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Abstract 20 

In the past, vitamins and minerals were used to cure deficiency diseases.  Supplements nowadays 21 

are used with the aim of reducing the risk of chronic diseases of which the origins are complex.  22 

Dietary supplement use has increased in the UK over recent decades, contributing to the nutrient 23 

intake in the population, but not necessarily the proportion of the population that is sub optimally 24 

nourished; therefore, not reducing the proportion below the estimated average requirement and 25 

potentially increasing the number at risk of an intake above the safety limits.  The supplement 26 

nutrient intake may be objectively monitored using circulation biomarkers.  The influence of the 27 

researcher in how the supplements are grouped and how the nutrient intakes are quantified may 28 

however result in different conclusions regarding their nutrient contribution, the associations with 29 

biomarkers in general, and dose-response associations specifically.  The diet might be sufficient in 30 

micronutrients, but lacking in a balanced food intake.  Since public health nutrition guidelines are 31 

expressed in terms of foods, there is potentially a discrepancy between the nutrient-orientated 32 

supplement and the quality of the dietary pattern. To promote health, current public health messages 33 

only advocate supplements in specific circumstances, but not in optimally nourished populations. 34 

  35 
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Introduction 36 

The micronutrients that we have come to know as ‘vitamins’, had their road of discovery pathed by 37 

a multitude of deficiency diseases.  A clear intervention, then still in the form of foods, relieved 38 

symptoms and cured diseases such as limes & scurvy, unpolished rice & beri beri and cod liver oil 39 

& rickets.  Diseases nowadays are not marked by deficiency, rather overconsumption of foods tends 40 

to be the major cause of chronic diseases such as cardiovascular disease, diabetes and cancer (1–3).  41 

These lifestyle diseases are multifactorial, where diet/nutrients play a role in disease development; 42 

however, more than a narrow focus on micronutrients is necessary to treat or prevent them. 43 

Yet, dietary supplements remain popular in the general population where supplement users have 44 

been labelled as the ‘worried well’.  Positive beliefs about supplements, such as “Help me to be 45 

healthy”, “Stop me getting ill”, “Not do me any harm” and “Be the best I can do for myself” have 46 

been observed among supplement users in the UK (4).  A Dutch survey found that 61% thought that 47 

supplements were ‘sufficiently proven’ and 48% believed that supplements were ‘an easy way to 48 

stay healthy’ (5).  Also in NHANES (US), reasons for supplement use relate to disease 49 

prevention/treatment and supplementing the diet (6).  These opinions are in contrast with public 50 

health guidelines in these countries, where there is -in general- no role for supplement use for 51 

adults, apart from illness/special conditions, and more recently, for vitamin D supplementation in at 52 

risk groups in the UK (7,8). 53 

So, is there a role for dietary supplements?  Should we have to make up a balance of food vs. 54 

supplements even if health guidelines are not encouraging the use of dietary supplements?  The fact 55 

that supplements continue to be used, means that the general population derives nutrients from both 56 

foods and supplements and the supplement contribution may be substantial.  Supplement use is 57 

therefore an exposure that cannot be ignored in relation to (i) nutrient deficiency, sufficiency and 58 

toxicity, (ii) biomarker associations and sometimes (iii) disease, in case of suboptimal nutrient 59 

status or food intake (e.g. fish vs. fish oil and the association with cardiovascular disease).  60 

Alternatively, in observational research it is not always about establishing whether there is a benefit 61 

from supplement use itself, but also, how can we control for this health-seeking behaviour when we 62 

are interested in this (or another) exposure and health (9).  ‘The typical supplement user' does not 63 

exist, there is heterogeneity in the characteristics of supplement users, depending on the type of 64 

supplement consumed (10–13). Therefore, adjusting the supplement-disease analyses for 'yes/no 65 

supplement use' might not take away the suspected confounding, but could potentially create (more) 66 

noise/attenuation in the associations. 67 
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This paper aims to describe dietary supplement assessment methodology in the context of 68 

observational research and characterise the heterogeneity amongst supplement users.  A secondary 69 

aim is to focus on the role of supplements in the nutrient distribution, circulating biomarkers and 70 

disease, using a variety of examples illustrating their (in)effectiveness in public health. 71 

Dietary supplement assessment: definition, instruments and prevalence of 72 

use 73 

Within Europe since 2002, dietary supplements have been regulated by the directive 2002/46/EC 74 

which defines supplements as (14): “Food stuffs the purpose of which is to supplement the normal 75 

diet and which are concentrated sources of nutrients or other substances with a nutritional or 76 

physiological effect, alone or in combination, marketed in dose form, namely forms such as 77 

capsules, pastilles, tablets, pills and other similar forms, sachets of powder, ampoules of liquids, 78 

drop dispensing bottles, and other similar forms of liquids and powders designed to be taken in 79 

measured small unit quantities.”  Definitions of what are considered to be ‘dietary supplements’, or 80 

indeed specific types of supplements, have been reported to vary across American surveys (15).  Also 81 

in UK studies, definitions are lacking although the answer categories or the examples given to 82 

participants in the questionnaires give an indication of what was studied (10,16,17).  Depending on the 83 

aim of the study, prescribed medication (as sources of folate, calcium and iron) can be included in 84 

order to calculate what is known as ‘total nutrient intake’ (TNI), i.e. the sum of nutrient intake from 85 

foods and supplements  (18).  Moreover, separating medication-derived nutrients from dietary 86 

supplements (or indeed food intake from dietary supplement intake) might provide additional 87 

information regarding reverse causality or confounding by indication, which might obscure the 88 

association with biomarkers or illness, e.g. the use of prescribed ferrous sulphate for anaemia, 89 

which itself might be caused by an underlying illness/treatment, will be differently associated with 90 

health than ferrous sulphate part of a multivitamin/multimineral (MVMM) supplement consumed 91 

out of choice. 92 

The following issues arise when wanting to assess the nutrient contribution from supplements: (i) 93 

the potential for short-term use by participants, (ii) constant change in the supplement supply and 94 

(iii) constant change in supplement composition.  The choice of the dietary supplement assessment 95 

instrument will have consequences for how well these issues can be dealt with.  Dietary supplement 96 

use is assessed in similar ways to diet.  There is self-reported data, using a variety of questionnaires, 97 

as well as objective measures, in the form of biochemical markers each with advantages and 98 

disadvantages (Table 1).  The gold standard in supplement assessment is considered to be a face-to-99 

face supplement inventory, which enables label transcription and/or collection of supplement bottles 100 
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to retrieve nutrient composition as well as tablet count and hence provides very detailed 101 

information.  This method has been applied in sub-cohorts or pilot studies, mainly to validate 102 

questionnaires (19,20).  Label transcription has also been applied in the UK National Diet and 103 

