)2 − 4DK/F , (A.23)
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hence condition (A.3) implies E2 − 4DF > 0. We can therefore conclude that, if (A.3)

holds, the first and third coefficients in (A.5) are strictly negative, while the second

coefficient is strictly positive. It also follows from E2 − 4DF > 0 that the discriminant

of (A.5),

∆x = (E2 − 4DF )(AE − 2BD)2 ,

is greater than or equal to zero, hence the quadratic has two real positive roots. Since we

are assuming R1 6= R2, the discriminant will necessarily be non-zero, hence AE−2BD 6=
0 in this case. We finally verify that the values obtained from (A.6) and (A.7) for L1

and L2 are always positive. Since R1 and R2 are the two distinct roots of the quadratic

(A.5), L1 and L2 will be positive if B/E lies strictly between the two roots of (A.5)

(from the expressions in (A.6) and (A.7)). This is true providing

−D(E2 − 4DF )x2 +A(E2 − 4DF )x+ (A2F −ABE +B2D) > 0 (A.24)

for x = B/E. After some manipulation, inequality (A.24) can be reduced to F (AE −
2BD)2/E > 0, which holds in this case.

If R1 6= R2 and conditions (A.4) hold, then all the coefficients in (A.5) are zero and

any value of x solves the quadratic. Therefore R1 can be chosen arbitrarily, providing

R2 = A/D − R1 > 0. From (A.23), conditions (A.4) imply AE − 2BD = 0. It was ob-

served above that L1 and L2 are positive if B/E lies strictly between the two resistances.

Without loss of generality we can assume R1 < R2 and, since R1 +R2 = A/D, it follows

that R1 < A/(2D) < R2. Since A/(2D) = B/E it then follows that R1 < B/E < R2,

hence L1 and L2 are positive. We have therefore shown that (A.10)–(A.15) can be sat-

isfied for R1, R2, L1, L2 > 0 (under the assumption that R1 6= R2 and either (A.3) or

(A.4) hold).

We now turn to the case that R1 = R2. Equations (A.19) and (A.20) still hold,

and eliminating L1L2 from (A.10) and (A.13) we obtain R1 = R2 = A/(2D). Equation

(A.15), for R1 = R2, results in the identity

AE − 2BD = 0 . (A.25)

Substituting the values thus obtained for R1, R2, L2 and k into (A.13) we obtain the

quadratic (A.8) in L1. It can be easily seen that the sum of the two roots of (A.8) is

B/F , hence L2 can also be obtained as a root of (A.8)1. It can also be easily verified

1Again we note that, since R1 = R2, swapping the order of the inductors does not lead to two properly
distinct solutions.
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that

A(2AF −BE) = 2K/F +B(AE − 2BD)

which, by virtue of (A.25), reduces to A(2AF − BE) = 2K/F . The discriminant of

(A.8),

∆y = −4BE(2AF −BE) = −8BEK/(AF ) ,

is therefore greater than or equal to zero, if either (A.3) or (A.4) hold. Given the signs

of the coefficients in (A.8), we can therefore conclude that the two roots of the quadratic

are positive and real. We finally note that replacing x = A/(2D) in the quadratic (A.5)

we obtain (AE − 2BD)2/(4D), which by virtue of (A.25) is zero. Hence, even in this

case R1 and R2 can be obtained as the two roots of (A.5).

A.2 Equivalence class V1
A

1

R1

L1

R2

L2

Fig. 0.1: Network #38, from group IVB. By Lemma 8 in [?] it can only realise regular impedances.

R3

L2

R2

R1

L1

Fig. 0.2: Network #52, from group VA. By Theorem 1 in [?] it can only realise regular impedances.

R2

L2

R3

R1 L1

Fig. 0.3: Network #59, from group VB. By Theorem 1 in [?] it can only realise regular impedances.

L2 R2

L1

R3 R1

Fig. 0.4: Network #60, from group VC. By Lemma 3 in [?] it can only realise regular impedances.

Figure A.2: Network #52, from subfamily VA. By Theorem 1 in [43] it can only realise
regular impedances.

Theorem A.2. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.2, with R1, R2, R3, L1 and L2 positive and finite,

if and only if

AF − CD > 0 , (A.26)

K < 0 . (A.27)

If conditions (A.26) and (A.27) are satisfied, then

R1 =
−K
Dλ1

, (A.28)
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R2 =
(BF − CE)2

Fλ1
, (A.29)

R3 =
C

F
, (A.30)

L1 =
−K(BF − CE)

λ2
1

, (A.31)

L2 =
BF − CE

F 2
. (A.32)

where λ1 and K are defined in Table 5.9.

Proof. Note this result is given without proof in [43, Appendix A], with R1 and R3

interchanged. We provide here a proof for convenience.

Necessity. The impedance of the network shown in Figure A.2 is a biquadratic, which

can be computed as

Z(s) =
n(s)

d(s)
, (A.33)

where

n(s) = L1L2(R1 +R2 +R3)s2 +
(
L1R3(R1 +R2) + L2R1(R2 +R3)

)
s+R1R2R3 ,

d(s) = L1L2s
2 +

(
L2R1 + L1(R1 +R2)

)
s+R1R2 .

Equating impedance (A.33) with (4.1), we obtain, for a positive constant k,

L1L2(R1 +R2 +R3) = kA , (A.34)

L1R3(R1 +R2) + L2R1(R2 +R3) = kB , (A.35)

R1R2R3 = kC , (A.36)

L1L2 = kD , (A.37)

L2R1 + L1(R1 +R2) = kE , (A.38)

R1R2 = kF , (A.39)

which are a set of necessary and sufficient conditions for (4.1) to be realised as in Fig-

ure A.2. It can be calculated that

AF − CD = k−2 R1R2L1L2 (R1 +R2) > 0 , (A.40)

K = −k−4 R4
1R

2
2L1L

3
2 < 0 , (A.41)
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hence (A.26) and (A.27) are necessary.

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0 satis-

fying conditions (A.26) and (A.27) we now show that we can find R1, R2, R3, L1, L2

positive which satisfy (A.34)–(A.39) with k > 0.

From (A.39) we obtain k = R1R2/F and eliminating the term R1R2 from (A.36) and

(A.39) we get (A.30). Eliminating L1 from (A.35) and (A.38) we obtain (A.32), while

eliminating the term L1L2 from (A.34) and (A.37) and solving for R2 we get

R2 =
AF − CD −DFR1

DF
. (A.42)

Solving for L1 from (A.37) using expressions obtained we find:

L1 =
R1 (AF − CD −DFR1)

BF − CE . (A.43)

We now have expressions for R2, R3, L1, L2 and k which only contain R1 together with

A, B, C, D, E, F . Substituting such expressions into (A.38) and solving for R1 we

obtain (A.28) and, substituting the latter into (A.42) and (A.43), we get (A.29) and

(A.31), respectively.

Conditions (A.26) and (A.27) imply BF − CE > 0, from which it can be shown,

using again (A.26) and (A.27), that λ1 > 0 (note this also follows from [43, Lemma 7]).

Hence all network elements are positive.

A.3 Equivalence class V1
B

1

R1

L1

R2

L2

Fig. 0.1: Network #38, from group IVB. By Lemma 8 in [?] it can only realise regular impedances.

R3

L2

R2

R1

L1

Fig. 0.2: Network #52, from group VA. By Theorem 1 in [?] it can only realise regular impedances.

R2

L2

R3

R1 L1

Fig. 0.3: Network #59, from group VB. By Theorem 1 in [?] it can only realise regular impedances.

L2 R2

L1

R3 R1

Fig. 0.4: Network #60, from group VC. By Lemma 3 in [?] it can only realise regular impedances.

Figure A.3: Network #59, from subfamily VB. By Theorem 1 in [43] it can only realise
regular impedances.

Theorem A.3. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.3, with R1, R2, R3, L1 and L2 positive and finite,
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if and only if

AF − CD > 0 (A.44)

and either

K < 0 (A.45)

or

K = 0 and E2 − 4DF = 0 , (A.46)

where K is defined in (3.3). In case (A.45), R2 is either of the two positive roots of the

quadratic equation in x

c1 x
2 + c2 x+ c3 = 0 , (A.47)

where

c1 = −DF (E2 − 4DF ) ,

c2 = (E2 − 4DF )(AF − CD) ,

c3 = K ,

while, in case (A.46), R2 may take any positive value strictly less than (AF − CD)/(DF ).

The other network elements are given by

R3 = A/D −R2 , (A.48)

R1 =
CR3

FR3 − C
, (A.49)

L1 =
D(R1R2 +R2R3 −R2

3)

B − ER3
, (A.50)

L2 =
DR2(R1 +R3)

FL1
, (A.51)

unless R2 = (AE − BD)/(DE), in which case L1 is either of the two positive roots of

the quadratic equation in y

d1 y
2 + d2 y + d3 = 0 , (A.52)

where

d1 = E2F (BF − CE)2 ,

d2 = −B2E2F (BF − CE) ,

d3 = B4DF ,

and the other elements are still given by (A.48)–(A.49) and (A.51).
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Proof. Necessity. The impedance of the network shown in Figure A.3 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.53)

where

n(s) = L1L2(R2 +R3)s2 +
(
L1R2R3 + L2(R1R2 +R1R3 +R2R3)

)
s+R1R2R3 ,

d(s) = L1L2s
2 +

(
L1R2 + L2(R1 +R3)

)
s+R2(R1 +R3) .

Equating impedance (A.53) with (4.1), we obtain, for a positive constant k,

L1L2(R2 +R3) = kA , (A.54)

L1R2R3 + L2(R1R2 +R1R3 +R2R3) = kB , (A.55)

R1R2R3 = kC , (A.56)

L1L2 = kD , (A.57)

L1R2 + L2(R1 +R3) = kE , (A.58)

R2(R1 +R3) = kF , (A.59)

which are a set of necessary and sufficient conditions for (4.1) to be realised as in Fig-

ure A.3. It can be calculated that

AF − CD = k−2 L1L2R2(R1R2 +R2R3 +R2
3) > 0 , (A.60)

K = −k−4 L1L2R
2
2R

2
3(L1R2 − L2(R1 +R3))2 ≤ 0 , (A.61)

E2 − 4DF = k−2 (L1R2 − L2(R1 +R3))2 ≥ 0 , (A.62)

and from (A.61) and (A.62) we can conclude that

K = 0 ⇔ E2 − 4DF = 0 ⇔ L1R2 = L2(R1 +R3) ,

hence (A.44)–(A.46) are necessary.

Sufficiency. We now assume that (A.44) and either (A.45) or (A.46) hold. We show

that we can find R1, R2, R3, L1, L2 positive which satisfy (A.54)–(A.59) with k > 0.

From (A.44) and K ≤ 0 it follows that AE −BD > 0 and BF −CE > 0, which we will

assume for the rest of the proof.

From (A.59) we obtain

k = R2(R1 +R3)/F , (A.63)
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and from (A.57) and (A.63) we get (A.51). Substituting (A.63) into (A.56) we obtain

(A.49) (and it will follow below that R3 6= C/F , using (A.67) and (A.69)). Eliminating

L1L2 from (A.54) and (A.57) we get (A.48). Using (A.63) and (A.51), equations (A.55)

and (A.58) reduce to

FR2R3 L
2
1 −BR2(R1 +R3)L1 +DR2(R1 +R3)(R1R2 +R1R3 +R2R3) = 0 ,

FR2 L
2
1 − ER2(R1 +R3)L1 +DR2(R1 +R3)2 = 0 .

Eliminating the L2
1 term from the first equation we obtain

L1(B − ER3)−D(R1R2 +R2R3 −R2
3) = 0 . (A.64)

Assuming R3 6= B/E and solving for L1 we obtain (A.50). We now have expressions

for R1, R3, L1, L2 and k which only contain R2, together with A, B, C, D, E, F .

