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Abstract 
 

The development of electronics capable of interfacing with the nervous system is a rapidly 

advancing field with applications in basic science and clinical translation. Devices containing 

arrays of electrodes can be used in the study of cells grown in culture or can be implanted into 

damaged or dysfunctional tissue to restore normal function. While devices are typically 

designed and used exclusively for one of these two purposes, there have been increasing efforts 

in developing implantable electrode arrays capable of housing cultured cells, referred to as 

biohybrid implants. Once implanted, the cells within these implants integrate into the tissue, 

serving as a mediator of the electrode-tissue interface. This biological component offers unique 

advantages to these implant designs, providing better tissue integration and potentially long-

term stability. In this progress report we provide an overview of current research into biohybrid 

devices, as well as the historical background that led to their development. We divide progress 

in biohybrid devices based on the host anatomical location for which they are designed (CNS, 

PNS, or special senses). Finally, we provide an overview of key challenges of this technology 

and discuss potential future research directions. 

  



 

1 Introduction 
 

The nervous system plays a key role in the regulation of body function, voluntary movement, 

consciousness, and cognitive function. As a result, dysfunction of the nervous system – whether 

by damage or disease – can have devastating consequences in the life of the patient and their 

families. Despite the clinical relevance of neurological dysfunction, current treatment options 

remain limited.  

Neural interfaces and cell transplantation have both been two powerful strategies for the 

restoration of neurological function. Both strategies target dysfunctional regions of the nervous 

system and attempt to restore function by either electrically stimulating or recording from 

healthy neural circuitry (implantable neural interfaces) or providing new cells to replace the 

damaged tissue (cell transplantation). These two approaches have however been traditionally 

considered independently. While electrode arrays interfacing with cells in vitro is a well-

studied concept, the extension of this into biohybrid interfaces – implantable neural interfaces 

containing cells which integrate into the host tissue – remains a largely unexplored concept 

despite offering novel opportunities for treatment.  

 

1.1 History of cells on electrode arrays 
 

The first studies of electrophysiological activity of cells in vitro were carried out using 

intracellular recording techniques[1]. These relied on micropipettes filled with physiological 

solution, which could be manually approached onto cells to pierce or patch into their 

intracellular environment. Although intracellular recording techniques offer a great degree of 

insight into the electrical behaviour of an individual cell, the need for bulky micromanipulators 

to handle the micropipette probes greatly limits the number of cells which can be 

simultaneously studied[2]. 



 

While extracellular electrical recordings are less informative than their intracellular 

counterparts, the greater flexibility in their design and implementation allowed them to gain 

traction within the scientific community. The first generation of electrodes designed for 

extracellular recordings were developed in the 1950s[3], consisting of sharp pipettes similar to 

those used in intracellular recordings designed to pierce into nervous tissue, and loaded with a 

metallic microwire protruding from their tip to facilitate conduction of the weak recorded 

extracellular electrical signals. The micropipette design nonetheless meant that these were 

similarly limited in number of electrodes that could be simultaneously used. This changed with 

the development of multi electrode arrays (MEAs).  

The first MEA designs were strongly inspired by the semiconductor industry, consisting of thin 

metal films deposited onto flat glass substrates to form arrays of electrodes. The flat designs 

and rigid materials made them highly suitable for in vitro applications, allowing cells to be 

seeded and grown directly on top of the electrode array. This application was, to the best of our 

knowledge, first tested by Thomas and colleagues in 1972[4] with chick embryonic heart cells 

using an array of 30 electrodes. Both invertebrate[5] and mammalian[6] neurons were later 

similarly cultured and studied on MEAs, introducing these devices as key tools in the field of 

neuroscience[7]. 

MEA designs for in vitro applications have since progressed significantly. Current MEAs can 

pack over 20 000 electrodes, at a density high enough to track membrane depolarisation events 

within subcellular compartments[8]. Transistor technology has also been implemented into 

MEAs. By locally amplifying signals at the site of recordings, transistor arrays applied in vitro 

can achieve higher signal-to-noise ratios compared to their traditional designs[9]. The last few 

years has also seen the development of MEA designs incorporating penetrating electrode 

architectures, intended to pierce or be engulfed into the cytoplasm of cells, blurring the 

boundary between extracellular and intracellular recordings[10].   



 

MEA technology has developed hand-in-hand with advances in cell culture techniques. Recent 

years has seen a rise in neural organotypic tissue culture – entire sections of primary freshly-

dissected tissue with preserved neuron connectivity. These have been used in combination with 

MEAs to study the function of hippocampal circuitry[11], as well as cortical connectivity[12]. 

More recently, techniques for the cultures of organoids – small organs derived from 

differentiating stem cells in vitro, and developing a circuitry reminiscent of their in vivo 

counterparts – have begun to emerge as an in vitro model of neural circuitry[13] capable of being 

studied using MEAs[14].  

MEAs offer a promising strategy to establish connections with electrically active cells such as 

neurons and study their activity under the controlled conditions of a dish. 

 

1.2 Cell transplantation in regenerative medicine 
 

Stem cells are defined by their potential to self-renew indefinitely by division and to 

differentiate into a variety of different cell types. Adult organisms possess few of these stem 

cell populations dwelling within their tissues, which normally give rise to new skin, blood, or 

gut tissue[15]. In 1981, however, populations of these stem cells were identified in developing 

mouse embryos. These embryonic stem cells (ESCs) could be isolated, expanded in vitro, and 

guided to differentiate into a wide range of cell types[16]. This discovery led not only to great 

advances in our understanding of embryo development, but also led to the appearance of an 

entire new approach to regenerative medicine: transplantation of stem cells into a host organism 

to restore function. 

Transplanted stem cells can be used in two different ways to restore function. Firstly, in cases 

where a particular cell type population has been severely depleted or damaged, stem cells can 

be programmed to differentiate into said cell type of interest and implanted. In this way, the 



 

cell transplant integrates into the host to become new tissue. Alternatively, cells can also be 

implanted to provide a favourable environment for host cells, so that these host cells themselves 

may proliferate to repopulate a lesion. For example, cell types such as olfactory ensheathing 

glia are known for their ability to promote neurogenesis, and transplants of these have been 

successful in enhancing recovery in conditions such as cerebral palsy[17] and spinal cord 

injury[18]. 

The discovery that adult cells can be reprogrammed to become stem cells (termed induced 

pluripotent stem cells, or iPSCs) by Takahashi and Yamanaka[19] generated renewed interest in 

the field of cell transplantation. iPSCs can not only be derived from almost any cell type, 

providing a more reliable and less ethically questionable source of stem cells compared to 

ESCs, but can also be later re-implanted back into the same patient they were derived from 

(autologous transplants). This opened new avenues for cell transplantation therapies as an 

approach to personalised medicine.  

Cell transplants have been particularly attractive for the treatment of neurological disorders. 

Unlike other tissues in the body, the nervous system has an inherently low capacity to 

regenerate following injury due to the limited ability of neurons to proliferate or extend new 

axons. Although lost neurons cannot be replaced from intrinsic populations, neurons or their 

progenitors can be derived from stem cells under in vitro conditions and implanted into the 

affected region of the nervous system. These cells are then free to integrate into the existing 

neural tissue and restore lost function.  

This strategy has been used in the treatment of a wide range of neurological disorders. 

Parkinson’s disease, characterised by the loss of dopaminergic neurons terminating in the 

striatum, has been treated by the transplantation of dopaminergic neurons derived from ESCs, 

and is currently undergoing human clinical trials[20]. Similar clinical trials are also underway 



 

for the treatment of Huntington’s disease (transplants into the striatum)[17], and spinal cord 

injury (neural progenitors transplanted into the lesion)[21]. 

One of the main challenges faced when developing cell transplantation therapies is the risk of 

immune rejection. As cells are uniquely tagged based on their genetic makeup, the host immune 

system is capable of recognising and attacking transplanted cells if it these come from a 

different organism, resulting in transplant failure. Immunosuppressive drugs such as 

cyclosporin are therefore often used to maximise the chances of successful treatment; but doing 

so leaves the patient vulnerable to post-surgical infections[22]. Autologous iPSC transplants 

may be a good long-term solution to this issue. As these are derived from the patient and 

therefore are genetically identical, they can generally avoid immune rejection[23, 24]. 

