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Three-dimensional Segmentation of Trees Through a
Flexible Multi-Class Graph Cut Algorithm (MCGC)
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Lan Qie, and David A. Coomes

Abstract—Developing a robust algorithm for automatic indi-
vidual tree crown (ITC) detection from airborne laser scanning
datasets is important for tracking the responses of trees to
anthropogenic change. Such approaches allow the size, growth
and mortality of individual trees to be measured, enabling forest
carbon stocks and dynamics to be tracked and understood.
Many algorithms exist for structurally simple forests including
coniferous forests and plantations. Finding a robust solution
for structurally complex, species-rich tropical forests remains
a challenge; existing segmentation algorithms often perform
less well than simple area-based approaches when estimating
plot-level biomass. Here we describe a Multi-Class Graph Cut
(MCGC) approach to tree crown delineation. This uses local
three-dimensional geometry and density information, alongside
knowledge of crown allometries, to segment individual tree
crowns from airborne LiDAR point clouds. Our approach ro-
bustly identifies trees in the top and intermediate layers of the
canopy, but cannot recognise small trees. From these three-
dimensional crowns, we are able to measure individual tree
biomass. Comparing these estimates to those from permanent
inventory plots, our algorithm is able to produce robust estimates
of hectare-scale carbon density, demonstrating the power of ITC
approaches in monitoring forests. The flexibility of our method
to add additional dimensions of information, such as spectral
reflectance, make this approach an obvious avenue for future
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development and extension to other sources of three-dimensional
data, such as structure from motion datasets.

Index Terms—biomass, light detection and ranging (LiDAR),
remote sensing, vegetation mapping

I. INTRODUCTION

AUTOMATICALLY identifying and mapping trees is a
long-standing goal within the field of forest remote

sensing, and there is currently particular interest in finding
robust solutions for segmenting multi-species stands with
complex structures [1]–[6]. With the widespread adoption of
Light Detection and Ranging (LiDAR) it is possible to collect
data on the three-dimensional (3D) structure of forest stands
over hundreds of square kilometers in a matter of hours,
commonly in the form of 3D point clouds [7]–[9], from which
individual trees can be segmented. Individual tree approaches
have the potential to track individual-level changes in response
to events such as disease, biological invasion, logging and
extreme climatic events (e.g. droughts) thereby gaining a
clearer understanding of the processes that generate structural
change [10]–[13].

Until recently, most approaches to delineating individual
tree crowns (ITCs) relied on converting the 3D structural infor-
mation contained in LiDAR datasets into rasterised 2D surface
models [1], [2], [5]. Typically, these approaches start by find-
ing local maxima which are treated as tree tops, then searching
around those peaks to find tree crowns by methods such as
the watershed algorithm [14]–[17], region growing [18]–[20],
valley-following [21]–[23] or variable-window filtering [24],
[25]. Whilst these methods are often very successful at finding
the largest trees, particularly in coniferous forests where trees
have clearly defined tops, conversion to 2D rasters results in
the loss of almost all the information from the understorey,
including many smaller trees, which are represented in the
full 3D point cloud [5], [6], [20], [26]. For applications such
as forest type and cover mapping and above-ground biomass
(AGB) estimation these methods can deliver robust results, but
for estimating tree size distributions or tree-centric changes
this loss of data is problematic [27].

Segmentation approaches that make better use of LiDAR
point clouds are becoming more prevalent [5], [6]. The earliest
methods worked with voxels: data summarised within 3D grids
rather than 2D rasters [28]–[30], but were highly affected by
variation in point density [5]. More recently, methods have
emerged which produce a full 3D version of the tree by
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taking points directly from the point cloud using minimal
or no summarisation [6]. Other early approaches made use
of common clustering algorithms, such as k-means, to find
groups of points thought to be trees [31]–[33]. These pro-
duce reasonable results for larger trees, especially in simpler
conifer forests where crowns are typically distinct [2]. Such
methods are less reliable at finding smaller trees or delineating
structurally complex stands [6], such as tropical rain forest
and broadleaf temperate forest. These are challenging forests
to segment because trees often have overlapping crowns [34]
and stands contain multiple layers of trees [4]. To address
the multiple layered complexity, methods have been developed
which apply an algorithm more than once to point-cloud data,
locating and segmenting tall trees, which are then removed
from the point cloud before reiterating the algorithm [35],
[36]. The latest methods combine a clustering approach with
constraints based on the allometry of trees: knowledge of
how the size and shape of crowns changes with tree height
within a particular forest type [37], [38]. A popular clustering
approach has been to apply the mean shift algorithm [39]–[43],
for example, AMS3D combines a locally derived allometric
relationship between height and crown diameter with an adap-
tive mean shift algorithm [44]–[46]. A further clustering and
allometric approach, Ptrees, combines a multi-scale nearest-
neighbour algorithm with analysis of crown geometry [47].
Finally, normalised cut methods, from graph theory, have been
applied by using recursive binary cuts (i.e. repeated division of
segments into two components), until some stopping point is
reached [48], [49]. Because this approach works with a matrix
of distances between points in the cloud, it is computationally
intensive, and is only applied as a refinement step [39], [48],
[50]–[53] or applied to voxelised datasets [48], [50], [54]. Only
recently has the use of a Multi-Class Graph Cut approach
been applied to the problem of ITC detection to data from
European coniferous forests, focusing on Terrestrial LiDAR
data and working with voxelised data [55].

This paper aims to provide a method that can simultane-
ously address a number of common individual limitations and
extensions to current segmentation algorithms working with
Airborne LiDAR (ALS) point clouds. We introduce a more
flexible approach to normalised cuts, with a particular focus
on complex tropical forests, which are often on steep terrain.
Most point cloud based segmentation approaches require the
heights of points to be topographically corrected, where the
ground height is subtracted from the heights of non-ground
returns [43], [45], [55] This process warps tree crown ge-
ometries when the ground is not level and so can introduce
artefacts on steep terrain. With the introduction of PTrees, a
method to preserve the structure of crowns whilst getting a
correct tree height was introduced and addresses this issue
for already delineated crowns [47]. PTrees along with the
voxelised normalised cut approach in [48] also cluster directly
on the un-corrected point cloud. This is uncommon; most other
methods cluster on topographically corrected data, including
any warping. Our approach, like PTrees, clusters directly on
the raw positions of the points relative to each other, though
knowledge of the above ground height is used to define a
neighbourhood where local point density information is used

and, independently of clustering, to apply allometric feasibility
checking. Our midway approach preserves overall structure of
the point cloud, without introduced artefacts, whilst allowing
use of allometric knowledge. which is now commonly used to
guide or refine crown delineation. However, it is very common
for this process to be developed on local data, or tuned to
specific sites and moving to other locations can be difficult
[6], [33]. Our approach incorporates the relationship of crown
width scaling with tree height, but we use a regional subset
of an openly available global database, from [56], to allow
easier transfer. Not all methods require allometric data, but
this is commonly replaced with assumptions on the geometry
of clustering, such as on crown shape [31], [44], [47] or
assumptions about stem geometry and size [48]. The approach
of AMS3D to automatically build an allometric model from
the data is a possible alternative, though this requires an
initial crown extraction step which makes assumptions on
crown geometry, though this should generalise well [45].
The approach of [36] is a good example of crown detection
requiring no allometric knowledge nor strong assumption on
crown shape, though this algorithm focuses on a canopy height
model (CHM) raster approach to crown detection, only using
the full point cloud in one step to detect lower canopy trees.

In this work we develop a novel and flexible approach
based upon a Multi-Class Normalised Graph Cut which works
directly on the point cloud before topographic correction [57]
and addresses the points and limitations laid out above. Our
method converts the point cloud into a graph representation,
with a vertex for each point. This conversion is based on 3D
proximity as well as assessment of the local density of the
point cloud. Four parameters allow tuning of the importance of
vertical and planimetric distances and vertical and horizontal
variations in density. The algorithm then simultaneously splits
the graph into clusters of points which are well-connected.
The number of clusters is automatically determined based
on the structure of the graph produced from the data, and
these result in candidate tree crowns. Through a filtering step,
using an allometric crown-geometry relationship derived from
a regional subset of a global database, the clusters are checked
for feasibility and rejected if they don’t meet a set of size
criteria or contain too few points. From this a set of tree
crowns is produced, along with rejected points not yet assigned
to a crown. Through a second application of the algorithm it
is then possible to address some of the issue of multi-layer
canopies. We find that the difficulties of finding obscured lower
canopy trees from ALS data remains with our method, but
that a double-layer Multi-Class Graph Cut (MCGC) approach
produces a good proxy for field inventory of stems in all but
the lowest canopy layers. The strength of our approach is
inclusion of allometric knowledge in a way that can be easily
changed, and requires no local calibration, being based solely
on existing database data. In addition to our contribution to
address integrating simple allometry and avoiding clustering
on topologically corrected data, our method is designed and
implemented in a way to make it flexible and open to computa-
tional acceleration. We use a numerical approximation to a full
normalised cut and downsampling and imputation to reduce
the computational time take for our overall pipeline. Flexibility
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in the segmentation step is intrinisic with clustering based
on a single weighting for each pair. The weights calculation
here is one implementation, but this can easily be adapted
to include any information available at each point, such as
imagery data, characteristics of the LiDAR data acquisition
and prior labelling of points if ground truth is known. We
don’t test this addition here, but it is very simple to add in
a manner similar to [49], [58] and the adaptation of AMS3D
introduced in [42], such as using our existing algorithm to map
hyperspectral imagery to ALS data to guide crown extraction
[59]. This extension beyond spatial information is however not
present nor the steps to do so explained in many methods [5],
[8] and developing methods which have a clear route to this
is an important step in individual tree detection.

We also look at addressing the computation of biomass at
a plot level. We use MCGC combined with a relationship
for tree biomass from local crown measurements to predict
total plot biomass as a sum of that contributed by each tree.
Many analyses currently focus on summarised data at the plot
level, computing metrics such as the distribution of top of
canopy height and variation in canopy structure and using
these to predict useful forestry attributes such as biomass
or canopy fuel mass [60]–[63]. These give good estimates
of biomass and carbon density, but lose information on the
individual trees found in each plot [27], [64]. Previous work
suggests that these methods are preferable to ITC approaches
[27] but we show that the MCGC approach to ITC is able
to produce improvements in individual-based estimations of
hectare scale biomass. This advancement shows the potential
of ITC approaches in forest management.

II. TREE CROWN SEGMENTATION WITH MULTI-CLASS
GRAPH CUT

This section outlines the mathematics underpinning a graph
cut, summarising the formal work already completed on this
[57], [65], [66]. A graph, G = G(V,E), is a coupled pair of a
set of vertices, V , and edges, E ⊂ V ×V , which connect these
vertices. Each edge has an associated non-negative weight,
wij ≥ 0, which represents how closely related the vertices
{vi, vj} are, with larger values representing stronger associa-
tions. In this work we use undirected graphs, so wij = wji.
The choice of the weights is application-dependent and indeed
crucial for the performance of the graph cut approach. For the
tree crown segmentation algorithm proposed in this paper the
choice of the weights will be discussed in Section III-B2.