Substituting such expressions into (A.58) we get the quadratic equation (A.47) in R2.

We note that R3 6= B/E is equivalent to R2 6= (AE −BD)/(DE), from (A.48).

We now assume that conditions (A.44)–(A.45) hold with R2 6= (AE − BD)/(DE).

The discriminant of (A.47) is given by

∆c = (E2 − 4DF ) θ2
2 ,

where θ2 = AEF − 2BDF + CDE, and it can be verified that the following identity

always holds:

(BF − CE)(AE −BD)(E2 − 4DF ) = θ2
2 − E2K . (A.65)

From (A.65) we can conclude that, if (A.44)–(A.45) hold, then E2−4DF > 0 necessarily,

hence the first and third coefficient in (A.47) are negative while the second is positive.

If θ2 = 0, then the discriminant of (A.47) is zero, and the two coincident roots of (A.47)

are R2 = (AF − CD)/(2DF ). The following identity always holds:

AE −BD
DE

− AF − CD
2DF

=
θ2

2DEF
, (A.66)

from which it follows, if θ2 = 0, that

R2 =
AF − CD

2DF
=
AE −BD

DE
,

which is a contradiction in this case. We can therefore conclude that θ2 6= 0, i.e. the

discriminant of (A.47) is strictly greater than zero. Therefore (A.47) has two distinct
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positive roots, which we denote as R2A and R2B , with R2A < R2B . From (A.48), R3 is

positive for both sets of solutions if R2B < A/D. From (A.49), making use of (A.48),

and from (A.50), making use of the identities (A.48) and (A.49), we obtain:

R1 =
CDR3

−DF R2 +AF − CD , (A.67)

L1 =
DR1R3(−2DFR2 +AF − CD)

C(−DER2 +AE −BD)
. (A.68)

We now show that

R2A < min

{
AE −BD

DE
,
AF − CD

2DF

}
,

max

{
AE −BD

DE
,
AF − CD

2DF

}
< R2B <

AF − CD
DF

<
A

D
, (A.69)

from which it will follow from (A.48), (A.67) and (A.68) that R3 > 0, R1 > 0 and L1 > 0

for both solutions (we note, incidentally, from (A.66) that

AE −BD
DE

≷
AF − CD

2DF
,

depending on the sign of θ2). We first show that (AE − BD)/(DE) and (AF −
CD)/(2DF ) always lie between the two roots of (A.47). Since (A.47) represents a

parabola that opens down, the latter is true if and only if

c1

(
AE −BD

DE

)2

+ c2

(
AE −BD

DE

)
+ c3 > 0 , (A.70)

c1

(
AF − CD

2DF

)2

+ c2

(
AF − CD

2DF

)
+ c3 > 0 . (A.71)

After some manipulation, inequalities (A.70) and (A.71) reduce to θ2
2/E

2 > 0 and

θ2
2/(4DF ) > 0, respectively, which both hold in this case. We finally show that

R2B =
−c2 −

√
∆c

2c1
<
AF − CD

DF
, (A.72)

which completes the proof of (A.69). Inequality (A.72) reduces to

√
∆c < (E2 − 4DF )(AF − CD) , (A.73)

where both sides of (A.73) are positive. The inequality can therefore be squared and
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reduced to

−4DF (E2 − 4DF )K > 0 ,

which holds in this case. Therefore, if (A.44) and (A.45) hold with R2 6= (AE −
BD)/(DE), all network elements are positive, for both sets of solutions.

We now assume conditions (A.44) and (A.46) hold with R2 6= (AE − BD)/(DE).

From (A.46) it follows that c1 = c2 = c3 = 0 in (A.47) and any value of x solves (A.47).

Any value of R2 6= (AE − BD)/(DE) strictly less than (AF − CD)/(DF ) still yields

positive R3 and R1 (from (A.48) and (A.67), respectively). From (A.65) it follows that

θ2 = 0 which, using (A.66), implies that

AE −BD
DE

=
AF − CD

2DF
.

Therefore R2 6= (AF − CD)/(2DF ) and the expression for L1 in (A.68), which is still

valid in this case, thus reduces to

L1 =
2DF R1R3

CE
·
(
R2 − AF−CD

2DF

)
(
R2 − AE−BD

DE

) =
2DF R1R3

CE
, (A.74)

which ensures positivity of L1, and hence L2.

We now check positivity when conditions (A.44) and (A.45) hold in the case that

R3 = B/E which, as noted before, is equivalent to

R2 =
AE −BD

DE
, (A.75)

from (A.48). In this case equation (A.64) cannot be used to obtain L1. However, we

now have expressions for R1, R2, R3, L2 and k which only contain L1, together with A,

B, C, D, E, F . Substituting such expressions into (A.58) we get the quadratic equation

(A.52) in L1, from which we can conclude that L1 is finite. Since (A.55) also needs to

be satisfied (equivalently (A.64)), it follows that R1R2 + R2R3 − R2
3 = 0. Considering

the values obtained for R1, R2 and R3 we get

R1R2 +R2R3 −R2
3 =

B2 θ2

DE2 (BF − CE)
= 0 , (A.76)

from which we can conclude that θ2 = 0 in this case. From (A.49), R1 = BC/(BF−CE),

which is always positive. It is easily seen that the first and third coefficients in (A.52)
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Figure A.4: Realisability region for the network on the (U, V )-plane, for W = 0.5. The
interior of the hatched region corresponds to case (A.45) (with R2 = (AE −BD)/(DE)
being a repeated root in (A.47) when θ2,c = 0), while the point where the curves Kc and
V − 1 intersect corresponds to case (A.46).

are positive, while the second is negative. The discriminant of (A.52),

∆d = B4E2F 2 (BF − CE)2(E2 − 4DF ) ,

is greater than zero hence the quadratic has two distinct positive roots. We finally note

that substituting the expression for R2 given in (A.75) into the left-hand side of (A.47),

we obtain θ2
2/E

2, which equals zero in this case. Therefore R2 can still be computed as

a root of (A.47).

The remaining case to be dealt with is when (A.44) and (A.46) hold and R2 =

(AE − BD)/(DE). In this case the reasoning of the previous paragraph remains valid,

and we notice that the discriminant of (A.52) ∆d = 0, hence there are two coincident

solutions for L1.

Figure A.4 shows the realisability region for the network, plotted on the (U, V )-plane
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for W = 0.5 (i.e. AF − CD > 0). The polynomial θ2 expressed in terms of U , V , W

is θ2,c = V (W 2 + 1) − 2UW , while the expressions in terms of U , V , W for K and

E2 − 4DF can be found in Table 5.9. We note that in the interior of the hatched

region there are always two solutions to the realisation problem, with no solutions on

the boundary Kc = 0 except when V = 1 (i.e. E2− 4DF = 0), when there are infinitely

many solutions. It can be shown that V = 1 and Kc = 0 imply θ2,c = 0.

A.4 Equivalence class V1
C

1

R1

L1

R2

L2

Fig. 0.1: Network #38, from group IVB. By Lemma 8 in [?] it can only realise regular impedances.

R3

L2

R2

R1

L1

Fig. 0.2: Network #52, from group VA. By Theorem 1 in [?] it can only realise regular impedances.

R2

L2

R3

R1 L1

Fig. 0.3: Network #59, from group VB. By Theorem 1 in [?] it can only realise regular impedances.

L2 R2

L1

R3 R1

Fig. 0.4: Network #60, from group VC. By Lemma 3 in [?] it can only realise regular impedances.
Figure A.5: Network #60, from subfamily VC. By Lemma 3 in [43] it can only realise
regular impedances.

Theorem A.4. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.5, with R1, R2, R3, L1 and L2 positive and finite,

if and only if

AF − CD > 0 , (A.77)

η ≤ 0 , (A.78)

where η is defined in Table 5.9. If conditions (A.77)–(A.78) are satisfied, then R1 is

either of the two positive roots of the quadratic equation in x

DF τ1 x
2 − ψ x+AC τ2 = 0 , (A.79)

where τ1, τ2 and ψ are defined in Table 5.9, and

R2 =
CR1

FR1 − C
, (A.80)

R3 =
A−DR1

D
, (A.81)
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L1 =
R2

1 (−DEF R1 + γ2)

(AF + CD)(FR1 − C)
, (A.82)

L2 =
R1 γ1 −ABC

(AF + CD)(FR1 − C)
, (A.83)

where

γ1 = A(BF − CE) +BCD , (A.84)

γ2 = F (AE −BD) + CDE . (A.85)

Proof. Necessity. The impedance of the network shown in Figure A.5 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.86)

where

n(s) = L1L2(R1 +R3)s2 +
(
L2(R1R2 +R1R3 +R2R3) +R2L1(R1 +R3)

)
s+R1R2R3 ,

d(s) = L1L2s
2 +

(
L2(R1 +R2) + L1(R1 +R2 +R3)

)
s+R3(R1 +R2) .

Equating impedance (A.86) with (4.1), we obtain

L1L2(R1 +R3) = kA , (A.87)

L2(R1R2 +R1R3 +R2R3) +R2L1(R1 +R3) = kB , (A.88)

R1R2R3 = kC , (A.89)

L1L2 = kD , (A.90)

L2(R1 +R2) + L1(R1 +R2 +R3) = kE , (A.91)

R3(R1 +R2) = kF , (A.92)

where k is a positive constant. It can be calculated that

AF − CD = k−2 L1L2R3(R2
1 +R1R3 +R2R3) ,

η = −k−4 L1L2R
2
3[L1R2(R1 +R3)− L2R1(R1 +R2)]2 ,

hence (A.77)–(A.78) are necessary.

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0 sat-

isfying conditions (A.77)–(A.78), we now show that we can find R1, R2, R3, L1, L2
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positive which satisfy (A.87)–(A.92) with k > 0. From (A.89) we obtain

k =
R1R2R3

C
. (A.93)

Eliminating L1L2 from (A.87) and (A.90) we obtain (A.81), and substituting (A.93) into

(A.92) we get (A.80). Substituting (A.93), (A.80) and (A.81) into (A.88) and (A.91),

and solving the equations for L1 and L2, we obtain (A.82) and (A.83). We now have

expressions for elements R2, R3, L1, L2 and k which only contain R1, together with A,

B, C, D, E and F . Substituting such expressions into (A.87) we obtain the quadratic

equation (A.79). The discriminant of (A.79),

∆ = (AF + CD)2(η − 4ACDF ) η , (A.94)

is greater than or equal to zero, by virtue of (A.78). It can be easily seen that the first and

third coefficients in (A.79) are negative, since τ1 = η−B2DF and τ2 = η−ACE2, while

the second coefficient is positive, since −ψ = −(AF+CD)η+2ABCDEF . Therefore the

equation has two real positive roots, which are distinct if the discriminant ∆ is strictly

greater than zero.