The history of cell transplantation in and out of the clinic is extensive and an in-depth 

description is beyond the scope of this review. The topic has been covered by other authors[25, 

26]. 

 

1.3 Biohybrid implants – at the interface of two ideas 
 

These two different research avenues– culture and electrical probing of cells on MEAs in vitro 

and cell transplantation for tissue regeneration in vivo – can yet be combined into one concept: 

implantable electrical-cellular hybrid devices. Such systems were first described by Stieglitz et 

al. in their 2002 seminal paper[27], who coined the term ‘biohybrid’ to describe this class of 

neural implants. Though their characteristics can vary depending on the context for which they 

are developed, biohybrid implants in essence consist of implantable electrode arrays containing 

live cells grown in culture. Once implanted, these cells integrate into the host tissue (either 

allowing the host tissue to grow into them, or themselves growing into the host tissue), forming 



 

a bridge between electronics and host. The cells of the implant therefore serve as mediators of 

the electrode-tissue connection (Figure 1).   

 

Biohybrid systems offer a number of advantages over traditional implantable electrodes. While 

neural implants hold a unique potential for the treatment of neurological disabilities, they must 

remain implanted in the body for years or even decades to be effective therapy tools. Over this 

prolonged chronic implantation period implants must face several challenges which can 

compromise the electrode-tissue interface. 

One of the most important of these challenges is the foreign body reaction (FBR). Upon 

implantation of any material, the body recognises it as foreign and mounts an inflammatory 

response in an attempt to degrade it[28, 29]. The inflammatory response itself can not only 

damage both the implant and the surrounding tissue through the generation of factors such as 

reactive oxygen species, but over the course of weeks will lead to the formation of a fibrotic 

layer of tissue encapsulating the implant and physically separating it from the tissue into which 

it is implanted. These inflammatory and fibrotic processes, which occur irrespective of the 

properties of the implanted materials, lead to the slow but often inevitable degradation of the 

electrode-tissue interface[29]. 

Biohybrid implants address the issue of FBR through the use of a biologically-active 

intermediate layer between tissue and electronics. Biohybrid interfaces are more accurately 

formed of two separate interfaces: electrodes-to-cells and cells-to-tissue. If designed properly, 

this double-interface design can be used to greatly minimise or avoid entirely interface 

degradation due to FBR, as the host tissue is only in contact with the cellular interface. A stable 

cell-tissue interface relies on an adequate selection of the cells to be implanted, as improper 

choices may lead to an immune response similar to that seen in graft rejection[22-24]. Lessons 

learned from the long clinical history of cell transplants can, however, be applied to great effect 



 

for this purpose – with techniques such as the use of iPSC cultures offering great potential for 

the development of immune-compatible biohybrid interfaces. 

Another advantage of biohybrid implants over other designs relates to their ability to address 

neurological symptoms not related to well anatomically-defined structures, thanks to their 

ability to integrate into the host tissue. Many traditional neural probes are designed to treat 

symptoms resulting from a dysfunction localised to a specific area of the body. Examples of 

this are cochlear implants for hearing restoration (cochlea), deep brain stimulation electrodes 

for treatment of Parkinson’s disease and other movement deficits (striatum), and artificial 

cardiac pacemakers (heart). Biohybrid implants, on the other hand, are designed to integrate 

into the host tissue, growing out from the site of implantation into their target structures. This 

allows biohybrid devices to establish connections with multiple structures and does not limit 

their effect to the area surrounding the implant itself. The designs presented by Stieglitz and 

colleagues[27], for example, relied on neuronal cultures within the implant extending into a 

damaged peripheral nerve, reaching into multiple denervated muscles and connecting these to 

an electrode array. Recent advances in neural implant designs indeed highlight the need for 

implants which better imitate and integrate with neural tissue[30].By providing a platform onto 

which cells are seeded, biohybrid devices can also incorporate molecular cues (growth factors, 

guidance molecules, etc) to stimulate and guide outgrowth of cells. Whether fixed to the 

implant surface or delivered via microfluidic channels, these molecular cues offer an advantage 

over traditional cell transplantation by facilitating integration of cells to the intended targets.  

Additionally, many traditional neural implant designs see the quality of signals recorded 

quickly deteriorate when tested under chronic implantation conditions. Although this is to a 

degree caused by FBR, another major contributor to this interface instability is motion[31, 32]. 

The constant movement of body tissues in chronic implantation scenarios (consequence of 

natural locomotion, ventilation, blood flow, etc.), combined with mechanical mismatch 



 

between tissues and implanted materials, leads to relative motion of the two. This motion 

makes it difficult to record from the same subset of cells over long-time spans, and causes 

continuous damage to the surrounding tissue, further degrading the electrode-tissue interface. 

As a strategy to address this issue, there is a growing interest in the development of soft and/or 

flexible neural probes[31, 33], that better mechanically integrate into the host tissue. The double 

interface design present in biohybrid devices offers an alternative approach to this same 

problem. Since the rigid electrodes don’t have to be positioned in immediate proximity to the 

fragile tissue of interest (with cells instead growing out into it), the host tissue of interest 

remains unperturbed by any micromotion of the device.      

One final advantage that biohybrid implants can offer stems once again from its two-interface 

design. Although fabrication and preparation of biohybrid implants requires an additional layer 

of work, as cultures of cells need to be seeded on these prior to implantation, the electrode-cell 

interface offers an excellent opportunity to design the connectivity of the implant under 

controlled conditions. One of the primary challenges faced by all neural interface designs is 

the need to decode and interpret the data recorded. The uncertainty introduced by the 

implantation procedure and the unknown distribution of the host neural network means that it 

is often unclear what the is biological interpretation underlying the data recorded by each 

electrode. Extensive efforts are as a result put into developing strategies to aid in decoding this 

based on the recordings obtained following implantation[34].  

Biohybrid interfaces offer a strategy to address this by setting up the interface between biology 

(cell cultures in the implant) and electronics under the controlled environment offered by a 

dish. Seeding of cells onto the MEA implant surface can be, for example, accurately controlled 

by patterning or substrate functionalisation[35]; and the development of the electrode-cell 

interface can be monitored using live imaging techniques. This can additionally facilitate 

design and fabrication of the electronics part of the device. Since electrode arrays don’t have 



 

to imitate the architecture of the host tissue (with the cells instead performing the integration 

into the tissue), fabrication efforts can instead focus on producing more robust systems capable 

of performing well under chronic implantation scenarios.  

Biohybrid implants, lying at the interface of biology and electronics, constitute a unique tool 

with great potential in both the clinic and basic research. Despite the multiple challenges in 

their design and fabrication due to the need to integrate expertise in microfabrication, cell 

culture, and implantation surgery, amongst others; biohybrid implants offer numerous 

advantages over traditional implantable electrode array designs. This niche held by biohybrid 

implants can translate into unique therapeutic opportunities.  

Multiple research laboratories have applied the concept of biohybrid implants to various body 

tissues: ranging from CNS to muscle tissue (Table 1). Incorporating this distinction by host 

tissue location (CNS, PNS and special senses) followed by a summary of the key challenges 

and future perspectives, we hereby provide a comprehensive description of the current state of 

research on neural biohybrid implants. 

 

 

  



 

2 Central Nervous System  
 

The CNS is comprised of a complete network of both neurons and glia. Neurons, in the vast 

majority of cases, are responsible for receiving electrical signals via dendrites and these signals 

are transmitted along axon fibres[36]. Glia (oligodendrocytes, astrocytes and microglia) are 

supportive cells in the CNS acting as protection for neurons and insulation for axons. Injury to 

the CNS can occur in multiple ways including traumatic brain injury or degenerative diseases, 

this results in degradation and loss of long axonal connections and electrical communications. 

