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We study the topological properties of one-dimensional systems undergoing unitary time evolu-
tion. We show that symmetries possessed both by the initial wavefunction and by the Hamiltonian
at all times may not be present in the time-dependent wavefunction – a phenomenon which we dub
“dynamically-induced symmetry breaking”. This leads to the possibility of a time-varying bulk index
after quenching within non-interacting gapped topological phases. The consequences are observable
experimentally through particle transport measurements. With reference to the entanglement spec-
trum, we explain how the topology of the wavefunction can change out of equilibrium, both for
non-interacting fermions and for symmetry-protected topological phases protected by antiunitary
symmetries.

In the past few decades, numerous examples of gapped
quantum many-particle systems with topologically non-
trivial ground states have been discovered [1, 2]. Despite
the lack of a local order parameter, these states cannot be
smoothly connected to their topologically trivial counter-
parts without closing the bulk energy gap and removing
their characteristic gapless edge modes.

Central to the modern understanding of these phases
is the importance of symmetry constraints on the Hamil-
tonian, through which a rich ‘periodic table’ of non-
interacting fermionic topological phases emerges [3–6].
Such systems can be characterized by bulk indices which
capture global features of the Bloch bands, generaliz-
ing the Chern number for two-dimensional systems [7].
These indices are topological invariants: they are un-
changed under symmetry-respecting deformations of the
Hamiltonian, provided the gap does not close. More gen-
eral symmetry-protected topological (SPT) phases are
also known to exist beyond free fermions [8].

More recently, the topological properties of quantum
states far from equilibrium have been examined [9–21],
motivated by possibilities to study coherent dynamics in
cold atom experiments [22–24]. The Chern number af-
ter a quantum quench has been shown to be constant
in time [15–18], a result that has often been assumed
to be a universal feature of all bulk invariants in non-
interacting fermionic systems [19, 21]. However, exist-
ing studies leave open the role of symmetry in the post-
quench state.

In this paper we address the effects of symmetries on
the topology of one dimensional (1D) quantum systems
that are out of equilibrium. We show that the bulk in-
dex of the time-evolved wavefunction can vary in time.
Surprisingly, this can occur even when the Hamiltonian
retains the required symmetries at all times and remains
within the same phase. This behaviour stems from a phe-
nomenon which we call “dynamically-induced symmetry
breaking”: after a quantum quench, the symmetries of
the time-dependent state do not necessarily match those
of the governing Hamiltonian. We determine the dynam-
ical behaviour of the bulk index in all symmetry classes

for non-interacting fermions in 1D, and show that the
predicted dynamics of the bulk index can be directly
measured in experiment. We also describe how the bulk
index relates to the topology of the wavefunction out of
equilibrium, using the entanglement spectrum [25].

We conclude by explaining the relevance of
dynamically-induced symmetry breaking to inter-
acting SPT phases, and numerically demonstrate the
consequences for the entanglement spectrum of time-
reversal protected Haldane phases. Our work highlights
the difference between static and dynamic protection
of topological phases in general: whilst the topological
properties of a ground state may be robust against
time-independent symmetry-respecting perturbations,
the same is not necessarily true of time-dependent
symmetry-respecting perturbations.

Symmetry under dynamics.— At equilibrium, non-
interacting fermionic topological insulators are classified
into ten symmetry classes according to the presence of
the ‘generic’ symmetries of time-reversal (TRS), particle-
hole (PHS), and chiral (or sublattice) symmetry [4, 26].
Note that in superconducting systems, PHS is not a
physical symmetry, but represents a redundancy in the
Bogoliubov-de Gennes equations [27]. Each of these sym-
metries imposes a constraint on the matrix Hij that de-

fines the Hamiltonian Ĥ via Ĥ = ψ̂†iHijψ̂j where ψ̂†j cre-
ates a fermion in a state j. These are [28]

TH∗T† = H TRS (1a)

CH∗C† = −H PHS (1b)

SHS† = −H Chiral (1c)

where T,C,S are unitary matrices that satisfy T∗T = ±1,
C∗C = ±1, and S∗S = 1.

