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ABSTRACT
During the process of planet formation, the planet–disc interactions might excite (or damp)
the orbital eccentricity of the planet. In this paper, we present two long (t ∼ 3 × 105 or-
bits) numerical simulations: (a) one (with a relatively light disc, Md/Mp = 0.2), where the
eccentricity initially stalls before growing at later times and (b) one (with a more massive
disc, Md/Mp = 0.65) with fast growth and a late decrease of the eccentricity. We recover
the well-known result that a more massive disc promotes a faster initial growth of the planet
eccentricity. However, at late times the planet eccentricity decreases in the massive disc case,
but increases in the light disc case. Both simulations show periodic eccentricity oscillations
superimposed on a growing/decreasing trend and a rapid transition between fast and slow peri-
centre precession. The peculiar and contrasting evolution of the eccentricity of both planet and
disc in the two simulations can be understood by invoking a simple toy model where the disc
is treated as a second point-like gravitating body, subject to secular planet–planet interaction
and eccentricity pumping/damping provided by the disc. We show how the counterintuitive
result that the more massive simulation produces a lower planet eccentricity at late times can
be understood in terms of the different ratios of the disc-to-planet angular momentum in the
two simulations. In our interpretation, at late times the planet eccentricity can increase more
in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.
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1 IN T RO D U C T I O N

The discovery of a large number of extrasolar planets has shown that
the average orbital eccentricity of planets in the Galaxy is higher
than that observed in our Solar system (Butler et al. 2006). Two pos-
sible scenarios have been proposed during the past three decades
to understand the origin of the orbital eccentricities observed in
exoplanets. The first involves the interaction with other massive
bodies in the system after the disc dispersal, in fact in a gas-poor
environment: for example the action of the Kozai–Lidov mecha-
nism in the presence of massive planetary companions or a binary
star companion (see Naoz 2016 and references therein) or planet–
planet scattering (Rasio & Ford 1996; Papaloizou & Terquem 2001;
Ford & Rasio 2008; Jurić & Tremaine 2008; Mustill, Davies &
Johansen 2017). The second involves the interaction of the planet
at resonant locations with the protoplanetary disc in which it has
formed (see Kley & Nelson 2012 for a review).
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In this second scenario, Lindblad resonances pump the planet
eccentricity, while corotation resonances damp it (Goldreich &
Tremaine 1980). For a planet embedded in the disc, the effectiveness
of corotation resonances in damping the eccentricity exceeds the
pumping action of Lindblad resonances, implying that the planet–
disc interaction tends to circularize the planet orbits (Cresswell
et al. 2007; Bitsch & Kley 2010). Nevertheless, gas depletion in the
corotation region produced by a sufficiently massive planet (typi-
cally Mp > MJ) might lead to the growth of the eccentricity. The
works that found a growth in the planet eccentricity can be classified
into two macro categories. First, there are those that do not require
an initial planet eccentricity, and those that instead do require a
minimum amount of planet eccentricity to allow its further growth.

In the first case (initial planetary eccentricity ep, 0 = 0), the planet
needs to carve a gap which is deep enough to ensure that the disc
torque on the planet is dominated by the contribution of the outer
Lindblad resonance 1:3 (Papaloizou, Nelson & Masset 2001; Bitsch
et al. 2013; Dunhill, Alexander & Armitage 2013). The planet ec-
centricity grows for Mp � 5 − 10MJ, consistent with the predictions
by Lubow (1991).
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In the second case (growth with initial planetary eccentricity
ep,0 �= 0), even planets with masses as small as Mp � 1MJ have
been found to be able to produce a saturation of co-orbital and
corotation torque allowing the growth of the planet eccentricity
provided the initial eccentricity ep,0 > 0.01 (D’Angelo, Lubow &
Bate 2006; Duffell & Chiang 2015). These findings are in line
with the theoretical production of Ogilvie & Lubow (2003) and
Goldreich & Sari (2003).

This excitation mechanisms apparently stop when the planet
eccentricity reaches values comparable to the disc aspect ratio
(e ∼ H/R) for two main reasons (Duffell & Chiang 2015): first,
because the epicyclic motion becomes increasingly supersonic
for growing eccentricity, implying a weakening of Lindblad res-
onances responsible for the eccentricity pumping (Papaloizou &
Larwood 2000); second, because if the eccentricity is sufficiently
high, the planet hits the cavity walls rapidly damping the eccen-
tricity. The mass of the disc and the density profile have also been
shown to play a role in determining whether the planet eccentricity
will grow. In particular, Dunhill et al. (2013) found that, for suffi-
ciently massive companions (Mp = 25 MJ), the eccentricity grows
when the mass ratio between the companion and the disc is above a
certain threshold and the density profile is such that the 1:3 Lindblad
resonance dominates the overall torque exerted by the disc on the
companion.

The general conclusion of most of these works is that the planet–
disc interaction is not able to provide planet eccentricity growth
above the value ep � 0.15 (D’Angelo et al. 2006; Müller &
Kley 2013; Duffell & Chiang 2015; Thun, Kley & Picogna 2017).
However, Papaloizou et al. (2001) found for masses Mp � 20MJ

that the companion eccentricity might reach values of up to ep ≈
0.25.

The exchange of angular momentum between the disc and
the planet causes a growth also in the disc eccentricity
(Goldreich & Tremaine 1981), even when the planet has a circular
orbit (Papaloizou et al. 2001; Kley & Dirksen 2006; Teyssandier
& Ogilvie 2016; Teyssandier & Ogilvie 2017). The disc reacts to
the presence of a planet producing an eccentricity profile decreas-
ing with radius. We report that the growth of the disc eccentricity
has been proposed as a possible explanation of non-axisymmetric
features (Ataiee et al. 2013; Ragusa et al. 2017) observed in a
large number of transition discs (see Casassus 2016 for a review)
as an alternative scenario to the widely invoked vortex hypoth-
esis (Regály et al. 2012; Ataiee et al. 2013; Lyra & Lin 2013).
For completeness, numerical simulations in the context of binary
black hole mergers have also revealed the formation of eccen-
tric cavities with higher secondary-to-primary mass ratios (Ar-
mitage & Natarajan 2005; Shi et al. 2012; D’Orazio, Haiman &
MacFadyen 2013; Farris et al. 2014; D’Orazio et al. 2016; Ragusa,
Lodato & Price 2016), with important consequences for the modu-
lation of the accretion rate.

