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In recent years large-scale studies of different genotype-phenotype (GP) maps, including those
of RNA secondary structure, lattice proteins, and self-assembling Polyominoes, have revealed that
these maps share structural properties. Such properties include skewed distributions of genotypes
per phenotype, negative correlations between genotypic evolvability and robustness, positive corre-
lations between phenotypic evolvability and robustness, and the fact that a majority of phenotypes
can be reached from any genotype in just a few mutations. Traditionally this research has focused on
deterministic GP maps, meaning that a single sequence maps to a single outcome. Here, by contrast,
we consider non-deterministic GP maps, in which a single sequence can map to multiple outcomes.
Most GP maps already contain such sequences, but these are typically classified as a single, unde-
sirable phenotype for the reason that biological processes typically rely on robust transformation of
sequences into biological structures and functions. For the same reason, however, non-deterministic
phenotypes play an important role in diseases, and a deeper understanding of non-deterministic
GP maps may therefore inform the study of their evolution. By redefining deterministic and non-
deterministic Polyomino self-assembly phenotypes in terms of the pattern of possible interactions
rather than the final structure we are able to calculate GP map properties for the non-deterministic
part of the map, and find that they match those found in deterministic maps.

INTRODUCTION

The mapping between genotype and phenotype is of
fundamental importance to biological evolution. While
evolutionary selection is the driving force behind phe-
notypic change, the genotype-phenotype (GP) map rep-
resents the numerous constraints imposed on evolution-
ary outcomes by the relationship between genotypic se-
quence and phenotypic structure and function. Over the
past three decades the structural properties of genotype-
phenotype maps have been studied in great detail. Ex-
amples of such GP maps include that of RNA secondary
structure [1, 2], the HP model [3, 4], and the Polyomino
map [5, 6]. This work has revealed a number of fun-
damental properties that can be observed for the distri-
bution of phenotypes on the point-mutation network of
genotypes across these different maps [6–10]. These prop-
erties include a highly skewed distribution of genotypes
per phenotypes, strong correlations between the locations
of genotypes of a given phenotype (resulting in high ro-
bustness), a negative correlation between genotypic ro-
bustness and evolvability, a positive correlation between
phenotypic robustness and evolvability, and short paths
between any pair of phenotypes in the point-mutation
network of genotypes. All the GP maps studied so far
assume that the relationship between sequence and struc-
ture is deterministic, meaning that a particular geno-
type maps to a single phenotype. Instances in which the
same sequence can lead to multiple different outcomes
in terms of the final structure are generally regarded
as deleterious phenotypes [10]. A limited range of non-
deterministic outcomes might however be desirable from
a functional point of view, as proteins can for example

undergo conformational change. The existence of such
alternative phenotypes may also facilitate evolution [11].
Non-determinism that leads to a limited number of alter-
native functional phenotypes it is sometimes described as
promiscuity, for example in the context of protein or en-
zyme interactions [12, 13], or plasticity [11, 14], although
the term ‘plasticity’ is also sometimes reserved for sig-
nificant phenotypic change as a result of a small number
of mutations [13]. In the context of self-assembly the
study of non-deterministic phenotypes is also of interest
because uncontrolled self-assembly in the form of protein
aggregation is the hallmark of a number of diseases, such
as sickle-cell anaemia [15] and amyloidosis [16].

Here we study a non-deterministic self-assembly GP
map by extending the Polyomino GP map to include as-
sembly tile sets that do not yield a single final struc-
ture. Instead of using the final structure(s) to define the
phenotype, we use the assembly graphs, which are the
topologically distinct graphs of tile interactions. Build-
ing on this we then show that the properties measured
for deterministic genotype-phenotype maps also hold in
the non-deterministic realm. This finding has important
potential implications for the study of non-deterministic
disease phenotypes, as the properties of these genotype-
phenotype maps are likely to influence the evolution of
diseases. As an example of a disease phenotype that
can be modelled using Polyominoes we discuss sickle-
cell haemoglobin, which forms protein aggregates in red
bllood cells.
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EXTENDING THE POLYOMINO GP MAP

The Polyomino GP map has been studied in some de-
tail in recent years, and a number of general GP map
properties have been shown to hold for this map too
[6, 10]. In the Polyomino GP map building blocks in the
form of square tiles self-assemble on a two-dimensional
lattice. Starting from a seed tile, attractive interactions
between tiles facilitate this assembly. These interactions
take the form of integers that are assigned to each face,
and specified pairs integers bind to each other. Not all
tile faces need to interact, and some integers can be cho-
sen to denote such non-interacting faces.