For systems with a unique ground state, the symme-
tries (1) of the Hamiltonian are inherited by the ground
state wavefunction |Ψ〉, and therefore by the single-

particle density matrix ρij = 〈Ψ|ψ̂†i ψ̂j |Ψ〉, which itself
fully characterizes the state of non-interacting fermions.
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One finds [6]

T�∗T† = � TRS (2a)

C�∗C† = 1− � PHS (2b)

S�S† = 1− � Chiral (2c)

This characterization of the symmetry properties of the
state (2) admits a natural generalization out of equilib-
rium. We consider non-equilibrium states arising from
a very general quench protocol: the system is prepared
in the ground state of an initial Hamiltonian Hi at time
t = 0 and then evolves under some other Hamiltonian
Hf(t), which may itself vary in time in an arbitrary
manner. The single particle density matrix evolves as
�(t) = U(t)�(0)U(t)† under the time evolution matrix

U(t) = T exp[−i
∫ t

0
dt′ Hf(t′)] (T denotes time-ordering).

By replacing � with �(t) in (2), we can determine the
symmetries of the state at time t.

We find two general mechanisms by which the symme-
tries of the initial state can be broken for t > 0.

Explicit Symmetry Breaking.— If a symmetry of the
Hamiltonian changes between Hi and Hf(t), this sym-
metry will not appear in the state at t > 0 [29]. This
applies in simple situations where a generic symmetry of
the Hamiltonian is lost, e.g. if Hi has chiral (sublattice)
symmetry but Hf(t) does not. However, it also applies in
situations where a generic symmetry is preserved, but the
matrix (T,C or S) that realizes the symmetry changes.
For example even if chiral (sublattice) symmetry is pre-
served, the sets of sites that constitute the two sublattices
could differ between Hi and Hf(t). (We provide other ex-
amples in the Supplemental Material [30].)

Dynamically-Induced Symmetry Breaking.— Even if
there is no change in symmetry of the Hamiltonian –
i.e. initial and final Hamiltonians have the same symme-
tries, realized by the same unitary matrices – we find
that there can be a change in the symmetry of the state
purely due to unitary dynamics. In this case the density
matrix satisfies

T�(t)∗T† = �(−t) TRS (3a)

C�(t)∗C† = 1− �(t) PHS (3b)

S�(t)S† = 1− �(−t) Chiral (3c)

where we have used �(−t) to denote a fictitious system
time-evolved by a time +t under the Hamiltonian −Hf(t).
Because in general �(−t) 6= �(t), we infer that, surpris-
ingly, TRS and chiral symmetries of the state are not
preserved under dynamics, because (3a,3c) are not equiv-
alent to the symmetry conditions (2a,2c). On the other
hand, the time-dependent PHS condition (3b) is equiv-
alent to the equilibrium case (2b), so PHS is the one
generic symmetry that is retained at all times.

In the following we will focus on quantum quenches
without explicit symmetry breaking.

Class T C S CS1(t = 0) CS1(t) mod 1 Class./Ent.

AIII 0 0 1 Z/2∗ Varies [0, 1) 0

BDI + + 1 Z/2∗ Const. {0, 1/2} Z2

D 0 + 0 Z/2 mod 1 Const. {0, 1/2} Z2

DIII − + 1 Zmod 2∗ Const. 0 0

CII − − 1 Z∗ Const. 0 0

TABLE I. Topological characterizations of 1D insulators in
and out of equilibrium. The five non-trivial classes in 1D are
defined by the presence of TRS, PHS and chiral symmetries
(T, C, S) according to Eq. (1), and their topologically dis-
tinct values of CS1 in equilibrium are given. Asterisks denote
cases for which CS1 must be evaluated in a gauge specified
by the TRS or chiral symmetries. After time evolving un-
der a Hamiltonian in the same symmetry class, the fractional
part of CS1(t) either varies in time, or stays fixed to its initial
value. The possible values of CS1(t) mod 1 are given, which
determine the topological classification (Class.) out of equi-
librium. Non-trivial wavefunctions within this classification
will also have degenerate entanglement spectra (Ent.).

Dynamics of the bulk index.— At equilibrium, the bulk
index which characterizes topology in 1D is the Chern-
Simons (CS) invariant [6], or equivalently the Zak phase
αZ [31]

CS1 ≡
αZ

2π
:=

i

2π

∫
BZ

dk 〈uαk |∂kuαk 〉 , (4)

expressed in terms of the ground state Bloch functions
|uαk 〉 for occupied bands α (a sum over α for all occupied
bands is to be understood). The functions are assumed
to vary smoothly with wavevector k and are chosen to be
periodic in the Brillouin zone (BZ).