Nutrition Surveys (NDNS) and the North/South Ireland Food Consumption Survey.  General 104 

questionnaires can include question(s) regarding supplement use.  Answer categories will enable 105 

categorisation into non-supplement users (NSU) and supplement users (SU) and might ask more 106 

detailed (possibly in free text) information on the type of supplement used, such as frequency or 107 

dose.  The recall time and words such as ‘regular’, ‘usual’ or ‘seasonal’ will reflect the prevalence 108 

of supplement use obtained (21,22).  In a Supplement Frequency Questionnaire (SFQ), supplements 109 

are grouped, for example ‘fish oils’, ‘vitamin C’, ‘one a day multivitamins’ and frequency and/or 110 

amount of use are asked for each supplement group, sometimes specifying a minimal frequency of 111 

use required (23).  The nutrient intake is calculated by assuming a nutrient formulation for each of 112 

these supplement groups.  The recall period varies between studies and can be up to 10 years (23).  A 113 

recall covers a period of 24h, whereby supplement nutrient intake can be calculated using default 114 

nutrient profiles or manufacturers’ data matched to the exact supplement used, multiplied by the 115 

frequency of consumption.  The number of days collected will influence the findings regarding 116 

prevalence of supplement use (24).  In records, supplements can be recorded as they are consumed, 117 

which could minimise omissions due to forgetfulness (and thereby the potential for recall bias) and 118 

capture full label content.  Participants are asked to fully describe the supplement, the dose (or 119 

enclose the label), the quantity and potentially also the clock time.  The number of days collected 120 

will influence the results regarding prevalence of supplement use.  Biomarkers, such as blood or 121 

urine samples, tend to be used to measure concentrations of the compound of interest or its 122 

metabolite.  Biomarkers cannot differentiate between sources of the nutrient (i.e. whether the 123 

vitamin C was derived from foods or supplements), they vary in reference time (they may reflect 124 

recent or long-term exposure) and some nutrients are homeostatic or may be affected by illness.  125 

Laboratory measures are independent of errors made during self-report, but sample collection can 126 

be burdensome for the participant as well as expensive. 127 

In summary, all these instruments have limitations and the quality of the data obtained will 128 

influence how the obtained data may be used in analysis.  Supplement-disease analysis may be 129 

fraught with confounding when simply comparing SU against NSU; supplement nutrient intake 130 

may require researchers to maintain time-consuming, detailed supplement composition data; while 131 

biomarkers will leave the researcher with a sample concentration, but without an idea of what was 132 

actually consumed.  Indeed, a combination of instruments might be a better way forward (18,25). 133 
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The choice of instrument is reflected in the prevalence of dietary supplement use observed.  By 134 

using a similar instrument, secular trends can be monitored.  Using a one year recall, the NDNS in 135 

2012/13-2013/14 estimated the use of any type of dietary supplement in the UK among adults aged 136 

19-64 years to be 15% in men and 24% in women and for those >=65 years, 30% and 41% 137 

respectively (26).  In years 5 and 6 of the rolling programme, the percentage using dietary 138 

supplements has not changed greatly for the oldest age category (38% and 41% respectively); for 139 

the younger age groups, up to a threefold increase was observed.  Compared to earlier adult survey 140 

data collections in 1986/87, the change has been substantial since it was estimated to be approx. 9% 141 

and 17% respectively (27).  Secular trends have also been observed in the US, where the use of any 142 

type of supplement might have stabilised, but, for example, vitamin D supplementation increased 143 

between 1999 and 2012 from 5% to 19% and omega-3 containing supplements increased 7-fold up 144 

to 13% (28).  A trend analysis of supplement use in the Health Professionals Follow-Up Study and 145 

the Nurses’ Health Study indicated continued increase of supplement use up to 2006, but a marked 146 

decrease of beta-carotene after 1994, partly because trials suggested potential harm (29).  The 147 

changes in trends may be a consequence of health policies (e.g. Healthy Start) and/or media 148 

coverage of trials.  Supplement use varies greatly across Europe (30), both in prevalence and in the 149 

type of supplement consumed.  Comparisons across countries are hampered by the variety in recall 150 

time and choice of instrument.  In EPIC-Europe, the choice of a single 24h recall between 1995-151 

2000 might have underestimated the ‘usual’ supplement exposure; however, a clear North-South 152 

gradient was observed (Figure 1), as well as positive trends with age (31).  The stark differences in 153 

the prevalence of supplement use between countries and continents needs to be considered when 154 

comparing results regarding supplement-sourced nutrient intake between studies. 155 

Supplement nutrient intake - extremes of the distribution 156 

All of the above listed assessment instrument -except the biomarkers- require the researcher to 157 

make assumptions regarding the supplement nutrient composition.  The pre-structured 158 

questionnaires will assume a default nutrient composition.  Open-ended questionnaires, such as 159 

used in the NDNS (32,33) and in the Norfolk arm of the European Prospective Investigation into 160 

Cancer (EPIC-Norfolk) study (34), can be more specific, but will equally rely on the labels printed on 161 

dietary supplement packaging, and therefore the potential for label-transcription errors (35).  The 162 

packaging may contain errors, the supplement may have been kept in poor storage conditions or the 163 

supplement may contain ‘overages’, the latter mainly for vitamins, and taking into account safety 164 

limits, in the range of 5-100% of the label value (36,37).  All these factors make what is ‘on the label’ 165 

not an accurate reflection of what is ‘in the dietary supplement’ and therefore a less accurate -or 166 

possibly even biased- measure of supplement nutrient intake (at least attenuating any association 167 
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between nutrient intake and the biomarker or disease).  A long-term process of developing a 168 

composition table based on analytical data has for these reasons been proposed and developed (38,39). 169 

Once the nutrient intake from supplements is assessed, it can be added to the food-sourced intake, to 170 

obtain TNI.  This widens the range of the studied nutrient, and therefore enables risk assessment at 171 

either side of the nutrient intake distribution (Figure 2).  The ‘at risk’ population is situated in the 172 

tails of the nutrient intake distribution (either because the intake remains low or becomes too high 173 

after inclusion of supplement sources), the intakes of which are less accurately measured.  For this 174 

reason, researchers may take the upper/lower 5th centile of the nutrient intake distribution as a more 175 

stable assessment rather than the proportion in the distribution above or below the exact cutoff set 176 

by the Dietary Reference Values (DRV) (40,41).  When a limited number of dietary intake days are 177 

collected, researchers prefer application of statistical techniques such as ‘Shrink & add’ or ‘Add & 178 

shrink’ (see the measurement error webinar series for information about these methods (42)).  The 179 