Teyssandier & Ogilvie (2016) studied the normal modes solutions
to the analytical equations ruling the eccentricity evolution in discs,
thus making predictions about the disc eccentricity radial profiles
in the presence of a planet.

It is important to notice that, mostly on account of the high com-
putational cost of these simulations, in the aforementioned works
the evolution of the eccentricity has never been explored beyond t
� 2 × 104 planet orbits (Thun et al. 2017).

Motivated by the recent observation of CI Tau by Johns-Krull
et al. (2016), Rosotti et al. (2017) performed long time-scales cal-
culations (∼105 orbits) in order to study the role of planet–disc
interaction in exciting hot Jupiters’ eccentricity. Their simulations

showed very prominent secular oscillations of the eccentricity with
periodicities �104 orbits, superimposed on a roughly linear growth
starting at a time of ∼4 × 104 orbits (doubling the eccentricity from
∼0.04 over ∼105 orbits) after an apparent stalling of the eccentric-
ity evolution. Similar oscillations have also been observed in other
works (Bitsch et al. 2013; Dunhill et al. 2013; Müller & Kley 2013;
Duffell & Chiang 2015; Thun et al. 2017).

Even though the results in Rosotti et al. (2017) were not able
to prove that planet–disc interaction might provide an effective
mechanism to excite the eccentricities observed in hot Jupiters,
they showed clearly that the fate of the planetary eccentricity at late
times cannot be determined a priori without performing simulations
that cover a significant fraction of the entire lifetime of the system.

In this paper we present two long-term numerical simulation of
the disc–planet evolution for two different disc masses. The lower
mass simulation is the same presented in Rosotti et al. (2017) but
integrated three times longer (∼3 × 105 orbits); the other has a disc
mass that is a factor of 3 higher and is integrated for a similarly long
time. We show that the initial behaviour of the planet eccentricity can
be completely reversed at late times. Then we will give a physical
interpretation of the peculiar evolution using a simplified toy model.

This paper is structured as follows. In Section 2 we present the
numerical set-up we used for our simulations. In Section 3 we
present the results of our simulations. In Section 4 we discuss the
results and introduce a simplified toy model to describe the evolution
of the eccentricity. Section 5 provides an interpretation of the results
in terms of the simplified toy model. In Section 6 we draw our
conclusions.

2 N U M E R I C A L S I M U L AT I O N S

We perform two long time-scale (t ∼ 3 × 105 orbits) 2D hydrody-
namical simulations of a planet embedded in a gaseous disc orbit-
ing a central star using FARGO3D (Benı́tez-Llambay & Masset 2016)
for two different disc masses. The simulations were run on GPUs
(Nvidia Tesla K20), for a total wall clock time exceeding 6 months.
We use open boundary conditions at the inner edge of the compu-
tational domain and closed at the outer one. We use a polar grid
composed by nr = 430 radial cells between Rin = 0.2 and Rout = 15
with logarithmic spacing and nφ = 580 azimuthal cells. The outer
radius Rout of the domain has been chosen to be sufficiently large to
prevent the boundary conditions from affecting the dynamics; the
propagation of eccentric perturbations does not reach radii R � 10
(this can be noticed in Fig. 4, which will be discussed in the fol-
lowing sections). We use units in which ap, 0 = 1, where ap, 0 is the
initial semimajor axis of the planet, and GM∗ = 1, where M� is the
mass of the star and G the gravitational constant. The simulations
cover a time of t = 3 × 105torb, where torb = 2π�−1

p is the initial
planet orbital period (�p Keplerian orbital frequency).

We vary the disc mass while keeping fixed the other simula-
tion parameters. One simulation uses a disc-to-planet mass ratio
q = Md/Mp = 0.2 while the other q = 0.65, where Mp/M� = 0.013
is the planet mass and Md is the total disc mass. We will refer hence-
forth to the case q = 0.2 as the ‘light’ case and the case q = 0.65
as the ‘massive’ case. To satisfy these conditions, the initial surface
density distribution is a radial power law of the type � = �0R−p

with p = 0.3 with the addition of an exponential taper at R = 5;
�0,l = 4.8 × 10−5 for the light case and �0,m = 15 × 10−5 for the
massive case.

The choice of the parameters for these simulations follows that
used in Rosotti et al. (2017) and is based on the best-fitting model
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Figure 1. Density colour plot for light (left-hand panel) and massive (right-hand panel) case at t = 3 × 104 torb. The numbers indicate different radii. Note the
formation of an eccentric cavity characterized by an horseshoe feature at its apocentre, consistent with the theoretical predictions about the density structure
in eccentric discs.

Figure 2. Density radial profiles �/�0, obtained through azimuthal average, for light (left-hand panel) and massive (right-hand panel) case as a function of
radius (x-axis) and time (y-axis), different colours represent different values of density.

of the disc surrounding the star CI Tau, where an eccentric 13 MJ

hot Jupiter has been found (Johns-Krull et al. 2016).
We use a locally isothermal equation of state imposing a power-

law radial temperature profile which provides a disc aspect ratio of
the type h = H/R = 0.036R� with � = 0.215.

We use a Shakura & Sunyaev (1973) viscosity prescription with
α = 10−3R−0.63 to obtain a stationary accretion profile if the planet
was not present.

The planet is initially absent and its mass is progressively in-
creased during the first 50 orbits. During this period of time the
planet is kept on a circular Keplerian orbit at ap = 1, and then its
orbital parameters are left free to evolve under the action of the
disc torque in order to allow the planet migration and eccentricity
growth.

3 R ESULTS

In Fig. 1 two colour maps of the disc surface density at
t = 3 × 104 torb are shown, for both the light and the massive disc
case. The presence of an eccentric cavity and of a crescent-shaped
overdense feature at the apocentre of the cavity can be clearly no-
ticed, consistent with the density perturbation expected for an ec-
centric disc (Teyssandier & Ogilvie 2016, see their equation A31).