The CS invariant is only defined modulo 1, since gauge
transformations of the occupied Bloch states can change
CS1 by an integer. However, in the presence of TRS
and/or chiral symmetry, the integer part can be given
physical meaning through the use of certain symmetry-
related gauge choices [6]. Under such gauges, all equilib-
rium topological invariants in 1D can be deduced from
quantized (integer or half-integer) values of the CS invari-
ant. These quantized values, and hence the topological
classification, arise only when particular symmetry com-
binations are imposed. The five non-trivial classes are
listed in Table I with their topological classifications un-
der CS1(t = 0). We consider the effects of dynamically-
induced symmetry breaking on CS1 in these five classes.

All states which possess PHS (classes BDI, D, DIII,
and CII) must have a CS invariant quantized to 0 or
1/2 up to the addition of an integer [32]. As we have
shown, PHS is preserved under time evolution, and so
the time-dependent CS1(t) must also be quantized for
t > 0. Moreover, assuming that all Hamiltonians are
smooth in k-space, one can define a continuous PHS-
preserving interpolation between the initial and final
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states parametrized by the time t, under which the frac-
tional part of CS1(t) cannot change. The fractional part
of CS1(t) is therefore constant when PHS is present.

States which do not possess PHS can have a CS invari-
ant quantized to half-integer values if there is a chiral
symmetry (class AIII). We have argued above that chiral
symmetry will in general undergo dynamically-induced
symmetry breaking. Thus, for t > 0 the CS invariant
need no longer be quantized, and one expects CS1(t) to
vary in time. This leads to the surprising finding that
even when the initial and final Hamiltonians satisfy the
same (chiral) symmetry at all times the bulk index be-
comes time-dependent.

Relation to physical observables.— Remarkably, the
dynamics of the bulk index has directly observable conse-
quences even far from equilibrium. (This contrasts with
the Chern index for which the relationship with the Hall
conductance does not hold out of equilibrium [33, 34].)
Specifically, the identification of CS1 with the bulk polar-
ization of the system (i.e. the centres of Wannier states)
[35] still holds beyond the adiabatic limit. To show this,
we calculate the mean current

〈j(t)〉 =
1

2π

∫
BZ

dk 〈uαk (t)|∂kĤ f
k(t)|uαk (t)〉

=
1

2π

∫
BZ

dk
{
∂k

[
〈uαk (t)|Ĥ f

k(t)|uαk (t)〉
]

−〈uαk (t)|Ĥ f
k(t)|∂kuαk (t)〉 − 〈∂kuαk (t)|Ĥ f

k(t)|uαk (t)〉
}

=
i

2π

∫
BZ

dk [〈∂tuαk (t)|∂kuαk (t)〉+ 〈uαk (t)|∂t∂kuαk (t)〉]

=
d

dt
CS1 (5)

We have integrated by parts, and used the periodicity
of |uαk 〉 in the BZ. Thus, the time variation of CS1(t) is
reflected in the post-quench current and bulk polariza-
tion, which can be measured in experiment. Note that
no assumption of any form of adiabaticity is required.

We have numerically verified that this relationship be-
tween the CS invariant and local current holds, even
within the bulk of a finite system. We consider spin-

less fermions, represented by operators ψ̂
(†)
j acting on

the sites labelled by j, with a hopping Hamiltonian
Ĥ = −

∑
j(J1ψ̂

†
2j+1ψ̂2j + J2ψ̂

†
2j+2ψ̂2j+1 + B1ψ̂

†
2j+3ψ̂2j +

B2ψ̂
†
2j+4ψ̂2j+1 + h.c.). In general, the model possesses

only a chiral sublattice symmetry (class AIII), but if
all hopping amplitudes are real, TRS and PHS are also
present (class BDI). Figure 1(a) shows the time varia-
tion of the CS invariants for AIII and BDI systems, cal-
culated as bulk integrals. This is compared to the bulk
polarization QB(t) in a finite system with the same hop-
ping amplitudes, calculated as the particle number in the
right subsystem B (see inset). The gauge-invariantQB(t)
equals CS1(t) up to an integer, until correlations span the
whole system. Thus in 1D, the change in the CS invariant