For a given set of building blocks the assembly proceeds
in discrete timesteps. During each timestep the following
three steps are repeated:

1. A tile type and a tile orientation are picked ran-
domly.

2. An interacting face is randomly selected on the
structure that has been assembled up to this point.
In the first assembly step this is the seed tile.

3. If the randomly selected tile in its randomly se-
lected orientation provides the complementary in-
teraction to that of the randomly selected face on
the structure, then the new tile binds to the exist-
ing structure. If not, then it is discarded.

As every tile has four faces, the configuration of inter-
actions on a set of n different building blocks can be en-
coded as a string of 4n integers, representing the interac-
tions (clockwise) on the four faces of each tile type, in se-
quence. Typically the integers are limited to a fixed range
0, 1, 2, ..., c where c is odd, 0 and c are non-interacting,
and 1 binds to 2, 3 binds to 4, etc. [5, 6, 17]. Bindings
are binary in strength, and irreversible.

In previous work this string of integers is the geno-
type, and the final assembled structure is the phenotype,
providing that the set of building blocks encoded by the
genotype always builds the same final structure in the
stochastic assembly process outlined above. A further
requirement is that the structure is bound. If a build-
ing block set can result in more than one final structure,
or an unbound structure, then the corresponding geno-
type is mapped to a single, all-encompassing ‘unbound or
non-deterministic’ (UND) phenotype. This is much like
the unfolded phenotype in RNA secondary structure or
a lattice protein sequence in the HP model that lacks a
unique ground state. This approach treats the entirety
of unbound and non-deterministic phenotypes as a sin-
gle entity, and one that is - from a biological perspective
- usually regarded as undesirable. The vast complexity
of biological processes typically relies on precision and
reproducibility, whereas non-deterministic and unbound
self-assembly are inherently unpredictable.

Yet the space of non-deterministic and unbound self-
assembly processes is of importance, both because some
biological sequences can map to more than one structure
(as is the case for proteins with multiple configurations)
and because unbound or non-deterministic self-assembly
can be the result of mutated proteins that normally un-
dergo bound deterministic self-assembly.

In the following we will refer to all unbound and non-
deterministic phenotypes as ‘non-deterministic’, as un-
bound assembly, even if it is deterministic, will eventu-
ally grow into a final shape that is determined by the
boundaries it encounters in its environment. Unbound
assemblies are thus also ultimately non-deterministic.

In order to examine the space of non-deterministic phe-
notypes we offer a new definition of phenotypes in the
Polyomino model, based not on the final assembled struc-
ture, but instead on the graph of interactions between
tiles, or ‘assembly graph’.

Figure 1 illustrates the concept of an assembly graph
for deterministic and non-deterministic building block
sets.
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FIG. 1. Examples of deterministic (top) and non-
deterministic (bottom) self-assembly phenotypes in the Poly-
omino GP map. A set of building blocks can be represented
as a continuous string of integers (left). These building blocks
self-assemble into one (in the deterministic case) or more
(in the non-deterministic case) possible structures through
a stochastic self-assembly process. The configurations of in-
teractions between the building blocks can be represented as
an assembly graph (right).