We also report that this type of features, induced by the presence of
a planet or stellar companion, has been previously discussed in the
literature (Ataiee et al. 2013; Ragusa et al. 2017) to describe possi-
ble mechanisms producing the non-axisymmetric structures found
in some transition discs in high-resolution observations provided in
the radio and NIR (Casassus 2016). In Fig. 2 the time evolution of
the disc density radial profile is shown.

We used a Jacobi set of coordinates: thus the quantities related
to the planet are computed in the reference frame of the star; while
the quantities related to the disc are computed in the frame of the
centre of mass (hereafter CM) of the system M� + Mp. This peculiar
set of coordinates is required since the disc orbits around the CM
of the system. If computed in the star frame as the planet-related
quantities, the disc eccentricity would be non-vanishing at large
radii.

As noted by Ogilvie (2001), the eccentricity vector provides a
useful tool to describe the values of eccentricity and pericentre
phase of both the planet and the disc presented in this work. In our
2D case, this reads

e = − j

GM
ûz × v − ûr , (1)
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where j is the modulus of the z-component of the the angular mo-
mentum vector per unit mass, v is the velocity vector of the planet
(or of the disc fluid element considered when computing the disc
eccentricity), ûz and ûr are unit vectors pointing in the vertical and
radial direction, respectively, and M = M� + Mp. It can be shown
that the modulus of e is the canonical expression for the orbital
eccentricity e

e =
√

1 − j 2

GM
, (2)

where a is the planet (or disc fluid element) semimajor axis, and
points in the pericentre direction.

The disc eccentricity is computed for each fluid element of the
grid using equation (1). The eccentricity radial profile is then ob-
tained through an azimuthal average of grid cells at each radius.

Beside the direct computation of the orbital eccentricity of the
disc fluid elements, we can quantify the global amount of disc
eccentricity using the angular momentum deficit (AMD), that is
defined as follows

Ad =
∫

�(R, φ)
[√

GMa(R, φ) − vφ(R, φ)R
]

RdR dφ, (3)

where �(R, φ) is the disc surface density and vφ(R, φ) the azimuthal
velocity and a(R, φ)

a(R, φ) = −1

2

GM

E(R, φ)
, (4)

where E(R, φ) is the mechanical energy per unit mass

E(R, φ) = −GM

R
+ 1

2
v2(R, φ), (5)

where v(R, φ) is the gas velocity map.
The AMD is the amount of angular momentum the disc is lacking

in comparison with a situation where the gas orbits the CM of the
system on circular orbits. The same quantity is defined for the planet
as follows:

Ap = Jcirc,p − Jp, (6)

where Jcirc,p = Mp
√

GM�ap is the angular momentum that the
planet would have on a circular orbit with radius ap, Jp = Mpvφ, pRp

is the planet angular momentum where vφ, p is the planet instanta-
neous azimuthal velocity and Rp is its separation from the central
star. It can be shown that, for small eccentricities, equation (6) can
be approximated by

Ap ≈ 1

2
e2

pJcirc,p. (7)

3.1 Planet migration

The planet–disc interaction also drives the migration of the planet;
see Fig. 3. This is actually a consequence of the conservation of the
total angular momentum. Indeed the total AMD Atot = Ap + Ad can
be written as

Atot = Jcirc,p + Jcirc,d − Jtot (8)

where Jcirc,d is the angular momentum of the disc if it was circular
and Jtot is the total angular momentum of the system. It follows
straightforwardly that, in order to conserve the total angular mo-
mentum, any change in Atot (which depends on the eccentricity of
both the planet and the disc) in the simulations has to be accom-
panied by corresponding changes in Jcirc,d + Jcirc,p, i.e. varying the
semimajor axis of the orbits both in the planet and in the gas.

Figure 3. Planet migration: ap as a function of time for light (blue curve)
and massive (green curve) case. The dashed lines are two lines with slope
ȧp = (100 tν )−1 for the light case and ȧp = (35 tν )−1 for the massive one,
which represents the theoretical migration rate predicted by equation (9) for
the two cases.

We can compare the migration time-scale tmig = ap/ȧp we ob-
serve in our simulation with the standard type II migration rate1

(Syer & Clarke 1995; Ivanov, Papaloizou & Polnarev 1999)

ttypeII = M local
d + Mp

M local
d

tν , (9)

where M local
d = 4π�(ap)a2

p is approximately the unperturbed
amount of disc material contained inside the orbit of the planet;
tν is the viscous time-scale

tν = (αh2�p)−1, (10)

where h = H/R is the disc aspect ratio and α is the Shakura &
Sunyaev (1973) viscous parameter. Substituting the values from
our simulations, one gets tν ∼ 1.2 × 105torb for both our set-ups,
which is perfectly consistent with the damping time-scale for the
semimajor axis. The time-scales we obtain for type II migration
from our simulations are t

light
typeII ∼ 100 tν and tmassive

typeII ∼ 35 tν , plotted

as dashed lines in Fig. 3. We find that the ratio t
light
typeII/t

massive
typeII ∼ 2.85

is perfectly consistent with the ratio one would expect from
equation (9) when comparing the migration rate of a planet em-
bedded in two discs differing by factor 3 in the disc mass. The
result is thus consistent with the classical Type II migration rate
predicted by Syer & Clarke (1995) and Ivanov et al. (1999), con-
trary to what have been found in the studies of Dürmann & Kley
(2015) and Duffell et al. (2014).

It should be noticed that the migration of the planet apparently
stops at t ∼ 2 × 105 orbits in the massive case. As we will see,
this can be reasonably attributed to the rapid broadening of the
cavity that can be noticed in Fig. 2. A larger cavity implies a clear-
ing of material from the region where resonances mediate energy
exchange between disc and planet. These structural changes also
correspond to changes in the eccentricity evolution. Interestingly,

1 It should be noticed that when the planet is left free to evolve it is completely
embedded in the disc, and it spends the first ≈103 orbits undergoing type
I migration, migrating at a much faster rate. This produces the impression
in Fig. 3 that the initial ap, 0 < 1. As soon as the cavity is cleared, it starts
migrating at the slower type II rate.
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Figure 4. Colour plots of the eccentricity (azimuthal average) as a function of time (y-axis) and radius (x-axis) for light (left-hand panel) and massive
(right-hand panel) cases.