It can be easily seen from the expressions in Table 5.9 that K = η− 4ACDF , hence

(A.78) implies K < 0. From K < 0 and (A.77) it follows that

BF − CE > 0 , (A.95)

AE −BD > 0 , (A.96)

therefore γ1 and γ2 in (A.84)–(A.85) are positive. We denote the two solutions of (A.79)

as R1A and R1B , with R1A ≤ R1B . From (A.80) and (A.81), R2 and R3 are positive, for

both solutions, providing

C/F < R1A ≤ R1B < A/D (A.97)

and, from (A.82) and (A.83) (assuming (A.97) holds), L1 and L2 are positive if

ABC/γ1 < R1A ≤ R1B < γ2/(DEF ) . (A.98)

It can be easily verified that C/F < ABC/γ1 and γ2/(DEF ) < A/D, hence if inequality

(A.98) holds, so does (A.97). Since R1A and R1B are the solutions to (A.79), which

represents a parabola that opens down, inequality (A.98) holds if and only if ABC/γ1

and γ2/(DEF ) are located, respectively, to the left and to the right of the parabola’s



Equivalence class V1
D 135

axis of symmetry and (A.79) evaluated at ABC/γ1 and γ2/(DEF ) gives negative values,

that is
ABC

γ1
<

ψ

2DF τ1
<

γ2

DEF
, (A.99)

and

DF τ1

(
ABC

γ1

)2

− ψ
(
ABC

γ1

)
+AC τ2 < 0 , (A.100)

DF τ1

( γ2

DEF

)2
− ψ

( γ2

DEF

)
+AC τ2 < 0 . (A.101)

The left and right inequalities in (A.99) can be rewritten as

2ABCDF τ1 − ψγ1 = (AF + CD)(2ABCDF (AF + CD)− ηγ1) > 0 ,

DEF ψ − 2DF τ1γ2 = DF (AF + CD)(2BDF (AF + CD)− E η) > 0 ,

which both hold. After some manipulation, inequalities (A.100) and (A.101), respec-

tively, reduce to

−A2C2(AE −BD)(BF − CE)(AF + CD)2/γ2
1 < 0 ,

−(AE −BD)(BF − CE)(AF + CD)2/E2 < 0 ,

which always hold. Therefore the values of the five elements and the constant k are all

positive, for both sets of solutions.

A.5 Equivalence class V1
D

2

L1 R2

R3

R1 L2

Fig. 0.5: Network #61, from group VD. By Lemma 3 in [?] it can only realise regular impedances.

R3

L1

R2

R1

C1

Fig. 0.6: Network #69, from group VE. By Theorem 1 in [?] it can only realise regular impedances.

R1

C1

R2

R3 L1

Fig. 0.7: Network #100, from group VF. By Theorem 1 in [?] it can only realise regular impedances.

R3

R2 L1

R1
C1

Fig. 0.8: Network #104, from group VG. By Theorem 1 in [?] it can only realise regular
impedances.

L1 R2

C1

R1 R3

Fig. 0.9: Network #70, from group VH. By Theorem 3 in [?] it can only realise regular impedances.

Figure A.6: Network #61, from subfamily VD. By Lemma 3 in [43] it can only realise
regular impedances.

Theorem A.5. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.6, with R1, R2, R3, L1 and L2 positive and finite,



136 A. Realisation theorems

if and only if

K ≤ 0 , (A.102)

µ1 ≤ 0 , (A.103)

AF − CD > 0 , (A.104)

where K is defined in (3.3) and µ1 in Table 5.9. 2

If conditions (A.102)–(A.104) are satisfied, then R3 is either of the two positive roots

of the quadratic equation in x

−Dλ1 x
2 + ρ1 x− C λ2 = 0 , (A.105)

where λ1, λ2 and ρ1 are defined in Table 5.9, R2 is either of the two positive roots of the

quadratic equation in y

d1 y
2 + d2 y + d3 = 0 , (A.106)

where

d1 = D(C − FR3) , (A.107)

d2 = −(C − FR3)(A−DR3) , (A.108)

d3 = −CR3(A−DR3), (A.109)

and R1 is the other root. The values of the inductors are

L1 =
−D(R1 +R3)(R1 −R2)

B − ER1
, (A.110)

L2 =
D(R2 +R3)(R1 −R2)

B − ER2
, (A.111)

if R1 6= R2. If R1 = R2 then L1 and L2 are the two positive roots of the quadratic

equation in z

p1 z
2 + p2 z + p3 = 0 , (A.112)

2Conditions (A.102)–(A.104) could be rewritten with AF − CD > 0 replaced by AF − 9CD ≥ 0.
Even though AF − CD > 0 is apparently a weaker condition, it is actually equivalent in the theorem
statement since conditions (A.102)–(A.103) imply AF − 9CD ≥ 0 when AF − CD > 0, as shown in
[16, Theorem 2].
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where

p1 = E2F (AE −BD) , (A.113)

p2 = −BE2(2AE − 3BD) , (A.114)

p3 = B(2AE − 3BD)(AE −BD) . (A.115)

Proof. Necessity. The impedance of the network shown in Figure A.6 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.116)

where

n(s) = L1L2(R1 +R2 +R3) s2 +
(
L1R1(R2 +R3) + L2R2(R1 +R3)

)
s+R1R2R3 ,

d(s) = L1L2 s
2 +

(
L1(R2 +R3) + L2(R1 +R3)

)
s+R1R2 +R1R3 +R2R3 .

Equating impedance (A.116) with (4.1), we obtain

L1L2(R1 +R2 +R3) = kA , (A.117)

L1R1(R2 +R3) + L2R2(R1 +R3) = kB , (A.118)

R1R2R3 = kC , (A.119)

L1L2 = kD , (A.120)

L1(R2 +R3) + L2(R1 +R3) = kE , (A.121)

R1R2 +R1R3 +R2R3 = kF , (A.122)

where k is a positive constant. It can be calculated that

K = −k−4 L1L2

[
L1R1(R2 +R3)2 − L2R2(R1 +R3)2

]2
, (A.123)

µ1 = −k−4 L1L2

[
L1R1(R2

2 −R2
3)− L2R2(R2

1 −R2
3)
]2
, (A.124)

AF − CD = k−2 L1L2(R1 +R2)(R1R2 +R1R3 +R2R3 +R2
3) , (A.125)

hence (A.102)–(A.104) are necessary.

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0 sat-

isfying conditions (A.102)–(A.104), we now show that we can find R1, R2, R3, L1, L2

positive which satisfy (A.117)–(A.122) with k > 0. Solving (A.118) and (A.121) for L1
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and L2, we obtain

L1 =
k(B − ER2)

(R2 +R3)(R1 −R2)
, (A.126)

L2 =
−k(B − ER1)

(R1 +R3)(R1 −R2)
, (A.127)

assuming R1 6= R2 and R1, R2 6= B/E, and from (A.120), (A.126)–(A.127) we obtain

the expressions for L1 and L2 in (A.110) and (A.111). Eliminating L1L2 from (A.117)

and (A.120) we obtain

R1 = A/D −R2 −R3 , (A.128)

and from (A.122) and (A.128) we get

k =
(A/D −R2 −R3)(R2 +R3) +R2R3

F
. (A.129)

Substituting (A.128) and (A.129) into (A.119), we get the quadratic equation (A.106),

with y = R2, from which an expression for R2
2 can be found, as follows:

R2
2 =

(A−DR3)(C(R2 +R3)− FR2R3)

D(C − FR3)
. (A.130)

We now have expressions for elements R1, L1, L2 and for the constant k which only

contain R2 and R3, together with A, B, C, D, E and F , and an expression for R2
2 which

contains R3, together with the same six coefficients, and is linear in R2. Substituting the

expressions for L1, L2 and k into (A.120) we obtain a polynomial in R2 and R3 of fourth

order. Then, substituting for R2
2 from (A.130) twice to reduce the power of R2, after

further manipulation all terms in R2 cancel out, and we obtain the quadratic equation

(A.105) in R3. The discriminant of (A.105),

∆c = Kµ1 , (A.131)

is greater than or equal to zero, by virtue of (A.102)–(A.103). Conditions (A.102) and

(A.104) imply that ρ1 > 0 and

BF − CE > 0 ,

AE −BD > 0 .

Hence, using again (A.102) and (A.104), λ1 and λ2 are both positive (note this also
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follows from [43, Lemma 7]). Therefore (A.105) has two real positive roots

R3A =
ρ1 −

√
∆c

2Dλ1
, (A.132)

R3B =
ρ1 +

√
∆c

2Dλ1
, (A.133)

where R3A ≤ R3B , which coincide if and only if ∆c = 0, i.e. if K and/or µ1 are zero.

If R1 = R2 then (A.110) and (A.111) do not apply. In this case the left hand

sides of (A.118) and (A.121) are multiples of L1 + L2, which can be eliminated to yield

R1 = R2 = B/E. As before, (A.128) holds and it follows that

R3 =
AE − 2BD

DE
. (A.134)

Solving (A.122) yields k = B(2AE − 3BD)/(DE2F ), which implies that

β := BF (AE − 2BD)− CE(2AE − 3BD) (A.135)

is zero, using (A.119). It can then be verified that R3 still satisfies (A.105) (and is

therefore positive) and B/E is a double root of (A.106). From (A.134) we can therefore

conclude that, in this case,

AE − 2BD > 0 . (A.136)

Solving for L1 or L2 from (A.120) and (A.121) shows that they are both solutions of the

quadratic (A.112).

Positivity of R1 and R2

From equations (A.117) and (A.120), and from (A.119) and (A.122), respectively, it can

be easily shown that

R1 +R2 +R3 = A/D ,
(

1

R1
+

1

R2
+

1

R3

)−1

= C/F ,

hence each Ri is smaller than A/D and greater than C/F . It follows that coefficients

d1 and d3 in (A.106) are negative, and d2 is positive. Hence, equation (A.106) has two

positive solutions if and only if the discriminant

∆d = (A−DR3)(C − FR3)
[
DF R2

3 − (AF − 3CD)R3 +AC
]

(A.137)
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is non-negative, i.e. if and only if

DF R2
3 − (AF − 3CD)R3 +AC ≤ 0 . (A.138)

Substituting (A.132) into (A.138), after some manipulation (A.138) is equivalent to

2D2(BF − CE)(BF − 3CE)
√

∆c ≤ −2D2ξ , (A.139)

where

ξ =K(BF − 3CE)2 − 2Cλ1β (A.140)

=µ1 (BF − CE)2 + 2Cλ1β , (A.141)

with β defined as in (A.135). From (A.140) it follows that, if β ≥ 0, then ξ ≤ 0 and

from (A.141) it follows that, if β < 0, then ξ < 0. Therefore we can conclude that ξ ≤ 0.

Hence, if BF − 3CE ≤ 0, inequality (A.139) holds. If BF − 3CE > 0, both sides of

(A.139) are non-negative and the inequality can be squared, and reduced to

−16C2D4β2λ2
1 ≤ 0 , (A.142)

which holds. A similar argument holds if we substitute (A.133) into (A.138). Therefore,

considering either R3A or R3B , all solutions to (A.106) are positive. The two positive

values of R2 thus obtained from R3A are

R′2A , R
′′
2A

=
−d2 ±

√
∆d

2d1

∣∣∣∣
R3=R3A

.

The same expression holds for the other two solutions R′2B and R′′2B with R3A replaced

by R3B . From (A.106) the sum of the two roots is

R′2A +R′′2A = A/D −R3A ,

hence, from (A.128) it follows that

R′1A = A/D −R′2A −R3A = R′′2A , (A.143)

R′′1A = A/D −R′′2A −R3A = R′2A . (A.144)

Similar equalities hold for R′1B and R′′1B . This is due to the symmetry of the network,
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and can be seen from equations (A.117)–(A.122): if the resistors R1, R2 and the induc-

tors L1, L2 are swapped, the impedance is unchanged. Note we have shown that R1 and

R2 are the two positive solutions of (A.106) for either choice of R3.

Positivity of L1 and L2

When R1 6= R2, it follows from (A.110)–(A.111) that the two following cases result in

positive values for both inductances:

R2 < B/E < R1 , (A.145)

R1 < B/E < R2 . (A.146)

Since R1 and R2 are the two roots of the same quadratic equation, only one of the two

cases can occur depending on whether R1 ≷ R2, which is a matter of how the two roots

of (A.106) are labelled. We will now show that, considering the set of solutions R3A ,

R′2A and R′1A , with R′2A < R′′2A , (A.145) always holds if conditions (A.102)–(A.104) hold.