When the CNS is injured, an inhibitory environment is generated resulting in the lack of 

capacity to repair and regenerate[37]. Hence, functional axonal restoration is rarely possible due 

to lack of guidance, local inhibitory signals and large distances from targets. 

Here we discuss tissue engineering approaches using biohybrid electronic devices for 

functional neurological restoration in the CNS. The biohybrid strategies discussed include 

technologies that incorporate both cells and electronics. By bridging the gap at the site of injury 

with a biohybrid approach, cells could act as biological amplifiers, transducing signals from 

electrical to biological allowing reestablishment of lost connections. There are two key 

strategies that have been described in literature targeting the CNS using this biohybrid 

approach, those with cells on electrodes and those with cells growing through electrodes. 

 

 

2.1 Cell-seeded probes 
 

A conceptual neural stem cell-seeded probe design was presented by Purcell et al.[38] to 

evaluate the capability of functional neurological restoration in patients with motor and sensory 

deficits resulting from injury. The aim of this concept was to facilitate integration between 

implanted devices and the host tissue, to improve recording quality and stability during chronic 



 

implantation. Probes were Parylene C based, with the dimensions 2.6mm (length), 200µm 

(wide), 40µm (thick) containing a hollow well to encase a scaffold capable of hosting cells 

(Figure 2). E14 cortical neural stem cells (NSCs) (Stem Cells Technologies) were cultured as 

neurospheres and a mixture of heterogenous stem cells and progenitors[39]. Scaffolds 

encapsulated these neural stem cells within an alginate hydrogel and were implanted into 

Sprague Dawley rats that were not immunosuppressed. Four probes were implanted into the 

somatosensory cortex of individual rat brains, two cell seeded probes and the control probes, 

an unseeded probe and an alginate coated probe. Histological analysis was performed at 1 day, 

1 week, 6 weeks’ and 3 months’ time points.  

The neuronal density was higher surrounding the NSC-seeded probes compared to the 

unseeded probes at both 1 day and 1-week post implantation. Probes seeded with NSCs were 

associated with a reduced initial tissue response after implantation (at 1 day and 1-month time 

points). This may have been due to the bystander effect, resulting from cell therapy. 

Transplanted cells are thought to secrete specific factors that allow for correction of 

biochemical imbalances that may lead to cytotoxicity and further injury[40]. There was evidence 

of secretion of neuroprotective factors that support neuronal survival. Purcell et al. in an earlier 

study showed that brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic 

factor (GDNF) are released from alginate-encapsulated NSCs in vitro during a 3-week 

culture[41]. 

At the 1-day post-implantation timepoint, despite the scaffold being intact, there were a limited 

number of NSCs detected, with more than 90% of cell viability lost in the grafts. This could 

have been due to either an initially low cell seeding density or impact during insertion. A 

possible strategy to reduce the initial cell loss could be to improve cell adhesion to the scaffold. 

Conversely, at the 6 week and 3-month post implantation time points, there was a reduction in 

neuronal density for the NSC-seeded probes and an increased tissue response compared to 



 

controls. This may be due to the alginate gel dissolving and fragmenting overtime (shown by 

histological analysis) and the components effecting the viability of the implanted NSCs causing 

a lower neuronal cell density as a result[42].  

This was the first report in literature analysing the change in neuronal density surrounding a 

prosthesis over time. The recording performance relative to neuronal density was unknown at 

the time of publication. It was useful to understand why the recording capabilities of implanted 

probes decrease over time relative to neuronal density. The timing of the neuronal cell density 

changes corresponds with recording performance in silicon probes alone in literature.  Ludwig 

et al. showed that the loss of recording units after the initial insertion injury but recording 

quality is recovered when the neuronal cell density increases after 1 week post-implantation[43]. 

Additionally, this was the first report in literature where doublecortin (DCX) positive neurons 

were located around neural implants associated with seeded probes (1 week after implantation).  

DCX is a microtubule associated protein found in neuronal precursors that migrate, indicating 

regenerative capacity of the grafted cells or the injured brain or both[42].  

A good extension of this study would be to investigate mechanisms and functionalising 

recording sites. Acute electrophysiology experiments are needed to analyse the effect on 

implanted cells and chronic electrophysiology tests to assess for long term biocompatibility of 

the NSC-seeded probes. 

 

The concept of cell-seeded probes has been demonstrated by others. Azemi et al. [44] aimed to 

improve the interface of neural implants by seeding neural probes with neural progenitor cells 

(NPCs). By adding a layer of cells to the surface of laminin coated probe this may help mediate 

the tissue interface mismatch. The growth, differentiation and post-implantation survival of 

these NPCs was analysed. Green fluorescent protein (GFP) labelled NPCs were cultured in 

vitro for 14 days and implanted into murine cortex. The tissue response observed at two 



 

different time points, on day 1 and 7 post-implantation. There was improved attachment of 

cells on laminin coated probes. On day 1 and 7 post-implantation viable NPCs that still 

expressed GFP, were found on the neural interface of the implant. NPCs adhered to a laminin 

coated silicon-based probe, grew and differentiated. This tissue friendly surface reduced the 

implant induced brain injury. The NPCs cell layer improved the astrocyte reaction around 

implant site by releasing neurotropic factors, consequently reducing the foreign body reaction. 

Results confirmed that cells might help reduce the glial scar at two different time points, yet 

further in vivo work is needed for chronic recording performance with cells. 

An alternative approach for cell-seeded probes was introduced by De Faveri et al.[45]. They 

presented a biohybrid solution to improve the performance of intracortical implants long 

term[46]. This method was developed to help control the biological response and promote 

integration of implanted electrodes using a compact layer of cells within a reabsorbable fibrin 

hydrogel. Electrodes were coated with reprogrammed neural (hippocampal neurons) and glial 

cells (astrocytes). Neurons were isolated from E18 rat embryos and glial cells isolated from the 

cerebral cortex of P0 rat pups. Wire probes were dip coated in a human fibrin hydrogel and 

electrode tips were coated with poly-d-lysine, creating a positively charged layer to enhance 

cell adhesion. 

Two implantable wires were tested within the study; quartz insulated metal electrodes (95% 

platinum, 5% tungsten) with 20µm diameter coated with 30µm of quartz to analyse adhesion 

of the hydrogel during insertion to electrode surface. Secondly, to assess the time frame of 

hydrogel reabsorption and measure the tissue reaction post-implantation lead wires (350µm 

and 3mm diameter) were used. These implantable wires were dip coated in fibrin hydrogel, 

coated in poly-d-lysine to enhance cell adhesion (by creating a positively charged layer) and 

dipped into a vial of 300,000 cell/500µl. Implantation of the devices into Sprague Dawley rats 



 

was performed by the same subject to minimise variability. Animals were sacrificed at days 3, 

7, 30 post implantation, brain slices were cut and stained for immunofluorescent analysis.  

Acute neural recordings were performed to indicate the in vivo electrical performance of the 

fibrin-coated microelectrodes. The fibrin hydrogel allowed good quality recordings and did not 

alter the electrochemical properties of the microelectrode. Swelling of the hydrogel is thought 

to allow water and ion adsorption from the saline solution maintaining optimal connectivity. 

However, when the fibrin coated wires were implanted in vivo this swelling lead to an increase 

in the distance between the electrode and the target tissue. Though De Faveri et al.[45] reported 

that under their conditions fibrin hydrogels caused less swelling than other hydrogels. Desired 

coating thickness could be adjusted.  

Immunofluorescent analysis determined that in vivo reabsorption of hydrogel occurred as 

fluorescent intensity decreased over time post implantation. The hydrogel was fully resorbed 

into tissue after 7 days post implantation. Bare uncoated electrodes were compared to fibril 

coated electrodes to analyse the host tissue response.  7 days after implantation a strong 

astrocyte reaction was determined. However, the fibrin hydrogel elicited a weaker response 

after 7 days in comparison to uncoated devices and this response continued to decrease up to 

30 days post implantation. This approach reduced amount of host reactive astrocytes compared 

to a bare wire.  