Figure 5. Pericentre phase colour-plot as a function of time (y-axis) and radius (x-axis) for light (left-hand panel) and massive (right-hand panel) cases.

a similar behaviour has been previously observed in Papaloizou
et al. (2001) in which they observed a change of migration rate (and
even direction) as a consequence of the disc structure evolution. In
contrast, in the light case the migration accelerates at late times. In
the latter case the migration rate indeed appears to increase starting
from 1.5 × 105 orbits, which (from Fig. 2) can be seen to coincide
with the disc’s inner edge moving slightly inwards.

3.2 Eccentricity and pericentre phase evolution

In this section we will limit our discussion to the qualitative be-
haviour of the eccentricity evolution in the simulations. We post-
pone a possible modelling and interpretation of the results to the
following sections.

The colour plots in Figs 4 and 5 show the eccentricity (az-
imuthal average) and pericentre phase, respectively, at different
times (y-axis) and radii (x-axis) for both the light and massive disc
case.

It is interesting to note from these plots that the disc eccentricity
evolution can be considered ‘rigid’: in Fig. 4, for any fixed time, an
increase in the eccentricity at small radii is reflected in an increase
also at larger radii. The disc ‘rigid’ behaviour is even more evident
looking at Fig. 5, at fixed time, the pericentre phase is the same at

all radii throughout the entire disc.2 Furthermore, the radial profiles
of the eccentricity and pericentre phase in Figs 4 and 5 imply that
the gas orbits are a set of nested, pericentre aligned eccentric orbits
with an eccentricity profile decreasing with radius.

Figs 6 and 7 show the evolution of planet and disc eccentricity
and their pericentre phases, respectively. The red and green curves
in Fig. 6 represent two different ways to estimate the disc eccentric-
ity: the red curve (ed, AMD) is computed inverting the approximate
relationship between eccentricity and AMD given in the case of the
planet in equation (7) and which yields

ed,AMD =
√

2Ad

Jd,circ
, (11)

where Jd,circ is given by

Jd,circ =
∫

�(R, φ)
√

GMa(R, φ) RdR dφ; (12)

this approach allows us to give an estimate of the disc eccentricity
relying on global disc quantities, in fact treating it as if it was

2 For R > 8 the eccentricity is almost negligible. The algorithm we used to
compute the pericentre phase tends to attribute 
d = 180◦ when e ≈ 0 since
it is not possible to attribute a pericentre in a circular orbit.
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Figure 6. Eccentricity e as a function of time for light (left-hand panel) and massive (right-hand panel) case. The blue curve shows the planet eccentricity, the
green curve the disc eccentricity at R = 4.7 in the light case and at R = 5 (azimuthal averages) in the massive one, while the red curve is a global measurement
of the disc eccentricity starting from the AMD (see Section 3.2). The choice to use two different reference radii for the disc eccentricity is due to the slightly
different size of the cavity in the two cases.

Figure 7. Pericentre phase as a function of time for light (left-hand panel) and massive (right-hand panel) cases (we remind that the value of the pericentre
phase is constant throughout the entire disc domain). The cyan and violet curves represent planet and disc pericentre phase. During the first ≈4 × 104 orbits
both simulations show an anti-aligned precession (|
p − 
d| ≈ 180◦). After ≈4 × 104 orbits in the light case the planet precession decouples from that of the
disc, becoming much slower than the disc one. At very late times (t � 2 × 105 orbits) also the disc precession rate slows down, and precesses along the planet
in a pericentre aligned configuration. The massive case remain in the anti-aligned configuration for much longer, even though also in this case a transition
towards the slowly precessing aligned configuration takes place after t ≈ 2 × 105 orbits. In the massive case, the transition appears to be accompanied by a
reversal of the precession rate, which becomes retrograde

a second planet. We then notice that the density peak in the two
simulations is located at R ≈ 4.7 in the light case and at R ≈ 5 in the
massive one; the green curve represents the values of the eccentricity
evolution at these radii. The good agreement of the two curves tells
us that the global behaviour of the disc is dominated by the values
the eccentricity has at these radii, the discrepancy in the massive
case between the red and green curves after ≈1.7 × 105 orbits
suggest that the reference radius for the eccentricity has migrated
outward (consistently with the broadening of the cavity; Fig. 2).

Both simulations show that the planet and the disc exchange ec-
centricity through slow periodic (period �t � 104 orbits) antiphased
oscillations (a maximum in the planet curve correspond to a mini-
mum in the disc one) superimposed on a series of roughly linearly
growing and decreasing trends. It should be noted that the frequency
of the oscillation is not constant throughout the entire length of the
simulation, we will discuss more in detail this feature in Section 5.3.

Both the light and the massive cases show a rapid exponential
growth of the disc eccentricity (Fig. 6) during the first stages of
evolution (t � 1.5 × 104 orbits) up to values ed ∼ 0.11, and then
a slower decrease at later times. Interestingly, the maximum level
of disc eccentricity achieved is the same for both simulations. This
might suggest that some non-linear effects prevent the disc eccen-
tricity to grow further. The planet eccentricity in the massive case
has a similar behaviour: it grows fast in the beginning, attains a
value ep = 0.14 and starts decreasing at the same time as the disc
eccentricity. The planet eccentricity in the light disc case in contrast
has a completely different behaviour: its growth oscillates around
ep = 0.025 for t � 4 × 104 orbits, but then at later times starts grow-
ing again at constant rate; at very late times (t � 2 × 105 orbits) the
planet eccentricity growth rate appears to slow down.

The precession of the pericentre phase (Fig. 7) presents some
very interesting features as well. Both the massive and light disc
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Figure 8. AMD Ap, Ad, Atot as a function of time for light (left-hand panel) and massive (right-hand panel) cases.

cases show in the initial stages (t � 4 × 104 orbits) of the simulation
an antiphased precession of the planet–disc pericentre: the planet
and disc pericentre precess at the same rate maintaining a phase
difference |
p − 
d| ≈ 180◦.

In the light case, after ≈4 × 104 orbits, in correspondence with
the beginning of the growing trend of the planet eccentricity, the
planet pericentre phase starts to precess much more slowly than
the disc one. After t � 1.5 × 105 orbits also the disc transitions
to a slower precession rate. When this condition is reached, the
planet and the disc pericentre phases are aligned, precessing at the
same slow rate. Some oscillations at a faster frequency in the disc
pericentre phase can be noticed in this slow configuration.