AIII

BDI

A B

FIG. 1. Panel (a): Time-dependent CS invariant of a hop-
ping model of spinless fermions, calculated as a bulk integral
in k-space (solid lines), compared with the polarization QB(t)
of a 24-site open boundary system with the same parameters
(dashed lines). QB(t) is calculated as the expected particle
number within the righthand half, subsystem B of the in-
set. The red lines are for a BDI system and the blue lines
are for an AIII system. The parameters for the quenches are
(J1, J2) = (0.3, eiα) → (0.8 eiα, 1) with B1,2 = 0.05 through-
out; α = 0 for class BDI and α = 0.4 for class AIII. The
observables in the finite sample match the dynamics of the
bulk invariants even out of equilibrium, until correlations tra-
verse the whole system at which point the discrete nature
of k-space invalidates Eq. (5). Panel (b): dynamics of the
entanglement gap ∆E for the same systems as above with
the entanglement cut between A and B [inset of (a)]. In the
BDI case, the entanglement gap remains close to zero until
correlations span the system size, whereas the AIII system
immediately becomes gapped. Panel (c): dynamics of the
entanglement gap for a spin-1 chain initialized in a Haldane
phase, possessing TRS only (purple line), and both TRS and
dihedral symmetry (green line, scaled by 103). When the
Haldane phase is supported by TRS only, the entanglement
energies become gapped for t > 0.

is directly measurable as particle accumulation.

Note that the time-variation of CS1 can be seen in even
simpler models such as the SSH model [36] with complex
hopping amplitudes, i.e. our model with B1 = B2 = 0
(which is in class BDI). If the phases of either J1,2 change
across the quench, then TRS and PHS undergo explicit
symmetry breaking, and one finds the same behaviour as
expected for an AIII quench: the dynamically-induced
breaking of chiral symmetry allows CS1(t) to vary (see
the Supplemental Material [30] for details).

Topological characterizations out of equilibrium.— We
have determined general features of the dynamics of the
bulk index. To what extent does this bulk index encode
topological features of the time-evolving state? One may
näıvely expect that the topology of the state is preserved
as long as CS1(t) does not vary in time (as occurs for
all non-trivial classes other than AIII). However, this ap-
proach overlooks the gauge dependence of CS1(t). An
individual measurement of CS1(t) at some time t is still
only defined modulo 1. Unlike in equilibrium, this am-
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biguity cannot be resolved by a symmetry-related gauge
choice, since TRS and chiral symmetries are broken by
the dynamics. Therefore, wavefunctions with the same
CS1 modulo 1 cannot be distinguished by the bulk index
and are thus topologically equivalent.

Once we restrict ourselves to consider only
CS1(t) mod 1, we can determine a new classifica-
tion of states which can be topologically distinguished
out of equilibrium; this is given in the last column of
Table I. Note that systems in classes DIII and CII must
be initialized with CS1 mod 1 = 0, and hence all such
systems are topologically trivial for t > 0. A striking
consequence of this is that two initial equilibrium states
with different topology can time-evolve into the same
wavefunction, even though CS1 mod 1 does not exhibit
any time-dependence; see the Supplemental Material
[30] for an example in class DIII.

One of the clearest signatures of topological non-
triviality in equilibrium is the presence of gapless edge
excitations [37], connected to the non-trivial bulk index
through the bulk-boundary correspondence. These edge
modes also manifest themselves within the ground state
entanglement spectrum [25], which mimics any physical
edge modes that would be present at a boundary [38, 39].
In the present non-equilibrium setting, the many-body
wavefunction |Ψ(t)〉 can be thought of as the ground state
of some fictitious Hamiltonian Ĥfic(t) which possesses the
same symmetries as the state. For concreteness we can
choose (in a second-quantized language) [21, 40]

Ĥfic(t) = Û(t) Ĥi Û(t)†, (6)

where Û(t) is the many-body time evolution operator.
The equilibrium entanglement spectrum is a property
of the ground state only; therefore the entanglement
spectrum of |Ψ(t)〉 encodes the equilibrium topology of
Ĥfic(t), which is independent of our specific choice (6). If
Ĥfic(t) cannot be deformed to some trivial Hamiltonian
without breaking the enforced symmetries, then it must
possess gapless boundary modes [37], which themselves
will show up in the entanglement spectrum of |Ψ(t)〉 –
this allows us to probe the bulk-boundary correspondence
out of equilibrium.