TNI distributions are used to establish the contribution that supplements make in meeting or 180 

exceeding DRVs.  The Estimated Average Requirement (EAR) is used for comparing populations 181 

against a standard.  It is the average nutrient requirement in a healthy group of people meant to 182 

maintain sufficient concentrations of a particular biomarker (blood/tissue concentration; enzyme 183 

saturation) in order to prevent nutrient deficiencies.  The exact requirement is often unknown and 184 

assumed to be symmetrical (40), but reasonable estimates of the proportion at risk can be obtained 185 

using the EAR cut-point method (43), which assumes that the proportion below the average nutrient 186 

intake is -under certain conditions- approximately the same as the proportion of people with an 187 

intake below their average nutrient requirement.  The Lower Reference Nutrient Intake (LRNI) is 188 

the EAR value minus two standard deviations and is likely to cover the need of only 2% of the 189 

population.  The Reference Nutrient Intake (RNI) is the EAR value plus two standard deviations, 190 

and covers the need of 98% of individuals in a population (40,43).  The RNI might provide a good 191 

estimate for comparison against an individual’s requirement; however, at the population level, this 192 

measure is (too) cautious (43).  The Safe Upper Level (SUL) is defined by the Expert Group on 193 

Vitamins and Minerals (EVM) to  “represent an intake that can be consumed daily over a lifetime 194 

without significant risk to health on the basis of available evidence” (36) and refers to the 195 

supplement-sourced intake only.  The Guidance Level (GL) is defined by the EVM as “an 196 

approximate indication of levels that would not be expected to cause adverse effect, but have been 197 

derived from limited data and are less secure than SULs” (36). 198 

Considering the variation in supplement use across Europe (30,31), supplements vary in the 199 

contribution that they make to food-sourced intake and the proportion of the populations at risk of 200 

not meeting the sufficiency DRVs.  There are however various complications when wanting to 201 
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assess this across countries, not in the least because of different dietary assessment methodologies 202 

applied in surveys, but also what is considered ‘sufficient’ across countries varies due to (44,45): 203 

different expert panels, the currency of the evidence assessed, use of different DRVs, different cut-204 

off points for age groups, criteria for adequacy (i.e. the condition that the nutrient needs to prevent) 205 

and the extrapolation of data.  Mensink et al. (46) streamlined participant-level data with regard to 206 

DRVs and age cutoffs from dietary surveys in eight countries in the European Union, with data 207 

collections between 1997 and 2010.  Using vitamin C from this publication as an example, mean 208 

food-sourced intake in adults aged 18-60 years varied from 81 (PO) - 152 (G) mg/d in women and 209 

from 81 (F, NL) -152 (D) mg/d in men.  After the contribution of supplements, TNI ranged from 96 210 

(F) -175 (D) mg/d in women and from 87 (F) -173 (D) mg/d in men.  There was a very small 211 

decrease (0-1% women; 0-0.7% men) in the percentage of the populations meeting the EAR after 212 

inclusion of supplements; only among the 65+ age group were reductions of 0-4% obtained.  213 

Particularly for the vitamins A, D and E, and the minerals iron (among women) and selenium, a 214 

lower prevalence of intakes below the EAR (up to 34% decrease for vitamin D) were observed after 215 

inclusion of supplement sources of these nutrients in adults.  When it comes to exceeding upper 216 

limits due to supplements, Flynn et al. (30) studied dietary survey data of seven vitamin and eight 217 

mineral nutrient distributions gathered in a selection of European countries between 1994 and 2006.  218 

Food-sourced intake (with fortified foods making a small contribution) was responsible for the 219 

majority of the populations’ intakes.  The nutrient intake associated with the 95th centile of retinol, 220 

zinc, iodine, copper and magnesium increased considerably after inclusion of supplement sources; 221 

however, it only exceeded the upper limits in a small percentage of the studied populations. 222 

When supplement use is compared between countries or continents, its use and contribution do not 223 

only vary because of participant-associated variation (i.e. the choice of supplement), but also due to 224 

the choices in data handling and analysis by researchers.  When comparing publications, large 225 

differences between studies may be explained due to SUs all being grouped together vs. nutrient-by-226 

nutrient distinction among SUs.  This is the case when interpreting publications using NHANES 227 

data for example (47–49).  Here, far greater effects on meeting the EAR and exceeding the TUL are 228 

obtained because of different supplement nutrient groupings of participants (on top of different 229 

DRV cut-offs and the majority of the supplements being MVMM-type supplements).  Applying this 230 

nutrient-by-nutrient grouping strategy and UK DRVs to the vitamin C intake as assessed in the 231 

NDNS data of years 1-4 of the rolling programme (32), then SUPP-Table 2 is obtained.  When the 232 

food-sourced vitamin C intake of all the men or all the women within the same age group are 233 

compared against the TNI, the median intake increased with 3-9 mg/d and the percentage of 234 

participants in this population not meeting the EAR was maximally 0.1-1.1% lower once 235 
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supplements were included, as was observed EU-wide (46).  When we additionally ask the question 236 

“Who is at risk?” and stratify the strata further by supplement status, we can allocate the 237 

supplement exposure to those who were truly exposed and not dilute the exposure with non-vitamin 238 

C containing supplements.  When the vitamin C supplement users (SU+C) are identified, the 239 

contribution of the supplement was approximately twofold that of the food-sourced intake (SUPP-240 

Table 2).  The SU+C group had a lower risk of not meeting the sufficiency DRVs (not just because 241 

of the supplement, but also because of higher food-sourced vitamin C intake among the SU-C and 242 

SU+C); moreover, only the SU+C group, and only when studying TNI, were exceeding quantities 243 

>1000 mg/d, intakes which have been associated with GI-problems (36).  A visual representation of 244 

this TNI distribution and DRVs is provided in Figure 3. 245 

Conclusion - intake 246 

Supplement intakes shift the nutrient exposure distribution to the right; however, nutrient 247 

sufficiency -in most cases- may be obtained from food sources only.  The (small) reduction in the 248 

proportion at risk after including supplements depends on the nutrient, but also on the grouping of 249 

the supplements.  There is a modest higher risk of exceeding the upper limits when supplement 250 

intake is included (among those using that nutrient in supplement form). 251 

Association between supplement intake and biomarkers 252 

Objectively measured nutrient biomarkers may serve to validate the self-reported nutrient intake, by 253 

providing an indication of the ‘internal dose’, the absorption.  Biomarkers may be influenced by a 254 

variety of factors described in detail elsewhere (50,51); however, with regard to dietary supplements 255 

as a source of nutrient intake, a few points stand out.  First, the range of nutrient intake is made 256 

wider and different dose-response associations may be detected with TNI vs. food-sourced intake 257 

alone.  Secondly, the statistical parameters chosen in observational research are mostly there to 258 

establish correlations and quantify reclassification of participants, but a dose-response association is 259 

different and some of these results may be counterintuitive with regards to the ‘internal dose’.  260 