A Binary Cut of a graph into two disconnected subsets
(A and B), forming a partition of G has an associated cost
defined as cut(A,B) =

∑
i,j:vi∈A, vj∈B wij , which is the sum

of weights for all links that bridge the cut. Minimising this cut
over possible partitions A and B means that we are looking for
a partition which maximises the dissimilarity between the two
sets. Similarly a Multi-Class Graph Cut of G into k subsets
{Ai}i∈1,...,k forming a partition of G has an associated cost
defined as:

cut(A1, ..., Ak) =
1

2

k∑
i=1

cut(Ai, Ai), (1)

Algorithm 1: Normalised Spectral Clustering [57]

1: Compute the normalised graph Laplacian Lsym =
D−

1
2 (D −W )D

1
2

2: Compute the first k eigenvectors u1, · · · , uk of Lsym

3: Form the matrix T ∈ Rn×k from u1, · · · , uk by setting
tij = uij/(

∑
k u

2
ik)1/2

4: Cluster the rows of T with k-means clustering [66] into
clusters C1, ..., Ck

5: Return clusters A1, ..., Ak with Ai = {j ∈
V | row j of T ∈ Ci}

where Ai is the complement of Ai, so that Ai = {vj |vj /∈ Ai}.
Finding a partition {Ai}i∈1,...,k that minimises (1) can lead to
qualitatively very good segmentations, but also tends to favour
cutting small sets of isolated vertices [67]. Indeed, without
additional constraints, a partition where the whole of the graph
is contained in one subset and all other subsets are empty is
optimal for (1). To overcome this a balanced graph cut is used.
This splits the graph into similarly sized subsets (defined by
their volume) whilst also trying to minimise linkages between
these sets. Here the Normalised Multi-Class Graph Cut [57]
is used with an associated cost:

Ncut(A1, ..., Ak) =
1

2

k∑
i=1

cut(Ai, Ai)

vol(Ai)
, (2)

where vol(A) is the volume of a set of vertices A ⊂ V
and defined as vol(A) =

∑
i,j:vi∈A,vj∈V wij . The volume

quantifies sets with highly globally connected vertices as
‘larger’ than poorly connected sets. This formulation of the
problem enforces segmentation into subsets of more balanced
size and reduces the chances of a single dominant cluster,
in line with the problem of tree crown segmentation. The
trade-off is that it becomes a discrete optimization problem
which is NP-complete and difficult to solve directly [57],
[65]. To overcome this, an approximation based on trace
minimisation of a matrix is used. This is a well-studied
problem, and can be solved by spectral clustering methods
[65]. The trace minimisation problem that approximates the
minimisation problem for Normalised Multi-Class Graph Cut
(2) is:

min
T∈Rn×k

Tr(T>D−
1
2 (D −W )D

1
2T ),

subject to T>T = I.
(3)

where W = (wij)i,j is the matrix of pairwise weights between
vertices vi and vj and D = (dij)i,j is the diagonal matrix of
degrees for each vertex, that is dii =

∑
j:vj∈V wij and dij = 0

for i 6= j. Moreover, I is the k × k identity matrix and T is
the n × k matrix used as the basis for spectral clustering,
where each row i represents one of the n vertices vi. Problem
(3) is then solved by Normalised Spectral Clustering as per
Algorithm 1.

In previous studies, graph-cut based segmentation of tree
crowns has been used with recursive binary cuts, or with a
Multi-Class Cut with a predetermined number of clusters k
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[48], [49], [52], [58], [68]. In this paper, we instead adapt the
approach in [69] and allow k to vary. We propose the Multi-
Class Graph Cut (MCGC) approach where a minimum and
maximum number of clusters are set and the eigenvectors
up to the maximum number of clusters are computed. For
associated eigenvalues λi (where λ1 is the smallest eigenvalue)
the eigengaps λi+1 − λi are computed. In the case of a
graph with k disconnected components, the first k eigenvec-
tors should have the same value, with a different value for
eigenvalues from k + 1 onward, causing the largest eigengap
to occur between the eigenvalues k and k+ 1. Extending this
principle, we choose a number of clusters which maximises
the eigengap. This has been shown to lead to robust and
natural segmentations [65], [69]–[71]. The number of clusters
is then set by the eigenvalue λi which maximises the eigengap
λi+1 − λi within the pre-defined minimum and maximum
range, allowing flexibility based upon the data.

III. METHODS

A. Field datasets

Data for this paper were taken from a lowland tropical rain-
forest inventory reserve in Sabah, Malaysia. Sepilok reserve is
a 4294 ha protected area within which three distinctive forest
types are found: open 80 m tall alluvial forest, dense 60 m
tall sandstone hill forest and 30 m tall Kerangas forests on the
shallow soils of hill tops. The elevation in this lowland forest
ranges from 0 to 250 m a.s.l. [27].

LiDAR: The reserve was surveyed with ALS data on 5th
November 2014, using a Leica ALS50-II ALS flown at 1850 m
altitude on-board a Dornier 228-201 travelling at 70 ms−1. The
sensor emitted pulses at 83.1 Hz with a field of view of 12.0◦

and footprint of approximately 40 cm diameter with an average
pulse density of 7.3 pulses per m2 giving an average point
density of 24.6 points per m2 across the permanent plots used
in this study. A total area of 26 km2 was covered, including
all 9 permanent plots below. The sensor records full waveform
ALS, but for this study the data were discretised by the system,
with up to four returns per pulse. A nearby Leica base station
was used to ensure accurate georeferencing of the data. The
data were pre-processed by NERC’s Data Analysis Node and
delivered in standard LAS format. [27]

Permanent plots: In order to validate the segmentation
approach, we compared the outputs with field-measurements.
Three permanent inventory plots of 200×200 m are established
in each of the three soil types which have been regularly
surveyed through out their history; the most recent survey, used
for this analysis, was completed in 2013–15. Field inventory
data included the diameters of all stems ≥ 5 cm in diameter
(measured at a height of 1.3 m) and their species identity,
mapped to the nearest 10 × 10 m subplot. Individual stems
are not precisely geolocated, but the corners of all 1 ha sub
plots of each 4 ha permanent were recorded with differential
GPS. Alluvial plots had the largest DBH and lowest stand
density (minimum 5.0 cm, median 10.1 cm, mean 15.2 cm,
maximum 165.3 cm, stand density 2574 stems ha−1) followed
by sandstone plots (minimum 5.0 cm, median 10.0 cm, mean
15.2 cm maximum 142.0 cm, stand density 3894 stems ha−1)

with kerangas forest having the smallest stems with the largest
stand density (minimum 5.0 cm, median 9.5 cm, mean 13.1
cm, maximum 110.5 cm, stand density 4836 stems ha−1). All
have a similar understorey with roughly half of stems being
relatively young with a DBH of 10 cm or less and the main
difference comes from the size reached by the established trees
in the upper layers of the canopy. For some stems, a field-
measured height was also recorded. Additionally, in [27], a
set of 91 crowns were identified in the LiDAR dataset and
subsequently mapped in the field. These include field and
LiDAR based measures of height, stem diameter and crown
area.

Allometry: Having allometric relationships that estimate
crown size for trees of a given size is important for accurate
segmentation, for reasons explained below. Allometric rela-
tionships were obtained by subsetting the Indo-Malaya region
from a global allometry dataset [56]. In total 7,943 trees were
included, ranging in height from 1.4 m to 70.7 m. Quantile log-
log regression (from the quantreg R package) [72] was used
to fit ‘median’ and ‘upper boundary’ relationships through the
data, with the following form: CD = αHβ where CD is
crown diameter, H is tree height with both measured in metres
and α and β are fitted. Quantile regression is analogous to least
squares regression, which predicts the mean of response for a
given predictor value, instead fitting a model for the specified
quantile of the response at a given value of the predictor. We
fitted models to log-transformed data, to produce power law
relationships. The 50th and 95th percentiles of this relationship
were computed as follows:

CDIM50
= 0.251×H0.830,

CDIM95
= 0.446×H0.854.

(4)

These relationships were then used to predict crown di-
ameter and radius for trees of each height when applying
allometry, as explained in the next section. The relationships
in (4) are the only allometric models used for delineation,
being based solely on a global database. For other biomes or
ecoregions one can use a different subset of the same, or a
similar, database. We also computed models for all tropical
forests and all trees worldwide and found that the estimation
of biomass was similar, though slightly less accurate than for
the Indo-Malayan model.

The field inventory at Sepilok includes stem diameter but
rarely records tree height as needed to estimate tree biomass
as explained in Section III-E. To compute the height of trees
in the field inventory at Sepilok we used the relationship
described by Coomes et al. in [27]. This approach was only
used to estimate biomass from the field inventory. Here height,
H (m), is predicted as a function of stem diameter, D (cm),
as a power law, with a different relationship applied to each
soil type as follows:

HAlluvial = 2.105×D0.679,

HKerangas = 4.57×D0.461,

HSandstone = 4.001×D0.527.

(5)



WILLIAMS et al.: THREE-DIMENSIONAL SEGMENTATION OF TREES THROUGH A FLEXIBLE MULTI-CLASS GRAPH CUT ALGORITHM (MCGC) 5

Start

LiDAR Point
cloud data loaded

Pre-processing
and filtering

Prior local maxima
from itcSegment

Similarity weights
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Eigenproblem
solved

Spectral gap used
to select number

of clusters k

k-means used to
assign clusters

Allometric
post-processing
used to finalise
set of crowns

End

Fig. 1: MCGC tree crown segmentation algorithm. Here the
colour of processes reflects the environment they have been
coded in: LASTools are marked in green, R code is marked
in blue and MATLAB code is coloured in orange.

B. The Multi-Class Graph Cut algorithm

The MCGC approach, summarised in Fig. 1, is explained
in detail in this section. LAS data is first pre-processed
and then the MCGC algorithm is applied to delineate tree
crowns. Further post-processing based on knowledge of tree
architectural geometry (i.e. allometric relationships) is then
applied to ensure only sensibly shaped crowns are retained. A
final double-layer extension is then explained.

1) Pre-processing and prior generation: The point cloud
data are first cleaned using the LASTools package1. Points
marked as noise are removed and the lasheight method
is used to generate a second point cloud with a model of
the ground subtracted from the data points (based on points
labeled as ground) to enable computation of above-ground
height of points for prior generation.

The accuracy of the graph cut is improved by generating a
lower bound on the number of expected tree crowns. This is
estimated using the topography-corrected height point cloud
and tree allometry information. Here we produced a list of
expected tree-top positions computed by itcSegment — a local
maximum finder that scales its search window size in relation
to tree height used in the R package itcSegment [27], [72].
Work presented here is completed using a rasterised canopy
height model (CHM) gridded to 0.5 × 0.5 m pixels. A 50th
percentile relationship between height and crown diameter was

1https://rapidlasso.com/lastools/

used to set the size of the local search window based on the
height of the CHM at that location. In this study the relevant
relationship in (4) was always used in computing the prior. The
number of local maxima exceeding a threshold of 5 m then
sets a lower bound for the total number of trees to be found
by MCGC. This height threshold was set to avoid inclusion
ground returns and to avoid over-counting in areas of open
canopy, where the search window becomes very small. As
itcSegment only works on the top of canopy, it is expected to
miss many lower canopy trees and so this number should be an
underestimate. The MCGC approach, as outlined in Section II,
requires a minimum and maximum number of tree (clusters)
per plot to work with. The minimum matching the number of
prior ‘trees’ and a maximum of twice this value was set. This
choice was made to avoid forcing over splitting of crowns in
the top, dominant layer of the canopy. We justify the suitability
of this choice in the discussion in Section V-A1.