We now apply the equilibrium classification to Ĥfic(t),
which due to dynamically-induced symmetry breaking
will at most possess PHS only. When PHS is enforced,
Ĥfic(t) will be topological if and only if the CS invari-
ant of its ground state |Ψ(t)〉 is a half-odd-integer. We
conclude that in 1D a vanishing entanglement gap ∆E

may only be supported for t > 0 in PHS systems which
are initialized with a non-integer CS invariant. This is
exactly the condition for topological non-triviality that
we deduced purely from CS1(t), summarized in the last
column of Table I. Thus we expect the bulk-boundary
correspondence to hold out of equilibrium, once CS1(t)
is interpreted modulo 1.

We have verified these predictions by numerical calcu-
lations of the time-evolution of the entanglement spec-
trum for all symmetry classes in 1D. Results for the con-
trasting cases of classes AIII and BDI are shown in Fig.
1(b). Whilst our arguments have focused on transla-
tionally invariant non-interacting systems, our results on
the entanglement spectrum and topological classification
should be robust against symmetry-preserving disorder,
as well as weak interactions.

In passing, we note that the quench protocol we have
used throughout includes Floquet systems as a subset.
Indeed, in that context PHS is found to play a differ-
ent role to TRS and chiral symmetries [41, 42]. Our re-
sults show that the connection between bulk indices and
particle transport, which appears in Floquet systems as
adiabatic pumping [41], holds much more generally, not
requiring periodicity or adiabaticity. However, our topo-
logical characterization of the instantaneous wavefunc-
tion is distinct from the recently classified Floquet SPT
orders [43–45], which refer to micromotion over a whole
period, and cannot be inferred from, e.g. the entangle-
ment spectrum at some fixed time [45]. The preservation
of entanglement degeneracies in class D Floquet systems
(where no dynamically-induced symmetry breaking oc-
curs) has also previously been observed numerically [46].

Interacting SPT phases.— Our consideration of non-
interacting fermionic phases reveals the existence of a
non-equilibrium topological classification which differs
from equilibrium. One expects a similar non-equilibrium
classification also for interacting systems, e.g. SPT
phases of bosons protected by more general symmetries.
Indeed dynamically-induced symmetry breaking, which
is a crucial ingredient, can occur in any system: we show
in the Supplemental Material [30] that if a symmetry of
the Hamiltonians is realised by an antiunitary second-
quantized operator Ô [47], then |Ψ(t)〉 will generically
not respect that symmetry. Of the three symmetries con-
sidered in the main text, only PHS is unitary [48], and
so the results agree.

Unlike for free fermions, a universal bulk index analo-
gous to (4) does not exist for all 1D SPT phases. Nev-
ertheless, one can still derive a non-equilibrium classi-
fication of SPT phases (using e.g. projective symmetry
representations [49–51]) which will be reflected in the dy-
namics of the entanglement spectrum. For example, in
the case where only one symmetry is present, it is clear
that topology is lost (preserved) if the symmetry is an-
tiunitary (unitary).

We demonstrate this behavior for the spin-1 Haldane
phase, which can be protected by a unitary dihedral sym-
metry, or by antiunitary TRS [52]. We have numerically
investigated the fate of entanglement degeneracies after
a quench that does not explicitly break symmetry. We
plot the results in Fig. 1(c). (Details are given in the
Supplemental Material [30].) In the TRS-protected case,
the entanglement degeneracy is lifted for t > 0, indicat-
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ing the expected breakdown of the Haldane phase due to
dynamically-induced symmetry breaking.

In summary we have studied the role played by symme-
tries in the topological classification of 1D systems that
are out of equilibrium, and identified the important phe-
nomenon of dynamically-induced symmetry breaking. It
will be of interest to extend these studies to other dimen-
sions and to classify all SPT phases out of equilibrium in
future work.
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Gauge dependence of the CS invariant out of
equilibrium

In the main text, we showed that the fractional part
of the CS invariant remains fixed to zero for all time in
classes CII and DIII, and then argued that the integer-
valued part no longer has physical significance due to
the breaking of TRS and chiral symmetries. Here we
elaborate on these arguments.