PHENOTYPE FREQUENCY DISTRIBUTION

Here we consider the assembly graph genotype-
phenotype (AGGP) map for two tiles and eight inter-
actions. Figure 2 shows the frequency of a phenotype
versus the rank of its frequency within the map, which
reveals a similar heavy-tailed distribution to those de-
scribed in [6]. In contrast to the Polyomino GP map of
deterministic lattice self-assembly, we are now also ac-
counting for non-deterministic structures in our AGGP
map.
The total number of topologically distinct assembly
graphs with two tiles and eight interactions is 1136. Of
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these, twelve yield bound deterministic structures, which
make up 5,876,685 of all possible 224 = 16,777,216 de-
generate genotypes, or 36.7% of all genotype space. A
previous study [5] focusing on the deterministic part of
this GP map classified 38.9% as bound and deterministic.
The discrepancy of 2.2% between these two proportions
arises (a) because the model in [5] uses a fixed seed tile as
opposed to a randomly chosen one in our model, and (b)
because we here define structures with internally mis-
matched faces (in other words structures that are only
deterministic due to steric constraints, but not due to
their interaction rules) as non-deterministic.
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FIG. 2. Phenotypic frequency versus phenotypic frequency
rank in the AGGP map for the space of two tiles and eight
interactions, showing both bound deterministic (dark blue)
and non-deterministic (light blue) phenotypes. The non-
deterministic phenotypes display a similarly heavy-tailed dis-
tribution as the deterministic phenotypes.

GENOTYPIC AND PHENOTYPIC ROBUSTNESS

In the context of GP maps the term ‘robustness’ de-
scribes a resilience towards mutations that change the
phenotype. [18]. Wagner defines ‘genotypic robustness’
ρg as follows [7]:

ρg =
np,g

(K − 1)L
(1)

where ρg is the genotypic robustness of genotype g, np,g is
the number of 1-mutant neighbours of g with phenotype
p, K is the base of the genome (in our case the eight
interactions), and L is the sequence length. There are a
total of (K − 1)L 1-mutants for any genotype.

The robustness of the phenotype can then be defined
as the average of this quantity over all genotypes with
phenotype p [7]:

ρp =
1

|P |
∑
g∈P

ρg (2)

where ρp is the phenotypic robustness and P is the set
of genotypes with phenotype p.
Figure 3 shows that the phenotypic robustness ρp scales
linearly with the logarithm of the phenotype frequency
fp for the AGGP map on the logarithmic scale [19], in
line with previous results on the Polyomino GP map, the
RNA GP map, and other GP maps [20, 21].
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FIG. 3. Phenotypic robustness versus phenotypic frequency
in the assembly graph genotype-phenotype map (AGGP) for
the space of two tiles and eight interactions. Dark blue points
represent deterministic phenotypes, while non-deterministic
phenotypes are represented with light blue points. Both types
of phenotypes follow a similar relationship of ρp ∝ log fp,
with non-deterministic phenotypes covering a larger range of
frequencies. In both cases the robustness is much higher than
one would expect from a random distribution of the same
numbers of genotypes per phenotype [10].

EVOLVABILITY AND ROBUSTNESS

Evolvability is the ability to produce phenotypic vari-
ation [22]. At first sight, robustness and evolvability
appear to be opposed, as robustness demands a lack
of change in the face of mutations, whereas evolvabil-
ity requires such change. Wagner [23] defined genotypic
evolvability as the number of distinct phenotypes that are
accessible from a given genotype through a single-point
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mutation. Phenotypic evolvability can then be defined as
the total number of distinct phenotypes that lie within
the single-point mutation neighbourhood of a phenotype.
Wagner showed that evolvability and robustness corre-
late positively at the phenotypic level and negatively at
the genotypic level in RNA secondary structure [7]. This
result has been reproduced in several other GP maps,
including Polyominoes [6, 24]. As can be observed in
Figures 4 and 5 this relationship also holds for the non-
deterministic phenotypes of the Polyomino GP map.
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FIG. 4. Genotypic evolvability versus genotypic robustness in
the AGGP map for the space of two tiles and eight interac-
tions. The two properties are negatively correlated for both
deterministic (dark blue) and non-deterministic (light blue)
genotypes.

SHAPE SPACE COVERING

Shape space covering describes the accessibility of phe-
notypes in the GP map by measuring the average frac-
tion of phenotypes that lie within n mutation steps of a
randomly selected genotype [25, 26].