2) Graph cut: In what follows, we explain in detail the
steps involved in our application of the MCGC graph cut
algorithm introduced in Section II. The first step of the graph
cut algorithm (implemented in MATLAB) converts 3D co-
ordinates into a graph representation for all points above
a minimum height of 2 m, to avoid ground returns being
included. Here the raw height above sea level values are used
to preserve the true structure of the vegetation. Working with
topographically corrected data causes crown structures to be
warped when the terrain is not flat as points are measured
from the ground directly below them and not from the base of
their respective tree stem [47]. In this work the 3D information
in the LiDAR point cloud was used to construct weights to
represent the similarity between points. The performance of
graph cut approaches is contingent on the choice of weights,
wij , and these must reflect the structure of segmentation
targets to produce good results. Here we introduce a novel
approach to assessing the similarity of points in a 3D point
cloud for tree detection which avoids the need for prior
determination of tree tops or stem locations and only uses
the information within the structure of the point cloud. Our
process captures knowledge of the basic geometry of the data
and of the local density of points and how this relates to tree
crowns. The key idea in using the local density of points is
that for points near the external boundary of a crown, the local
density of points constituting the crown should be higher than
that of points outside the crown. This follows from a similar
reasoning as used in [44] that trees should form local modes
of point density in the data, but we extend this idea to focus
on detecting the boundary of a crown. Computing a centre
of mass (centroid) for the points in a neighbourhood of a
boundary point should result in a point which lies roughly
between the centre of the crown and the boundary point on
which the neighbourhood is centred. Two nearby points on the
boundary of the same crown should have their local centroids
in a similar direction relative to the respective boundary points.
In contrast, two boundary points on different crowns will
have their local centroids located towards the middle of their
respective crowns and so relative to the two boundary points,
these will be orientated in different directions. Comparing the
relative orientation of local centroids with respect to points
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being compared should help distinguish crown boundaries. A
simplified example of this principle is illustrated in Fig. 2
and a practical implementation on artificial data is shown in
Fig. 3. As demonstrated in Fig. 3d, points on the opposite
sides of a crown will also be penalised by this approach. For
a single point, high similarities will only occur for links to
points on the same side of the same crown and low similarities
will result for points in neighbouring crowns and those on
the opposite side of the same crown. Moving slightly around
the crown, to neighbours of this point in the same crown,
we see that points in other crowns still score low similarity,
but the high similarity region of the desired crown, and thus
the low similarity ’shadow’, changes, centring on the new
point. Continuing this across the whole crown results in a
well-connected set of points from the crown with strong links
between mutual neighbours whereas neighbouring but distinct
crowns have lower similarity scores to this entire set as no
strong link exists to the crown of interest.

To encode the information from the local density of points
into the similarity weights, the local centroid for each point
was computed. The neighbourhood used was a sphere centred
on the point in question with a radius based upon the above-
ground height of the point in question. The radius of the sphere
was based on the 95th percentile relationship in (4). To avoid
the sphere extending beyond the stem location for boundary
points in most trees the radius of the sphere was set to be
half of the reference radius computed from the allometric
relationship. This would capture most of the points in the
relevant half of crown without extending too far and being
skewed by other trees locally. The centroid of all points in this
neighbourhood and the relative vector from the original point
to its centroid, denoted by ∆i for point i, was then computed.
In comparing points, the orientations of these relative vectors
were compared. Points which belong to boundaries of different
crowns would be expected to have vectors with very different
orientations. Each of these vectors was broken down into
horizontal and vertical components, denoted ∆H

i and ∆Z
i

respectively. Where the orientations suggested membership
of different crowns, the similarity value (wij) was reduced.
The process of computation of wij is outlined as follows
(with wii = 0, ∀i). Note that it would be straightforward
to introduce further similarity comparisons when constructing
weights, such as comparing intensity values from imagery,
similar to our work in [49], [58], but we have not done so
here.

First, a basic similarity based on the distance between each
pair of points is computed as

wbase
ij = exp

(
−||(x, y)i − (x, y)j ||22

σ2
XY

+
−(zi − zj)2

σ2
Z

)
. (6)

Here, wbase
ij in equation is separated into a horizontal (first

exponential term in (6)) and a vertical component (second
exponential in (6)). Each component can have its importance
controlled by separate parameters as the vertical and horizontal
structure and extent of crowns can vary for different forest
types. The horizontal and vertical parameters are set before
applying MCGC and are the same for all points (σxy and σZ

respectively). Here (x, y, z)i are the raw coordinates of point
i. An example of this is illustrated in Fig. 3b.

Next, the horizontal angle between the two centroid vectors
∆H
i and ∆H

j is computed as θH(i, j). When this is more
than a right-angle, the basic similarity wbase

ij is reduced. This
reduction is based on the horizontal distance between the
points, dH, so that closer points get a larger reduction in
similarity. This effect is normalised by a scale parameter, KH,
which is automatically set to the allometric radius for the
tallest point in the data, using the 95th percentile allometry
relationship in (4). Similarly, the larger the relative difference
in the horizontal components of the centroid vectors, the larger
the reduction in the similarity. The parameter WH controls the
overall importance of this modification relative to all other
steps in the computation. An example of this reduction is
shown in Fig. 3d. With this, the basic wbase

ij is updated to
wpostH
ij as

wpostH
ij =

{
wHij , if θH(i, j) > π

2 ,

wbase
ij , otherwise.

wHij = wbase
ij × exp

(
−WH

KH

dH
||∆H

i −∆H
j ||2

)
.

(7)

Finally, the vertical components of the centroid vectors
are compared (∆Z

i and ∆Z
j ). When these point in the same

direction, no adjustment is made to the score. Where the
directions differ, only pairs where these diverge have their
weight reduced. Divergence occurs when the taller of the
points has a positive ∆Z and the lower point a negative
one. This would be expected for points in different crowns
of varying height, whereas points at the top and bottom of
the same crown would expect to have vertical components
that point towards a central point in the crown. As with
the horizontal comparison, this reduction is larger for points
which have a smaller vertical distance, dZ, between them. The
normalisation for this, KZ, is set to half of the aboveground
height of the tallest point of the data. The reduction is also
larger when the relative difference in the vertical centroid
vectors is larger. An example of this reduction is shown in
Fig. 3e. With this, the final similarity weights, wij , as shown
in Fig. 3c, are computed as

wij =

{
wZ
ij , if ∆Z

i and ∆Z
j diverge,

wpostH
ij , otherwise.

wZ
ij = wpostH

ij × exp

(
−WZ

KZ

dZ
|∆Z

i −∆Z
j |
)
.

(8)

Calculating pairwise weights for every set of two points
would be computationally cumbersome, producing a matrix
of weights that is far too large to store in a typical computer’s
memory (≤ 16 GB RAM). As an indication, a point cloud
of 40,000 points would require 12.8 GB of RAM to be
held in memory, ignoring overheads and the need for spare
memory to perform the necessary computations, which at
the point density of the Sepilok dataset would cover roughly
0.25 ha. To resolve this issue, the Nyström extension is used
[73]. Here the complete matrix and relevant eigenvectors are
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Sign(∆𝟏
𝒁) ≠ Sign(∆𝟐

𝒁)

θ>90°

From Above – ground points droppedFrom Side

Fig. 2: Simplified illustration of the principle of the local density centroid calculations. Points being compared are red and
orange, with associated neighbourhoods shown. Blue points are centroids for each neighbourhood, with centroid vectors in
purple. Comparisons of these vectors are then shown in the grey boxes. In this example both comparisons would result in a
reduction in the similarity weight between the highlighted points. Here the illustration shows how the horizontal and vertical
directional differences in the centroid vectors distinguish the points highlighted as belonging to distinct crowns.

computed for a subset of the points, typically less than 10%
of the data. The eigenvectors are then extended to the full
dataset through quadrature based on the weights in a manner
that produces a robust approximation of wij [73], [74]. This
allows computation of all pairwise weights for the subset
and avoids a need for a sparse representation of the pairwise
linkages. Computationally, we found computing eigenvectors
takes much more time than computing a complete graph
(where all points are linked to all other points). Thus the
Nyström extension approach is more efficient than trying to
compute complete eigenvectors on a sparse version on the
graph.

3) Using crown allometry to refine the segmentation: An
extension of the basic graph cut algorithm makes use of
knowledge of crown radius scaling with tree height to remove
improbable trees, by post-processing of clusters identified by
the initial graph cut. For a candidate tree in the segmented
dataset, a ‘maximum’ predicted crown radius was taken from
look-up table based on its height. The numbers in the look-up
table were based on the 95th percentile relationship from the
global database in [56] as given in (4). Any crowns which
exceeded the range of this dataset were set to match the
maximum allometric radius for the dataset. The horizontal top
of a tree was approximated as the mean position of all points
with aboveground height of 98% or greater of the top point.
First candidate crowns that overlapped too much with larger

neighbours, both in horizontal extent and vertical overlap were
merged. We define excessive horizontal overlap as when either
the top or more than 60% of the points of a tree are within the
allometric radius of a taller tree. The threshold of 60% was
chosen to be a balance between ensuring a majority of points
in a candidate crown need to be within the region but also
avoiding ignoring all but significantly overlapping candidate
crowns. This threshold was set as part of the algorithm and
not treated as a parameter. Excessive vertical overlap is when
the top quartile of heights in a crown overlap the bottom
quartile in a taller crown. This approach was chosen as a non-
parametric approach based solely on quartiles. This was also
set before analysis and not treated as a parameter. Crowns
are only merged if both horizontal and vertical overlap are
excessive. Then crowns where more than 5% of points lie
beyond the computed maximum radius from the tree top are
further trimmed. This cut-off is set to match the radius being
used, here being a 95-th percentile relationship. This was also
set before analysis, again not being treated as a parameter.
Trimming uses hierarchical clustering based on the Euclidean
distance between points, using raw heights. Two clusters are
produced and the one which includes the tree top is kept, with
points in the other cluster added to the rejected points list.
Finally crowns which contain too few points were rejected,
with a threshold of a minimum of 100 points per crown. This
was set to filter crowns which were missing many points and to



8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 1, NO. 1, JANUARY 2025

(a) (b) (c)

(d) (e) (f)

Input Data Base Similarity Weights Density-adjusted Weights

Horizontal Gradient Term Vertical Gradient Term Double Layer MCGC Output

Fig. 3: MCGC applied to artificial trees to explain the role of centroid vector computations in segmentation. The relative effect
of applying the centroid adjustments when comparing to the marked point are shown in panels (d) and (e), and this is reflected
in the weights as shown in panels (b) and (c), where the closest points on the smaller crown have weaker links than the
base weights, with minimal difference made to points in the taller crown. Panel (a) shows two simulated trees with allometry
matching that of the 50th percentile for crowns in Indo-malaya where the green tree is 30 m tall and red tree is 20 m tall with
blue points being the ground. Panel (b) shows the qualitative distribution of wbase

ij for each point computed with reference to
the crown boundary point highlighted by an arrow in all panels, centred at the red star; higher values are represented by green
in the blue-green colour ramp. Panel (c) shows the distribution of wij once the centroid adjustments have been made. The
colour ramp is the same and shows the reduction in similarity to the neighbouring crown whilst preserving linkages to the
target crown. (d) shows the effect of the modification based on horizontal components of centroid vectors in (7). Dark blue
represents minimal adjustment to the weight and lighter colours represent a greater reduction in weight. (e) shows the same
effect as in (d) when looking at the adjustment based on the vertical component of the centroid vectors in (8). (f) shows the
output of double-layer MCGC, with each crown highlighted in a different colour, with unclassified points in blue, recovering
the true structure in (a) with the exception of the bottom 2 m of the stem, as this was the height threshold set.

avoid the trimming step from causing crowns to be too small.
The goal here is to ensure only allometrically feasible crowns
are kept, with all other points being marked as not contained
within a crown. These points are rejected in this application
of graph cut.

4) Detecting lower-canopy trees: The allometric refinement
stage leads to there being points which are not assigned to
any tree. These can be from trees which are close neighbours
of successfully detected crowns where removal of this crown

makes delineation easier. Equally many of these points are
in the understorey, where point densities are lower due to
occlusion and differentiation of crowns is more challenging.
A second pass of MCGC is then used to detect tree crowns
from the unassigned points. These trees are then added to those
accepted in the first application of MCGC to produce the final
list of crowns. It is possible to alter the weight parameters to
reflect differences in the canopy structure in these lower layers;
however we applied the MCGC algorithm with the same set
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TABLE I: Values of Parameters Selected for MCGC by Trial
and Error

σXY σZ WH WZ

Value of parameter 4 2 0.2 0.2

of parameters in the second pass in this study. This simple
extension is illustrated in Fig. 4.