Thirdly, just as foods contain multiple nutrients which may interact (e.g. fat-soluble vitamins as 261 

antioxidants in high fat foods), colinearity in supplement nutrient ingestion exists (e.g. use of 262 

MVMM-type supplements).  Therefore, biomarkers other than the nutrients studied may be affected 263 

(e.g. vitamin C supplement use and tocopherol concentrations).  These points are illustrated below. 264 

In (large) cohort studies, circulating biomarkers are commonly used as an indicator of 265 

absorption/bio-availability.  The nutrient exposure may be classified into N-tiles (e.g. tertiles, 266 

quintiles) and the means of both intakes and biomarkers may be presented for each N-tile, this to 267 

establish any type of dose-response association.  Researchers may be interested in the (improvement 268 
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of the) agreement in classification between the objectively and subjectively collected data, i.e. 269 

establish whether participants ranked and placed into a specific N-tile according to the biomarker 270 

are the same participants as those placed in this N-tile according to the questionnaire (comparing 271 

this agreement using the intake without and with supplements).  Alternatively, researchers may 272 

wish to summarise the association between intake and biomarker in a single number, using either (i) 273 

a correlation or (ii) a beta-coefficient.  A correlation is a standardised measure (disregarding the 274 

unit) indicating the strength between two variables.  If the correlation is high, then a standardised 275 

higher intake is associated with a standardised higher or lower biomarker concentration; however, it 276 

does not reflect a dose-response association (even when the value approaches 1 or -1), since the 277 

standardisation process has removed this aspect from the results.  Using linear regression, which 278 

obtains the (adjusted) beta-coefficient, the unit in which the variables are measured remains (though 279 

the input variables might be ‘transformed’), and the results may be interpreted as a ‘dose-response’ 280 

since the intake of x amount of mg/d can be associated with a higher/lower y amount of the 281 

biomarker.  For example, correlations between TNI or supplement-sourced vitamin E intake and 282 

α-tocopherol concentration biomarkers have been reported to range from 0.3-0.7 using a variety of 283 

parameters on transformed or non-transformed data (52–55).  In the VITamin And Lifestyle (VITAL) 284 

cohort (52), adjusted correlations between supplement intake and biomarker were 0.69 with a 285 

significant linear trend across N-tiles (P<0.0001); however, when plotting the means of the 286 

supplement intake groups (NSU: 0; quartiles: 18, 180, 194, 360 mg/d) against the blood biomarker 287 

(NSU: 28, quartiles: 34, 44, 50, 60 μmol/L), three issues become apparent. (i) Supplement-sourced 288 

intake exceeds food-sourced intake 30-40 fold; (ii) due to the non-normal distribution of 289 

supplement-sourced intake, a wide range of supplement-sourced intake is grouped together, creating 290 

then small, then large differences between the N-tile means of intake; and consequently (iii) the 291 

dose-response of supplement intake is not the same at every amount of supplement-sourced vitamin 292 

E intake.  Such observations were also observed by Zhao et al. in the Irish National Adult Nutrition 293 

Survey (NANS) data (56).  α-Tocopherol concentrations are positively associated with vitamin E 294 

intake, γ-tocopherol is negatively associated with vitamin E intake due to preference of hepatic 295 

α-tocopherol transfer proteinase; furthermore, potential differences in the associations of plasma 296 

tocopherol and natural vs. synthetic forms of vitamin E may exist (57). 297 

When assessing the association between nutrient intake (from both food and supplement sources) 298 

and a biomarker, Block et al. draw an analogy with smoking (58).  When the association between 299 

smoking and a nicotine biomarker is assessed, we could analyse the amount smoked at home 300 

separately from the amount smoked at work, or analyse the amount smoked at work adjusted for the 301 

amount smoked at home, however the total amount smoked is the exposure of interest in aetiology 302 



11 

 

(58).  Moreover, when applied to nutrient-biomarker associations, the biomarker has no ability to 303 

detect a difference between food or supplement sources.  One more analogy may be added to the 304 

ones listed by Block et al. and that is that we would not average the number of cigarettes smoked 305 

whilst including the non-smokers.  However, this is what happens by grouping all SUs into a single 306 

group, the supplement contribution of a nutrient is diluted by SUs who consume different types of 307 

supplements.  A nutrient-by-nutrient supplement group distinction can provide insights not only in 308 

potentially differential food-sourced intakes (as described above in the intake distribution section), 309 

but also in potentially differential dose-response associations.  Particularly so, since supplement-310 

sourced intake could surpass food-sourced intake and therefore approach intakes associated with 311 

biomarker saturation.  In the EPIC-Norfolk study, dose-response associations have been observed to 312 

vary across subgroups of SUs.  A sex-adjusted analysis of published results (59), obtains the 313 

following associations between food-sourced vitamin E intake (per 10 mg/d) and back-transformed 314 

log-biomarkers of α-tocopherol concentrations (and therefore representing a percentage change 315 

[95%CI]) among NSU, SU-E and SU+E respectively of: 10% (9,12%), 9% (6,12%) and 5% (2, 316 

9%).  When replacing food-sourced intake with TNI, the associations in the SU+E group weakened 317 

to 1% (1,2%); although the adjusted correlation strengthened from 0.09 (food only) to 0.43 (TNI) 318 

among the SU+E (since supplement-sourced vitamin E intake may be over 10-fold higher than 319 

food-sourced intake in the UK).  This linear model indicates saturation, which has been reported 320 

with intakes varying between 9-17 mg/d (54,60); and indeed, when only participants with TNI <17 321 

mg/d were included, the coefficient among the SU+E was 9%, although with wide confidence 322 

intervals (1-16%).  The urinary excretion products of vitamin E have for this reason been studied as 323 

a substitute to indicate sufficiency, or very high ingested doses (54).  Saturation thresholds also exist 324 

for vitamin C since kidneys excrete vitamin C at intakes higher than 120 mg/d (40); whereas retinol 325 

concentrations are largely homeostatic, even after a state of toxicity has been reached (61) and 326 

therefore dose-response associations are not observed in replete individuals. 327 

The omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are mostly 328 

obtained from oily fish, for which the most recent dietary guideline recommendations (1 portion of 329 

oily fish per week, approx. 0.45 g/day or 3.15 g/week of EPA+DHA) (62) have not been met in the 330 