Primary neurons and glial cells created a compact monolayer on the surface of the curved 

electrode. Although cells were partially stripped during surgical insertion to the brain, hence 

the fibrin hydrogel layer was incorporated to increase the mechanical compliance of the 

microelectrodes implanted. Here the cell coating and hydrogel did not significantly affect the 

impedance of electrodes compared to the uncoated devices (without cells and hydrogels). 



 

De Faveri et al.’s prototype shows promise for improving the biocompatibility of 

microelectrodes by means of mimicking the properties of the host tissue. This method is a way 

to potentially improve electrical integration at the neural interface. Additional advantages of 

this approach are that the aim is to draw all materials from the recipient patient, to reduce the 

likelihood of an immune reaction. Fibrinogen, a fibrin precursor can be withdrawn from 

patient’s blood and the neurons and glial cells can be reprogrammed from patient’s own 

fibroblasts. 

Others have trapped neurons within hydrogels and conductive polymers. Goding et al.[47] 

presented a conceptual design that combined both cells and electronics to form a bionic device. 

Two hydrogels, one biosynthetic (degradable) and one conductive (CH), were combined and 

analysed to assess their ability to encase cells on the surface of electrodes (Figure 3). This 

tissue engineered approach of the electrode uses a ‘natural mode of stimulation’ by means of a 

seamless interface[48].The layer of encapsulated cells offered a soft neural interface between 

the target tissue and the platinum electrodes[49]. Rat glial and neuroprogenitor cells were 

encapsulated on top of a CH in a degradable hydrogel for protection from solvents and high 

DC voltage that are needed for CH fabrication and high capacitance charges at the site of the 

platinum electrodes. The properties of the degradable hydrogel are important. The degradation 

rate of the hydrogel should match the rate of ECM regeneration during chronic implantation 

experiments[50]. As the non-conductive hydrogel degrades the stiffness of the entire biohybrid 

drive decreased to within the range of neural tissue, this allows for support for transplanted 

cells; allowing optimal biochemical and mechanical cues to survive and differentiate producing 

functional neural networks[51]. The viability of encapsulated cells was assessed, and glial cell 

had a high viability within the hydrogel, however, neuroprogenitor cells did not have a high 

survival rate and this possibly due to the harvesting techniques[47]. Additionally, cells 

encapsulated within the hydrogel bilayer produced ECM proteins. This biohybrid approach 



 

shows promise for future proof of concept studies in vivo. A possible extension of this work 

might aim to quantify the ECM production and compare it to the hydrogel degradation rate.  

In addition, by functionalising conductive hydrogels with gelatin and sericin biomolecule, the 

survival and proliferation of olfactory ensheathing cells (OECs) at the electrode interfaces of 

implants was improved[52]. These OECs are glial cells in the olfactory nervous system that have 

an ability to move through glial scar tissue and support the growth of neural processes. Eight 

biochemical variations of poly (vinyl alcohol) and heparin with PEDOT hydrogels were 

compared against platinum electrodes for OEC spreading and the percentage composition of 

gelatin and sericin were varied ranged between 1 and 3wt%. Cell attachment studies were 

performed and 1 wt% gelatin in the hydrogel increased OEC attachment compared to non-

functionalised conductive hydrogel. These biofunctionalised conducting hydrogels could be an 

ideal electrode coating for tissue engineered neural interface and customisable to specific cell 

types that are being transplanted.  

Here we have discussed two biohybrid approaches, those with cells seeded on electrodes and 

those with cells hosted in hydrogels. This approach has allowed for a softer neuron-electrode 

interface with soft scaffold reducing the risk of iatrogenic nervous injury. Cell seeded probes 

reduced the tissue response at site of injury, but cell viability decreased, and cells were lost 

post implantation. Hence further improvements are needed to improve the cell-device adhesion 

with coatings or encasing hydrogels[53]. Incorporation of a hydrogel layer may increase the 

mechanical compliance of the microelectrodes implanted[45] and degradable hydrogels 

encasing cells may allow for ECM regeneration at site of lesion. There have been promising 

approaches to date for the field of bioelectronics using a biohybrid approach to achieve repair 

of lost CNS communications, although further in vivo chronic studies are needed to assess 

biocompatibility and survival of transplanted cells over time. 



 

 

2.2 ‘Living electrode’ technology  
 

The concept of ‘living electrodes’ was introduced by Cullen et al.[46] in vitro, incorporating 

living neurons and optogenetic based microelectrode technology. This was the first 

demonstration of unidirectional, long distance growth of axons with a high survival rate in a 

contained 3D microenvironment. 

The design included a columnar structure that acted as tracts for axonal growth (Figure 4). 

These micro-columnar structures were fabricated from an agarose-collagen hydrogel, forming 

a tube-like structure allowing for support and directional growth of axons[46]. The agarose 

component of the hydrogel allowed for a stiff casing of the conduit for implantation with the 

soft collagen on the inner side suppling bioactive ligands, to support the survival and growth 

of implanted neuronal/axonal cultures. The conduits had dimensions of 250um (inner diameter) 

and 500um (outer diameter) and were several centimetres in length. 

Living dorsal root ganglia neurons were injected into one end of the conduit. The implantation 

end of the conduit aimed to promote neuronal survival and the other encouraging unidirectional 

growth of axons through the conduit. Over one-week, confocal microscopy revealed that 

neurons had survived and remained at the seeding site, axons had sprouted from these neurons 

along the inside of the conduit and grown up to 5mm in length. This concept showed promise 

in repairing damaged projections of axons with the conduit acting as a bridge of living axons.  

Building on their previous technology, Struzyna et al.[54] developed micro-tissue engineered 

neural networks (microTENNs) which are essentially a form of ‘living scaffold’[46, 54, 55]. These 

microTENNS comprise of neural bodies at one end of an agarose-collagen hydrogel 

microcolumn structure and their axonal projections growing unidirectionally towards the target 

tissue these multiple microstructures form  a neural network that could act as a replacement for 



 

CNS reconstruction[37]. These microTENNS are fabricated in a similar fashion to the living 

electrodes by pouring a hydrogel into cylindrical moulds that have a needle in the centre. Once 

the hydrogel is cured, the central needle is removed, and hollow microstructures are formed, 

an ECM solution aiding the survival of axons is used to line these lumen. With this approach 

different neural subtypes from the cerebral cortex are used to create the axon-based living 

electrodes, these have varying functions and abilities to integrate with the target tissue and 

generate synaptic integration[54]. Advantages of this approach are that the guided axons can act 

as a bridge for synaptic integration across a lesion and act as a guide for native axons to grow 

through.  

This biohybrid approach could be used a cell-based probe to record activity in the CNS utilising 

either electronic or optical based technologies. These microTENNS can act as a biological 

intermediate between implanted devices and the host nervous system. Utilising the 

unidirectional growth of axons in the microstructures, neuromodulation and neural recording 

could be performed for brain-machine interfaces[56].  

 

A modified approach to the living electrode was suggested by Tang-Schomer et al.[57]. They 

presented an integrated microfluidic neuron-electrode brain interface, on a transparent, flexible, 

silk film (Figure 5)[57]. Silk-based films are useful for the application of brain implants because 

they are compatible with technologies used to micropattern electrodes. Silk is a purified 

biopolymer derived from the cocoons of silk worms and can be tailored to have mechanical 

properties close to that of native tissue[58]. The mechanical and topographical surface properties 

of the silk-film were optimised for the survival and alignment of primary rat cortical neurons 

on electrodes.  

Primary rat cortical cell neurons were taken from embryos at E18 Sprague Dawley rats. The 

device design comprised of compartments of neuron cultures and patterned electrode arrays. 



 

The mechanical stiffness of silk films was altered by varying the annealing temperature and 

film thickness parameters during the silk-film processing. The surface topography of silk films 

was controlled to evaluate the effect of any directional cues on glial cell alignment in vitro.  