5) Selecting parameters: The values of σXY, σZ, WH and
WZ in (6) – (8) control the relative importance assigned to
each component in computing similarities between points.
To set these, nine of the 36 1-ha plots were used, three
from each soil type, comprising 25% of the data in this
study. To decide the best choice of parameters from those
trialled, the resulting segmentations were manually inspected,
and the distribution of detected crown sizes was qualitatively
compared to the distribution of field inventory stem sizes
for the 9 plots. We chose not to automatically tune the
parameters based on biomass estimates as this would be likely
to falsely remove any bias, possibly by allowing unrealistic
crown delineation. An automatic method to assess accuracy
of tree shape could be used for a robust selection with a
more detailed field inventory. First the values of σXY and
σz were simultaneously assessed, by trying MCGC with each
parameter taking one of a number of values and trying all
possible pairings. For this process, the modifications in (7) and
(8) were not applied to any weightings. It was expected that the
vertical distance would need a smaller parameter, penalising
this more heavily, as tropical crowns are often wide and less
vertically extended than the typical conic shape of coniferous
forests [56]. Analogous parameters in previous work on the
use of graph cut on coniferous forests found the horizontal
parameter to be the smaller, following the same reasoning
[49]. Similarly to the first two parameters, WH and WZ were
simultaneously trialled in an exhaustive manner, with σXY and
σZ set to their selected values. The final parameters used in
this study are listed in Table. I.

C. Improving computational efficiency

As shown in Section II, applying the graph cut algorithm
amounts to solving an eigenvector problem. Such problems
do not scale well with increasing matrix size. The Nyström
extension already reduces the effective matrix size used in the
algorithm. However, as the number of points in the dataset
increases, the total memory required still increases. To resolve
this only with the Nyström extension would require taking a
very small subset of points for applying the approximation.
Instead, when working with datasets of 1 ha or more a
simple method for reducing the workload was developed,
by downsampling the data and then imputing the full data
results. This can be justified as the dense point cloud is locally
correlated – points close in horizontal extent will have similar
height values and a subsampled point cloud retains the 3D
structure of the dense data. This way the MCGC algorithm is
applied in full to a subsampled point cloud and the Nyström
extension can be applied at the same proportion of points used

in MCGC for datasets over large areas, or from very dense
ALS data. The full pre-processed point cloud is downsampled,
by random (without replacement) sampling of the data. The
Multi-Class Graph Cut is then applied to this subset. Once
the crowns are identified, the full dataset is then imputed by
a m-nearest neighbour approach. The value of m is set to
match the effective downsampling, so if 1/5 of the data is used
then m = 5 is used for imputation. For a given crown, points
could only be added to it in imputation if they lay within the
maximum allometric radius of this crown, as computed from
the 95th percentile relationship in (4) for the height of this
crown. To ensure imputation did not create artefacts, where
rejected crowns were now grouped with their nearest valid
crown, the DBSCAN algorithm was applied to each final tree
[75]. This finds groups of points for which there are at least 10
other points within 2 m. A neighbourhood is then constructed
of all neighbouring points which satisfy this property, as well
as all points within 2 m of this group. This ensures imputed
crowns are formed of a single locally-connected group of
points and any points not connected to this were marked
as unassigned. In this work we used a subsampling pool of
20% of the data. In the double-layer extension, subsampling
and imputation was applied to each application of MCGC,
applying it twice in the pipeline. We explored varying or
removing subsampling in the second pass of MCGC, as returns
in the lower canopy are more sparse owing to occlusion. We
found results are generally stable for using 20% of the data or
more, with detail set out in Appendix A. In running the full
double-layer MCGC algorithm to all 36 one ha plots in this
study, the total time taken averaged 66,250 s. This is equivalent
to the algorithm taking 30 m 40 s per plot. This timing
was completed on a workstation running Windows 7 using
MATLAB 2017a. The workstation was equipped with an Intel
Xeon E3-1240 V2 CPU, comprising 8 cores running at 3.4
GHz with 16 GB RAM. MATLAB allocates memory smartly
to enable calculations to proceed where theoretically they may
be RAM-limited. Accordingly, running the MCGC algorithm
on a machine with more RAM, or where subsampling is
optimised to adapt to the RAM restrictions of a machine has
the potential to accelerate the algorithm, but we do not explore
that option in this work.

D. Assessment of segmentation accuracy

MCGC was applied to the 36 1 ha plots within the Sepilok
dataset. The two versions outlined in Section III-B of the al-
gorithm were tested: (1) single-layer MCGC applied a single
graph cut to the data followed by the allometric filtering (as
per Fig. 1); (2) double-layer MCGC extended the results of
this by applying a second pass of the algorithm to unassigned
points (as per Fig. 4).

To compare the distribution of trees found by the automatic
detection methods, the diameter at breast height (DBH) of
these were estimated. This metric was previously recorded in
the Sepilok data set for all stems, whereas their heights were
scarcely recorded. To convert from remotely sensed height to
DBH, log-log regression was applied to the 91 trees manually
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Fig. 4: Pipeline for double-layer approach to MCGC

delineated by Coomes et al. [27]. This results in the following
relationship for H (m) and DBH (cm):

DBH = 0.252×H1.465 (9)

DBH for each tree crown detected by the MCGC algorithms
was estimated from their above-ground height using this
relationship. The results were then compared by grouping
stems into a number of diameter classes and comparing the
number of stems in the field inventory and the number of stems
predicted by MCGC.

E. Predicting biomass

Field surveys are commonly used as a basis for estimating
carbon stored in above-ground biomass. Accordingly we com-
puted biomass estimates for the trees in each plot to measure
the total estimated above-ground carbon density for each 1
ha plot (ACD, Mgha−1). For each plot we compared the
total ACD from the field survey to that from each of the
MCGC based methods. Here AGB was computed for each
tree, and these values were then summed for each plot. Finally
a conversion factor of 0.47 was applied to convert from AGB
to ACD [76].

For the field survey, the biomass from each tree in the forest
inventory was computed according to Chave et al.’s pantropical
equation [77]:

AGBfield = 0.0673× (WD×D2 ×H)0.976, (10)

where WD is the wood density as taken from the global wood
density database [78], [79], D is the stem diameter (cm) and
H is the estimated height (m) based on (5). Wood density was
mapped to the best taxonomic unit available for each species.
If there was no data for a species, then the average for its
genus was used, and similarly where there was no data for this
the family average was used. If there was no data at family
level, an average of all species present in the Sepilok plots was
used. The AGB per plot was then computed by summing the
contribution from each tree before being converted to ACD.

The ACD contribution of each automatically segmented
tree was computed using the following relationship, originally
derived by Coomes et al. in [27] from 91 crowns manually
delineated and verified in the LiDAR data:

ACDauto = 0.268× (H× CD)1.45, (11)

where H is the aboveground height of the segmented tree
(m) and CD is the crown diameter (m) computed from the
crown area (CA) as CD = 2 ×

√
CA/π. For the MCGC

output, the crown area was taken to be the area of the convex

polygon enclosing each tree. Comparisons between the ACD
estimates from the field inventory and remote sensing methods
were compared for each one ha plot. Overall results are then
reported via the bias and Root Mean Square Error (RMSE)
of the predictions. These were computed as a percentage of
the predictions of ACD for the field inventory data. Here
a negative bias indicates the remote sensing estimate is an
underestimate.

Previous work on automatically detected individual-based
AGB estimation notes that often this systematically under-
estimates biomass as trees in the lowest layers of the canopy
are rarely detected [20], [27]. In [27], using the same data as
in this study, trees with a DBH below 30cm account for 23%
of the total biomass across all plots. It can therefore be infor-
mative to apply a simple linear correction factor to account for
this. In [27] this was applied both to all plots simultaneously
and with a different correction factor for each forest type.
Similarly, in [45] the AGB at plot level is computed by
applying a multiplicative constant to the sum of estimated
AGB for each crown. As we found our overall estimate of
ACD from double-layer MCGC was already low-bias overall
we chose to only compute a forest-type specific correction
factor. This can be justified as the MCGC algorithms here
used only a regional allometry which was based on data for the
whole Indo-Malaya region in (4) with no local allometric input
for the MCGC algorithm. A forest-type specific correction was
computed by fitting a linear regression model to the ACD
estimates from MCGC and the field inventory for the 12 plots
of each forest type, constrained to pass through the origin.

F. Comparison to existing methods

MCGC was directly compared to two existing algorithms
as a benchmark of performance. The itcSegment algorithm as
implemented in [27] was used as a reference ITC algorithm.
This is applied to the rasterised CHM, computed at a 0.5 m
resolution. First a moving window local-maxima finder detects
tree tops, where the size of the window scales with above
ground height in the same manner as our prior generation
step does. Finally trees are delineated by a region-growing
algorithm taking the local maxima as seed points. Data from
this algorithm were processed in the same way as those from
MCGC as outlined in Sections III-D and III-E. Estimation of
AGB was further compared to an area-based model [80]. This
predicts biomass at one ha scale based on metrics of the CHM.
The approach uses the general biomass equation from [80] for
which ACD is computed for a one ha plot as ACDGeneral =
3.836×TCH0.281×BA0.972×WD1.376, where TCH is mean
top canopy height (m), BA is basal area (m2 ha−1) and WD is
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diameter-weighted mean wood density (g cm−3). To estimate
BA and WD from the ALS data the approach used in [27]
was applied, where both were estimated as power laws of TCH
based on the 36 one ha plots to give an overall model for ACD
as ACDGeneral = 7.37×TCH0.870. Following the suggestions
in [80] and replicating the approach in [27] a locally-fitted
area-based model was also used. This takes the same form
as the general model but with the powers and multiplicative
factor directly fitted to the Sepilok plots but log-log regression.
Further, following the work in [27], BA was predicted not
from TCH, but instead from Gap Fraction at a height of 19 m
(GF19). This counts the number of pixels in the CHM raster
for which the TCH is below 19m as a percentage of all pixels
in the raster. Brought together these produce a locally-fitted
model for ACD as ACDLocal = 25.93×TCH0.437×GF−0.209

19 .

IV. EXPERIMENTAL RESULTS

A. Tree detection

Single-layer MCGC detects many of the largest trees, but
misses intermediate and lower layers of the canopy. The
additional detection of trees in double-layer MCGC is evident
in the example results for one plot of each forest type shown
for each method in Fig. 5. Fig. 6 shows the comparison
between the field survey measurements and MCGC-estimated
DBH values broken down by bands of diameter and detection
rates by diameter class are summarised and compared with
the results from using itcSegment in [27] in Table. II. Single-
layer MCGC under-estimated the number of trees across all
diameter classes (Fig. 6a). This results from a strict set of
allometric testing criteria, where clusters that don’t pass are
rejected. Thus under-estimation of even the tallest trees can be
expected. In this case, many of the tallest trees are accounted
for (69.8% of trees with DBH>110 cm and 62.8% of those
with 90 cm<DBH<110 cm). However, when compared to the
same counts for itcSegment, which works only on the top
canopy surface, (103.2% and 82.2% respectively) it is clear
single-layer MCGC does not account for all trees in the top
layer as these are being detected by itcSegment. For all trees
with DBH of 90 cm or smaller a single application of MCGC
detects fewer than half the number of stems recorded in field
inventory, and itcSegment outperforms single-layer MCGC.
These trees account for the vast majority of total stems though
many will be in the intermediate layers of the canopy. This
motivates and justifies applying the algorithm a second time to
detect these intermediate layer trees with many of the largest
trees already confidently detected.