In the massive case, the anti-aligned configuration (present in the
light case just for t � 4 × 104 orbits) lasts for much longer: only at
t � 2 × 105 the transition towards the slower aligned precession rate
appears to take place. However, in this case the transition appears to
be accompanied by a reversal of the precession rate (which becomes
retrograde), a significant slow-down of the oscillation frequency of
the eccentricities and also by a variation in the disc eccentricity
radial profile (see the right-hand panel of Fig. 4).

Another interesting quantity that is useful for the interpretation
of the results presented here is the AMD (equations 3 and 6; Fig. 8).
The evolution of the AMD reflects the evolution of the eccentricity
since A ∝ e2 in the limit of low eccentricity (equation 7). The total
AMD Atot = Ap + Ad in the light case starts growing when the
system evolves to the aligned configuration, while in the massive
case it decreases up to the end of the simulation. However the most
interesting feature of the oscillations observed in the eccentricity
is that their amplitude is AMD conserving (see Fig. 8): the overall
amount of AMD changes both in the planet and in the disc, but the
amplitude of the oscillations is such that Atot is conserved during one
oscillation. The implication of this is that the periodic oscillations
only exchange angular momentum between the planet and the disc:
for a given amount of angular momentum exchanged the amplitude
of the fluctuations is fixed by the orbital properties of the planet and
the disc.

As we will see, most of the features that we observed in these
simulations (rapid initial exponential growth of eccentricity, long-
term periodic oscillations, rigid precession of the pericentre phase,
linear growth or decrease of the eccentricity at late times) can be
interpreted in terms of either a classical linear theory of a two-planet
system (Murray & Dermott 1999) or its extension to planet–disc

interactions (Teyssandier & Ogilvie 2016). We devote Sections 4
and 5 to this interpretation.

4 IN T E R P R E TAT I O N O F T H E R E S U LT S

Before trying to interpret the complex evolution revealed by the
hydrodynamical simulations, it is instructive to build up a qualitative
picture of the evolution of dynamically coupled eccentric planet–
disc systems.

The structure of an eccentric planet–disc system can, in principle,
be described as a superposition of rigidly precessing normal modes,
each of which is characterized by its disc eccentricity profile e(R)
(normalized to planet eccentricity), growth rate γ , precession rate
ω and angular offset �
 between the line of apses of the disc and
planet (Teyssandier & Ogilvie 2016).

The rate of precession ω is set by many different contributions.
Among them, purely secular gravitational planet–disc interaction is
expected to cause the prograde precession of the pericentre phase
of both planet and disc, while pressure effects in discs with standard
pressure profiles (dP/dR < 0, where P is the pressure radial profile)
are expected to cause the retrograde precession of the pericentre
phase (it can be shown that the precession rate observed in Fig. 7 is
consistent with that predicted by Teyssandier & Ogilvie 2016).

Mode growth is generically driven by resonances. With standard
disc parameters, eccentric Lindblad resonances allow the disc and
planet eccentricity to grow, while eccentric corotation resonances
cause the eccentricity to decrease (Goldreich & Tremaine 1980;
Goldreich & Sari 2003; Ogilvie & Lubow 2003). The growth or
damping of the planet eccentricity thus depends on the balance
between these two opposite effects. Goldreich & Tremaine (1980)
showed that if the planet does not perturb significantly the surface
density of the disc, the corotation torque slightly exceeds the Lind-
blad one, damping the planet eccentricity towards circular orbits. In
contrast, if the planet carves a sufficiently deep cavity or gap around
the planet (at least a factor of ∼10−3; Duffell & Chiang 2015), and if
no material replenishes the corotation region, the corotation torque
saturates (Goldreich & Sari 2003; Ogilvie & Lubow 2003) so that
dominance of the Lindblad resonances causes the eccentricity to
grow. In addition to the effect of eccentric co-rotation resonances,
the disc viscosity is also expected to circularize the gas orbits in
the disc. Putting all this together implies that the disc eccentric-
ity evolution can be expected to depend on the planet–star mass
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ratio, planet eccentricity, pressure and disc viscosity (Artymowicz
& Lubow 1994; Crida, Morbidelli & Masset 2006).

Each of the aforementioned effects has been included in the
derivation by Teyssandier & Ogilvie (2016) of the eigenmodes of
an eccentric fluid disc, both with and without the inclusion of a
planet. In this formalism, the real part of the eigenvalues associated
with each eigenmode corresponds to the precession rate.

4.1 Case of no mode damping or driving

We first consider the case where mode damping and pumping can
be neglected. This implies the absence of resonant interactions and
viscous effects and therefore means that the gravitational influence
of the planet on the disc is mediated by the secular interaction, i.e.
the response of the disc to the zero-frequency (�m = 0) component
of the Fourier decomposition of the acceleration induced by the
planet.

The secular interaction can be visualized as being the response of
the disc to an elliptical ring of material representing the time average
of the planet’s mass distribution around its orbit. If the system is
in a single mode the amplitude of disc and planet eccentricity is
constant in time and the entire system undergoes rigid precession
at a constant rate.

If however the system exists in a superposition of modes, each
with characteristic eccentricity profile and precession rate, the net
eccentricity of both the planet and the disc undergoes cyclical vari-
ations, that correspond to the beats of the fundamental modes,
depending on the instantaneous phase relationship of the various
modes. The varying eccentricity of both planet and disc results in
an exchange of angular momentum between the two components.
Since for Fourier mode with frequency �m the relationship be-
tween energy exchange and angular momentum exchange is given
by �E = �m�L, it follows that the secular interaction involves zero
energy exchange between planet and disc (recalling that �m = 0 for
secular interaction). It is therefore convenient to consider the inter-
action in terms of the angular momentum deficit (AMD) defined in
equations (3) and (6).

The differential precession of an ensemble of modes results in a
variation of the AMD of disc and planet at constant energy. Total
angular momentum conservation requires that the total AMD of the
planet plus disc is constant.