When discussing the notion of topology for non-
equilibrium states, we wish to refer only to properties
of the instantaneous wavefunction |Ψ(t)〉. We note that
topological markers can be identified which characterize
the entire history of the wavefunction from time 0 to
t [53], but our interest is in the former class of invari-
ants. Indeed if one were to make reference to the state at
all times, one could construct time-dependent symmetry
operators such as T̃(t) = U(t)TU(t)T as introduced in
Ref.[21]. These ‘auxiliary’ symmetries require knowledge
of the entire history of the Hamiltonian Hf(t), and are
satisfied only at one instant in time t.

If such an operator is defined, we can use it in place of
the original TRS operator to construct a gauge in which
the parity of the CS invariant is a topological invariant.
However, such an invariant is a characterization of the
full-time trajectory of the state, since T̃(t) can only be
defined if Hf(t) is known. More physically, if one were to
construct this invariant in practice, one could measure
the equilibrium topological invariant at t = 0 and then
monitor the fractional part of the CS invariant contin-
uously in time. If we choose the integer part of CS1(t)
such that its full value has no discontinuities in time, we
will arrive at an unambiguously defined invariant which
is equivalent to the invariant constructed using T̃(t). It is
clear that information beyond that of the instantaneous
|Ψ(t)〉 must be known in order to construct such an in-
variant.

The above has a rather striking consequence in that
two topologically distinct states in class DIII at t = 0
can both reach the same state after time evolution, even
when Hf(t) respects all the required symmetries. We

provide an example of such a scenario, using a spin-half
Bogoliubov-de Gennes model in 1D. Denoting the Pauli
operators in spin space as σα for α = {x, y, z} and in
Nambu space as τα, we ensure that all Hamiltonians re-
spect TRS with T = iσy ⊗ 1; PHS with C = 1⊗ τx; and
chiral symmetry with S = σy ⊗ τx. Now consider two
quench protocols A and B. In protocol A we start in
a topologically trivial state, and then quench to a new
time-independent final Hamiltonian

Hi
A(k) = 1⊗ τz → Hf

A(k, t) = σy ⊗ τy (S1)

In protocol B we start in a topologically non-trivial
state (which is equivalent two time-reversal copies of a
topological p-wave wire [54]), and then quench to another
time-independent Hamiltonian

Hi
B(k) = 1⊗ [cos(k)τz + sin(k)τy]

→ Hf
B(k, t) = σy ⊗ [− sin(k)τz + cos(k)τy] (S2)

Because both initial states are independent of spin in-
dices, the time-evolved states are also spin-independent,
and can be described by k-dependent spinors in Nambu
space which have precessed under a k-dependent field
defined by the final Hamiltonian. At time t = π/2, the
states of system A and B will be the same, correspond-
ing to all spinors pointing along τx. Even though both
systems started in topologically distinct initial states and
evolved under class DIII Hamiltonians, the two systems
have been brought to the same final state. Furthermore,
if one were to compute the invariant using the auxiliary
symmetry T̃(t) described above, one would find that sys-
tem A has an even CS invariant whilst system B has an
odd CS even though their final states are the same. In-
deed the different initial states affect the full-time char-
acterization of the quench.

We also note that the time-dependent auxiliary sym-
metries T̃(t) are in general k-dependent for t > 0, i.e.
they have non-local spatial profile. Therefore when we
consider the entanglement spectrum, we need not con-
sider the effect of these symmetries, since an entangle-
ment cut will not respect a symmetry which is not a
product of on-site unitary operators.
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Explicit symmetry breaking in the SSH model

The presence of TRS, PHS, and chiral symmetries is
often referred to as a binary question: a system either
does or does not possess each of the symmetries. How-
ever, whilst there exist canonical forms for each of the
symmetry operators, (e.g. T = 1 in a spinless system),
it is possible for two systems to realize the same symme-
try with different unitary matrices T,C,S, as defined in
Eq.(1). A simple yet rather subtle case arises in the SSH
model in which TRS can be realized in more than one
form.