Once a second pass of MCGC was applied in the double-
layer MCGC pipeline (Fig. 6b) the number of trees found
increased across all diameter classes. This leads to some
overestimation in the tallest classes (128.6% for DBH>110cm
and 137.2% for 90 cm<DBH<110 cm) but leads to much
better estimates of trees in the intermediate size ranges (87.4%
for 70 cm<DBH<90 cm and 56.6% for 50 cm<DBH<70
cm). These detection rates are comparable to, or improvements
on, itcSegment for the same size stems (51.8% and 61.9%
respectively). Double-layer MCGC still misses most of the
trees in the lowest canopy layers (29.9% for 30 cm<DBH<50

TABLE II: Summary of Detection Rates by Diameter Class
for MCGC and itcSegment with stem count by diameter size
class for the field inventory data. A dectection rate of 100%
means a count exactly matching that of the field inventory and
values above 100% show oversegmentation and values under
100% undersegmentation

Diameter class (cm)
>110 90-110 70-90 50-70 30-50 10-30

Algorithm Detection Rate (%)

itcSegment [27] 103.2 82.2 51.8 61.9 53.5 9.5
single-layer MCGC 69.8 62.8 38.9 23.6 12.7 0.7
double-layer MCGC 128.6 137.2 87.4 56.6 29.9 2.2

Stem Count 63 129 247 712 2761 18518

TABLE III: Bias and RMSE for AGB estimates from MCGC,
itcSegment and Area-based Modelling for both original model
output and once a forest type specific correction factor has
been applied to MCGC and ITC and the area-based model
has been locally calibrated

Original Specifically Calibrated
Algorithm Bias (%) RMSE (%) Bias (%) RMSE (%)

itcSegment [27] -20 26 -1 18
Area-based Modelling [27] -19 20 0 13

single-layer MCGC -48 36 3 21
double-layer MCGC -0 33 -2 18

cm and 2.2% for 10 cm<DBH< 30 cm). In these classes of
stem size itcSegment reports a higher number of stems though
itself still misses a large proportion of stems (53.5% and 9.5%
respectively). For all diameter classes where DBH<90 cm,
adding a second pass of MCGC more than doubles the counts
of stems found by single-layer MCGC which means more trees
in these diameter classes are found in the second application
of MCGC than are found in single-layer MCGC alone.

B. Biomass estimation

Single-layer MCGC underestimated biomass of all three
forest types (bias: -48%, Fig. 7a and Table. III) and including a
second pass of MCGC removed the overall bias in estimating
plot ACD Fig. 8a and Table. III). This is consistent with the
comparison of stem counts in Fig. 6a which showed that the
single-layer MCGC approach underestimated stem sizes across
all classes. Including a second pass of the MCGC algorithm
removed the overall bias in the predictions (Fig. 8a). However,
this resulted from a tendency to overestimate biomass in
the Alluvial forest type matched with small underestimation
in both Kerangas and Sandstone forest types (Table. IV).
Underestimation can be accounted for by missing trees in the
lower canopy. Alluvial forest contains almost all of the tallest
trees in Sepilok and so the tendency of double-layer MCGC to
over-detect these explains the overestimation of ACD in these
plots. Both approaches had a relatively large RMSE (36% and
33%) but this is not unexpected in an individual tree approach
to estimation of biomass as big trees contain a large proportion
of the total biomass. Small errors in prediction of the largest
trees can therefore have a large effect on overall predictions
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Fig. 5: Example results of applying MCGC single-layer and MCGC double-layer to a 1 ha plot of each forest type. Each
row represents a plot of one of the three soil types: Alluvial (a–c), Kerangas (d–f) and Sandstone (g–i). Across each row are
the raw data (coloured by height), the output from single-layer MCGC (coloured by crown) and the output from double-layer
MCGC (coloured by crown). Points which are unassigned are not included in the MCGC output images and the increased
detection of trees can be seen by comparison between the second and third columns: pairs b & c, e & f and h & i.

TABLE IV: Bias and RMSE for AGB estimates from MCGC, itcSegment and Area-based Modelling based on original model
output broken down by forest type

Alluvial Forest Kerangas Forest Sandstone Forest
Algorithm Bias (%) RMSE (%) Bias (%) RMSE (%) Bias (%) RMSE (%)

itcSegment [27] -14 20 -19 9 -29 18
Area-based Modelling [27] -3 15 -21 8 -30 13

single-layer MCGC -26 23 -58 17 -60 22
double-layer MCGC 39 22 -18 14 -21 16

of AGB and ACD. By comparison, in the original study by
Coomes et al. in [27], the general area-based approach for
estimating ACD, as per [80], produced predictions with a bias
of -19% and RMSE of 20% (Table. III). The ITC approach in
this study produced ACD predictions with a bias of -20% and
RMSE of 26% (Table. III). When looking at the contributions
of individual forest types, the methods in the original study
produce closer estimates for Alluvial forest types, as a result
of the overestimation by double-layer MCGC (Table. IV). In
contrast, for both Kerangas and Sandstone forest, double-layer

MCGC produces closer estimates to the field inventory than
any of the other methods considered here.

Appplying a correction factor for each forest type reduced
overall bias and error. For single-layer MCGC the correction
factors were larger than 1 as expected given the algorithm
underestimated ACD (Alluvial 1.32, Sandstone 2.40, Kerangas
2.30, Table. V). Double-layer MCGC had correction factors
that showed an underestimation of ACD in Kerangas and
Sandstone forest matched with a similar overestimation in
alluvial forests (Alluvial 0.70, Sandstone 1.24, Kerangas 1.21,
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Fig. 6: Comparison of log-transformed numbers of trees by
stem diameter for field inventory, left and dark, and each
MCGC implementation, right and light. Percentages are given
for MCGC as fraction of field inventory. MCGC methods are:
(a) single-layer MCGC, (b) double-layer MCGC. Applying the
second round of MCGC increases detection rates across all
stem size groups and more than doubles the rate of detection
in stems of a size of 90 cm or less.

TABLE V: Linear correction factor computed for each forest
type when AGB estimates are compared to field inventory

Correction Factor
Algorithm Alluvial Forest Kerangas Forest Sandstone Forest

itcSegment [27] 1.07 1.32 1.30
single-layer MCGC 1.31 2.30 2.40
double-layer MCGC 0.70 1.21 1.24

Table. V). Applying this correction removed the bias for
single-layer MCGC (3% vs 48%), but only reduced the bias
within each forest type for double-layer MCGC as this already
had low overall bias (Table. III). In both cases this reduced
the RMSE as any bias for each forest type was reduced
independently (21% vs 36% and 18% vs 33% for single-layer
and double-layer MCGC). The effect of these corrections are
similar for itcSegment, removing bias and reducing RMSE, as
reported in [27] and shown in Table. III. When choosing to
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Fig. 7: Comparison of field-estimated above-ground carbon
density (ACDfield) with estimates based on single-layer Multi-
Class Graph Cut (ACDLiDAR) for each of the 36 one-ha
subplots. Panel (a) shows the original estimates with a 1:1
line (dashed). (b) shows the effect of applying a linear forest
type specific correction factor to ACDLiDAR.

use a locally-calibrated model for the area-based approach the
same effects are seen again. Here the model has all parameters
for AGB as a function of remotely sensed variables directly
fitted to the field inventory data, and the Gap Fraction height
is chosen that best predicts Basal Area when compared to
field inventory data [27]. Accordingly there is not an obvious
analogue of the single correction factor that can be compared
as is possible for itcSegment and MCGC (Table. V).

V. DISCUSSION

A. Assessment of MCGC Performance

1) Forest inventory: When comparing the distribution of
stem sizes found by single-layer MCGC to the reference field
inventory it is clear that across all stem sizes the algorithm
did not find all individual trees (Fig. 6a). The initial graph cut
segmentation is constrained to find at least as many crowns
as a simple maxima finding algorithm. As shown in Table.
II, the itcSegment algorithm, which starts with the same local
maxima approach finds more than 50% of the count of stems
for trees with DBH>30 cm. These totals represent the number
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Fig. 8: Comparison of ACD estimates by plot for double-
layer MCGC for each of the 36 one-ha subplots. ACDfield and
ACDLiDAR are the ACD estimates from the field survey and
from MCGC applied to LiDAR data respectively. (a) shows
the original estimates with a 1:1 line (dashed). (b) shows the
effect of applying a linear forest type specific correction factor
to ACDLiDAR.

of local maxima initially found as itcSegment is constrained to
delineate one tree for each local maximum. From this single-
layer MCGC then found fewer stems than itcSegment. The
graph cut step is constrained to find at least as many trees as
the initial prior number of trees. Therefore the underestimation
likely stems from the allometric filtering step. This step applies
multiple criteria to each crown, based on knowledge of a
regional allometry, rejecting those crowns that do not meet
the criteria closely enough. This results in a reduction of the
number of crowns, but those that remain are allometrically
feasible. Notably, the algorithm finds a greater proportion of
crowns relative to itcSegment in the largest classes (DBH>70
cm) than the smaller classes, suggesting that the rejection of
crowns may be more common for medium and small trees.

Double-layer MCGC detects more tree crowns in all diam-
eter classes (Fig. 6b and Table. II). These additional crowns
are detected in the second application of the MCGC algorithm.
The algorithm over-detects the number of trees in the largest
diameter classes (DBH>90 cm), though there are fewer trees

of these sizes, meaning the over count is not a large number of
trees compared to the total count of all stems. As a trade-off,
double-layer MCGC is able to detect more than double the
number of trees in all small and medium classes (DBH<90
cm) when compared to the single-layer approach. This reduces
the under counting in these diameter classes. This results from
the ‘stripping-off’ of the dominant trees to allow the algorithm
to better segment the under layers of the canopy. However
the algorithm struggles with finding the smallest trees as is
a drawback of working with ALS data [27]. The number of
returns for these trees is very small and this underlines the
importance of alternative approaches, such as using TLS data,
for mapping the lowest layers of the canopy. Overall double-
layer MCGC is able to detect most crowns for intermediate
and large sized trees.

Results from the itcSegment approach in [27] justify the
choice of limits for the choice of total tree stems. These
limits are set to a minimum of the number of local maxima
itcSegment would find and a maximum of twice this. From
Table. II it is clear that itcSegment underestimates the number
of crowns in all but the largest stem class. Therefore the
total number calculated in this way will be an underestimate,
though estimates well for trees of DBH>90 cm. Equally, for
all stems where DBH>30 cm, itcSegment finds at least 50%
of the total number of stems for each diameter class. Therefore
doubling the number of local maxima found by the first step
of this algorithm should over estimate the number of stems
in all diameter classes where DBH>30 cm. This would then
make a sensible upper limit for the number of crowns to
seek for crowns of this size. For trees where DBH<30 cm
all such approaches result in under-counting of stems. These
trees are mostly found in the lower layers of the canopy and,
as discussed below, this is a persistent problem with ALS data.
Thus increasing the upper limit of crowns sought is more likely
to lead to worsened over-segmentation of the largest crowns
than to aid in finding these elusive smaller trees.

The difficulty of finding trees in the lowest layers of the
forest canopy is a persistent problem in analysing ALS data in
multi-layered canopies [26], [27], [34]. Here occlusion causes
a diminishing number of returns for lower canopy, making it
hard to identify the smallest trees in the subcanopy, even when
inspecting the data visually [26], [34]. This highlights the
importance of taking a combined approach to data collection,
pairing ALS data acquisition with other methods such as
TLS or field inventory. These methods themselves suffer
from limitation in scope of the area they can cover when
compared to ALS in the same time frame [7]–[9]. When
working on locations of many hectares and larger, being able
to automatically estimate the number of stems in the dominant
canopy layers is a very useful tool and double-layer MCGC is
able to provide this across several distinct forest types in the
tropics.

2) Biomass estimation: Single-layer MCGC underesti-
mated 1 ha plot-level carbon density (Fig. 7a). This is consis-
tent with the under-detection of crowns discussed in Section
V-A1. The bias of -48% shows that the estimates of biomass
are about half of the values calculated based on field inventory,
which is not unexpected. The algorithm finds more than half



WILLIAMS et al.: THREE-DIMENSIONAL SEGMENTATION OF TREES THROUGH A FLEXIBLE MULTI-CLASS GRAPH CUT ALGORITHM (MCGC) 15

of the largest trees, which contribute the most biomass. It then
finds decreasing numbers of the smaller trees and thus half the
biomass is not detected. Applying forest specific correction
factors removed most of the bias (Fig. 7b). However, given
the initial estimates were heavily biased, we feel this is not
an appropriate additional step. Two of the resulting correction
factors take values of greater than 2, indicating a doubling of
the initial estimate, which would produce large uncertainties
in the estimates.