We have seen that the eccentricity and AMD variations of the sim-
ulated planet–disc system can indeed be described in terms of such
fluctuations on which slower long-term trends in mode amplitude
resulting from net pumping/damping are superposed.

The fact that the oscillatory behaviour is close to being sinu-
soidal suggests that the evolution can be understood in terms of
the superposition of two dominant modes. We will find that we can
gain significant qualitative insight into the behaviour of the system
by considering the analogue problem of the secular interaction be-
tween two point masses for which (given the number of degrees of
freedom in the system) there are just two modes (as known from
textbook studies of celestial mechanics; Murray & Dermott 1999).
We however emphasize that we do not necessarily expect the mode
structure to be the same in the case of the fluid disc and will indeed
find that – whereas the modes in the two-planet case both undergo
prograde precession – the role of pressure within the disc can in-
duce retrograde precession in one of the modes. Nevertheless, we
will find that a heuristic understanding of the nature of the two
modes in the point mass case will be extremely useful in guiding
our interpretation of the simulations.

4.2 Case of secular interaction between two-point masses

In this section we describe a toy model accounting only for secular
contributions to the eccentricity equations. We aim to give a simpli-
fied description of the coupled evolution of planet and disc in order
to interpret some features of the planet and disc eccentricity and
pericentre phase evolution discussed in Section 3.

Teyssandier & Ogilvie (2017) predict a ‘rigid’ evolution of the
eigenmodes, leading us to expect that in general the eccentricity
radial profile evolves rigidly as ed(t, R) = e0(R)h(t), where h(t) is a
generic function of the time only, and that the pericentre longitude
does not depend on the radius 
d(R, t) ≡ 
d(t). We thus expect
that a simplified description of the evolution of the system can be
obtained by replacing the disc with a virtual planet, adding some
terms to account for the disc eccentricity pumping and damping
effects. In fact, this approach consists in modelling the planet–disc
interaction as a planet–planet interaction where the outer planet is
a virtual mass with disc averaged orbital characteristics: semimajor
axis ad, longitude of pericentre 
d, mass Md and eccentricity ed.
We will use ap, 
p, Mp and ep to refer to the actual planet instead.

It is important to bear in mind that such a description will not
be quantitatively correct for two main reasons: (a) this approach
intrinsically neglects pressure (which we have seen in the previous
section to have a role in determining the precession rate) and (b) the
approximation of a disc of nested ellipses by an equivalent point
mass particle forces us to reduce local quantities such as the density
or the disc eccentricity to equivalent global quantities without a
well-defined prescription. Moreover, such an approach does not,
of course, include the additional effects of viscous damping and
driving of eccentricity at resonances, which would need to be added
ad hoc.

In the following equations we will use the following notation:

Ej = |Ej |ei
j , j = {p, d}, (13)

where |Ej| = ej is the ‘physical’ eccentricity and 
j is its pericentre
phase, the subscripts p and d refer to the planet and disc-‘virtual’
planet. This formalism allows us to write one single set of equations
for both eccentricity and pericentre phase.

We follow the Hamiltonian approach given by Zhang,
Hamilton & Matsumura (2013), in which the gravitational potential
produced by the two components (in our case the real planet and
the disc virtual planet) of the system is expanded up to the second
order in ep and ed. The equations ruling the evolution of the complex
eccent ricities Ep and Ed have the form(

Ėp

Ėd

)
= M ·

(
Ep

Ed

)
, (14)

where the notation Ėi indicates the time derivative, while the com-
plex matrix M reads

M = i�sec

(
q −qβ

−√
αβ

√
α

)
, (15)

where α = ap/ad, q = Md/Mp, β = b
(2)
3/2(α)/b(1)

3/2(α), where b
(n)
3/2(α)

is the n-th Laplace coefficient

b
(n)
3/2(α) = 1

π

∫ 2π

0

cos(nθ )

(1 − 2α + α2)3/2
dθ. (16)

For α � 1, β ≈ 5α/4 since b
(1)
3/2(α) ≈ 3α and b

(2)
3/2(α) ≈ 15α2/4

(Murray & Dermott 1999). The matrix M in equation (15) is purely
imaginary and accounts for the secular, non-dissipative planet–disc
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Figure 9. Eigenvalues as a function of q for fixed α−1 = 4.5. The blue
curve represents ωf, while the red one ωs. The eigenvalues are expressed in
units of the planet orbital frequency �p, and represent the precession rate of
the pericentre phase.

interaction. �sec is a real scaling parameter for the matrix and has
the dimension of a frequency:

�sec = 1

4
�p

Mp

M�

α2b
(1)
3/2(α). (17)

The solutions to equation (14) is(
Ep(t)

Ed(t)

)
= C1

(
ηs

1

)
eiωst + C2

(
ηf

1

)
eiωf t , (18)

where C1 and C2 are constants that depend on the initial condi-
tions, ωs,f and (ηs,f, 1) are the complex eigenvalues and complex
eigenvectors of M, respectively.

With reference to equation (18), the eigenvalues ωs,f of the matrix
M in equation (15) are

ωs,f = 1

2
�sec

(
q + √

α
) ∓ 1

2
�sec

√(√
α − q

)
2 + 4q

√
αβ2 (19)

The eigenfrequency ω in units of �p, plotted for varying q and
fixed α in Fig. 9, gives us information on the precession rate of
the pericentre phase. From equation (19) we can clearly see that
ωs < ωf; for this reason we will refer to the s mode as the ‘slow
mode’ and to the f mode as the ‘fast mode’. It is notable that �sec sets
the time-scale of the oscillations, it is independent of q and scales as
α3 for α < <1 (equation 17). The individual precession frequencies
and hence the beat frequency �ω = ωf − ωs do, however, depend
on q; in particular, the dependence on q mostly affects the beat
frequency �ω = ωf − ωs, which has a minimum when q = √

α

(see Fig. 9).
The components of the eigenvectors of the matrix M instead are

ηs,f = 1

2
√

αβ
(
√

α−q) ± 1

2
√

αβ

√(√
α−q

)
2 + 4q

√
αβ2. (20)

According to equation (18), the ratio of planet to disc eccentricity
when only one of the modes is present is given by |η| = ep/ed.