Microfluidic culture systems were incorporated on the prototype, consisting of millimetre long 

tracts for axon growth to connect separate compartments of cell culture. Each cell culture 

population was located on a silk-film based patterned electrode. Axons tracts had a depth and 

width of 100um by 50um. To determine the functionality of the neuron-electrode interface, 

neuronal cell cultures were examined under electrical stimulation. Neurons were individually 

numbered and then randomly selected and analysed for their calcium levels. Varying 

frequencies were applied (square waves of 120mV (peak to peak) at 20, 200, 2000 Hz) for 6 

mins per condition and every minute, time lapse fluorescence images were taken. Stimulation 

of these electrodes evoked calcium responses in neurons in vitro, the levels of calcium 

correlated with stimulation conditions. However, it was noted that there were heterogenous 

responses between individual neurons, this phenomenon might reflect the complexity of 

circuitry in the brain and the signal propagation dynamics.   

The aim was to examine whether the in vitro model developed could be implanted into the 

brain with long- term stability and biocompatibility. Tang-Schomer et al. were the first to 

determine the feasibility of un-dissolvable silk films to support chronic brain implants. 5mm 

diameter silk film (without electrodes) were implanted into the cortex of 3-month-old mice and 

compared against flat films to examine the effect of brain cells.  Minimal inflammatory 

response was elicited 14 days post-implantation. Glial cells aligned at the interface of the 

electrodes via the microgrooves revealing that the filmed implant integrates well with distinct 

host brain cells. However, no electrophysiology tests were performed during the in vivo 

experiments. A good extension of this work would be to perform acute and chronic stimulation 

on the film-based neuron-electrode interface.  



 

Here we have discussed the living electrode/scaffold biohybrid strategy. This approach has 

allowed for directional growth of axons that act as electrodes. These living electrodes can 

integrate with the target tissue and produce synaptic integration[36]. Modifications of this 

concept have been presented through flexible silk scaffolds that incorporate microfluidics 

culture in vitro models[57]. Studies in this section have shown promise but have not included 

chronic in vivo implantation studies to assess the functionality of the device and level of tissue 

response after implantation. 

 

  



 

3 Peripheral Nervous System  
 

A traumatic lesion or degenerative neuropathy to a peripheral nerve can lead to axon 

degeneration and destruction of the neuromuscular junction (NMJ)[59]. Unlike the CNS, the 

PNS has the capacity for regeneration, however, lesions with nerve gaps over 3 cm have a lack 

of functional recovery due to the distance of axonal regrowth required to reach the target. 

Consequently, loss of communication and electrical connections occurs from one part of the 

nervous system to another, effecting motor control and sensory processes[36]. When trying to 

preserve or regenerate this NMJ it is important to have a stable interface with the peripheral 

nerve and electronics. A biohybrid approach incorporating cell therapeutic strategies with 

electronics could help. This section includes biohybrid approaches incorporating regenerative 

peripheral nerve interface (RPNIs) technologies that harbour cells or tissue grafts to allow for 

integration between transplants and host tissue for PNS regeneration.  

 

3.1 Regenerative Sieve electrode (RSE) 
 

The first regenerative biohybrid neural interface approach was introduced by Stieglitz et al. [60] 

The ‘neuron microprobe’ was a biohybrid system concept that interfaced with peripheral nerve 

using a high channel sieve electrode, containing transplanted biological cells (Figure 6). This 

approach highlighted the importance of sustaining skeletal muscle function by preserving the 

neuromuscular junction (NMJ). The prototype was designed for restoration and control of 

skeletal muscle using functional electrical stimulation (FES). This biohybrid concept aimed to 

couple implanted neurons and ring electrodes that allow growth of axons from implanted 

neurons to act as mediators to the target muscle.  

It was emphasised that the most important technical requirements for this biohybrid design 

were the adaption of the distal nerve stump, an ability to host cells and contain microelectrodes 



 

that act as transducers for cell monitoring and stimulation[60]. Hence, a sieve electrode design 

was presented, based on a rat sciatic nerve model with diameter of 1.5mm. This polyimide-

based sieve device contained 19 ring electrodes and a counter electrode over 286 holes. 

Additionally, the design incorporated three bending flaps for suture fixation to the epineurium 

of the peripheral nerve of rats. For the microprobe design it was mentioned that a high 

proportion of holes on the substrate were favourable for axon sprouting but it had to be 

considered that as the hole number increases, mechanical strength decreases[27].  

Sterilisation of devices was performed via autoclaving and this method decreased the bending 

angle of the interconnecting wire and flaps for adhesion but scanning electron microscopy 

revealed no cracks or delamination. Preliminary results of electrical characterisation for 

chronic device performance of this biohybrid concept were tested on 3 devices after thermal 

bending of polyimide. After sterilisation techniques and thermal annealing, the impedance of 

the ring electrodes increased from 2.7kΩ a to 155kΩ at 1kHz[27]Although Stieglitz et al. [27]did 

not chronically implant their devices into animal models with cells, within their research 

consortium chronic implantation of these devices have been performed. Device requirements 

for chronic implantation include the ability to remain stable in a physiological environment, 

with no occurrence of degeneration[61]. Components of the design must not be toxic to cells as 

the device material needs to act as a diffusion barrier. The conducting materials used must have 

a low corrosion rate as this too can inhibit regeneration and transplanted cell survival [62]. Six 

months post-implantation this polyimide device (without cells) integrated well into the existing 

nerve architecture and microfascicles passed through the microsieve holes across the 

implant[63]. A good follow up of this work would be to investigate the incorporation of cells 

and electronics by recording and stimulating neurites sprouting through holes in the sieve for 

peripheral nerve regeneration. 

 



 

3.2 Regenerative Peripheral Nerve Interfaces with muscle cells 
 

Since the first introduction of the biohybrid neural interface system, adaptions to this approach 

have been developed. Regenerative peripheral nerve interfaces (RPNI) present a potential 

strategy to interface divided peripheral nerves with prosthetic limbs. Urbanchek et al.[64] 

encased myoblasts within a biologically stable scaffold (RPNI) that had an ability to provide 

signal amplification through mature myotubes and prevent neuroma formation (Figure 7). 

Three scaffold materials were compared: silicone mesh (SM), acellular muscle (AM) and 

acellular muscle combined with chemically polymerised poly(3,4-ethylendioxythiopene) 

(PEDOT) conducting polymer (AM+PEDOT). These RPNIs had enough permeability and 

stability to host myocytes for chronic implantation. Soleus muscle myoblasts were isolated 

from rats and cultured for 13-17 days. 3 million myoblasts were implanted onto each scaffold 

(Acellular muscle group (AM) and Acellular muscle and PEDOT (AM+PEDOT)) when 

myotubes showed signs of contraction in vitro[64]. 

PEDOT was used to chemically polymerise the inner lining of the implant with the aim of 

improving the conductivity. A 2cm section of the distal peroneal nerve was removed. RPNI 

were implanted into peroneal nerve of rats and recovery was allowed for 2 months. The average 

implant time was 93 days (59-111 days). Electrophysiology tests were performed at the end-

point of the experiment to assess the variability and ability of this RPNI to transduce neural 

signals into muscle signals. A 26-gauge stainless steel needle was inserted into the central 

portion of the RPNI and the current was increased to elicit compound muscle action potentials 

(CAMPs). 

Contractible myoblasts encased within RPNIs can address some limitations of other peripheral 

nerve interfaces. Firstly, when interfaced with the peroneal nerve the RPNI could detect 

physiologic efferent motor action potentials[65]. Electromyographic (EMG) activity was 



 

recorded from RPNIs and CMAPs were produced in SM, AM and AM+PEDOT with high 

reproducibility. Low amplitude nerve signals resulted in the contraction of myotubes within 

the RPNI, due to reinnervation. This revealed the RPNI was capable of transducing nerve 

signals into muscle signals. Additionally, myoblasts could differentiate and mature into 

functioning desmin-positive muscle fibres and were reinnervated and revascularized. This 

directional growth of regenerating axons into the myoblast based RPNI helped prevent 

neuroma at the end of the dissected peroneal nerve.  