Double-layer MCGC, by contrast, produced estimates of
plot carbon density across the whole Sepilok landscape with
low bias (Fig. 8a). However, as shown by applying correction
factors there is a tendency towards bias in differing forest
types. In the original study of this data from Sepilok in [27]
neither the ITC nor the area-based approach was able to
produce estimates free of bias without local calibration or
correction (-20% and -19% respectively). The results from
double-layer MCGC do have a slightly larger RMSE of 33%
compared to 26% and 20% respectively in the original study.
However, combining these with the bias of the methods sug-
gests that double-layer MCGC produces more robust estimates
of plot level carbon density across the landscape of Sepilok
as a whole than either methods in the original study. This is
in contrast to the conclusion there that area-based methods
remained the best option. Further, applying a forest type
specific correction to the estimates did reduce the relative error
to be similar to that for similar corrections in this original study
(18% compared to 18% and 13% respectively). However, for
the ITC approaches we feel this correction isn’t a fair reflection
of the algorithm. This correction requires a local calibration
to be made and this would only be possible for areas where
full field inventory are available and are unlikely to generalise
to other regions or biomes. In a similar manner, we feel the
fairest way to compare the area-based approach is with the
general equation originally used in [80]. Following the work in
the original study on the data from Sepilok [27] this approach
already requires local fitting of models for basal area and wood
density, but the overall form of the equation is not locally
fitted. As stated in Section III-E, correction factors for biased
biomass estimation can be informative. Often these are greater
than 1, where they account for missing contributions from
under-segmented crowns, as per the intention in [27]. The need
for correction in Kerangas and Sandstone forest arises from
MCGC missing lower canopy trees, as discussed in Section
V-A1. The need for correction in Alluvial plots arises instead
from overestimation of AGB. Based on tree counts in Fig.
6 this is at least partially explained by a tendency to over-
segment and over-count the top layer of the canopy which in
turn inflates the estimate of biomass.

When comparing models based on the original model out-
puts, ignoring locally fitted models or forest-type correction
factors, double-layer MCGC produces the lowest bias overall
across all 36 one ha plots (Table. III). Additionally, double-
layer MCGC produces the lowest bias predictions of ACD
for both Kerangas and Sandstone forest types (Table. IV).
Only in Alluvial forest is double-layer MCGC outperformed
by the existing methods, though the potential difficulties in
working in this forest type are discussed below. The overall

best performing model was still the area-based modelling, once
locally fitted. However, in a manner similar to applying a
forest-type correction to ITC models, this approach requires
local fitting of the overall equation for ACD, a local model
for wood density and a choice of the best fitting model for
predicting basal area as a function of gap fraction across a
range of heights [27], [80]. Thus the fairest and most direct
comparison is to look at the output of the most general models,
which are also the models most likely to generalise to other
biomes and forests (Table. IV). In this comparison, double-
layer MCGC performs best across all but the Alluvial forest
type. As noted in [27], this forest type is very distinctive. It is
dominated by tall dipterocarps, which have narrow stems for
their size compared to many other tropical tree families [27].
This leads to Alluvial forest having a high top canopy height,
with low basal area. This leads to a low field measured ACD
compared to canopy height when compared to other forest
type as shown in [27]. MCGC estimates ACD based only
on tree height and crown diameter so the unusual nature of
Alluvial forest likely contributes to overestimation of biomass
by MCGC. This is compounded by MCGC overestimating
the number of trees with the largest size (Table. II) which
are found in Alluvial plots. Though ALS remote sensing
modelling of individual trees is likely to find similar difficulties
with Alluvial forest and so developing an allometric model
with further field inventory in these plots might be necessary
to account for this atypical structure.

Overall, the reduced bias of biomass estimation from auto-
mated individual tree modelling across the Sepilok landscape
is a powerful tool for the application of the MCGC individual
crown detection algorithm. Our work used a regional allomet-
ric relationship (for the entire Indo-Malaya region) yet was
able to produce initial estimates of biomass, before applying
any correction factor, with lower bias than both the individual-
tree region growing algorithm and area-based approaches used
in [27]. This approach did require the calibrated model from
[27] to link remote sensing measurements to biomass, though
this is common for any such approach to use allometry to
link crown or stem size to biomass. It is worth noting that
the overestimated Alluvial forest type has a particularly tall
and unusual canopy structure [27]. Many trees in this forest
type sit towards the extreme end of the data in [56]. It could
therefore be advisable to develop a more specialised allometry
for this forest type for use in the allometric feasibility checking
step. Similarly any atypical forests in a given region may be
better approached with a more specific allometric relation than
the very general region-wide model used in this work. This
would be further justified by this being the only forest type for
which double-layer MCGC does not produce the best estimate
of ACD across the method compared in Table. IV.

B. Qualitative comparison with point cloud approaches

Though we were able to compare our approach to two
existing methods to estimate ACD at the plot level, a more
informative comparison would be to refer to existing point
cloud tree detection algorithms. Unfortunately, accessing the
existing implementation or implementing these is often tricky
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and we consider a direct quantitative comparison beyond
the scope of this work. Instead we qualitatively compare
MCGC based on results for some of these approaches in
other works and a comparison of the concepts and parameters
used across methods and their ability to be transferred across
study sites and biomes. MCGC aims to simultaneously address
some potential individual limitations of other crown detection
methods, focusing on tropical forests. As outlined in Section
I, the goals were to work as much as possible with the raw
point cloud and incorporate allometry without a need for local
field inventory, whilst also remaining flexible and efficient.

1) Topographic correction: To the best of our knowledge,
only the PTrees [47] and voxelised normalised cut in [48]
cluster directly on the point cloud, without topographic cor-
rection. Our MCGC approach works on a hybrid of the raw
and topographically corrected data. In computing linkages, the
raw data is used to compare distances between points and to
compute local density, only the radius for this computation
uses topographic correction. Topographic correction is then
used in the allometric feasibility checking, but only after
the clustering is complete. This hybrid ensures warping (as
discussed in [47]) from topographic correction doesn’t influ-
ence the segmentation of candidate tree crowns. Thus, where
terrain is steep, such as mountain environments, or tropical
forests in valleys, we expect MCGC along with PTrees and
an implementation of the approach [48] to fare best. However,
only MCGC and PTrees work with the actual point cloud,
with the work in [48] working on a summarised voxelised
version of the data. This also works in a recursive binary
approach, which is likely to cause splitting of subcanopy trees
as discussed in [49]. The simplicity of PTrees, growing crowns
by top-down k-nearest neighbours based on locally highest
points, is a strong point of this method. However, extension of
each label is based on a single initially labelled point which
can introduce artefacts when extended across the full point
cloud depending on how each crown grows. MCGC instead
builds full models for each crown on subsampled data and
then only uses imputation to extend these crowns to the full
data. For these methods, clustering on data before topographic
correction should improve accuracy on challenging and steep
terrains, but feel combining this with a more advanced segmen-
tation is a step forward that was yet to be addressed. MCGC
progresses this goal with a hybrid point cloud approach,
allowing conservation of geometry when clustering, but also
allowing use of crown geometry and allometry.

2) Allometric and geometric constraints: Allometric or
geometric constraints are common, yet often essential, to most
cutting-edge approaches to point cloud based tree detection.
These allow use of knowledge of typical crown size and
shape to aid delineation, often at a local calibration cost.
Approaches requiring local crown knowledge are likely to
transfer less well. We believe a strength of MCGC is the use
of a single allometric model fitted on an independent database.
This simple yet effective relationship can be altered to move
to other biomes and ecoregions. There are approaches that
require no allometry, allowing easy transfer. Typically these
are CHM raster approaches, where the regularity of the data
allows simpler rules for defining crown boundaries. Using the

point cloud, this regularity is lost, necessitating geometric or
allometric constraints to find boundaries. Attempting to bridge
this, [36] delineates on a CHM raster, only using the point
cloud for each crown to look for understorey trees, only as-
suming a minimum of point density as a function of height will
occur between trees. This requires no allometric or geometric
constraints but only uses the point cloud in a refinement step.
The full point cloud approach that we feel requires fewest
geometric assumptions is in [31], which clusters trees based
on k-means with only one geometric assumption; weighting
horizontal and vertical distances differently. This is chosen for
pine crown geometry from field data in the study and so may
need adapting to different biomes. PTrees includes a greater
number of geometric constraints on the crowns, but doesn’t
make use of local allometric data [47]. Crowns are scored
based on four geometric criteria. This approach shouldn’t
need parameters tuning across biomes, but the validity of the
scoring criteria may vary when moving. Stem locations are
instead used in [48], which are based on assumptions about
stem geometry and the height distribution of ALS returns.
These assumptions are likely to hold in their original setting
of coniferous stands, but the complex canopy in the tropics
is likely to impair these. The recent meanshift approaches
often make assumptions about crown geometry. In [39] the
bandwidths of the kernel are set empirically based on field
data. Similarly, in [42] bandwidths are set by hand, varying by
forest type. In [40], a parameter relates the ratio of horizontal
to vertical bandwidths of the kernel which is defined based on
a parametric model for crown shape, requiring 5 parameters.
These assumptions on tree geometry should not depend on
the local allometry of trees, but as mentioned in many of these
works, may only be valid for certain biomes. The alternative is
use of allometric data about the biome or stand itself. In [44],
which introduced the meanshift approach, an initial uniform
kernel meanshift is iterated until the data falls into distinct
layers. The heights of these strata are then used for the kernel,
linking width as a ratio of height. The kernel is also biased
in the positive z direction. The work in [45] builds on this
with an adaptive kernel size that scales with height. This
is derived from the data by a process using gradient based
filtering and then geometric constraints on a CHM of the
data to extract a subset of confidently identified crowns. The
boundaries of these are used to extract point cloud data, and
further geometric assumptions used to calculate the effective
depth and width for each crown. Linear regression is then used
to relate these to the height above ground to set scaling models
for the kernel. Similarly in [41], after an initial segmentation,
candidate crowns are grown by moving down vertical slices of
the point cloud. From these crowns diameter estimates are used
for horizontal bandwidth in each crown, with a tuneable ratio
of this for the vertical bandwidth. These Allometric models
require fewer strong assumptions on the geometry of crowns
or stems in clustering, instead scaling clustering according
to allometry. However, the automated allometry approaches
require assumptions on geometry to derive the allometric rela-
tionships. In contrast, MCGC incorporates allometric scaling,
in a way that avoids local measurement or complex derivation.
We simply take a regional subset of a freely available global
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database from [56] and use this to fit a power law of crown
diameter as a function of height as in (4). This process can
be repeated for any biome or ecoregion without the need for
local data collection nor any further assumptions to be made
about the data. This information is then used to guide the prior
estimate of tree tops, the computation of local centroids and for
allometric checking. The process of allometric checking does
itself require assumptions, as discussed below, but this doesn’t
affect the clustering step. We believe the approaches of [45]
and [41] to be clever and adaptive, but the reliance on prior
assumptions of the crown geometry used in these derivations
of allometry may need to adjust across regions, whereas our
approach only requires use of a different subset of the same
global database. We believe this potentially simpler approach
to use of crown allometry to be a strength of MCGC.