Since R′2A and R′1A = R′′2A are the solutions to the quadratic equation (A.106), which

represents a parabola that opens down, inequality (A.145) holds if and only if (A.106)

evaluated at B/E gives a positive value, that is:

d1B
2/E2 + d2B/E + d3 > 0 . (A.147)

After some manipulation, inequality (A.147) can be reduced to:

γ1R
2
3A

+ γ2R3A + γ3 < 0 , (A.148)

where

γ1 = DE(BF − CE) ,

γ2 = −(AE −BD)(BF − CE) ,

γ3 = BC(AE −BD) .

Substituting (A.132) into (A.148), after some manipulation the inequality reduces to

2D2(BF − CE)(BF − 3CE)(AF − CD)
√

∆c < −2D2(AF − CD) ξ ,

which always holds, since (A.139) holds with strict inequality.

For the case R1 = R2, as shown by (A.136), AE−2BD > 0, hence also 2AE−3BD >
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0, which means that p1 and p3 in (A.112) are positive while p2 is negative. Using the

fact that β = 0, the discriminant of (A.112) simplifies to the following expression:

∆p = −BE3 (2AE − 3BD)2
[
2(AF − CD)−BE

]
.

It can be verified that the following identity always holds

2K = (AF − CD)
[
2(AF − CD)−BE

]
− β , (A.149)

which implies that 2(AF −CD)−BE ≤ 0, from (A.102), (A.104) and β = 0. It follows

that ∆p ≥ 0 and that both solutions of (A.112) are positive.

A.6 Equivalence class V1
E

2

L1 R2

R3

R1 L2

Fig. 0.5: Network #61, from group VD. By Lemma 3 in [?] it can only realise regular impedances.

R3

L1

R2

R1

C1

Fig. 0.6: Network #69, from group VE. By Theorem 1 in [?] it can only realise regular impedances.

R1

C1

R2

R3 L1

Fig. 0.7: Network #100, from group VF. By Theorem 1 in [?] it can only realise regular impedances.

R3

R2 L1

R1
C1

Fig. 0.8: Network #104, from group VG. By Theorem 1 in [?] it can only realise regular
impedances.

L1 R2

C1

R1 R3

Fig. 0.9: Network #70, from group VH. By Theorem 3 in [?] it can only realise regular impedances.

Figure A.7: Network #69, from subfamily VE. By Theorem 1 in [43] it can only realise
regular impedances.

Theorem A.6. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.7, with R1, R2, R3, C1 and L1 positive and finite,

if and only if

AF − CD > 0 , (A.150)

λ1 > 0 , (A.151)

K > 0 , (A.152)

where λ1 and K are defined in Table 5.9. If conditions (A.150)–(A.152) are satisfied,

then

R1 =
K

Dλ1
, (A.153)



Equivalence class V1
E 143

R2 =
AF − CD

DF
, (A.154)

R3 =
C

F
, (A.155)

C1 =
D2(BF − CE)

K
, (A.156)

L1 =
BF − CE

F 2
. (A.157)

Proof. Note this result is given without proof in [43, Appendix A], with R1 and R3

interchanged. We provide here a proof for convenience.

Necessity. The impedance of the network shown in Figure A.7 is a biquadratic, which

can be computed as

Z(s) =
n(s)

d(s)
, (A.158)

where

n(s) = R1L1C1(R2 +R3)s2 +
(
L1(R1 +R2 +R3) +R1R2R3C1)

)
s+R3(R1 +R2) ,

d(s) = R1L1C1s
2 +

(
L1 +R1R2C1

)
s+R1 +R2 .

Equating impedance (A.33) with (4.1), we obtain, for a positive constant k,

R1L1C1(R2 +R3) = kA , (A.159)

L1(R1 +R2 +R3) +R1R2R3C1 = kB , (A.160)

R3(R1 +R2) = kC , (A.161)

R1L1C1 = kD , (A.162)

L1 +R1R2C1 = kE , (A.163)

R1 +R2 = kF , (A.164)

which are a set of necessary and sufficient conditions for (4.1) to be realised as in Fig-

ure A.7. It can be calculated that

AF − CD = k−2 R1R2L1C1 (R1 +R2) > 0 , (A.165)

λ1 = k−3 L2
1 (R1 +R2)2 > 0 , (A.166)

K = k−4 R2
1L

3
1C1 (R1 +R2)2 > 0 , (A.167)

hence (A.150)–(A.152) are necessary.
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Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0 sat-

isfying conditions (A.150)–(A.152) we now show that we can find R1, R2, R3, L1, C1

positive which satisfy (A.159)–(A.164) with k > 0.

From (A.164) we obtain k = (R1 + R2)/F and eliminating the term R1 + R2 from

(A.161) and (A.164) we get (A.155). Eliminating the term R1L1C1 from (A.159) and

(A.162) and solving for R2 we obtain (A.154), while eliminating C1 from (A.160) and

(A.163) we get (A.157). Solving for C1 from (A.162) using expressions obtained we find:

C1 =
AF − CD +DFR1

R1 (BF − CE)
. (A.168)

We now have expressions for R2, R3, L1, C1 and k which only contain R1 together with

A, B, C, D, E, F . Substituting such expressions into (A.163) and solving for R1 we

obtain (A.153) and, substituting the latter into (A.168), we get (A.156).

Conditions (A.150) and (A.151) imply BF − CE > 0, from the expression for λ1.

Hence all network elements are positive.

A.7 Equivalence class V1
F

2

L1 R2

R3

R1 L2

Fig. 0.5: Network #61, from group VD. By Lemma 3 in [?] it can only realise regular impedances.

R3

L1

R2

R1

C1

Fig. 0.6: Network #69, from group VE. By Theorem 1 in [?] it can only realise regular impedances.

R2 L1

R3

R1
C1

Fig. 0.7: Network #101, from group VF. By Theorem 1 in [?] it can only realise regular impedances.

R3

R2 L1

R1
C1

Fig. 0.8: Network #104, from group VG. By Theorem 1 in [?] it can only realise regular
impedances.

Figure A.8: Network #101, from subfamily VF. By Theorem 1 in [43] it can only realise
regular impedances.

Theorem A.7. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.8, with R1, R2, R3, L1 and C1 positive and finite,

if and only if

K > 0 , (A.169)

τ1 < 0 , (A.170)
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where K is defined in (3.3) and τ1 in Table 5.9, or

K = τ1 = 0 . (A.171)

If (A.169)–(A.170) hold, R3 is the largest positive root of the quadratic equation in x

τ1 x
2 + (AF + CD)(B2 − 4AC)x−AC(B2 − 4AC) = 0 , (A.172)

while, if (A.171) holds, then R3 may take any value such that

R3 > max

{
A

D
,
B

E
,
C

F

}
. (A.173)

The other network elements are given by:

R1 =
AR3

DR3 −A
, (A.174)

R2 =
CR3

FR3 − C
, (A.175)

L1 =
DR2

3(R1 +R2)

(R1 +R3)(ER3 −B)
, (A.176)

C1 =
D(R2 +R3)

FL1(R1 +R3)
. (A.177)

Proof. Necessity. The impedance of the network shown in Figure A.8 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.178)

where

n(s) = R1R3L1C1 s
2 +R3(R1R2C1 + L1)s+R2R3 ,

d(s) = L1C1(R1 +R3) s2 +
(
C1(R1R2 +R1R3 +R2R3) + L1

)
s+R2 +R3 .

Equating impedance (A.178) with (4.1) we obtain, for a positive constant k,

R1R3L1C1 = kA , (A.179)

R3(R1R2C1 + L1) = kB , (A.180)

R2R3 = kC , (A.181)

L1C1(R1 +R3) = kD , (A.182)



146 A. Realisation theorems

C1(R1R2 +R1R3 +R2R3) + L1 = kE , (A.183)

R2 +R3 = kF , (A.184)

which are a set of necessary and sufficient conditions for (4.1) to be realised as in Fig-

ure A.8. It can be calculated that

K = k−4 C1L1R
4
3 (C1R1R2 − L1)2 ≥ 0 , (A.185)

τ1 = −k−4 C1L1R
2
3 (R1R2 +R1R3 +R2R3) (C1R1R2 − L1)2 ≤ 0 , (A.186)

hence

K = 0 ⇔ τ1 = 0 ⇔ L1 = C1R1R2

and (A.169)–(A.171) are necessary.

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0, either

satisfying conditions (A.169)–(A.170) or condition (A.171), we now show that we can

find R1, R2, R3, L1, C1 positive which satisfy (A.179)–(A.184) with k > 0.

From (A.184) we obtain

k =
R2 +R3

F
, (A.187)

and substituting (A.187) into (A.182) we get (A.177). Equations (A.180) and (A.183)

now reduce to

FR3(R1 +R3)L2
1 −B(R1 +R3)(R2 +R3)L1 +DR1R2R3(R2 +R3) = 0 ,

F (R1 +R3)L2
1 − E(R1 +R3)(R2 +R3)L1 +D(R2 +R3)(R1R2 +R1R3 +R2R3) = 0 .

Eliminating the term in L2
1 from the two equations and solving for L1 we obtain (A.176).

Eliminating L1C1 from (A.179) and (A.182) and solving for R1 we obtain (A.174), while

from (A.181) and (A.184) we obtain (A.175). We now have expressions for R1, R2, L1,

C1 and k which only contain R3 together with A, B, C, D, E, F . Substituting such

expressions into (A.180) we obtain the quadratic equation (A.172).

If conditions (A.169)–(A.170) hold, then from the expression for τ1 we have DF (B2−
4AC) > K > 0, hence the first and third coefficients in (A.172) are negative while the

second is positive. The discriminant of (A.172) is

∆ = (B2 − 4AC)(ABF − 2ACE +BCD)2 .
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It can be verified that the following identity always holds

(ABF − 2ACE +BCD)2 = 4AC K + (B2 − 4AC)(AF − CD)2 ,

hence ABF − 2ACE + BCD 6= 0 in this case. Therefore ∆ > 0 and the quadratic has

two distinct positive roots.

From (A.174), (A.175) and (A.176), respectively, we have that R1, R2 and L1 are

positive if

R3 > A/D , (A.188)

R3 > C/F , (A.189)

R3 > B/E . (A.190)

Since (A.172) represents a parabola that opens down, (A.188), (A.189) and (A.190) hold

for the largest solution of (A.172) if (A.172) evaluated at A/D, C/F and B/E gives

positive values, that is:

τ1A
2/D2 + (AF + CD)(B2 − 4AC)A/D −AC(B2 − 4AC) > 0 , (A.191)

τ1C
2/F 2 + (AF + CD)(B2 − 4AC)C/F −AC(B2 − 4AC) > 0 , (A.192)

τ1B
2/E2 + (AF + CD)(B2 − 4AC)B/E −AC(B2 − 4AC) > 0 . (A.193)

After some manipulation, inequalities (A.191)–(A.193) reduce to

A2K

D2
> 0 ,

C2K

F 2
> 0 ,

(ABF − 2ACE +BCD)2

E2
> 0 ,

which all hold in this case. This means that A/D, C/F and B/E always lie between the

two positive roots of (A.172), so (A.188)–(A.190) are satisfied by the largest root only.

Finally, if condition (A.171) holds then B2 − 4AC = 0 (from the expression for τ1)

and any value of x solves (A.172). Any positive value of R3 which satisfies (A.173)

guarantees positivity of R1, R2 and L1, from (A.174), (A.175) and (A.176), and the

theorem statement follows.
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A.8 Equivalence class V1
G

2

L1 R2

R3

R1 L2

Fig. 0.5: Network #61, from group VD. By Lemma 3 in [?] it can only realise regular impedances.