A good follow up of this would be to investigate chronically implanted electrodes for long term 

and high specificity control of neuroprosthetic devices. Additionally, an extension of this work 

could be to quantitatively validate the observations made. The health and contractile properties 

of mature muscle fibres in the RPNI need to be examined. Nerve conduction studies are 

required to assess the quantity of signal that the RPNI can transmit and the amount of signal 

amplification performed by the muscle fibres. Despite the subjective approach to this study, 

findings suggest that the incorporation of muscle cells within a RPNI are an exciting approach 

that should be investigated further.  

 

3.3 Regenerative Peripheral Nerve Interfaces with muscle tissue grafts 
 

To overcome the limitations of current technologies, Irwin et al.[66] developed an RPNI from 

small, partial, autologous muscle grafts that is reinnervated with a peripheral nerve branch 

transection. For the first time the stability, lifetime and signal strength of an RPNI was shown 

as a promising approach for restoring movement in non-human primates. Signals from a 

prosthetic hand were controlled using chronic recording through muscle graft RPNI. Once 

reinnervated the RPNI biologically amplifies motor signal commands in the descending nerve 

with high SNR and specific EMG signals. 



 

Muscle grafts for the RPNI were dissected from healthy autologous muscle tissue with 

dimension of 1cm by 3cm. Nine of these RPNIs were folded over the distal ends of branches 

of the medial and radial nerves of two rhesus macaques and secured to the epineurium. The 

branches of nerve ended on long finger flexor and extensor muscles, ideal for prosthetic hand 

control.  

Both macaques were trained to perform finger movements. Bipolar EMG electrodes (silicone 

backed) were implanted onto the surface of the RPNI and led up to a headcap subcutaneously. 

However, animals destroyed the leads within the headcap consequently meaning there were no 

working electrodes. A revision surgery revealed that the stiffness of the silicone had resulting 

in scaring and prevented regeneration of the RPNI, hence electrodes were removed from both 

animals. Instead, whilst animals were performing tasks, fine wire electrodes were implanted to 

the RPNIs for acute recording. 

20 months post-implantation RPNIs showed no adverse effects in either of the monkeys and 

normal EMGs were recorded from RPNIs with high SNR like that of healthy intact muscle. 

Signals could be easily recorded using and decoded into commands for the use in a functioning 

prosthesis. With RPNI signals recorded during a behavioural task, Irwin et al. could calculate 

each macaque’s finger movements (classified as flexion, extension or rest) with up to 95% 

accuracy. RPNI could aid monkeys control their virtual hand. This was made possible by 

decoding signals in real time and offline. RPNI could aid monkeys control their virtual hand 

with 280 and 447 finger movements decoded by both monkeys. This approach enabled 

prosthetic control to one degree of freedom matching what is currently commercially available. 

Each macaque was able to perform the same behavioural task equally using the finger 

movement classifications. 



 

RPNIs were able to successfully both reinnervate and regenerate muscle tissue, based on 

histological staining of muscle at implantation and 4 months post-implantation. Hematoxylin 

and eosin staining showed that the muscle tissues were healthy, well vascularised with no 

indication of necrosis. Irwin et al. mention that the muscle cells appear rounder and nuclei are 

centrally located indicating that regeneration was still ongoing. A possible extension of this 

could have included quantitative analysis of cell morphology and nuclei roundness.  

Irwin et al. [66] were able to track the level of reinnervation over time as an electrode was 

implanted with the muscle graft in the EDCa nerve RPNI. Stimulation of this RPNI led to the 

production of CMAPs that indicate a healthy neuromuscular interface. As all the RPNIs were 

able to reinnervate, with some even reintegrating with surrounding muscle tissue it was difficult 

to identify the RPNI to replace electrodes.  

Here RPNIs were implanted into healthy, uninjured monkeys. During surgical procedures it 

was ensured that the surrounding muscles remained intact and no motor function deficits. This 

made it very difficult to calculate whether there was any cross talk from other adjacent muscles. 

However, authors expected that because the intramuscular electrodes were highly selective any 

effects were negligible based on their previous work on rats[65]. This needs to be confirmed in 

future human studies whilst recording activity as the anatomy in humans differs slightly[67].  

Irwin et al.[66]demonstrated for the first time that the stability, lifetime and signal strength of 

this RPNI are promising for restoring movement using long term physiological control of an 

artificial limb. Vu et al.[67] extended this work by increasing the capability of continuous 

estimation of finger movements, through the implementation of a Kalman filter. This work 

opens the opportunity for new myoelectric sites to potentially replace what has been lost after 

implantation. Future developments could combine increase number of EMG electrodes with 

wireless stimulation and EMG muscle recordings to restore control and function of a lost limb. 



 

 

 

3.4 PNS ‘living electrode’ (Tissue Engineered Nerve Grafts)  
 

As previously mentioned in the CNS section of this report Cullen’s group pioneered the ‘living 

electrode’ technology and have adapted this to target neuroregeneration in the PNS[37]. In this 

instance the concept is termed TENGs (tissue engineered nerve grafts) and these comprise of 

axon tracts that are stretch-grown to create a regenerating bridge of axons across a PNS 

lesion[68]. These TENGs are nervous tissue that consist of two cell populations with the 

capability of growing up to 5-10cm in length within 14-21 days[69]. The speed of axonal growth 

using this strategy is advantageous as axonal regeneration in the PNS is notoriously slow at a 

rate of 1mm per day and slower across a lesion injury[59]. The TENGS are created by 

embedding axon tracts into ECM for stability before transplantation[70]. In recent years, TENGs 

have been generated with rat dorsal root ganglion neurons (DRG), cortical neurons and human 

DRG (from cadavers and live subjects)[69]. Huang et al.[70] performed a pre-clinical efficiency 

study to repair lesions in rat sciatic nerves using rat DRG TENGs[70]. Six weeks post 

implantation the architecture of axons was preserved and integration of the DRG neurons with 

host tissue was seen. Confocal images of green fluorescent protein positive (GFP+) axons 

confirmed that transplanted axonal tracts in TENGSs helped host axons grow directly across 

the lesion. After 16 weeks of implantation the neural tissue with the lesion appeared normal 

and host axon appeared myelinated [70]. 

In this section we have discussed the first introduction of a biohybrid peripheral nerve interface 

and reviewed recent adaptions that include cells and tissue grafts within RPNIs. In vivo studies 

including macaque animal models comprised a muscle flap encasing nerve, where the muscle 

grafts acted as organic amplifiers, which in turn integrated with existing musculature[66]. 

Additionally, a PEDOT lined RPNI containing transplanted myocytes were able to amplify 



 

signals and reduce neuroma formation by giving the axons directional growth[71]. 

Synaptogenesis was identified at NMJ indicating integration of the RPNIs with existing 

musculature[66]. 

  



 

4 Special senses 
 

4.1 Hearing 
 

It is common clinical practice to restore hearing in deaf patients using cochlea implants to 

electrically stimulate spiral ganglion neurons (SGNs). Acoustic energy is converted into an 

electrical signal via an external device[72]. A subcutaneous internal signal receiver then 

stimulates these SGNs[73]. The silicone-based devices contain platinum electrodes and are 

inserted into the scala tympani[74]. Insertion trauma resulting from the positioning electrodes 

inside the cochlea can affect the nerve electrode interface and consequently impact the patient’s 

hearing [75, 76]. When tissue within the cochlea becomes damaged an immune reaction occurs, 

this can lead to FBR and osteogenic changes in the scala tympani[77]. In humans, the amount 

of fibrous tissue is inversely proportional to outstanding SGNs[76]. Since the onset of deafness, 

these SGNs gradually degenerate, and they are the target cells for electrical stimulation. Hence 

there is a need to replenish/regenerate the residual SGN population and reduce insertion 

trauma. A biohybrid approach coating electrodes in cells could overcome these challenges 

allowing for a softer interface between neurons and electrodes. 