UK population (32,33).  A source of EPA and DHA may also be obtained from cod liver oil and fish 331 

oil type supplements (referred to as ‘EPA/DHA-containing supplements’), which could 332 

approximately double the exposure among those using EPA/DHA-containing supplements 333 

(SU+EPA/DHA).  In EPIC-Norfolk, a general population-based cohort, aged between 39 and 79 334 

years, the median TNI was 0.39 g/d in men and 0.29 g/d in women among SU+EPA/DHA between 335 

1993-1998 (59).  For EPA or DHA supplements, when these nutrients are ingested separately or 336 
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combined, in doses up to 7 g/d (i.e. over 15 times the SACN recommendation), dose-response 337 

associations in trials have resulted in increased plasma concentrations with the most efficient dose-338 

response when the respective fatty acids is supplemented (63).  Dose-response associations between 339 

the sum of EPA and DHA intake (3:2 ratio) and plasma EPA and DHA, have been found to be 340 

linear up to 3 g/d in a trial of healthy young men who consumed fish <1 times/week at baseline (64).  341 

A trial among healthy men and women aged 20-80 years, who did not consume fish or supplements 342 

thereof, showed linear dose-response associations up to 4 portions of oily fish per week (where six 343 

capsules totalling 3.27 g of EPA+DHA reflected a single portion) (65).  However in a cohort study 344 

where SU+EPA/DHA were excluded and fish consumption was 0.5-1 serving per week, a linear 345 

association was observed up to 0.5 g/d of EPA+DHA intake (66,67).  The differences in dose-346 

response between cohorts and trials may be explained by differences in bio-availability of food-347 

sourced and supplement-sourced EPA+DHA due to varying fat content of meals and biochemical 348 

form of the supplemented fatty acids (68,69) or the frequency of EPA+DHA consumption.  349 

Supplements in trials are advised to be taken daily, whereas fish is an episodically consumed food.  350 

Browning et al. observed that similar weekly doses of EPA and DHA (6.54 g/wk, i.e. 2 times the 351 

SACN recommendation), but taken either daily or dispersed over only 2 days per week, resulted in 352 

faster and sustained incorporation into plasma, platelets and red blood cells when supplements were 353 

taken daily, although after 12 months no difference was observed in plasma concentration when 354 

comparing the weekly vs. the daily regime (70). 355 

Not just pharmaceutical supplement doses, but also supplement doses not exceeding the RNI are 356 

associated with circulating biomarker concentrations.  A recent publication from the Lung Cohort 357 

Cancer Consortium (LC3) combined cohorts across four continents and analysed biomarkers in a 358 

single laboratory (71).  It illustrated a wide range in vitamin status across the continents, with higher 359 

concentration among MVMM-type SUs.  In the 1994/95 NDNS 65+ sample, vitamin but not 360 

mineral intake from supplements, was associated with higher status indices, regardless of the 361 

supplement assessment tool used (18).    In the UK, vitamin D is mostly contained in cod liver/fish 362 

oil supplements as well as multivitamin and MVMM supplements.  Here, the doses do not tend to 363 

exceed 5 mcg/d and still 10 nmol/L higher 25(OH)D concentrations were observed among 364 

participants in the 1958 Birth Cohort who took such supplements (72), lowering their risk of a 365 

25(OH)D concentration being <40 nmol/L by 64% (95%CI: 56-70%). 366 

Conclusion - biomarker 367 

The supplemented nutrients are capable of raising plasma concentrations of the respective nutrients, 368 

particularly vitamins and fatty acids.  Supplements at pharmaceutical doses might obtain high 369 

correlations between intakes and biomarker; however, the dose-response associations indicate 370 
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saturation.  A biomarker may be influenced by many other factors (see for example Proc Nut Soc 371 

McMillan); moreover, it does not automatically mean that higher circulating concentrations indicate 372 

better health or functionality, since circulating biomarkers might not reflect storage or the 373 

effectiveness of the nutrient in an organ. 374 

Health outcomes 375 

In this last section, the balance between food and supplements is discussed in light of positive and 376 

negative health outcomes.  Evidence for causality of a putative beneficial nutrient is generally taken 377 

from (double-blinded, placebo-controlled) trials; however, evidence with regards to side effects, 378 

contamination or toxicity are mostly gathered from extensive risk assessment using animal models, 379 

observational studies and case reports or sensitivity analysis from trial data.  I will first contrast 380 

these study designs, followed by a summary of systematic reviews evaluating the role of dietary 381 

supplements and emphasizing the differences between foods vs. supplements. 382 

Trials and observational studies have advantages and disadvantages when studying associations 383 

between supplement use and health/disease (Table 3).  Trials are limited in the number of exposures 384 

that can be tested in a single experiment (23,73,74).  The conclusion of dietary supplement efficacy in 385 

relation to the outcome is hence limited to the number of compounds tested, the dose tested 386 

(potentially higher than a commonly available dose) and the outcome tested.  Moreover, particularly 387 

when the outcome is cancer, the follow-up in trials tends to be too short since the disease might take 388 

10-20 years to develop (75–77).  Trial findings can be obscured by the use of supplements beside the 389 

trial dose, particularly when these are unrecorded.  Similarly, past use of supplements by trial 390 

participants (treatment or control) could obscure findings as well as pre-cancerous stages which 391 

may modify the risk to the intervention arm (13,77,78).  Regarding observational studies and 392 

supplements, such studies can be more inclusive in their eligibility criteria and the follow-up time 393 

tends to be longer than in trials.  They can assess a wide range of commonly used dietary 394 

supplements and doses (23).  Depending on the frequency of assessment, cohorts can take into 395 

account the variability of supplement use over time, since a single measure cannot be considered to 396 

reflect habitual supplement use (79,80).  On the other hand, observational studies suffer from 397 

confounding and, if retrospective measures are used, potentially recall bias (75,81).  The distribution 398 

of socio-demographic characteristics, behavioural factors, and prevalent illnesses are not uniformly 399 

distributed between SU and NSU (23,73,82).  Additionally, the role of specific nutrients is difficult to 400 

assess due to colinearity, i.e. nutrients are commonly consumed as part of a MVMM-type 401 

supplement for which factorial trial designs are better equipped (23,73,77). 402 
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Since supplements contain (isolated) nutrients in concentrated forms, TNI may lead to chronic 403 

intakes exceeding safe upper levels (83) (Figure 2).  In the Iowa Women’s Health Study, supplement 404 

use has -potentially for this reason, but also due to confounding by indication- observed harmful 405 

associations between supplemental iron and mortality (84).  High retinol TNI (~2500 μg/d) in 406 

combination with low vitamin D TNI (< 11 μg/d) has been associated with fractures in post-407 

menopausal women (85).  For Vitamin C the difference between the RNI and (reversible) harm in the 408 

form of GI problems ranges between 40 mg/d and 1000 mg/d; whereas for retinol this is 600 μg/d 409 

vs. 1500 μg/d (the difference being just over a common vitamin A dose in a supplement).  The 410 