R3

L1

R2

R1

C1

Fig. 0.6: Network #69, from group VE. By Theorem 1 in [?] it can only realise regular impedances.

R1

C1

R2

R3 L1

Fig. 0.7: Network #100, from group VF. By Theorem 1 in [?] it can only realise regular impedances.

R3

R2 L1

R1
C1

Fig. 0.8: Network #104, from group VG. By Theorem 1 in [?] it can only realise regular
impedances.

L1 R2

C1

R1 R3

Fig. 0.9: Network #70, from group VH. By Theorem 3 in [?] it can only realise regular impedances.

Figure A.9: Network #104, from subfamily VG. By Theorem 1 in [43] it can only realise
regular impedances.

Theorem A.8. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.9, with R1, R2, R3, L1 and C1 positive and finite,

if and only if the conditions of one of the following five cases are satisfied

Case 1) AF − CD > 0 and one of

(a) τ1 < 0, λ1 = 0 (A.194)

(b) λ1 > 0, τ1 = 0, δ > 0 (A.195)

(c) τ1 < 0, λ1 > 0, K ≥ 0, δ > 0, ζ1 > 0 (A.196)

Case 2) AF − CD ≥ 0 and τ1λ1 > 0 (A.197)

Case 3) AF − CD = 0 and K = 0 (A.198)

Case 4) AF − CD < 0 and one of

(a) τ1 < 0, λ3 = 0 (A.199)

(b) λ3 > 0, τ1 = 0, δ > 0 (A.200)

(c) τ1 < 0, λ3 > 0, K ≥ 0, δ > 0, ζ3 > 0 (A.201)

Case 5) AF − CD ≤ 0 and τ1λ3 > 0 (A.202)

Polynomials K, λ1, λ3, ζ1, ζ3, δ and τ1 are defined in Table 5.9.

When the conditions in cases (1a), (1b), (2), (4a), (4b) or (5) hold, R3 is the small-

est, positive root of the quadratic equation in x

γ x2 + 2DF δ x+ τ1 = 0 , (A.203)

where

γ = −DF
(
E2 − 4DF

)
. (A.204)
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When the conditions in cases (1c) or (4c) hold, R3 is either of the two positive roots of

the same quadratic equation, and when the conditions of case (3) hold, R3 may take any

value such that R3 < A/D = C/F . The other elements of the network can be computed

as:

R1 = −R3 +A/D , (A.205)

R2 = −R3 + C/F , (A.206)

L1 = D(R1 +R2)/E , (A.207)

C1 =
E

F (R1 +R2)
. (A.208)

Proof. Necessity. The impedance of the network shown in Figure A.9 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.209)

where

n(s) = L1C1(R1 +R3)s2 +
(
L1 + C1(R1R2 +R1R3 +R2R3)

)
s+R2 +R3 ,

d(s) = L1C1s
2 + C1(R1 +R2)s+ 1 .

Equating impedance (A.209) with (4.1), we obtain

L1C1(R1 +R3) = kA , (A.210)

L1 + C1(R1R2 +R1R3 +R2R3) = kB , (A.211)

R2 +R3 = kC , (A.212)

L1C1 = kD , (A.213)

C1(R1 +R2) = kE , (A.214)

1 = kF , (A.215)

where k is a positive constant. It can be calculated that

K = k−4 L1C1(C1R1R2 − L1)2 , (A.216)

λ1 = −k−3 C1R2[C1R2(R1 +R2)− 2L1] , (A.217)

δ = k−2 C1[C1(R1 +R2)(R1R2 +R2R3 +R1R3) (A.218)

− L1(R1 +R2 + 4R3)] ,
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τ1 = −k−4 C12L1R3[C1(R1 +R2)(2R1R2 +R1R3 +R2R3) (A.219)

− 2L1(R1 +R2 + 2R3)] ,

γ = −k−4 L1C
2
1 [C1(R1 +R2)2 − 4L1] , (A.220)

ζ1 = k−3 C1[C1R
2
2(R1 +R2) + L1(R1 − 3R2)] , (A.221)

AF − CD = k−2 L1C1(R1 −R2) , (A.222)

hence K ≥ 0 is necessary. From (A.215) we obtain

k =
1

F
. (A.223)

Substituting (A.223) into (A.214), we obtain (A.208), which can be used in (A.213) to

obtain (A.207). Eliminating L1C1 from (A.210) and (A.213) we obtain (A.205), and

substituting (A.223) into (A.212) we get (A.206). We now have expressions for network

elements R1, R2, L1, C1 and k which only contain R3, together with A, B, C, D, E and

F . Substituting such expressions into (A.211) we obtain the quadratic equation (A.203).

The discriminant of (A.203), ∆ = 4DE2FK, is always greater than or equal to zero,

and the equation therefore has two real solutions, which are coincident if K = 0.

In considering the roots of (A.203) we subdivide according to whether γτ1 > 0,

γτ1 < 0 or γτ1 = 0. We further subdivide into the following seven cases in which there

is at least one positive root of (A.203):

(i) γ > 0, τ1 > 0, δ < 0

(ii) γ < 0, τ1 < 0, δ > 0

(iii) γ > 0, τ1 < 0

(iv) γ < 0, τ1 > 0

(v) γ = 0, τ1δ < 0

(vi) τ1 = 0, γ δ < 0

(vii) γ = 0, δ = 0, τ1 = 0

The first two cases correspond to two positive roots of (A.203), (iii)–(vi) to one positive

root, and (vii) to infinitely many. We will now show that cases (i)–(vii) are equivalent

to (A.194)–(A.202).

Step 1

We will first show that γ > 0 implies τ1 > 0, hence case (iii) cannot occur. From (A.220),
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γ > 0 is equivalent to L1 > C1(R1 + R2)2/4, and from (A.219) τ1 > 0 is equivalent to

2L1(R1 + R2 + 2R3) − C1(R1 + R2)(2R1R2 + R1R3 + R2R3) > 0. Replacing L1 in the

latter expression by its strict lower bound (implied by γ > 0) gives

C1(R1 +R2)2(R1 +R2 + 2R3)/2− C1(R1 +R2)(2R1R2 +R1R3 +R2R3)

= C1(R1 −R2)2(R1 +R2)/2 ≥ 0 .

Hence γ > 0 implies τ1 > 0.

Step 2

We now show that γ ≥ 0, τ1 > 0 implies δ < 0, hence the latter condition can be

removed from (i) and from the subcase in which τ1 > 0 in (v). It can be verified that

the following identity holds

(AF + CD)DF δ = −DF (AF − CD)2 −DFτ1 −ACγ (A.224)

from which the result follows.

Step 3

We will now show that τ1 < 0, δ > 0 is impossible when γ = 0, hence case (v) can be

reduced to γ = 0, τ1 > 0 (having already shown in step 2 that the condition δ < 0 may

be omitted). From (A.220), γ = 0 if L1 = C1(R1 +R2)2/4. Substituting this expression

for L1 into (A.218) and (A.219) yields

τ1 = k−4 C
4
1 (R1 +R2)3(R1 −R2)2R3

8
= −2DF R3 δ , (A.225)

hence τ1 ≥ 0 and δ ≤ 0, and the result follows. It is then easily seen that cases (i), (iv)

and (v) taken together correspond to the single condition τ1 > 0.

Step 4

We now show that τ1 > 0 implies λ1 > 0 if AF − CD ≥ 0 (respectively λ3 > 0 if

AF − CD ≤ 0). From (A.219) τ1 > 0 is equivalent to

L1 >
C1(R1 +R2)(2R1R2 +R1R3 +R2R3)

2(R1 +R2 + 2R3)

and from (A.217) λ1 > 0 is equivalent to 2L1−C1R2(R1 +R2) > 0. Replacing L1 in the
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latter expression by its strict lower bound (implied by τ1 > 0) gives

C1(R1 +R2)(2R1R2 +R1R3 +R2R3)

R1 +R2 + 2R3
− C1R2(R1 +R2)

=
C1(R2

1 −R2
2)(R2 +R3)

R1 +R2 + 2R3
,

which is greater than or equal to zero if AF − CD ≥ 0 (see (A.222)).

Hence, we can conclude that cases (i), (iv) and (v) are equivalent to the subcase of

(A.197) in which τ1 > 0, λ1 > 0 if AF − CD ≥ 0 (or, if AF − CD ≤ 0, to the subcase

of (A.202) in which τ1 > 0, λ3 > 0).

Step 5

We will now show that τ1 = 0 implies δ ≥ 0 and γ ≤ 0. From (A.219), if τ1 = 0 then

L1 =
C1(R1 +R2)(2R1R2 +R1R3 +R2R3)

R1 +R2 + 2R3
.

Substituting this value for L1 into (A.218) and (A.220) yields

δ = k−2 C
2
1 (R1 +R2)(R1 −R2)2R3

2(R1 +R2 + 2R3)
=
−R3

2DF
γ

and the result follows. From (A.224) it also follows that τ1 = 0 and δ > 0 always imply

γ < 0, hence the latter condition can be omitted in this case. Therefore, case (vi) reduces

to τ1 = 0, δ > 0.

Step 6

It can be shown that condition τ1 = 0 also implies λ1 > 0 if AF − CD > 0, and λ3 > 0

if AF − CD < 0. This is clear from the proof in step 4 if we consider τ1 ≥ 0 and

AF −CD 6= 0. The case AF −CD = 0 (which corresponds to R1 = R2) cannot happen

when τ1 = 0 and δ > 0, since

τ1 = −4k−4 C2
1L1R3(R1 +R3)(C1R

2
1 − L1) , (A.226)

δ = 2k−2 (R1 + 2R3)(C1R
2
1 − L1) (A.227)

when R1 = R2. Hence, case (vi) is equivalent to (A.195) and (A.200).

Step 7



Equivalence class V1
G 153

We now turn to case (ii) and prove that ζ1 > 0 is necessary if AF −CD ≥ 0 (respectively

ζ3 > 0 is necessary if AF − CD ≤ 0). From (A.220) condition γ < 0 is equivalent to

C1 > 4L1/(R1 +R2)2 and from (A.221) ζ1 > 0 is equivalent to C1R
2
2(R1 +R2)+L1(R1−

3R2) > 0. Replacing C1 in the latter expression by its strict lower bound (implied by

γ < 0) gives

4L1R
2
2/(R1 +R2) + L1(R1 − 3R2) = L1(R1 −R2)2/(R1 +R2) ≥ 0 ,

hence ζ1 > 0.

Step 8

We now show that conditions δ > 0 and ζ1 > 0 always imply γ < 0 if AF −CD ≥ 0 (the

same result holds if δ > 0, ζ3 > 0 and AF − CD ≤ 0). Condition δ > 0 is equivalent to

BE−2(AF+CD) > 0, while ζ1 > 0 can be written as −BEF+CE2+2F (AF−CD) > 0.

Using these two inequalities we get

C(E2 − 4DF ) > BEF − 2F (AF + CD) > 0 ,

hence γ = −DF (E2 − 4DF ) < 0. Therefore, combining with step 7, we see that the

condition on γ may be replaced by ζ1 > 0 (respectively ζ3 > 0) in case (ii).