It should be noticed that ηf < 0 for any parameter choice, while in
contrast ηs > 0. This implies that the fast mode involves misalign-
ment by π between the pericentre phases of the planet and virtual
planet (i.e. disc) while the two orbits are aligned in the case of the
slow mode. This is illustrated in the right-hand panel of Fig. 10.
It should also be noticed that for q/

√
α < 1 one has |ηs| > 1 and

|ηf| < 1 (left-hand panel of Fig. 10), while for q/
√

α > 1 one gets

|ηs| < 1 and |ηf| > 1. The condition q = √
α marks the condition

that the two components have equal angular momentum if on a
circular orbit.3

The above inequalities imply that the component (i.e. planet or
virtual planet) with the higher circular angular momentum will have
the greater amplitude when the system is entirely in the slow mode
(C2 = 0), while the component with lower circular angular momen-
tum will have greater amplitude when the system is entirely in the
fast mode (C1 = 0). In the limit that the circular angular momenta
of the two components are very different (i.e.: q → 0), the fast
mode becomes overwhelmingly dominated by the component with
the smaller angular momentum and in this limit can be envisaged
as the precession of a test particle in the combined potential of
the central object and the potential generated by a circular ring of
material at the location of the other ‘planet’. In this limit the slow
mode is non-precessing and has finite eccentricity contributions in
both components. As q tends to

√
α the modes become increas-

ingly entwined in the sense that both modes contain comparable
contributions in both components. We will discuss in the following
sections how the evolution of the two simulations described here
can be understood in terms of the different ratios of q/

√
α in the

two cases, and thus3 of Jd,circ/Jp,circ.
Given the large number of simulations with fixed binaries in the

literature (D’Angelo et al. 2006; Müller & Kley 2013; Duffell &
Chiang 2015; Thun et al. 2017), we believe it is very interesting to
notice that the case q = 0 is the reference case for those simulations
of a circumbinary disc surrounding a binary system (of any mass
ratio) with fixed orbital parameters. A discussion of the instructive
case q = 0 can be found in Appendix A.

4.3 Phenomenological implementation of pumping and
damping terms

The mere gravitational interaction we discussed in the previous
section does not provide any mode evolution since it describes sta-
tionary modes. Nevertheless, we clearly observe instead in our sim-
ulations the growth and the decrease of the eccentricity at different
stages of the simulations. This clearly implies that some modelling
of this behaviour needs to be included in our simplified description.

Zhang et al. (2013) treated the damped three-body problem in
order to show that the damping of the eccentricity of a hot Jupiter
operated by the tidal effects of the central star can be slowed down
if a second planet orbiting on an outer orbit is present. To do so,
they added some real terms in the matrix M in equation (14). The
introduction of these terms introduces a complex component of the
eigenvalues which is responsible for the exponential damping (or
pumping, depending on the sign) of the mode.

In our simulations, the resonances are initially very strong due
to the presence of a large amount of material in the cavity region
during the initial phases. For this reason the planet eccentricity in
the massive case and the disc one in both cases grows very fast for
t � 104 orbits following an exponential trend. However, after this
initial transient, the gas depletion in the cavity region leads to the
saturation of the pumping mechanism, which is also associated with
the attainment of a maximum value of the disc eccentricity. At later

3 It should be noticed that the ratio q/
√

α is equivalent to the ratio
Jd,circ/Jp,circ = (Md

√
GM∗ad)/(Mp

√
GM∗ap), and provides thus a mea-

sure of the relative contribution of the disc and the planet to the total amount
of angular momentum of the system.
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Figure 10. |ηs,f| = ep/ed (left-hand panel) and �φ = arg(ηf,s) (right-hand panel) of eigenvectors as a function of q/
√

α. The blue curve refers to the fast
mode and the red curve refers to the slow one. It should be remembered that eiπ = −1. ηs,f represent the ratio between the planet and the disc eccentricity if
just one mode is present, while �
 represents the pericentre phase difference between the planet and the disc if just one mode is present.

times the pumping/damping mechanisms are such to cause a linear
increase/decrease of the eccentricity with time, in contrast with the
exponential trend predicted by Zhang et al. (2013) modelling to
include resonant and viscous effects.

As described at the beginning of Section 4, the physical scaling
of pumping and damping needs to account for viscous effect and the
contribution of each single resonance. The work by Teyssandier &
Ogilvie (2016) includes a detailed formulation to deal with pumping
and damping effects. The viscous effects depend on the disc eccen-
tricity radial gradient and on the viscosity prescription adopted; it
provides damping of eccentricity for standard disc parameters. For
the resonant interaction, each individual resonance depends differ-
ently on several factors including the disc density profile, the planet
eccentricity and pressure effects, which vary significantly through-
out the simulation.

In the light of these considerations, we conclude that our ability
to model the eccentricity pumping/damping in the framework of the
toy model is very limited. The main difficulty resides in identifying
the dependence of the pumping/damping on global planet and disc
properties. We decide for this reason to include these effects in
our model by prescribing a linear time evolution of the C1 and C2

parameters in equation (18), which becomes(
Ep(t)

Ed(t)

)
= C1(t)

(
ηs

1

)
eiωst + C2(t)

(
ηf

1

)
eiωf t . (21)

We prescribe the time dependence of C1(t) and C2(t) to be in the
form

C1(t) = max(C0
1 + γst, 0.01) (22)

C2(t) = max(C0
2 + γf t, 0.01) (23)

where γ s > 0 and γ f < 0 are pumping and damping rates with the
dimension of frequencies. We keep a minimum value of C1,2 = 0.01
to prevent C1,2 from becoming negative, since in both cases oscil-
lations are present up to the end of the simulations (indicating that
both the modes maintain an amplitude �= 0). The sign of γ s,f is
chosen on the basis of what we observe in our simulations, i.e. a
transition from the fast to slow mode.

Solutions like equation (21) imply that the eccentricity |Ep| = ep

and |Ed| = ed of planet and disc are

|Ep| =
√

C2
1 (t)η2

s + C2
2 (t)η2

f + 2C1(t)C2(t)ηsηf cos(�ωt), (24)

|Ed| =
√

C2
1 (t) + C2

2 (t) + 2C1(t)C2(t) cos(�ωt), (25)

where �ω = ωf − ωs. It becomes clear that the simultaneous pres-
ence of two eigenmodes produces in the eccentricity some typical
oscillations with a periodicity equal to the beat frequency of the two
precession rates �ω.