Wise et al. [78] demonstrate that cells can be combined with cochlea implants and used to protect 

neural cell populations. Lack of neurotrophins (NTs) in the SGN is thought to contribute to 

their degradation so transplant of NTs with electrical stimulation may help prevent SGN loss 

and consequently increase performance of cochlea implants. Encapsulated choroid plexus cells 

were implanted along with eight platinum intracochlear electrodes (0.3mm wide and 0.45mm 

apart) to release NTs to resident SGNs (Figure 8). As neuroprotective agents were released by 

the transplanted cells, which in turn increased the survival of SGN and reduced the formation 

of scar tissue at the neural interface. 



 

Neonatal cats were deafened and at 8 months of age animals were separated into three groups, 

those receiving chronic electrical stimulation only, cell transplantation only or cochlea implant 

and cell therapy combined. Each cat was treated unilaterally in one ear within each group and 

one ear served as a control with no device/treatment applied. 

Results revealed survival of SGNs and their peripheral processes was not increased in groups 

with electrical stimulation alone or NTS alone. However, in the upper basal region of the 

cochlea implantation of NTs only led to an increase in SGN survival and density of their 

peripheral processes revealing that NTs are of benefit to the SGNs. The group receiving 

electrical stimulation and NTs led to a significantly greater survival of SGNs and their 

peripheral processes in more regions of the cochlea. Further investigations are needed to 

confirm whether resprouting of these peripheral processes were in contact with the electrode 

array, their location within the cochlear anatomy suggested this.  

4.2 Human studies 
 

The first report of autologous cells being transplanted into the inner ear of human subjects was 

presented by Roemer et al.[79]. The safety study described a biohybrid approach combining 

bone marrow derived mononuclear cells (BM-MNC) and flexible electrodes to release 

neuroprotective agents to support existing SGN[79]. BM-MNCs were chosen as they have an 

ability to repair damaged tissue and participate in the regulation of immune responses, thus 

may have the potential to reduce implantation trauma and help regenerate and support damaged 

SGNs[80]. 

This study included three human subjects who were classified as “severely hearing-impaired” 

and had been unsuccessful with cochlear implants in the past. Subjects were selected for 

bilateral implantation (one biohybrid and standard cochlear implant). Patient 1 was a 43-year-

old male who experienced progressive hearing deterioration because of hypoxia at birth. His 



 

left ear was considered appropriate for implantation of the biohybrid device as deafness was 

more severe. Additionally, Patient 2 was a 43 years old male who had a long history of 

continuous hearing loss. Patient 3 was a 21 years old male who had diminished hearing since 

childhood.  

BM-MNCs were isolated from recipients own bone marrow and mixed with Fibrin adhesive 

(Tisseel™) pre-implantation. The autologous cell suspension was mixed with the fibrinogen 

component of the fibrin adhesive. The cochlea implant was then pulled through this solution 

with the addition of the thrombin component of the adhesive to entrap a layer of cells on top 

of the electrodes. 

As it is not possible to assess neuroprotective effects of BM-MNC in vivo in humans, an in 

vitro demonstration of this was performed in a neonatal rat co-culture. Compared to both 

positive and negative controls BM-MNCs lead to the highest SGN survival. The BM-MNCs 

were found to secrete cytokines, chemokines and various growth factors known for their anti-

inflammatory and neuroprotective characteristics.  Authors stated, based on these in vitro 

results, it could be expected that the cells would perform in the same way when implanted into 

human subjects. Previous works on animal models with the addition neurotrophins have shown 

increased SGN survival [81]. Additionally, progenitor cells can reduce fibrosis and allow 

regeneration after tissue damage without scar formation in some species[82]. 

The insertion forces of the biohybrid cochlear device were similar regular cochlear implants. 

Five months after implantation electrode impedances and perception of speech were analysed 

in both ears of each patient. Similar impedances were found across all devices in all patients. 

Patient 2’s speech perception using biohybrid implant had a higher performance that the 

implant in the corresponding ear. Patient 1’s speech perception was similar in both ears. 

However, in Patient 3 the standard implant outperformed the biohybrid implant. 



 

Here the biohybrid approaches discussed targeting the special senses focus on coating 

electrodes with cells. This strategy has shown potential to reduce insertion forces that lead to a 

tissue response by creating a softer interface between electrodes and target SGNs[78]. The 

transplanted cells were able to increase SGN survival in the scala tympani by releasing NTs. 

In terms of increasing the precise activation of the SGN, this is difficult, as the fluids within 

the cochlea are conductive so an increased density of SGN may not improve the spatial 

precision but could be tested in the future. Roemer presented for the first time that autologous 

cells and electronics are safe in humans[79]. However, future directions should focus on 

increasing patient sample size and varying the age and sex of subjects.  

 

4.3 Vision 
 

Despite the clinical application of both neural interface technology[83] and stem-cell 

therapies[84], a biohybrid approach for vision restoration has yet to be described to date. 

  



 

5 Key Challenges 
 

Whereas the blend of the bioengineering and cell therapy allows many challenges to be 

overcome, several issues still need to be addressed. In this section we offer an overview of the 

existing and potential key challenges that need to be addressed before these concepts are 

translated into a clinical setting.  

In recent years, a vast range of cell populations have been transplanted during biohybrid 

approaches targeting different parts of nervous system, but cell survival post-transplantation 

remains a constant challenge. When designing a biohybrid device several factors must be 

considered to ensure transplanted cell survival is not impeded. Cell toxicity due to exposure to 

components and DC voltages from fabrication process requires thorough in vitro testing before 

in vivo studies. Multiple aspects of the materials, such as elasticity, porosity and stiffness, will 

need to be carefully considered to optimise cell adhesion and survival. Some researchers have 

incorporated neurotrophins release to the devices to increase survival of SGN in cochlea post 

implantation[78]. Microfluidics or ionic pumps[85], integrated to neural interface devices, could 

be used to deliver locally neurotrophic factors, chemoattracts and/or immunomodulants. 

Different types of coatings, such as hydrogels, could be used to increase the ability of devices 

to host and support the growth and survival of cells in an electrically active environment. 

However, also the use of coatings can cause further problems, such as hydrogel swelling 

leading to displacement of the target tissue from the electrodes[86]. Electrode coatings must be 

also optimised to improve cell adhesion to electrodes. If the cell niche is not optimised for the 

transplanted cells, then they are unable to receive the correct biomechanical and chemical cues 

to proliferate and survive. As shown in the CNS section, surgical implantation has been shown 

to decrease cell viability as insertion forces cause cells to separate from the device. Therefore, 

further improvements are needed to improve the cell-device adhesion with coatings or encasing 



 

hydrogels[53]. Incorporation of a hydrogel layer may increase the mechanical compliance of the 

microelectrodes[45] implanted and degradable hydrogels encasing cells may allow for ECM 

regeneration at site of lesion. 

Achieving a good cell adhesion is important to avoid cell migration and reduce the distance 

between electrode and neurons. This distance influences the strength of the electrode recording 

and stimulating signals, with an optimal maximum distance between the body of a neuron and 

an electrode between 50-100 m[47]. Urbanchek suggested that future work should incorporate 

a biocompatible conducting polymer into the RPNI design. Urbanchek et al. 2016 identified 

synaptogenesis via identification of NMJ via histology. In all specimens, regenerating axons 

were identified adjacent to muscle fibres, but were not near PEDOT. Multiple reports of 

PEDOTs biocompatibility have been made, but further optimisation of PEDOT polymerisation 

for optimal muscle reinnervation via axons within in this RPNI are needed.  