Step 9

We now consider case (ii) with the condition AF − CD ≥ 0 and subdivide it into three

cases: λ1 > 0, λ1 < 0 and λ1 = 0 (the case AF − CD ≤ 0 is analogous with λ1, ζ1

replaced by λ3, ζ3). In this step we consider the case λ1 > 0. It can be proven that, in

this case, AF − CD > 0 necessarily, as follows. If AF − CD = 0 (i.e. R1 = R2) then τ1

is given by (A.226) and from (A.217) it follows that

λ1 = −2k−3 C1R1(C1R
2
1 − L1) . (A.228)

Therefore λ1 and τ1 necessarily have the same sign when AF − CD = 0, which is a

contradiction in this case. Hence, if λ1 > 0 case (ii) is equivalent to (A.196) (or if λ3 > 0

when AF − CD ≤ 0, case (ii) is equivalent to (A.201)). We will need to retain the

condition K ≥ 0 in these cases since it is not implied by other conditions.

Step 10

If λ1 < 0 in case (ii), we now show that δ > 0 holds automatically (so it can be omitted)
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when AF −CD ≥ 0 (the same is true if λ3 < 0 when AF −CD ≤ 0). Condition τ1 < 0

can be written as

BE(AF + CD) > ACE2 + (AF + CD)2 ,

while λ1 < 0 is equivalent to Aλ1 +BE(AF +CD)−BE(AF +CD) < 0, which can be

written as

BE(AF + CD) < ACE2 +BCDE +AF (AF − CD) .

Comparing the lower and upper bounds of BE(AF + CD) above implies CD(BE −
3AF − CD) > 0. It follows that

δ = BE − 2(AF + CD) > 3AF + CD − 2(AF + CD) = AF − CD ≥ 0 ,

hence δ > 0. We also note, from the expressions for ζ1, ζ3 and λ1, λ3 in Table 5.9, that

ζ1 = −λ1 + F (AF − CD) , (A.229)

ζ3 = −λ3 −D(AF − CD) , (A.230)

hence λ1 < 0 implies ζ1 > 0 and λ3 < 0 implies ζ3 > 0, hence the condition on ζ1 (re-

spectively ζ3) can be omitted if the condition λ1 < 0 (respectively λ3 < 0) is included.

Therefore, if λ1 < 0 and AF −CD ≥ 0, case (ii) is equivalent to the subcase of (A.197)

in which τ1 < 0, λ1 < 0 (the other subcase being covered by step 4). Similarly, if λ3 < 0

and AF − CD ≤ 0, case (ii) is equivalent to the subcase of (A.202) in which τ1 < 0,

λ3 < 0.

Step 11

Finally, if λ1 = 0 in case (ii) with AF − CD ≥ 0, we observe that AF − CD > 0

necessarily. This follows from step 9, where it was shown that τ1 and λ1 have the same

sign when AF −CD = 0, hence τ1 < 0, λ1 = 0, AF −CD = 0 cannot occur in this case.

It now follows as in step 10 that δ > 0 holds automatically, with the relaxed condition

λ1 ≤ 0, so it can be omitted in this case. Therefore, as in step 10, from the identities

(A.229) and (A.230) it is clear that if λ1 = 0 then ζ1 > 0 (and if λ3 = 0 then ζ3 > 0),

hence the condition on ζ1 (respectively ζ3) can be omitted if the condition λ1 = 0

(respectively λ3 = 0) is included.

In summary, if λ1 = 0 when AF − CD ≥ 0, case (ii) is equivalent to (A.194) (or if

λ3 = 0 when AF − CD ≤ 0, case (ii) is equivalent to (A.199)).
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Step 12

We show next that case (vii) is equivalent to (A.198), i.e.

γ = 0, δ = 0, τ1 = 0 ⇔ AF − CD = 0, K = 0 .

If AF −CD = 0 (i.e. R1 = R2, from (A.222)) then τ1 and δ have the expressions shown

in (A.226) and (A.227), respectively, and

γ = −4k−4 C2
1L1(C1R

2
1 − L1) . (A.231)

It follows that if K = 0 (i.e. L1 = C1R1R2, from (A.216)) then γ = 0, δ = 0 and τ1 = 0.

We now show that γ = 0, δ = 0, τ1 = 0 ⇒ AF − CD = 0, K = 0. From (A.220), γ = 0

if and only if

L1 = C1(R1 +R2)2/4 . (A.232)

It was shown in step 3 that using this value for L1 we obtain the expressions for τ1 and δ

in (A.225), from which we see that R1 = R2. It follows from (A.222) that AF −CD = 0,

and from (A.232) that L1 = C1R
2
1, hence K = 0 (from (A.216)).

Step 13

We finally turn to the necessity condition K ≥ 0 and show that it can be omitted in

the conditions of the theorem (i.e. it is implied by the other conditions) in all but two

cases, namely (A.196) and (A.201), other than case (A.198) which is already dealt with

in step 12.

If AF − CD ≥ 0 we first show that λ1 ≤ 0 implies K ≥ 0 (the same result holds if

AF − CD ≤ 0 and λ3 ≤ 0). It can be verified from the expressions in Table 5.9 that

FK = −λ1(AF − CD) +D(BF − CE)2 ,

from which the result follows. Therefore, K ≥ 0 can be omitted from (A.194) and from

the subcase of (A.197) in which λ1 < 0 (respectively from (A.199) and from the subcase

of (A.202) in which λ3 < 0).

We next show that τ1 ≥ 0 implies K ≥ 0. From the expression in Table 5.9, τ1 ≥ 0

implies K ≥ DF (B2−4AC). If B2−4AC ≥ 0 we can immediately conclude that K ≥ 0.
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Otherwise, if B2 − 4AC < 0, it follows that

4ACK = 4AC[(AF − CD)2 − (AE −BD)(BF − CE)]

> B2(AF − CD)2 − 4AC(AE −BD)(BF − CE)

= (ABF − 2ACE +BCD)2 ≥ 0 .

Therefore, K ≥ 0 can be omitted from (A.195), (A.200) and from the remaining subcases

in (A.197), (A.202).

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0, we

can calculate one or two sets of solutions (depending on the signs of τ1 and γ) for R1,

R2, R3, L1, C1 and k in cases (A.194)–(A.197) and (A.199)–(A.202), using (A.203),

(A.205)–(A.208), and (A.223), and an infinite number of solutions in case (A.198). It

remains to show that the necessary conditions derived are sufficient to ensure positivity

of R1 and R2, and thence L1 and C1 from (A.207) and (A.208).

From (A.205), R1 is positive if and only if R3 < A/D, and, from (A.206), R2 is

positive if and only if R3 < C/F . Therefore, in order for both R1 and R2 to be positive,

we need

R3 <
C

F
if AF − CD ≥ 0 , (A.233)

R3 <
A

D
if AF − CD ≤ 0 . (A.234)

We consider the case that AF − CD ≥ 0 (if AF − CD ≤ 0 the proof is analogous, with

λ1 replaced by λ3 and ζ1 by ζ3). We denote the two roots of (A.203) as

R3A =
−2DF δ −

√
∆

2γ
, R3B =

−2DF δ +
√

∆

2γ
, (A.235)

when γ 6= 0.

If conditions (A.194)–(A.196) or (A.197) hold (with τ1 < 0 and λ1 < 0 in the latter

case), then γ < 0 (see steps 5 and 8) and R3A ≥ R3B . We note that in case (A.195)

R3B = 0, while in the other cases both R3A and R3B are strictly positive. Inequality

(A.233) reduces to

√
∆ < 2Dζ1 (R3 = R3A) , (A.236)

√
∆ > −2Dζ1 (R3 = R3B ) . (A.237)
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Both sides of (A.236) are positive, since ζ1 > 0 if γ < 0 (this was proven in step 7), and

the inequality can therefore be squared and reduced to

4F γ (AF − CD) λ1 < 0 , (A.238)

which holds for cases (A.195) and (A.196) but not for (A.194) and the subcase of (A.197).

Inequality (A.237) need not be verified for case (A.195) (since R3B = 0 in this case),

and is immediately satisfied for the other cases, since ζ1 > 0. Therefore, in conclusion,

both roots of (A.203) yield positive values for R1 and R2 in case (A.196), and only the

smallest positive root in cases (A.194), (A.195), and (A.197) in the subcase with τ1 < 0

and λ1 < 0.

We now turn to the subcase of (A.197) with τ1 > 0 and λ1 > 0. In this case nothing

can be concluded on the sign of γ, so we examine three cases on the sign of γ separately.

If γ < 0 then we see directly from (A.203) that R3A is the only positive root of

(A.203), and inequality (A.233) reduces to (A.236). We will now show that in this case

ζ1 > 0. Condition τ1 > 0 can be written as

−BE(AF + CD) > −ACE2 − (AF − CD)2 − 4ACDF .

It follows that

ζ1(AF + CD) = −BEF (AF + CD) + CE2(AF + CD) + 2F (A2F 2 − C2D2)

> −F (AF − CD)2 − 4ACDF 2 + C2DE2 + 2F (A2F 2 − C2D2) .

Knowing that γ < 0 (i.e. E2 > 4DF ), if E2 is replaced by 4DF , the lower bound

becomes

− F (AF − CD)2 − 4ACDF 2 + 4C2D2F + 2F (A2F 2 − C2D2)

= F (AF − CD)2 ≥ 0 ,

hence ζ1 > 0. Therefore, both sides of (A.236) are positive and the inequality can be

squared and reduced to (A.238), which holds if AF − CD 6= 0. If AF − CD = 0 it can

be verified that the following identity holds:

C2 γ − F 2τ1 = F (AF + CD)λ1 . (A.239)

From (A.239) it follows that the case AF −CD = 0, γ < 0, τ1 > 0, λ1 > 0 cannot occur.
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If γ > 0, the quadratic (A.203) has two positive roots R3B ≥ R3A since δ < 0 (see

step 2), and inequality (A.233) reduces to

√
∆ > 2Dζ1 (R3 = R3A) , (A.240)

√
∆ < −2Dζ1 (R3 = R3B ) . (A.241)

If ζ1 ≥ 0 inequality (A.241) does not hold, and if ζ1 < 0 the same inequality can be

squared and reduced to (A.238), which again does not hold. We now turn to (A.240). If

ζ1 < 0 inequality (A.240) holds, and if ζ1 ≥ 0 the inequality can be squared and reduced

to

4F γ (AF − CD) λ1 > 0 ,

which again holds, providing AF − CD 6= 0. We therefore need to check the case

AF − CD = 0 directly. If AF − CD = 0 then ζ1 = −λ1, from the expression in

Table 5.9. Therefore, if the conditions of case (A.197) hold with τ1 > 0, λ1 > 0, γ > 0

and AF − CD = 0 then ζ1 < 0, and inequality (A.240) is immediately satisfied.

If γ = 0, the only root of (A.203) is R3 = −τ1/(2DF δ) > 0 since δ < 0 (see step 2),

and inequality (A.233) reduces to τ1 + 2CD δ < 0. It can be verified that

τ1 + 2CD δ = −C2 γ/F 2 − λ1 (AF − CD)/F ,

hence, for γ = 0, the inequality reduces to

τ1 + 2CD δ = −λ1(AF − CD)/F < 0 ,

which holds if AF − CD 6= 0, since λ1 > 0. It can also be verified that the following

identity always holds for AF − CD = 0 and γ = 0:

τ1 = −Aλ1 − CE2K/λ1 . (A.242)

From (A.242) it follows that the case AF − CD = 0, τ1 > 0, λ1 > 0 cannot occur. We

can therefore conclude from the analysis of the three cases γ < 0, γ > 0 and γ = 0 above

that if the conditions of case (A.197) hold with τ1 > 0 and λ1 > 0, then solution R3A

yields positive values for R1 and R2 if γ 6= 0, while if γ = 0 the only root of (A.203)

yields positive values for R1 and R2. This establishes that R3 should be the smallest

positive root in case (A.197).