European Food Safety Authority (86) and the Expert group on Vitamins and Minerals in the UK have 411 

extensively reviewed trials and safety reports for a wide range of nutrients (36).  A selection of the 412 

SULs set by the EVM are provided in Table 4.  When compared against the 95th centile of 413 

supplement-sourced intake among the adult population in the NDNS, it is observed that the intake 414 

of Zinc and vitamin B6 could exceed the SUL.  Although such intakes would need to be sustained 415 

over a long period of time to affect health and the collection of a single 4-day diary might not be 416 

sufficient to reflect a person’s usual intake or capture the varying behaviour of supplement use. 417 

Systematic reviews with meta-analyses of trials randomising participants to placebo or 418 

single/combinations of anti-oxidant supplements (Vitamin A, C, E, β-carotene, selenium), observed 419 

significant associations with harm in unbiased trials (RR 1.04; 95%CI: 1.01, 1.07), but significant 420 

beneficial associations (RR 0.91; 95%CI: 0.85, 0.98) for biased trials (87).  Significantly higher all-421 

cause mortality risks were observed for β-carotene (RR 1.05; 95%CI: 1.01, 1.09), and potentially 422 

for vitamins A and E, but not for vitamin C or selenium.  Also the U.S. Preventive services Task 423 

Force recommendation statement concluded that overall no benefit could be observed for primary 424 

prevention of cancer or cardiovascular disease when using single nutrient supplements (88,89).  A 425 

meta-analysis of MVMM-type supplement trials concluded no benefit with regards to total, 426 

cardiovascular or cancer mortality (90). 427 

The Linxian Nutrition Intervention Trials in the general population, studied the effects of the use of 428 

any of the four supplement combinations: retinol & zinc, riboflavin & niacin, vitamin C & 429 

molybdenum, or ß-carotene, vitamin E & selenium in the prevention of all-cause mortality, cancer 430 

mortality and cancer incidence (91).  It observed significant reductions in mortality (9%), cancer 431 

mortality (13%), but particularly for stomach cancer (21%) when ß-carotene, vitamin E & selenium 432 

were supplemented.  Potential explanations for the observed effects were marginal micronutrient 433 

intake at baseline due to low consumption of fruits and vegetables.  Indeed, plasma vitamin C 434 

concentrations were low at the start of the trial and a daily supplement doses of 120 mg/d raised 435 

these concentrations comparable to or just below the UK mean.  Suboptimal circulating vitamin 436 
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concentrations have also been proposed as an explanation for the decrease in cancer incidence in the 437 

supplementation vs. placebo arm in men of the SUpplementation en VItamines et Mineraux 438 

AntioXydants (SU.VI.MAX) trial, since the baseline antioxidant concentrations were lower in men. 439 

In post-hoc analysis, an interaction (P=0.04) between baseline concentrations and trial arm could 440 

only be observed for vitamin C and only among men (92). 441 

Since nutrients may be derived from a variety of (potentially fortified) foods, and not necessarily 442 

from foods which are recommended for public health, one can argue that food intake might be a 443 

better marker of optimal intake rather than nutrient intake.  For example, median vitamin C TNI 444 

expressed as a percentage of the RNI was 185% and 197% in men aged 19-64 y and 65+ y 445 

respectively, and 192% and 209% in women (32).  Contrasting this to fruit and vegetable 446 

consumption, the UK diet meets 30% and 40% of the 5-a-day guidelines in both men and women 447 

aged 19-64 y and 65+ y respectively (32).  The role of multivitamins in the past was partly seen as a 448 

means to compensate poor dietary choices (73); or, where after various considerations, the likely 449 

benefits outweighed harm of supplement use (93).  However, as observed in above described meta-450 

analyses, such use has not been successful in the prevention of disease or early death in populations.  451 

Potentially, since foods contain more than vitamins and minerals alone and dietary patterns as a 452 

whole play an important role in health (3). 453 

An example of a sub optimally consumed food group in the UK is fish, of which the 454 

recommendation is to consume 2 portions/week (~280 g/week).  In men, intake reached 161 g/week 455 

and 252 g/week for the age groups 19-64 y and 65+ y respectively, in women 154 g/week and 189 456 

g/week (32).  Data on the contribution of EPA+DHA from the most commonly consumed 457 

supplement, cod liver oils & fish oils, are lacking in the national surveys.  These results are 458 

available from the baseline EPIC-Norfolk cohort (SUPP-Table 5).  The low dose EPA+DHA from 459 

mainly cod liver oil resulted in 15-20% more participants meeting the EAR of 0.45 g/d.   460 

Higher fish consumption has been associated with lower CHD/CVD mortality in cohort studies, 461 

despite differences across the globe due to differences in dietary assessment methods, absolute 462 

amounts of fish consumed, fish preparation and water contamination (94,95).  Various biological 463 

mechanisms relating to long chain omega-3 fatty acids and CHD have recently been reviewed in 464 

these Proceedings, including the prevention of arrhythmia and anti-inflammatory properties (96,97).  465 

Fish may also exert its benefit as a source of protein, vitamin D, iodine, calcium (bones), or due to 466 

the substitution effect when consumed as part of a meal (98,99).  Although, trials using EPA+DHA 467 

supplements in secondary/tertiary prevention groups showed promising results initially, later trials 468 

observed no benefit (100).  A recent review by the Omega-3 Treatment Trialists’ Collaboration 469 

confirmed no benefit in relation to fatal CHD or nonfatal myocardial infarction among those with 470 



16 

 

existing CHD (101).  Supplementation with omega-3 fatty acids for primary prevention of CVD has 471 

not been advised due to lack of trial results in primary prevention (102,103) (the results from the first 472 

primary prevention trial on Vitamin D and EPA+DHA, the VITamin D and OmegA-3 TriaL 473 

[VITAL], are not yet available (104)), only the consumption of oily fish and seafood is currently 474 

advocated.  Since cod liver oil is a low dose source of EPA+DHA and a commonly consumed 475 

supplement in the EPIC-Norfolk study (SUPP-Table 5), it was possible to assess the role of this 476 

supplement in primary prevention of CHD mortality.  A low dose of 250 mg/d of EPA/DHA is 477 

considered sufficient for prevention of arrhythmia (105).  Due to supplement use, an additional 19-478 

24% of the participants met this threshold.  The confounding associated with SU+EPA/DHA and 479 