The SSH Hamiltonian is [36]

H = −
∑
j

J1ĉ
†
2j+1ĉ2j + J2ĉ

†
2j+2ĉ2j+1 + h.c., (S3)

which is equivalent to the model defined in the main text
with B1 = B2 = 0. If we use a 2-site unit cell {2j, 2j+1},
the Hamiltonian has a momentum-space representation

H(k) =

(
0 J1 + J∗2 e

−ik

J∗1 + J2e
ik 0

)
. (S4)

When the hopping amplitudes J1,2 are real, then the
system respects TRS with T = 1, since H(k)∗ = H(−k).
Clearly if the hopping amplitudes become complex then
this is no longer true. It has previously been stated [55]
that the SSH model with complex hopping amplitudes
does not respect any TRS and is thus class AIII, since
there is no 2 × 2 matrix T which satisfies TH(k)∗T† =
H(−k). However, such a condition is too stringent: a
2-site unit cell has been implicitly assumed. The TRS
condition should not rely on the existence of a unit cell
at all, since disordered systems can still be time-reversal
symmetric.

If we instead look for a unitary matrix T in real space
which is a TRS in the sense of Eq.(1), we could define

T = diag
(
· · · , 1, e−2iφ1 , e−2i(φ1+φ2), e−2i(2φ1+φ2),

e−2i(2φ1+2φ2), e−2i(3φ1+2φ2), · · ·
)

(S5)

where φ1,2 are the phases of the complex hoppings J1,2.
This is perhaps not surprising given that the Hamilto-
nian is equivalent to the real-amplitude model through
the gauge transform c2j → c2je

−i(φ1+φ2)j ; c2j+1 →
c2j+1e

−i(φ1+φ2)je−iφ1 . In a similar fashion to the Hof-
stadter model [56], the presence of the hopping phases
forces us to extend the unit cell from the näıve choice,
which is why the 2 × 2 matrix approach fails to detect
this TRS. When the phase (φ1 + φ2) is an integer mul-
tiple of π, the diagonal entries of T have a periodicity
of 2 sites; however, if (φ1 + φ2)/π = p/q with p and q

coprime integers, then we must define a unit cell with 2q
sites. Regardless, a TRS operator always exists, and so
one may call the SSH model with complex hopping am-
plitudes a class BDI system. A PHS C = ST will also be
defined in this model.

The TRS operator (S5) and the corresponding PHS
are highly non-generic symmetries which are specific to
the choice of phase of both hopping amplitudes. If we
consider a quench from one complex SSH model to an-
other, then if the phases of either J1,2 change across the
quench, the TRS and PHS will be explicitly broken since
the initial and final Hamiltonians realize different symme-
tries. The same chiral (sublattice) symmetry is present
in the Hamiltonian at all times but will be broken by the
dynamics, yielding class AIII-like behaviour with a time-
varying bulk index. On the other hand, if the phases
φ1,2 remain the same across the quench then the TRS
and PHS are not explicitly broken: one will see class
BDI behaviour with a constant-in-time CS invariant.

Symmetries of the time-evolved wavefunction

Here we demonstrate that any symmetry of the Hamil-
tonian which is realised by an antiunitary operator will
not be reflected in the time-evolved state. Heuristically,
when Ĥ(t) is time-independent one can see this easily
since the factor of i in the time evolution operator Û(t)
is not invariant under an antiunitary operator, but we
prove this rigorously in a way which is also valid for time-
dependent Ĥ(t).

We start with the time-dependent Schrödinger equa-
tion

∂

∂t
|Ψ(t)〉 = −iĤ(t)|Ψ(t)〉, (S6)

where the many-body Hamiltonian Ĥ(t) commutes with
a symmetry operator Ô that is unitary or antiunitary.

By definition, Ô satisfies 〈ÔΦ, ÔΨ〉 = 〈Φ, Ψ〉(∗) for any
two states |Φ〉 and |Ψ〉, where 〈·, ·〉 is the inner product on
the Hilbert space. Here, (∗) denotes complex conjugation
in the antiunitary case, and is absent in the unitary case.
The condition for |Φ〉 to start in an ‘Ô-symmetric’ state
is that Ô |Ψ(t)〉 = η |Ψ(t)〉, where η is real.