3) Implementation, parameters and computation: One
drawback of point cloud methods is their relative computa-
tional complexity and intensity. We compare methods based
their number of parameters, the effort required to implement
them and their computation complexity. We focus on the
parameters of methods as a proxy for complexity, as accessing
implementations for direct comparison and timing is hard.
Implementation of most of the methods, including ours, is
time consuming. Thus, we have released open-source soft-
ware available at https://github.com/jonvw28/MCGC to reduce
the effort to use MCGC. Some methods may be easier to
implement, such as [31] and [47], based on the number of
steps, but we feel that the work in [44], [45], [48] and [36]
would be similarly difficult to implement owing to either
the number of steps, or custom approaches. It is difficult
to compare speeds of methods without standardised data,
tasks and computational equipment. We expect methods using
simpler clustering approaches, such as [31] and [36] to be the
fastest, with methods using additonal checking steps slower,
as in [47]. We then expect iterative clustering methods with
computation at each step to be slower still, such as mean shift
in [44] and [45]. Methods using matrix decomposition should
take the longest as this operation is costly, such as graph
cut in [48] and our work. The use of Nyström extension and
acceleration in MCGC drastically reduces this disadvantage to
keep our method competitive with other more complex cluster-
ing approaches. This is justified by the analysis in Appendix
A which shows that the matrix step scales well. Although
our method could be tricky to implement, the avaiability
of the source code, along with computational acceleration
places it fairly in competition with other advanced clustering
approaches, such as AMS3D in [45].

The explicit parameters and implicit assumptions that are
made by our method are detailed in Table. VI. There may
appear to be many settings to choose, especially when con-
trasted with other methods that claim to only require one
parameter. In practice, many of these are set to a standard
value and not treated as a parameter, having paralogues in
other methods, showing how common this large number of
apparent parameters is. The assumptions in Table. VI mostly
match similar assumptions in other methods. The limit for the
number of crowns set by the prior was set independently of
analysis and we would suggest this need not change across

biomes. This is similar to the threshold cut value in [48]
and [39], though our approach doesn’t require explicit tuning.
The variables KH and KZ are automatically set from the
highest aboveground height of the data. Whilst this is adaptive,
it is automatic, and is analogous to the process of initial
vegetation layer stratification by automated segmentation in
[44]. The radius for local centroid computation is set by the
allometric lookup table. This is analogous to the assymetric
kernel masking and distance computation of AMS3D in [44]
and [45]. Similarly, the minimum proportion of points that
must be within the allometric radius matches the percentile of
the allometry. Both of these assumptions result from allometric
relationships, being included in Table. VI for completeness.
For computing tree top locations, the cut-off is 98% of the
top height, used only to increase robustness by averaging over
the tallest points, similar to using a smoothed CHM, such as
in [36]. The maximum horizontal and vertical overlap between
crowns are assumptions as explained in Section III-B3. These
are analogous to the vertical cut-off of stems in [48] and the
assumption on the crown base height in terms of a gaussian
of heights in [45]. Similar are the testing of crown geometry
in [47] and the valley finding approach to split canopy layers
in [36]. Some explicit parameters, available to users in our
implementation, take a set value and exist in most methods.
Our prior uses a CHM grid with 0.5 m wide cells. The same
parameter is either manually set, or assumed in [31], [36],
[45], [48], or an analogous fixed bandwidth is often used in
an initial segmentation as in [41], [44]. We use a height cut-
off to reduce noise in the prior and to exclude ground returns
in segmentation, but these are fixed. Most methods have a
minimum height as in [31], [36], [39], [42], [44], [45], [47],
[48] or use last returns to distinguish ground [41] and though
[40] has no analogue, it finds that some vegetation segments
include ground returns. MCGC also sets the minimum number
of points in a crown and has 2 parameters for the DBSCAN
step. These are set based on the point density, with minimum
points equivalent to the number of returns expected for the
footprint of a crown of 1 m radius (once rounded). The
DBSCAN method uses a fixed neighbourhood size of 2 m,
giving a projection-weighted radius of roughly 1 m in two
dimensions, with the number of points set to be 10% of that
for the minimum points. these could be tuned but we use two
simple rules from point density, based on the points projected
onto a crown of radius 1 m and then 10% of this for DBSCAN.
These tests of size and connectivity are often used as a step in
crown delineation methods, with minimum size used in [39],
[47], [48] and connectivity used in [40]. These should be set
based on point density relative to a reference point density of
24.6 points per m2 in this study.

MCGC Parameters which aren’t pre-set or dependant on
point density consist of 4 parameters for the graph cut, the
allometric relationships and subsampling. The four weight
parameters constrain the importance of vertical and horizontal
distances and local density variations (σXY, σZ, WH and WZ

in Table. VI). These need to be chosen for each biome, but
are likely to transfer well within these. In [31] there is one
parameter weighting vertical distance relative to horizontal. In
[48] there are also parameters weighting 4 components of the
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TABLE VI: Summary of parameters and assumptions of MCGC used in this work. † denotes values which would not be
expected to be changed to move to other regions or plots and were not subject to optimisation. ‡ denotes values which were
based on point density and should be scaled for other plots relative to the point density in this study of 24.6 points per m2

See Section V-B for explanation of *.

Parameters Assumptions
Parameter Value Assumption Value

Subsampling factor 5 maximimum number of trees relative to prior 2
Crown allometry for prior 2 coefficients in (4)* KH, Horizontal scale factor in wij set by data
Grids size for CHM used in prior 0.5 m † KZ, Vertical scale factor in wij set by data
Height cut-off of trees in prior 5 m † Radius of ball for local centroid in wij set by data
Height cut-off for points in MCGC and imputation 2 m † Cut-off of height for tree-top location averaging 98% of top height
σXY in wij 4 Min proportion of points within allometric boundary 95%*
σZ in wij 2 Max proportion of points overlapping in allometry testing 60%
WH in wij 0.2 Max vertical overlap of quantiles in allometry testing 25%
WZ in wij 0.2
Crown allometry for wij and feasibility checking 2 coefficients in (4)*
Minimum points in a crown 100 ‡
DBSCAN epsilon and number of points 2 m, 10 ‡

graph cut. In [44] the bandwidth of the kernel needs heights
in three strata and a conversion for horizontal extent, totalling
four parameters, with two bounds set on the kernel extent.
Extending this, [45] defines the kernel by two linear relation-
ships of allometry, with the same restriction on extent. These
relationships are derived from the data, becoming instead
implicit parameters. Other Mean shift approaches require very
similar bandwidth and kernel parameters: there are explicitly
four parameters in the first mean shift in [42], with three band-
widths in the second pass; there are explicitly 2 parameters
in the first mean shift in [41] with an adaptive bandwidth
used later based on rough crown sizes; the bandwidth in [40]
scales with height, requiring one parameter, but the kernel
is a parametric model, requiring three explicit parameters;
[39] only uses two parameters for meanshift, but also uses a
normalised cut, requiring 4 parameters. In [47], instead there
is an assumption that clustering should work down in order
of point height, effectively imposing a bias towards tree tops.
There is no obvious parallel in [36], but this method only uses
the point cloud as a refinement step. We argue that MCGC
requires comparable, or fewer, segmentation parameters to
be set or tuned than most point cloud methods. Some CHM
point cloud hybrid methods, or earlier clustering approaches,
require fewer parameters, but these are not full point cloud
approaches. The allometric relationships in Table. VI, and
in (4), each appear to require two parameters. In practice,
these are derived from the database in [56]. For any given
region, the subset of this data should be used to update the
models. The prior uses a 50th percentile regression model,
and the only explicit parameter which should change is the
percentile used to defined allometric extent. Here we use
the 95th percentile. The database is global, so relationships
can be set for any biome. Therefore despite having 4 im-
plict parameters, in practice, once the biome is set, only
the percentile for allometric checking should be considered
changeable. This is comparable to the parameterisation used
in other allometric methods. The allometry model in [45]
has two implicit parameters, but this is automatically derived
from the data whereby many assumptions or parameters are

needed: first a gradient thresholding filter using seven step
sizes with a threshold parameter, then testing the results of
this for compactness and upper and lower bounds for height
to width ratio, needing 3 more parameters. Ptrees in [47] uses
scores of crown size, circularity, orientation and regularity.
Although only one of these uses an explicit parameter, these
are four strong assumptions. All three methods are comparable
in effort for allometry. Finally, subsampling is explored in
Appendix A. As a parameter this is something user can choose
but is only used to accelerate the method and is something that
should be considered an additional parameter as opposed to a
core tuning parameter. We believe this addition to be rare in
other similar approaches to working with the full point cloud,
meaning it is not possible to draw parallels. Only [47] does
any kind of imputation of results, but this is based solely on
tree apices as opposed to MCGC imputing from pre-delineated
subsampled data in which the structure of the data is used to
find full trees, not just tree tops.

4) Biomass estimation and direct comparisons: Estimat-
ing plot level biomass is not common with automated tree
delineation but is key for forest inventory monitoring. We now
contrast Section V-A2 to AMS3D in [45], where hectare scale
biomass was computed for a tropical lowland forest in Panama,
which is a similar to Sepilok, though in a different ecoregion.
Comparing biases isn’t possible as the models in [45] are re-
ported after application of a correction factor. Across the 50 ha
study site, models for biomass of trees based on crown height
and volume, crown height and area and crown height and DBH
(modelled from crown height and area) produced estimates of
biomass at one hectare scale with RMSE of 16.9%, 13.8%
and 15% respectively. This is best compared to the RMSE
values in table IV, as these are each for a single forest type,
as is the case in [45]. Double-layer MCGC produces estimates
with RMSE of 22%, 14% and 16% for Alluvial, Kerangas and
Sandstone forest. This result did depend on a local model to
link remote sensing measurements to biomass from [27], but
without any additional correction factor. Alluvial forest has the
highest RMSE, but this forest type is very distinctive so may
not be best for comparison. For the latter two forest types,
MCGC RMSE values are comparable with those of AMS3D
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showing similar uncertainty, though without testing on the
same data it is not possible to draw quantitative conclusions.

MCGC and AMS3D have been directly compared for tree
detection in another work [81]. In [81], six 6.25 ha lowalnd
tropical forest plots of LiDAR data from French Guiana had
their crowns delineated by several methods, including an
earlier version of MCGC, itcSegment and AMS3D. In this,
MCGC and AMS3D were found to outperform any methods
not working with the full point cloud. This study focused
on two assessments. The first of these were a set of 1598
crowns that are visible from the top of the canopy which
were manually delineated in the field, for which methods were
assessed in terms of overlap of automated crowns mapped to
each manual crown. In this comparison AMS3D outperformed
MCGC, with a higher proportion of crowns exceeding the
threshold of Jaccard Index (73.8% compared to 54.3%). In
this test MCGC was also comparable to two CHM and raster
approaches, but these should do well on top canopy layers.
Assessment of all canopy layers was done with an algorithm
to pair detected crowns with field inventory stems. Then a
model was used to predict DBH for each crown from their
height and area. Accuracy was assessed in terms of RMSE for
DBH predictions across the largest 5000 trees found by each
algorithm. Here MCGC was the most accurate with RMSE of
7.64% compared to 7.67% for AMS3D, which was better than
all other methods. When only the trees from the congruence
analysis were used AMS3D performed better than MCGC
(8.92% vs 9.33%), though itcSegment did better than both
(8.41%) suggesting a hybrid approach with this for the top
canopy, and a point cloud approach for lower layers might
give even better results. Looking at how delineated crowns
mapped to field inventory stems, MCGC showed its strength.
For the manually delineated dataset MCGC found a match
for 67% of crowns compared to 63% for both AMS3D and
itcSegment, beating all other methods in the study. Across
the full study data, AMS3D delienated the most crowns with
an average of 2564 per plot, compared to 1832 for MCGC
and less than 1500 for all other methods. However, of these,
only 37% of crowns produced by AMS3D matched a stem
in the automated algorithm, compared to 82% for MCGC.
These percentages were beaten by three of the remaining four
methods, but these methods all delineated 75% or fewer of the
number of crowns MCGC did, and far fewer than AMS3D.
As concluded in [81] overall, AMS3D showed best congruence
on reference upper canopy crowns, but MCGC did best when
all delineated crowns were mapped to field inventory stems.
We conclude that MCGC is competitive with AMS3D in an
independent study, with strengths in successful detection of
allometrically valid crowns across all layers of the canopy.