SU-EPA/DHA as well as the changes over time in supplement use were modelled using time-480 

varying covariates analysis.  It was observed that CHD mortality was 26% lower (95%CI: 16-34%) 481 

among SU+EPA/DHA compared to NSU, but no significant association was observed when 482 

comparing SU-EPA/DHA vs. NSU (106).  Due to the observational nature of the study, residual 483 

confounding and collinearity of nutrients could have occurred. 484 

Conclusion – health 485 

Whenever supplement use and health are being associated, the heterogeneity among SUs cannot be 486 

ignored.  ‘The typical supplement user’ does not exist.  The obvious distinction between SUs lies in 487 

the variety of the supplements consumed, but also in the many other disease risk factors which 488 

might confound or bias the supplement-health association in observational research.  Supplements 489 

may be considered ‘natural’; however, the concentrated form puts the user at risk of harm when 490 

overdosed.  Meta-analyses of trials studying MVMM supplements thus far have indicated that if 491 

populations are optimally nourished, there is no role for supplement use - “Enough is enough” (107). 492 

Closing remarks 493 

How does the balance tip between foods and supplements?  Supplements continue to be used by an 494 

increasing proportion of the population, so their contribution to diet, health and disease needs to be 495 

monitored.  Traditionally, essential nutrients have been studied in relation to health, and although 496 

micronutrient deficiencies are still prevalent in the UK population, the relatively high nutrient 497 

intake may not be a marker of healthy food choices, as reflected in the low fruit, vegetable and fish 498 

consumption from national surveys.  Resolving unhealthy dietary patterns with micronutrient 499 

supplements is a too narrow-minded solution.  Nowadays, public health nutrition guidelines take the 500 

role of the nutrient, its food source and its place in the diet into account to optimise diet.  The 501 

current role of supplements herein seems restricted to certain age groups, life circumstances or 502 

diseases with impaired nutrient absorption (7,108).  The challenge in observational research 503 
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methodology is to assess and describe nutrient intake, as well as diet as a whole, in the general 504 

population and to clarify the role -if any- of nutrient supplements in primary disease prevention. 505 
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Figures 

 

Figure 1: Prevalence of any type of dietary supplement in EPIC-Europe as assessed by 24-hour recall 
(31).  Data collection of the calibration study between 1995-2000.  

 

Figure 2: Schematic of the various DRVs.  Adapted and combined from (40,83,109). 

DRV, dietary reference value; LRNI, lower reference nutrient intake; EAR, estimated average requirement; 
RNI, reference nutrient intake; SUL, safe upper level. 

 

Figure 3: Vitamin C TNI distribution by vitamin C supplement user group status among men and 
women >18 years.  Data from NDNS from years 1-4 of the rolling programme (26). 

TNI, total nutrient intake (food + supplements); NSU, non-supplement users; SU, supplement users; SU+C, 
supplement user consumes a vitamin C containing supplement; SU-C, supplement user consumes a 
supplement without vitamin C; NDNS; national diet and nutrition survey; LRNI, lower reference nutrient 
intake (10 mg/d); EAR, estimated average requirement (25 mg/d); RNI, reference nutrient intake (40 mg/d); 
1000 mg/d being the intake at which GI-problems have been reported. 
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Tables 

 

Table 1: Overview of dietary supplement assessment instruments and characteristics of collected data.  
A summary based on Dwyer et al. (110) 

 Retrospective/ 
Memory 

Time/burden 
participant 

Supplement 
composition 
database 

Short 
term 

Open 
ended 

Supplement inventory  ✓ ✓ ✓ ✓ 

Diet record (diary)  ✓ ✓ ✓ ✓ 

Supplement 
Frequency 
Questionnaire 

✓  ✓   

24-hour Diet Recall* ✓  ✓ ✓ ✓ 

Screeners/brief 
questionnaires 

✓     

Biomarker  ✓  (✓)  

* When repeated measures are taken, the time/burden approaches that of the diet record method. 
Bracketed ticks (✓) indicate that the measure is not uniform in its characteristic/use, see examples in text. 
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SUPP-Table 2: Vitamin C intake from food and supplement sources by supplement user subgroups and the prevalence of meeting/exceeding of dietary 
reference values using UK-weighted NDNS data from the rolling programme years 1-4 (26). 

Sex Age 
(y) 

Supplement 
status 

N 
base 

Food Vitamin C 
(mg/d) 

Median (IQR) 

 
< EAR 25 mg 

(%) 

 
>1000 mg/d 

(%)* 

TNI Vitamin C 
(mg/d) 

Median (IQR) 

 
< EAR 25 mg 

(%) 

 
>1000 mg/d 

(%)* 

          
Men 19-64 ALL 1126 71 (41, 109) 10.6 0 74 (44, 116) 9.5 0.4 
  NSU 925 69 (41, 105) 10.7 0 69 (41, 105) 10.7 0 
  SU 201 82 (42, 133) 9.9 0 123 (75, 194) 3.9 2.5 
  SU-C 91 83 (42, 148) 8.4 0 83 (42, 148) 8.4 0 
  SU+C 110 77 (42, 117) 11.7 0 173 (105, 278) 0 4.6 
          
 65+ ALL 317 75 (43, 114) 9.3 0 79 (44, 120) 9.3 0.1 
  NSU 211 65 (39, 104) 12.8 0 65 (39, 104) 12.8 0 
  SU 106 88 (55, 119) 2.9 0 115 (69, 157) 2.3 0.6 
  SU-C 73 87 (54, 116) 3.4 0 87 (54, 116) 3.4 0 
  SU+C 33 107 (55, 130) 0 0 174 (130, 263) 0 1.8 
          
Women 19-64 ALL 1571 68 (42, 104) 8.3 0 77 (44, 120) 7.6 1.1 
  NSU 1148 62 (40, 99) 9.5 0 62 (40, 99) 9.5 0 
  SU 423 83 (49, 118) 5.0 0 129 (82, 206) 2.6 4.1 
  SU-C 207 86 (51, 128) 5.5 0 86 (51, 128) 5.5 0 
  SU+C 216 76 (46, 117) 4.6 0 181 (124, 365) 0 7.8 
          
 65+ ALL 436 78 (47, 115) 3.9 0 84 (50, 125) 3.8 0.8 
  NSU 251 69 (43, 106) 6.4 0 69 (43, 106) 6.4 0 
  SU 185 82 (51, 122) 1.0 0 102 (66, 150) 0.7 1.7 
  SU-C 118 81 (51, 119) 1.1 0 81 (51, 119) 1.1 0 
  SU+C 67 84 (50, 125) 0.9 0 154 (110, 282) 0 4.4 

TNI, total nutrient intake (food + supplement); NSU, non-supplement users; SU, supplement users; SU+C, supplement user consumes a vitamin C containing 
supplement; SU-C, supplement user consumes a supplement without vitamin C; EAR, estimated average requirement; NDNS, national diet and nutrition survey; 
IQR, interquartile range. 
 