In case (A.198) we have γ = 0, δ = 0 and τ1 = 0 (see step 12), hence any value of

x satisfies (A.203). Since A/D = C/F in this case, inequalities (A.233) and (A.234) are



Equivalence class V1
G 159

equivalent, and the theorem statement follows (i.e. R3 can be chosen arbitrarily provided

that R3 < C/F ).

Figure A.10 shows the realisability region for the network, plotted on the (U, V )-

plane for W = 0.8 (i.e. AF −CD > 0). The expressions in terms of U , V , W for all the

symbols appearing in the figure can be found in Table 5.9. It is clear from the figure

that the curve γc does not act as a boundary for the realisability region, and it was in

fact possible in the proof to eliminate γ from the realisability conditions. Curves δc and

ζc are not active boundaries either, but are still needed to properly define the region

corresponding to cases (A.195) and (A.196). We note that it may be possible to write

the conditions in different ways or to further simplify such conditions.

0 0.5 1 1.5
0

0.5

1

1.5

Figure A.10: Realisability region for the network on the (U, V )-plane, for W = 0.8. The
hatched regions correspond to case (A.197), while the crossed region to case (A.196).
Cases (A.194) and (A.195) correspond to the boundaries of the crossed region, with
λc = 0 and τc = 0, respectively. The dashed curves, namely γc, δc and ζc, are not active
boundaries for the realisability region.
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A.9 Equivalence class V1
H

2

L1 R2

R3

R1 L2

Fig. 0.5: Network #61, from group VD. By Lemma 3 in [?] it can only realise regular impedances.

R3

L1

R2

R1

C1

Fig. 0.6: Network #69, from group VE. By Theorem 1 in [?] it can only realise regular impedances.

R1

C1

R2

R3 L1

Fig. 0.7: Network #100, from group VF. By Theorem 1 in [?] it can only realise regular impedances.

R3

R2 L1

R1
C1

Fig. 0.8: Network #104, from group VG. By Theorem 1 in [?] it can only realise regular
impedances.

L1 R2

C1

R1 R3

Fig. 0.9: Network #70, from group VH. By Theorem 3 in [?] it can only realise regular impedances.
Figure A.11: Network #70, from subfamily VH. By Theorem 3 in [43] it can only realise
regular impedances.

Theorem A.9. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.11, with R1, R2, R3, L1 and C1 positive and finite,

if and only if

AF − CD > 0 , (A.243)

µ1 ≥ 0 , (A.244)

and

signs of λ1, λ2, ρ1 not all the same , (A.245)

where λ1, λ2, µ1 and ρ1 are defined in Table 5.9. When one of λ1, λ2, ρ1 equals zero,

the other two must have different algebraic signs or both equal zero, i.e.

λ1 = λ2 = 0, ρ1 = 0 . (A.246)

If conditions (A.243)–(A.245) are satisfied, then R3 is any positive root of the quadratic

equation in x

Dλ1x
2 + ρ1x+ Cλ2 = 0 , (A.247)

while if conditions (A.243), (A.244) and (A.246) are satisfied R3 is any positive value.

R2 is the positive root of the quadratic equation in y

c1 y
2 + c2 y + c3 = 0 (A.248)
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where

c1 = AF − CD ,

c2 = (A+DR3)(FR3 − C) ,

c3 = −CR3(A+DR3) ,

and

R1 =
R2(A−DR3) +AR3

D(R2 +R3)
, (A.249)

L1 =
DR1(R1R2 +R1R3 +R2

3)

(R2 +R3)
[
E(R1 +R3)−B

] , (A.250)

C1 =
D(R1 +R2 +R3)

F (R2 +R3)L1
. (A.251)

Proof. Note this result was also proven in [43, Appendix B], where µ1 and ρ1 are called

η1 and η2, respectively. We provide here an independent proof.

Necessity. The impedance of the network shown in Figure A.11 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.252)

where

n(s) = L1C1(R1R2 +R1R3 +R2R3)s2 +
(
C1R1R2R3 + L1(R1 +R3)

)
s+R2(R1 +R3) ,

d(s) = L1C1(R2 +R3)s2 +
(
C1R1(R2 +R3) + L1

)
s+R1 +R2 +R3 .

Equating impedance (A.252) with (4.1) we obtain, for a positive constant k,

L1C1(R1R2 +R1R3 +R2R3) = kA , (A.253)

C1R1R2R3 + L1(R1 +R3) = kB , (A.254)

R2(R1 +R3) = kC , (A.255)

L1C1(R2 +R3) = kD , (A.256)

C1R1(R2 +R3) + L1 = kE , (A.257)

R1 +R2 +R3 = kF , (A.258)

which are a set of necessary and sufficient conditions for (4.1) to be realised as in Fig-
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ure A.11. It can be calculated that

AF − CD = k−2R1L1C1(R1R2 +R1R3 + 2R2R3 +R2
3) > 0 , (A.259)

µ1 = k−4 L1C1

[
R1R2C1(R1 + 2R3)(R2 +R3) (A.260)

− L1(R1 +R3)(2R2 +R3)
]2 ≥ 0 ,

K = k−4 L1C1

[
R2

1R2C1(R2 +R3) + L1R3(R1 +R3)
]2
> 0 , (A.261)

hence (A.243) and (A.244) are necessary. From (A.258) we obtain

k = (R1 +R2 +R3)/F , (A.262)

and from (A.256) we get (A.251). Equations (A.254) and (A.257) now reduce to

F (R1 +R3)(R2 +R3)L2
1 −B(R1 +R2 +R3)(R2 +R3)L1

+DR1R2R3(R1 +R2 +R3) = 0 ,

FL2
1 − E(R1 +R2 +R3)L1 +DR1(R1 +R2 +R3) = 0 .

Eliminating the term in FL2
1 from the two equations and solving for L1 gives (A.250).

Eliminating L1C1 from (A.253) and (A.256) and solving for R1 gives (A.249), and sub-

stituting (A.249) and (A.262) into (A.255) we get the quadratic equation (A.248), with

y = R2. From (A.248) an expression for R2
2 can be found, as follows:

R2
2 =

(A+DR3)
[
(C − FR3)R2 + CR3

]

AF − CD . (A.263)

We now have expressions for elements R1, L1, C1 and for the constant k which only

contain R2 and R3, together with A, B, C, D, E and F , and an expression for R2
2 which

contains R3, together with the same coefficients, and is linear in R2. Substituting the

expressions for R1, L1, C1 and k into (A.257) we obtain a polynomial of fourth order in

R2 and fifth order in R3. Then, substituting for R2
2 from (A.263) twice to reduce the

power of R2, after further manipulation all terms in R2 cancel out and the higher powers

in R3 are eliminated, and we obtain the quadratic equation (A.247) in R3.

When λ1 and λ2 in (A.247) are of opposite sign, the quadratic has one real positive

root. When λ1 and λ2 are of the same sign, the quadratic has two real positive roots

if and only if ρ1 is of opposite sign and the discriminant is non-negative. It can be

calculated that the discriminant of (A.247) is Kµ1, and is therefore non-negative by

(A.260) and (A.261). It is easily seen that when one of the three coefficients in (A.247)
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is zero it is necessary that the other two have different sign, in order for R3 to be positive.

Similarly, when two of the three coefficients in (A.247) are zero it is necessary that the

other one also equals zero, in order for R3 to be non-zero. Therefore conditions (A.245)

and (A.246) are necessary.

We finally show that the condition K > 0 is implied by (A.243) and (A.245)–(A.246),

and can therefore be omitted from the theorem statement. It can be verified that the

following identities always hold

E2F K = −λ1E
2(AF − CD) +D

(
λ1 + F (AF − CD)

)2
,

AB2K = −λ2B
2(AF − CD) + C

(
λ2 +A(AF − CD)

)2
,

therefore when λ1 ≤ 0 or λ2 ≤ 0 it follows that K > 0. If λ1 > 0 and λ2 > 0 it follows

from (A.245) that ρ1 < 0, hence K = −ρ1 + 2CD(AF − CD) > 0.

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0 satis-

fying (A.243)–(A.246), we can calculate from (A.247) one, two or infinitely many positive

solutions for R3, depending on the signs of λ1, λ2 and ρ1. We now show that any positive

value of R3 leads to positive values of the other network elements.

It is easily seen that coefficients c1 and c3 in (A.248) are of opposite sign, therefore

the quadratic always has one real positive root R2 > 0. From (A.249), R1 is positive if

R2(A−DR3) > −AR3 . (A.264)

If R3 ≤ A/D then (A.264) is satisfied, otherwise it can be rewritten as

R2 <
−AR3

A−DR3
. (A.265)

Since R2 is the only positive solution to the quadratic equation (A.248), which represents

a parabola that opens up, inequality (A.265) holds if and only if (A.248) evaluated at

−AR3/(A−DR3) gives a positive value, that is:

c1

( −AR3

A−DR3

)2

+ c2

( −AR3

A−DR3

)
+ c3 > 0 . (A.266)

After some manipulation, inequality (A.266) can be reduced to

R4
3 (AF − CD)D2

(A−DR3)2
> 0 ,
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which always holds.

Hence R1 is positive and, from (A.262), also k is positive. From (A.251), L1 and

C1 have the same sign, and we can therefore conclude from (A.254) that they are both

positive.

Figure A.12 shows the realisability region for the network, plotted on the (U, V )-

plane, for W = 0.7 while Figure A.13 shows the realisability region for W = 0.25. The

expressions in terms of U , V , W for all the symbols appearing in the figures can be found

in Table 5.9. It is clear from both figures that the curve ρc is not an active boundary,

but is still needed to properly define the realisability regions.

The interior of the hatched region is realisable with two distinct solutions, unless

either λc, λ
†
c or ρc is zero, in which case there is only one solution. The boundary is

realisable only for µc = 0, where there are two coincident solutions. It can finally be

verified that case (A.246), where there are infinite solutions, corresponds to the case

W = 1/3. As pointed out in [43] and [61], there exists a realisable region with λc < 0

and λ†c < 0 (corresponding to non-regular impedances) only for W ∈ (1/3, 1), as can be

seen from Figures A.12 and A.13.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Figure A.12: Realisability region for the network on the (U, V )-plane, for W = 0.7. The

region defined by λc < 0, λ†c < 0 and µc ≥ 0 corresponds to non-regular impedances.
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0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Figure A.13: Realisability region for the network on the (U, V )-plane, for W = 0.25.

A.10 Equivalence class VI

3

C1 R3

R2

R1 L1

Fig. 0.10: Network #108, from group VI. By Lemma 12 in [?] it can only realise regular
impedances.

Figure A.14: Network #108, from subfamily VI. By Lemma 12 in [43] it can only realise
regular impedances.

Theorem A.10. The positive-real biquadratic impedance (4.1) with A, B, C, D, E,

F > 0 can be realised as in Figure A.14, with R1, R2, R3, L1 and C1 positive and finite,

if and only if

K ≥ 0 , (A.267)
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where K is defined in (3.3), and the conditions of one of the following cases hold:

Case 1) τ1τ2 < 0 , (A.268)

Case 2) τ1 = 0, τ2 < 0, ψ > 0 , (A.269)

Case 3) τ2 = 0, τ1 < 0, ψ > 0 , (A.270)

Case 4) τ1 < 0, τ2 < 0, ψ > 0 , (A.271)

Case 5) τ1 = 0, τ2 = 0, ψ = 0 , (A.272)

where τ1, τ2 and ψ are defined in Table 5.9. In cases (A.268)–(A.270), R2 is the only

positive root of the quadratic equation in x

DF τ1 x
2 + ψ x+AC τ2 = 0 , (A.273)

while if (A.271) holds then R2 is either of the two positive roots of the same quadratic.