C. Possible extensions of MCGC

Double-layer MCGC is a very flexible approach to the
problem of tree detection and biomass estimation. One obvious
extension, which is in development, is to include spectral
imagery data or other data which can be assigned to each point.
This can easily be incorporated into (8) in a manner similar
to the current terms. With a suitable dataset of an RGB or

multispectral point cloud data combined with field inventory
it should be possible to refine the delineation of crowns as part
of MCGC. Similar modifications to account for return number
or intensity are possible, all of which require modification only
of the formula for linkage weights. The key strength of MCGC
in this regard is the flexibility of the similarity computation.
It is possible to alter the wij term to reflect which factors are
felt to be relevant in detecting crowns in any given forest.

Though double-layer MCGC still does not find all lower
canopy trees, the balance of trees that it does find give rise to a
good estimate of biomass at plot-level. These should combine
well for analysis of UAV data, for which the lower layers of
the canopy are often obscured and so do not appear in the
structure from motion reconstruction. Automatic production
of estimates of total landscape biomass from UAV point
clouds using only existing database models for tree allometries
will be incredibly powerful for low cost, large scale project
management. MCGC offers progress towards this capability,
and bringing in a spectral element in way similar to our
previous work in [49], [58], as is present in UAV point clouds
or from co-registering hyperspectral data as in our work in
[59], should strengthen this further. A further extension to
combine a CHM approach, such as itcSegment, to first remove
the top trees from the canopy may improve speed and accuracy
of biomass estimation.

VI. CONCLUSION

Our proposed double-layer MCGC approach to ITC detec-
tion and biomass prediction was able to identify the dominant
trees of the canopy across three distinct tropical forest types.
As shown in an independent benchmark, MCGC has strength
in both detection and allometric accuracy of crowns in middle
and lower canopy layers. From the crowns of these trees
MCGC can estimate hectare-scale biomass and carbon density
in tropical forest, advancing previous work suggesting ITC
approaches still need development to out-perform simpler
area-based modelling. Uncertainty in estimating biomass was
similar to that reported for AMS3D, another point cloud
method, underlining the potential of such approaches, at the
plot, but not yet national, scale. We used a region-wide
allometric relationship, which could be applied to any forest
in the region. Similar approaches can be used to generate
allometric relationships for any biome of interest, using only a
previously derived allometric model to then link crown geom-
etry to biomass. This is in contrast to area-based approaches,
requiring either field measurements or local calibration.

MCGC also simultaneously incorporates multiple aspects
which are not commonly all included in tree crown detection
algorithms. MCGC is one of few methods which cluster
directly on the raw point cloud, rather than topographically
corrected data, which skews trees on sloped ground, though
does use this information to guide allometric feasibility.
MCGC is able to incorporate allometric constraints through a
single relationship of crown height to diameter, which can be
derived from existing databases. MCGC is also highly flexible
and tuneable through a core set of four weight parameters and
an allometric relationship whilst not being specific to any one
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forest type, though is able to use locally derived allometric
relationships. These are made deliberately open to the user for
tuning in our openly available implementation of MCGC and
as discussed correspond to a similar number of explicit and
implicit parameters in many of the cutting edge methods for
point cloud tree detection. All of this together makes MCGC
a powerful tool in remote sensing of forests, supported by
ability for biomass estimation. MCGC also has potential for
easy extension to multi-sensor datasets. Flexibility in the the
construction of weights allows any combination of variables to
be considered in detecting crowns and in particular this is well-
suited to UAV-derived structure from motion data where the
point cloud includes spectral data. A similar approach could
be applied to the combination of hyperspectral imagery and
LiDAR data once datasets have been aligned, meaning MCGC
can be quickly adapted to new data sources.

APPENDIX
COMPUTATIONAL STABILITY AND SPEED OF

SUBSAMPLING

We assessed the effect of varying the subsample factor
in the second pass of MCGC in our approach. Trees in the
lower canopy normally produce fewer ALS returns because of
occlusion by upper canopy layers. It may then be appropriate
to reduce subsampling in the second pass of MCGC to account
for the sparser nature of the data available. We tried varying
the subsampling in the second pass of MCGC on a single
random one ha plot from Sepilok (which was of the alluvial
forest type). We subsampled by factors ranging from 2 through
to 10 and ran MCGC. This was repeated 100 times for
each subsample to see stability of biomass estimates and
compute average time taken for processing a one ha plot. The
motivation to work only on the second pass was the presumed
lower point density, but in principle this should give an idea of
the effect of varying subsampling for the complete pipeline.

The time to complete the second pass (and by extension
the total time for MCGC) increases with the proportion of
points kept (Fig. 9(a)). The graph cut step (up to the k-
means step in Fig. 1) grows with the number of points,
but only in a range from 30 s to 60 s. The costly step is
allometric checking. This is seen by the difference between
the curves in Fig. 9(a). The roughly linear trend corresponds
to roughly exponential growth of processing time for the
complete algorithm. Once 20% or less of the data is used
(a subsample factor of 5 or greater) the run time stabilises
in the range of 50 s to 85 s and further subsampling has less
effect. The costly allometric step is the trimming of over-sized
trees. This process occurs sequentially, and so should grow
linearly with number of crowns. Instead subsampling affects
the number of points considered for each crown. Though not
tested here, this should mean run time for allometric testing
for a fixed subsample factor should grow linearly with area.
Further, as each crown is handled independently, this process
can be run in parallel which allows further acceleration, though
we have not implemented this. The empirical exponential
growth of computational time with effective point density
justifies subsampling, as long as results remain stable.
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Fig. 9: Comparison of run time and stability of ACD es-
timation for subsampling in the second pass of MCGC for
100 replicates of a single one ha plot. (a) shows time taken
for this pass of MCGC decreases as the percentage of points
used reduces. The time axis has a log10 scale. (b) shows the
distribution of final ACD estimates for the plot for different
subsample factors (a factor of 5 meaning only 1 in 5 points
are kept). The red dashed line shows the ACD based on field
inventory.

Estimation of ACD showed experimental stability for sub-
sample factors of 5 or lower, using 20% or more of points
(Fig. 9b). For this plot, the MCGC double-layer approach
slightly underestimates the ACD based on field inventory
for all subsampling routines (Fig. 9b), where replication of
different randomly subsampled points allows distribution of
ACD estimates to be measured. Here the means are roughly 20
Mgha−1 below reference ACD. The output for subsampling
factors of 5 or lower have similar means with distributions
with highest support at a similar value of ACD. Once this
factor exceeds 5, the distribution starts to show bimodality,
before becoming shifted to higher ACD estimates. This likely
comes from using too little of the data to reliably build a good
map of trees, where sparsity makes density based approaches
unreliable. The allometric constraints are also less meaningful
as outlier points effectively have greater significance to the
overall assessment. This affects the upsampling step and out-
liers can inflate the apparent extent of crowns when imputing
points, leading to an overestimation of biomass.

Combining the results above, we believe a subsampling
factor of 5 is justified for the data from Sepilok.This produces
speeds at the tail end of the exponential decrease in run
time in Fig. 9a, but also sits within the range of values in
Fig. 9b for which results appear to be more stable. Further
subsampling wouldn’t produce a drastic improvement in run
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time, but appears likely to risk introduction of artefacts from
the subsampling approach. Reducing subsampling shouldn’t
have a large effect on stability of ACD estimation, but will
drastically increase run time.
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Zimmermann, and D. A. Coomes, “Allometric equations for integrating
remote sensing imagery into forest monitoring programmes,” Global
Change Biology, vol. 23, no. 1, pp. 177–190, 2017.

[57] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, aug 2000.

[58] J. Lee, X. Cai, J. Lellmann, M. Dalponte, Y. Malhi, N. Butt, M. More-
croft, C. B. Schönlieb, and D. A. Coomes, “Individual Tree Species
Classification From Airborne Multisensor Imagery Using Robust PCA,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 9, no. 6, pp. 2554–2567, jun 2016.

[59] J. Lee, X. Cai, C. Schönlieb, and D. A. Coomes, “Nonparametric image
registration of airborne lidar, hyperspectral and photographic imagery
of wooded landscapes,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 11, pp. 6073–6084, Nov 2015.

[60] J. B. Drake, R. G. Knox, R. O. Dubayah, D. B. Clark, R. Condit,
J. B. Blair, and M. Hofton, “Above-ground biomass estimation in closed
canopy Neotropical forests using lidar remote sensing: factors affecting
the generality of relationships,” Global Ecology and Biogeography,
vol. 12, no. 2, pp. 147–159, 2003.

[61] H.-E. Andersen, R. J. McGaughey, and S. E. Reutebuch, “Estimating
forest canopy fuel parameters using LIDAR data,” Remote Sensing of
Environment, vol. 94, no. 4, pp. 441–449, 2005.

[62] G. P. Asner, G. V. N. Powell, J. Mascaro, D. E. Knapp, J. K. Clark, J. Ja-
cobson, T. Kennedy-Bowdoin, A. Balaji, G. Paez-Acosta, E. Victoria,
L. Secada, M. Valqui, and R. F. Hughes, “High-resolution forest carbon
stocks and emissions in the Amazon,” Proceedings of the National
Academy of Sciences, vol. 107, no. 38, pp. 16 738–16 742, sep 2010.

[63] G. P. Asner, J. Mascaro, H. C. Muller-Landau, G. Vieilledent, R. Vaudry,
M. Rasamoelina, J. S. Hall, and M. van Breugel, “A universal airborne
LiDAR approach for tropical forest carbon mapping,” Oecologia, vol.
168, no. 4, pp. 1147–1160, 2012.

[64] M. H. Nunes, R. M. Ewers, E. C. Turner, and D. A. Coomes, “Mapping
Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Compar-
ison of Tree-Centric versus Area-Based Approaches,” Remote Sensing,
vol. 9, no. 8, 2017.

[65] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[66] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer,
2009.

[67] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol. 15,
no. 11, pp. 1101–1113, 1993.

[68] J. Lee, X. Cai, C. B. Schoenlieb, and D. Coomes, “Mapping individual
trees from airborne multi-sensor imagery,” in 2015 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), jul 2015, pp.
5411–5414.

[69] A. Little and A. Byrd, “A Multiscale Spectral Method for Learning
Number of Clusters,” in 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA), dec 2015, pp. 457–460.

[70] A. Azran and Z. Ghahramani, “Spectral Methods for Automatic Multi-
scale Data Clustering,” in 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), vol. 1, jun 2006,
pp. 190–197.

[71] W. Kong, C. Sun, S. Hu, and J. Zhang, “Automatic spectral clustering
and its application,” in 2010 International Conference on Intelligent



WILLIAMS et al.: THREE-DIMENSIONAL SEGMENTATION OF TREES THROUGH A FLEXIBLE MULTI-CLASS GRAPH CUT ALGORITHM (MCGC) 23

Computation Technology and Automation, vol. 1, May 2010, pp. 841–
845.

[72] R Core Team, “R: A Language and Environment for Statistical Com-
puting,” Vienna, Austria, 2016.

[73] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the Nystrom method,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 214–225, feb 2004.

[74] A. L. Bertozzi and A. Flenner, “Diffuse Interface Models on Graphs
for Classification of High Dimensional Data,” Multiscale Modeling &
Simulation, vol. 10, no. 3, pp. 1090–1118, 2012.

[75] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based
Algorithm for Discovering Clusters a Density-based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise,” in Proceedings
of the Second International Conference on Knowledge Discovery and
Data Mining, ser. KDD’96. AAAI Press, 1996, pp. 226–231.

[76] A. R. Martin and S. C. Thomas, “A Reassessment of Carbon Content
in Tropical Trees,” PLOS ONE, vol. 6, no. 8, pp. 1–9, 2011.
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