Now, taking the inner product of (S6) with an arbi-
trary state |Φ〉 and using linearity of the inner product
in the second argument gives

∂

∂t
〈Φ, Ψ(t)〉 = −i 〈Φ, Ĥ(t)Ψ(t)〉 (S7)

which we wish to compare to the time evolution of
Ô|Ψ(t)〉. We can compare the above to the equivalent
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expression for the state Ô|Ψ(t)〉, which gives

∂

∂t
〈Φ, ÔΨ(t)〉 =

∂

∂t

〈
Ô−1Φ, Ψ(t)

〉(∗)

=

〈
Ô−1Φ,

∂

∂t
Ψ(t)

〉(∗)

=
〈
Ô−1Φ,−iĤ(t)Ψ(t)

〉(∗)

= ∓i
〈
Ô−1Φ, Ĥ(t)Ψ(t)

〉(∗)

= ∓i
〈

Φ, ÔĤ(t)Ψ(t)
〉

= ∓i
〈

Φ, Ĥ(t)ÔΨ(t)
〉

. (S8)

The first step follows from the (anti-)unitarity of Ô−1.
We use (anti-)linearity in the second argument of 〈·, ·〉(∗)
going from the third to fourth line, and [Ô, Ĥ(t)] = 0 in
the last step. Because this is true for arbitrary |Φ〉, we
therefore conclude that

∂

∂t

[
Ô|Ψ(t)〉

]
= ∓iĤ(t)

[
Ô|Ψ(t)〉

]
, (S9)

Comparing the above with (S6), we see that the state
Ô |Ψ(t)〉 evolves under the Hamiltonian ±Ĥ(t). Thus
when Ô is antiunitary, Ô |Ψ(t)〉 6= η |Ψ(t)〉 for any η and
thus the symmetry is generically lost.

Details of numerical calculations of the Haldane
phase

The results presented in Figure 1(c) were calculated
with the help of the iTensor package [57]. We use the
DMRG algorithm to find the ground state of the initial
Hamiltonian, and TEBD to time-evolve this state under
the final Hamiltonian. Throughout, we use a system size

of N = 48 with open boundary conditions and retain a
bond dimension of χ = 100, which allows us to reach a
time t ≈ 3J1 before appreciable truncation errors set in.

The Hamiltonian which we use in our simulation
is based on the AKLT Hamiltonian, with various
symmetry-violating terms added:

Ĥ = ĤAKLT + Ĥzz + Ĥinv + Ĥdi;

ĤAKLT = J1

∑
j

~Sj · ~Sj+1 +
1

3
(~Sj · ~Sj+1)2,

Ĥzz = Uzz
∑
j

(Szj S
z
j+1)2,

Ĥinv = R
∑
j

(Sxj S
y
j+1)2 − (Syj S

x
j+1)2,

Ĥdi = D
∑
j

Sxj S
z
j+1 − Szj Sxj+1. (S10)

The AKLT Hamiltonian belongs to the Haldane phase,
and respects inversion symmetry ~Sj → ~S−j+1, dihedral
symmetry of π rotations about each of the Cartesian
axes, and time reversal symmetry ~Sj → −~Sj . Any one of
these three symmetries is enough to protect the Haldane
phase. The term Ĥzz is added to provide a quench pa-
rameter; Ĥinv breaks inversion symmetry, and Ĥdi breaks
both inversion and dihedral symmetry. Even with all pa-
rameters non-zero, the system still possesses a Haldane
phase protected by TRS.

The green line in Figure 1(c) corresponds to D =
0, possessing the unitary dihedral symmetry, and
the quench chosen is (J1,Uzz,R) = (1, 0.2, 0.15) →
(0.5, 1.7, 0.15). The purple line follows the same quench
with the exception that D = 0.15 throughout, thus
breaking the dihedral symmetry. When the Haldane
phase is protected by TRS alone, the entanglement de-
generacy is lifted for t > 0.


	Topology of one dimensional quantum systems out of equilibrium
	Abstract
	Acknowledgments
	References
	Gauge dependence of the CS invariant out of equilibrium
	Explicit symmetry breaking in the SSH model
	Symmetries of the time-evolved wavefunction
	Details of numerical calculations of the Haldane phase