If (A.272) holds then R2 is any positive value. The other elements of the network are

given by:

R1 = C/F , (A.274)

R3 = A/D , (A.275)

L1 =
(DR2 +A)(AF + CD)

DEF R2 + γ2
, (A.276)

C1 =
DR2 +A

L1(FR2 + C)
, (A.277)

where γ2 = AEF −BDF + CDE.

Proof. Necessity. The impedance of the network shown in Figure A.14 is a biquadratic,

which can be computed as

Z(s) =
n(s)

d(s)
, (A.278)

where

n(s) = L1C1R3(R1 +R2)s2 +
(
C1R1R2R3 + L1(R1 +R2 +R3)

)
s+R1(R2 +R3) ,

d(s) = L1C1(R1 +R2)s2 +
(
C1(R1R2 +R1R3 +R2R3) + L1

)
s+R2 +R3 .

Equating impedance (A.278) with (4.1), we obtain

L1C1R3(R1 +R2) = kA , (A.279)
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C1R1R2R3 + L1(R1 +R2 +R3) = kB , (A.280)

R1(R2 +R3) = kC , (A.281)

L1C1(R1 +R2) = kD , (A.282)

C1(R1R2 +R1R3 +R2R3) + L1 = kE , (A.283)

R2 +R3 = kF , (A.284)

where k is a positive constant. From (A.284) we obtain

k = (R2 +R3)/F . (A.285)

Eliminating L1C1(R1 + R2) from (A.279) and (A.282) we obtain (A.275), while elimi-

nating R2 + R3 from (A.281) and (A.284) we obtain (A.274). Solving (A.282) for C1

then gives (A.277). Equations (A.280) and (A.283) now reduce to

(DFR2 +AF + CD)(FR2 + C)L2
1 −B(DR2 +A)(FR2 + C)L1

+ACR2(DR2 +A) = 0 ,

DF (FR2 + C)L2
1 − E(DR2 +A)(FR2 + C)L1

+(DR2 +A)
(
(AF + CD)R2 +AC

)
= 0 .

Eliminating the term in (FR2 + C)L2
1 from the two equations and solving for L1 gives

(A.276). We now have expressions for R1, R3, L1, C1 and k which only contain R2,

together with A, B, C, D, E, F . Substituting such expressions into (A.283) we obtain

the quadratic equation (A.273) in R2. It can be calculated that

K = k−4 L1C1(R1 +R2)2(R2 +R3)2(L1 −R1R3C1)2 ,

from which (A.267) is necessary. The discriminant of (A.273),

∆ = (AF + CD)2 (K + 4ACDF )K , (A.286)

is therefore non-negative, from (A.267). If τ1τ2 < 0 then (A.273) has one real positive

root (case (A.268)), while if τ1τ2 > 0 then there are two positive roots if and only if ψ

is of the opposite sign to τ1 and τ2. It can be verified that the following identity always

holds

ψ = AF τ1 + CD τ2 +AD(BF − CE)2 . (A.287)

Hence τ1 > 0, τ2 > 0 implies ψ > 0, from which it follows that ψ being of opposite sign
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to τ1 and τ2 corresponds only to (A.271). If τ1 = 0 then we need τ2ψ < 0 in order for R2

to be positive. It follows from (A.287) that the case τ2 > 0, ψ < 0 cannot occur hence

the case τ1 = 0, τ2ψ < 0 reduces to (A.269). A similar argument holds for case (A.270),

when τ2 = 0. Finally, if τ1 = 0, τ2 = 0, ψ = 0 (i.e. case (A.272)) then any value of x

solves (A.273), so no restriction is placed on R2.

Sufficiency. Given a positive-real impedance (4.1) with A, B, C, D, E, F > 0 sat-

isfying (A.267), we can calculate from (A.273) one positive solution for R2 in cases

(A.268)–(A.270), two positive solutions in case (A.271) and infinitely many in case

(A.272). We now show that in all cases the values obtained for R2 lead to a positive L1,

and thence C1 (from (A.277)).

From (A.276), L1 will be positive if

R2 > −γ2/(DEF ) , (A.288)

hence if γ2 ≥ 0 then (A.288) is immediately satisfied. It can be verified that the following

identity always holds

B γ2 = (AF + CD)2 − τ2 , (A.289)

hence γ2 > 0 (and therefore L1 > 0) in all the cases in which τ2 ≤ 0, i.e. in (A.269)–

(A.272) and the subcase τ1 > 0, τ2 < 0 of (A.268). In the other subcase of (A.268), i.e.

τ1 < 0, τ2 > 0, the only positive root of the quadratic (A.273) is

R2 =
−ψ −

√
∆

2DF τ1
. (A.290)

Substituting (A.290) into (A.288) we obtain the inequality

(AF + CD)
[
E(K + 4ACDF )− 2BDF (AF + CD)

]
< E
√

∆ . (A.291)

For (A.291) to hold it is sufficient that the inequality holds when both sides are squared,

and after some manipulation the latter inequality reduces to

−4DF (BF − CE)(AE −BD)(AF + CD)2 τ1 < 0 . (A.292)

As mentioned above, if γ2 ≥ 0 inequality (A.288) is immediately satisfied. If γ2 < 0 then

AE −BD < 0 and BF −CE > 0 (directly from the expression for γ2) hence inequality

(A.292) holds in this case. Therefore L1 is positive for all sets of solutions.
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Figure A.15 shows the realisability region for the network on the (U, V )-plane for

W = 0.5 (i.e. AF − CD > 0). The expressions in terms of U , V , W for all the symbols

appearing in the figure can be found in Table 5.9. It is clear from the figure that the

curve ψc is not an active boundary, but is still needed to properly define the realisability

region.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure A.15: Realisability region for the network on the (U, V )-plane, for W = 0.5. The
hatched regions correspond to case (A.268), while the crossed region to case (A.271).
Cases (A.269) and (A.270) correspond to the boundaries of the crossed region, with

τc = 0 and τ †c = 0, respectively. It can be verified that the conditions of case (A.272)
imply AF −CD = 0 (i.e. W = 1), hence case (A.272) cannot be represented in this plot.
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Appendix B

Basic graphs

Below is the enumeration of all the basic graphs with at most five edges, with the

corresponding network numbers from the Ladenheim canonical set. The superscript d

indicates the graph dual, while values in brackets indicate the 40 networks which are

eliminated from the canonical total (see Section 4.2).

Graph One-element networks R L C Tot.
Canonical

tot.
Network
number

A

�1

1 1 1 3 3 1, 2, 3

Total 3 3

Graph Two-element networks 2R
R–L
R–C

LC Tot.
Canonical

tot.
Network
number

B

�1

0 2 1 3 3 4, 5, 6

Bd

�1

0 2 1 3 3 7, 8, 9

Total 6 6

171
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Graph Three-element networks 3R
2R–L
2R–C

2L–R
2C–R

LRC Tot.
Canonical

tot.
Network
number

C

�1

0 0 0 1 1 1 10

D

�1

0 2 2 3 7 7
11, 14, 15,
17, 26, 27,

34

Dd

�1

0 2 2 3 7 7
12, 13, 16,
18, 41, 42,

49

Cd

�1

0 0 0 1 1 1 19

Total 16 16

Graph Four-element networks
3R–L
3R–C

2R–2L
2R–2C

2R–LC Tot.
Canonical

tot.
Network
number

E

�1

0 0 0 0 0 -

F

�1

0 2 2 4 4
20, 25, 28,

32

G

�1

(2) 4 5 11 9
21, 22, 24,
29, 30, 33,
63, 71, 87

H

�1

0 0 1 1 1 72

I

�1

0 2 1 3 3 23, 31, 97

Id

�1

0 2 1 3 3 38, 46, 96

Hd

�1

0 0 1 1 1 73

Gd

�1

(2) 4 5 11 9
36, 37, 40,
44, 45, 48,
62, 74, 88

Fd

�1

0 2 2 4 4
35, 39, 43,

47

Ed

�1

0 0 0 0 0 -

Total 38 34
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Graph Five-element networks
4R–L
4R–C

3R–2L
3R–2C

3R–LC Tot.
Canonical

tot.
Network
number

J

�1

0 0 0 0 0 -

K

�1

0 0 0 0 0 -

L

�1

0 (2) (2) 4 0 -

M

�1

0 0 (1) 1 0 -

N

�1

0 0 0 0 0 -

O

�1

0 (2) 1 3 1 104

P

�1

0 0 0 0 0 -

Q

�1

0 0 0 0 0 -

R

�1

0 2 2 4 4
50, 68, 79,

93

S

�1

(2) (2) + 4 (3) + 4 15 8
51, 52, 64,
69, 80, 81,

89, 94

T

�1

0 (2) 1 3 3 53, 82, 98

U

�1

0 2 2 4 4
59, 83, 99,

100

V

�1

(4) (4) + 4 5 17 9

60, 61, 70,
85, 86, 95,
105, 107,

108

Ud

�1

0 2 2 4 4
58, 84, 102,

103

Td

�1

0 2 1 3 3 57, 78, 101

Sd

�1

(2) (2) + 4 (3) + 4 15 8
55, 56, 66,
67, 76, 77,

90, 92

Rd

�1

0 2 2 4 4
54, 65, 75,

91

Qd

�1

0 0 0 0 0 -
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Graph Five-element networks
4R–L
4R–C

3R–2L
3R–2C

3R–LC Tot.
Canonical

tot.
Network
number

Pd

�1

0 0 0 0 0 -

Od

�1

0 (2) 1 3 1 106

Nd

�1

0 0 0 0 0 -

Md

�1

0 0 (1) 1 0 -

Ld

�1

0 (2) (2) 4 0 -

Kd

�1

0 0 0 0 0 -

Jd

�1

0 0 0 0 0 -

Total: 85 49

Total: 148 108
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The Ladenheim networks

(numerical order)

Appendix A
The Ladenheim networks (numerical order)

Network #1

L1

Network #2

C1

Network #3

R1

Network #4

L1
C1

Network #5

R1
C1

Network #6

R1 L1

Network #7
L1

C1

Network #8
R1

L1

Network #9
R1

C1

Network #10

R1 L1
C1

Network #11

L2

R1

L1

Network #12
L2

R1 L1

Network #13
C2

R1
C1

Network #14

C2

R1

C1

Network #15

R2

R1

L1

1
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2 A The Ladenheim networks (numerical order)

Network #16
R2

R1 L1

Network #17

R2

R1

C1

Network #18
R2

R1
C1

Network #19

L1

R1

C1

Network #20

R2
C2

R1

C1

Network #21

R2

C2

R1
C1

Network #22

C2

R2

R1
C1

Network #23

R1
C1

R2
C2

Network #24

C1

R2

R1 L1

Network #25

R2
C1

R1

L1

Network #26

C1

R1

L1

Network #27

R1

L1

C1

Network #28

R2 L2

R1

L1

Network #29

R2

L2

R1 L1

Network #30

L2

R2

R1 L1

Network #31
R1 L1

R2 L2

Network #32

R2 L1

R1

C1

Network #33

L1

R2

R1
C1

Network #34

L1

R1

C1

Network #35

R1 L1

R2

L2

Network #36

R2

L2

R1

L1
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Network #37

L2

R2

R1

L1

Network #38

R1

L1

R2

L2

Network #39

R1
C1

R2

L1

Network #40
L1

R2

R1

C1

Network #41

L1

R1
C1

Network #42

R1

C1 L1

Network #43

R1
C1

R2

C2

Network #44

R2

C2

R1

C1

Network #45

C2

R2

R1

C1

Network #46

R1

C1

R2

C2

Network #47

R1 L1

R2

C1

Network #48

C1

R2

R1

L1

Network #49

R1 L1

C1

Network #50

R3 L2

R2

R1 L1

Network #51

R3

R2

L2

R1
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The Ladenheim networks (group order)
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