* No SUL or GL are set by the EVM, but intakes >1000 mg have been associated with GI-problems in certain populations (36).  This cutoff value was taken as an 
illustration of high intakes. 
 
The inclusion of an additional stratification among the SU (SU-C and SU+C, rather than the combined group of SU) might have made the median, IQR and 
prevalence estimates unstable. 
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Table 3: The advantages and disadvantages of using observational or trial data to ascertain efficacy 
of dietary supplements in disease prevention. 

 Prospective cohort Trial 

Advantages Long follow-up time 
Data collection/hypothesis can be adjusted based 
on latest findings 

Confounding minimised 
Clear exposure measure 

Disadvantages Residual/unmeasured confounding 
Colinearity of nutrients 
Supplement databases are laborious to maintain 
Repeated measures of exposures & confounders 
necessary 

Short-medium follow-up 
Testing a specific supplement, 
component or dose 
Selective inclusion of participants 
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Table 4: Safe Upper Limits as set by EVM (36), applied to NDNS rolling programme years 1-4 where participants were 18 years or older (26). 

Nutrient EVM (SUL) 95th centile of food-sourced intake (mg/d) Supplement intake (among SU+ only, mg/d) 

  Men Women Men  Women  
        
  NSU SU- SU+ NSU SU- SU+ Median (IQR) 95th centile Median (IQR) 95th centile 
            
Vitamin B6 0.17 mg/kg BW/d 4 5 6 3 3 3 2 (2,3) 11 2 (2,5) 25 
Vitamin E 540 mg/d 18 17 18 14 15 15 5 (2,10) 18 10 (2,12) 62 
Copper 0.16 mg/kg BW/d 2 3 3 2 2 3 1 (1,2) 3 1 (1,1) 2 
Zinc 25 mg/d 15 15 17 12 12 13 15 (6,15) 28 15 (5,15) 30 
            

EVM, expert group on vitamins and minerals; NDNS, national diet and nutrition survey: IQR, interquartile range; BW, body weight; NSU, non-supplement users; SU, 
supplement users; SU+, supplement user consuming the nutrient of interest in supplement form; SU-, supplement user not consuming the nutrient of interest in 
supplement form.   



33 

 

SUPP - Table 5: EPA/DHA intake from food and supplement sources by supplement user subgroups and the prevalence of meeting/exceeding the EAR 
using baseline 7dDD data (>= 3 completed days) from the EPIC-Norfolk study (1993-1998) – re-analysed data by age/sex groups as used in Lentjes et al. 
2015 and 2017 (59,106). 

Sex Age 
(y) 

Supplement 
status 

N Median (IQR) 
Food  

EPA+DHA (g/d) 

 
DRVs using food 

sources 

Median (IQR) 
TNI 

EPA+DHA (g/d) 

 
DRVs using TNI 

Meeting 0.25 
(g/d)** 

     <EAR 0.45 g/d >5 g/d*  <EAR 0.45 
g/d 

>5 
g/d* 

Food TNI 

     % N  % N % % 
            
Men 39-64 ALL 6675 0.13 (0.07, 0.35) 80 0 0.16 (0.08, 0.41) 77 1 67 63 
  NSU 4712 0.12 (0.06, 0.32) 82 0 0.12 (0.06, 0.32) 82 0 69 69 
  SU 1963 0.16 (0.07, 0.42) 77 0 0.27 (0.14, 0.64) 66 1 63 48 
  SU-EPA/DHA 683 0.16 (0.07, 0.41) 78 0 0.16 (0.07, 0.41) 78 0 62 62 
  SU+EPA/DHA 1280 0.15 (0.07, 0.43) 77 0 0.31 (0.18, 0.81) 59 1 63 40 
            
 65+ ALL 3545 0.16 (0.07, 0.40) 78 0 0.21 (0.09, 0.50) 73 0 62 56 
  NSU 2260 0.15 (0.07, 0.38) 80 0 0.15 (0.07, 0.38) 80 0 65 65 
  SU 1285 0.18 (0.08, 0.45) 75 0 0.32 (0.16, 0.77) 60 0 58 41 
  SU-EPA/DHA 352 0.20 (0.07, 0.46) 75 0 0.20 (0.07, 0.46) 75 0 57 57 
  SU+EPA/DHA 933 0.18 (0.08, 0.45) 75 0 0.38 (0.19, 0.92) 55 0 59 35 
            
Women 39-64 ALL 8776 0.11 (0.05, 0.30) 84 0 0.15 (0.07, 0.36) 80 0 71 66 
  NSU 4822 0.10 (0.05, 0.27) 86 0 0.10 (0.05, 0.27) 86 0 73 73 
  SU 3954 0.12 (0.06, 0.35) 82 0 0.20 (0.10, 0.48) 73 0 68 57 
  SU-EPA/DHA 1767 0.11 (0.05, 0.32) 83 0 0.11 (0.05, 0.32) 83 0 70 70 
  SU+EPA/DHA 2187 0.12 (0.06, 0.36) 81 0 0.27 (0.16, 0.62) 66 0 66 47 
            
 65+ ALL 3960 0.14 (0.06, 0.36) 82 0 0.19 (0.08, 0.42) 77 1 65 59 
  NSU 2192 0.13 (0.06, 0.34) 83 0 0.13 (0.06, 0.34) 83 0 67 67 
  SU 1768 0.15 (0.07, 0.37) 81 0 0.25 (0.14, 0.56) 69 1 64 50 
  SU-EPA/DHA 575 0.16 (0.06, 0.37) 81 0 0.16 (0.06, 0.37) 81 0 62 62 
  SU+EPA/DHA 1193 0.15 (0.07, 0.37) 81 0 0.31 (0.17, 0.71) 63 1 64 44 
            

TNI, total nutrient intake (food + supplement); EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; NSU, non-supplement users; SU, supplement users; 
SU+EPA/DHA, supplement user consumes a EPA/DHA containing supplement (mostly cod liver oil and fish oil supplements); SU-EPA/DHA, supplement user 
consumes a supplement without EPA/DHA; DRV, daily reference value; EAR, estimated average requirement; IQR, interquartile range. 
 
* Amounts > 5 g/d have been associated with adverse events, but EFSA has not set a TUL for EPA+DHA (111). 
** Amounts of >0.25 g/d have been associated with anti-arrhythmic effects (105). 