Biohybrid devices, which host immortalised cell types or stem cells are inherently still 

suffering from some of the drawbacks of cell therapy. There are two main risks associated with 

implanting cells. The first is the risk of developing a teratoma, which is linked to the capacity 

of stem cells to over-proliferate. This risk could be counterbalanced by assuring the implanted 

stem cells lose their stemness overtime, as also requested by regulatory bodies. The second risk 

is graft rejection, where the host immune systems attack and destroy the exogenous cells. To 

moderate this process different level of immunosuppression needs to be considered, either 

locally or systemically[26]. However, different strategies are under development to provide 

immune tolerance strategies to pluripotent stem cells derivatives[24]



 

6 Future Perspectives 
 

Biohybrid technology offers prospects currently inaccessible to either cell therapy or neural 

interfaces on their own, due to their intrinsic limitations. In the introduction section, we have 

discussed advantages provided by having an intercalated biological layer between neural 

interface electrodes and targeted tissue. This layer has the potential benefit to reduce tissue 

injury and foreign body response, improve long-term integration with the underlying tissue and 

increase target selectivity. On the other hand, there are important gains for transplanted cells 

to have neural interface technology support. There have been numerous reports on the role of 

electrical stimulation in neuronal regeneration for both the central and peripheral nervous 

systems[87]. Hence, being able to deliver electrical stimulation to transplanted cells has the 

potential benefit to promote cell regeneration and axonal sprouting in situ. This approach is 

recognised in the context of tissue regeneration, where metals, carbon nanotubes or polymers, 

have been used to fabricate conducting scaffolds in order to promote wound healing or bone, 

nerve and cardiac regeneration[88].  

The potential of biohybrid devices goes beyond the one described in this progress report. While 

standard neural interface technology can only target structures with an existing neuronal 

population, biohybrid implants can restore functions by both regenerating and stimulating. 

There are many examples where this strategy might prove superior to cell therapy alone. The 

majority of injuries to the nervous system cause not just loss of neurons, but also disruptions 

of the network they were part of. As fundamental neuronal connections within and outside the 

nervous system are made during development, there is no ‘blueprint’ which can be followed to 

re-establish the lost networks following an injury. It is therefore unsurprising that transplanted 

neurons, which rely on environmental cues to lead their migration, regeneration and connection 

to resident cells, have not yet been successful in areas such as stroke, complete spinal cord 



 

injury or peripheral nerve transections. There have been several reports describing how 

electrical fields could be used to guide cell migration and axon elongation direction[89]. Hence, 

biohybrid devices could be also used to direct neurons to pre-selected targets, to restore and 

control functional neural networks. 

While the research effort has so far been focused in developing this technology, there has been 

little emphasis on the clinical translational strategies. Our group is currently working in 

integrating iPSC derived cells[90] on electrodes, with the aim to both provide an off the shelf 

device, easy for the clinicians/surgeons to use, but also able to target the individual need of 

each patient. By using iPSC derived cells, we can seed them at a high density and therefore 

improve post-implantation cell viability. This approach reduces the need for patients to undergo 

multiple surgeries and circumvent the risk of using immortalised cells (e.g. teratoma). We can 

also control the stage of differentiation and type of transplanted cells to suit the targeted 

location requirements.  

Recent advances in implant manufacturing techniques may also complement well with 

emerging biohybrid technologies. 3D printing is becoming an increasingly popular technique 

for implant fabrication, and can be used to incorporate electronics[91], cells [92], and structural 

and biochemical cues[93] into implantable constructs. The precise control and versatility offered 

by additive manufacturing has the potential to greatly benefit biohybrid technology, reducing 

the time and complexity needed to combine cells, electronics, and structural materials into an 

implantable biohybrid device. This may be a particularly attractive option in scenarios where 

the host tissue may have a complex architecture and good integration between implant and 

tissue may be difficult to achieve, such as CNS contusion lesions. 

Biohybrid implants, lie at the interface of biology and electronics and constitute a unique tool 

with great potential in both the clinic and basic research. Despite the multiple challenges in 



 

their design and fabrication due to the need to integrate expertise in microfabrication, cell 

culture, and implantation surgery, amongst others; biohybrid implants offer numerous 

advantages over traditional implantable electrode array designs. This niche held by biohybrid 

implants can translate into unique therapeutic opportunities.  
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Figure 1 - Biohybrid implants as a combination of electrical interfacing and cell 

transplantation to restore lost function. Implantable interfaces allow control of healthy 

neuronal circuitry through electrical stimulation and recording, but their effect remains limited 

to the area surrounding the implant. Transplanted cells integrate well into the host circuitry, 

but no control over their function can be exerted following transplantation. Biohybrid implants, 

though challenging to design, combine many advantages of neural interfacing and cell 

transplantation. 

 
  



 

 
Table 1 - Types of biohybrid neural interface designs. 

 

 

 

 

 

 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 2 - Neural stem cell seeded probe presented by Purcell et al. a) A parylene based 

device containing a hollow well that hosts NSCs within an alginate hydrogel. NSCs on the 

device are Hoechst stained b) A schematic of the neural stem cell seeded probe design including 

its dimensions.  

Reproduced with permission[38]. Copyright 2009, CCC Republication. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 3 –A conceptual design combining both cells and electronics to form a bionic 

device presented by Goding et al.  The schematic shows the seamless synaptic integration 

between the embedded neural stem cells and the target tissue. 

Reproduced with permission[53]. Copyright 2017, Elsevier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 4 - Living electrode concept presented by Cullen et al. a) Three dimensional scaffold 

comprised of micro-columnar structures fabricated from an agarose-collagen hydrogel, 

forming a tube-like structure that allows support and directional growth of axons  b) A 

schematic of the conceptual design with associated dimensions c) A confocal image of a 

bidirectional microTENN containing two populations of neurons. These populations span 

across a long axonal tract within a hydrogel column. Immunohistochemical staining was used 

to identify the axons (b-tubulin II;green) and cell nuclei (Hoechst;blue). 250um scale bar. 

Reproduced with permission.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 5 –Microfluidic patterned neural brain interface on silk film presented by Tang 

Schomer et al. a) A schematic of a flexible silk film-based implant. This in vitro model allows 

for directional growth of axons through tracts located on a silk-film based patterned electrode. 

b) Cells and axons compartmentalised within culture shown by co-staining of β3TB (green), 

GFAP (red) and DAPI nuclei staining (red).  Scale bar, 100µm. 

Reproduced with permission[57]. Copyright 2014, John Wiley and Sons. 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 6. Biohybrid device for peripheral nerve regeneration presented by Stieglitz et al. 

a) A conceptual design of the neuron microprobe approach combining a polyamide structure 

incorporating microelectrodes that interface with transplanted cells at a distal nerve stump. b) 

A set of 3 masks that allow fabrication of the biohybrid design presented. RIE Polyamide mask 

(Green), Electrodes (Yellow), Interconnects and contacts (Red) Bending zones (Blue) (scale 

bar x). C)  A magnified version of the sieve areas of the biohybrid device.  

Reproduced with permission [27]. Copyright 2002, Elsevier. 

 

 

 

 

 

 



 

 

 

 

Figure 7. Regenerative Peripheral Nerve Interfaces (RPNI) a) A schematic presented by 

Urbanchek et al of an RPNI that is fabricated using a scaffold made from either a silicon mesh, 

acellular muscle or acellular muscle with PEDOT. (Below) A section of the distal common 

peroneal nerve is removed (A)  and the residual nerve (B) the entire RPNI construct (including 

mypblasts)  is wrapped around a peripheral nerve for 2 months..  b) An RPNI 4 months after 

implantation in situ. The compound muscle action potentials (CMAPs) were recorded and 

stimulated using an electrode placed on the peroneal nerve.[64] c) Irwin et al.presented a RPNI 

with a muscle graft. The implantation procedure of the RPNI can be seen here from top to 

bottom, d) A newly implanted RPNI with a musle graft. The peroneal nerve is sutured into the 

middle of the RPNI.   Scale bar, 1cm. 

Reproduced with permission[64]. Copyright 2016, IOP Publishing. 

 

 

 

 

 

 



 

 

 

 

Figure 8. Neurotrophin (NT) secreting cells combined with a cochlear implant presented 

by Wise et al. a) A micrograph of a cat cochlea showing the regions of the cochlea: lower basal 

(LB), upper basal (UB), lower middle (LM), upper middle (UM) and Apical regions. In the LB 

region there is a schematic representation of a capsule containing NT secreting cells to show 

the dimensions of the capsule in respect to the scala tympani. Scale bar, 500µm.  b) An X-ray 

showing a cochlear implant. The schematic shows the locations (i-iv) within the cochlea where 

tissue responses were examined. 

Reproduced with permission[78]. Copyright 2011, Springer Nature. 
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