Figure 6 shows that the accessible fraction of pheno-
types is a sigmoidal function of the number of mutations
n, as observed in RNA secondary structure and the HP
model of lattice proteins [26] and previous studies of the
deterministic Polyomino model [6]. The majority of phe-
notypes can be reached within four mutation steps, start-
ing from a randomly chosen genotype.
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FIG. 5. Phenotypic evolvability versus phenotypic robustness
in the AGGP map for the space of two tiles and eight inter-
actions. The two properties are positively correlated for both
deterministic (dark blue) and non-deterministic (light blue)
phenotypes.
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FIG. 6. Shape space covering in the AGGP map, expressed
as the mean fraction of phenotypes that are accessible from
a randomly selected genotype for the space of two tiles and
eight interactions. On average more than half of the available
phenotypes lie within four mutations of a randomly chosen
genotype.
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DISCUSSION AND CONCLUSION

We show here that several well-established structural
properties of deterministic GP maps also hold for the
non-deterministic phenotypes of the Polyomino GP map.
The phenotypes are defined in terms of the configurations
of interactions between the Polyomino building blocks.
Recent work has shown that the structural properties of
GP maps are likely to arise from the organisation of bi-
ological information into constrained and unconstrained
sequences, paired with non-local effects of mutations on
these levels of constraint [27]. The fact that these prop-
erties are observed for the non-deterministic phenotypes
of the Polyomino GP map confirms that phenotypes de-
fined as configurations of interactions, whether they are
deterministic or non-deterministic, will exhibit the same
universal structural characteristics in the GP map.

An alternative approach for the treatment of non-
deterministic phenotypes is to associate multiple pheno-
types with the single non-deterministic genotype from
which they arise, in form of a many-to-many genotype
phenotype map. Structural properties of such maps have
begun to be considered in the recent literature [11], par-
ticularly in the context of plasticity, which has been also
studied in genotype-phenotype maps more generally [12–
14, 28–30]. Much of this work focuses on examples in
which a genotype can yield a limited number of different
functional phenotypes, such as enzymes that act as cata-
lysts in several pathways, or RNA structures that can fold
to low-energy structures that are close in energy to the
ground state. By contrast the non-deterministic pheno-
types that are more likely in a self-assembly context are
of the kind described in [31], which often resemble un-
controlled protein aggregation. The number of potential
different structures that can arise from a single genotype
in such circumstances is extremely large. While limited
non-determinism and plasticity play an important role in
evolution, biological processes favour robust and there-
fore deterministic self-assembly in the majority of cases,
such as the large variety of different protein complexes
that have been observed in nature [32]. In the context
of protein self-assembly, disease phenotypes are often the
result of non-deterministic processes, such as protein ag-
gregation. Sickle-cell disease [15] and the formation of
amyloid fibrils [16] are prominent examples of this. It
has been shown that GP map properties strongly deter-
mine evolutionary outcomes in RNA secondary structure
[33]. The properties of non-deterministic self-assembly
GP maps may therefore provide another perspective on
the evolution of disease phenotypes.

ACKNOWLEDGMENTS

ST was supported by the EPSRC. SEA was supported
by the Royal Society and the Gatsby Foundation.

[1] Peter Schuster, Walter Fontana, Peter F Stadler, and
Ivo L Hofacker. From sequences to shapes and back:
a case study in rna secondary structures. Proceedings
of the Royal Society of London B: Biological Sciences,
255(1344):279–284, 1994.

[2] Massimo Pigliucci. Genotype–phenotype mapping and
the end of the genes as blueprintmetaphor. Philosophical
Transactions of the Royal Society of London B: Biological
Sciences, 365(1540):557–566, 2010.

[3] Hao Li, Robert Helling, Chao Tang, and Ned Wingreen.
Emergence of preferred structures in a simple model of
protein folding. Science, 273(5275):666, 1996.

[4] Erich Bornberg-Bauer. How are model protein struc-
tures distributed in sequence space? Biophysical Journal,
73(5):2393, 1997.

[5] Iain G Johnston, Sebastian E Ahnert, Jonathan P K
Doye, and Ard A Louis. Evolutionary dynamics in a
simple model of self-assembly. Physical Review E, 83(6
Pt 2):066105–066105, May 2011.

[6] Sam F Greenbury, Iain G Johnston, Ard A Louis, and
Sebastian E Ahnert. A tractable genotype–phenotype
map modelling the self-assembly of protein quaternary
structure. Journal of The Royal Society Interface,
11(95):20140249, 2014.

[7] A Wagner. Robustness and evolvability: a paradox re-
solved. Proceedings of The Royal Society B - Biological
Sciences, 275(1630):91–100, January 2008.

[8] Jacobo Aguirre, Javier M Buldú, Michael Stich, and Su-
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