The pericentre phase evolution of the planet 
p(t) and of the disc

d(t) is given by


p = mod

{
ωs

2
t + ωf

2
t +

+ arg

[
(ηsC1(t) + ηfC2(t)) cos

(
�ω

2
t

)

+ i(ηfC2(t) − ηsC1(t)) sin

(
�ω

2
t

)]
, 2π

}
, (26)


d = mod

{
ωs

2
t + ωf

2
t +

+ arg

[
(C1(t) + C2(t)) cos

(
�ω

2
t

)

+ i(C2(t) − C1(t)) sin

(
�ω

2
t

)]
, 2π

}
. (27)

However, more relevantly, for any complex number in the form E =
Aeiωst + Beiωf t , where A and B here represent the mode strength
(C1,2(t)ηs,f for the planet or C1,2 for the disc), it can be shown that
the phase arg(E) = 
 can be approximated by


 ≈
{

ωst + B
A sin(�ωt), if B � A

ωf t − A
B sin(�ωt), if A � B , (28)

implying that whether a component is predominantly precessing at
the slow or fast rate (and what is the amplitude of superposed oscil-
lations on this mean precession rate) is determined by the relative
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values of ηsC1(t) and ηfC2(t) for the planet solution, and by C1(t)
and C2(t) for the disc one. The variation in time of these parameters
implies that the system might experience a transition from the dom-
inance of one mode to the other. This might occur at different times
in the planet and in the disc, depending on the absolute value of the
eigenvectors. It is important to stress that, for a given configuration,
one component can be dominated by one mode while the other not.
In fact, the ratio of the amplitude of the fast and slow modes is given
by

Rp = ηfC2

ηsC1
(29)

and

Rd = C2

C1
(30)

for the planet and the disc, respectively. Since ηf �= ηs, the ratio of
the two amplitudes can be different in the two components of the
system. In particular, for small disc masses (small q), ηf � ηs (see
Fig. 10) and thus the planet can be in the slow mode while the disc
resides in the fast mode.

It is important at this stage to notice that the sign of the eigenvec-
tors sets the planet–disc configuration of the pericentre precession:
in our formulation of the toy model we used eigenvectors of the
form (ηs,f, 1). For the slow mode, since ηs > 0, as we have seen in
the previous section, both the disc and the planet component of the
eigenvector are positive; thus, with reference to equation (28), when
both the planet and the disc satisfy B � A, they will precess at the
slow precession rate with the disc and planet pericentres aligned. In
contrast, for the fast mode, since ηf < 0, when both planet and disc
complex eccentricities satisfy A � B the planet and disc will pre-
cess at the fast rate with the pericentres anti-aligned. It follows that
when the transition from the fast to slow mode has been completed
in both the planet and the disc, we will observe also a transition
from an anti-aligned configuration to an aligned configuration of
the planet–disc pericentre precession.

The initial values of C0
1 and C0

2 depend on the initial evolution of
the system and, as previously said, cannot be predicted a priori. As
mentioned in Section 1, previous works found at short time-scales
a dependence of the growth rate and saturation value of the planet
eccentricity on three main parameters: the planet mass, the disc mass
and the initial value of the planet orbital eccentricity (Papaloizou
et al. 2001; D’Angelo et al. 2006; Dunhill et al. 2013; Müller &
Kley 2013; Duffell & Chiang 2015; Thun et al. 2017). Low mass
planets (Mp ≈ 1 MJ), with low levels of initial eccentricity and
low disc masses, have been observed to develop low eccentricities
on the short time-scales. In contrast, eccentric higher mass planets
(Mp ≈ 10 MJ), embedded in massive discs, are more likely to show
eccentricity growth during the initial phases of the simulation.

5 IN T E R P R E TATI O N IN TH E L I G H T O F T H E
TOY MO D EL

From equations (24) and (25) the relative amplitude of the oscilla-
tions between the planet and the disc is set by ηsηf = −q/

√
α. Since

ηsηf < 0, the oscillations in the eccentricity between the planet and
the disc are antiphased, as can be noticed in Fig. 6. This enables the
conservation of the total AMD across the time of one oscillation
as would be expected in pure planet–planet interaction in celestial
mechanics (the non-conservation of the AMD on longer time-scales
is due to the pumping/damping effects).

Fig. 7 shows clearly that at the beginning of both simulations the
disc and planet pericentre phases are precessing in an anti-aligned
configuration (�
 ≈ 180◦). In the light case (left-hand panel of
Fig. 7), after ≈4 × 104 orbits the planet pericentre phase decouples
from the disc one and starts precessing at a much slower rate. The
same conclusion can be reached regarding the massive case, but the
anti-aligned configuration lasts for much longer and is apparently
broken only after t � 2 × 105 orbits.

In the light case this behaviour can be easily interpreted as the co-
existence of the two evolving eigenmodes with positive precession
rates ωs,f predicted in equation (21), assuming that the following
relationships between C1, C2, ηs, ηf hold:

C1ηs < C2ηf, if t � 4 × 104 torb, (31)

C1ηs > C2ηf, if t � 4 × 104 torb, (32)

C1 < C2, if t � 2 × 105 torb, (33)

C1 > C2, if t � 2 × 105 torb. (34)

Note that in the light case q � √
α and thus ηf � ηs.

In the massive case, the same interpretation can be given but
with different times delimiting the different stages in the modes
evolution

C1ηs < C2ηf, if t � 2 × 105 torb, (35)

C1ηs > C2ηf, if t � 2 × 105 torb, (36)

C1 < C2, if t � 2 × 105 torb, (37)

C1 > C2, if t � 2 × 105 torb. (38)

Note that here q � √
α and thus ηf � ηs.

The time at which the transition between the fast and slow modes
occurs depends both on the conditions after the initial transient and
on the parameters q and α involved in the model.

Although we do not know a priori what the conditions are in the
disc at the end of the initial transient stage, we can use the picture
of the mode structure outlined in Section 4.2 in order to understand
how the evolution of the two simulations differs on account of
different values of q (effective disc-to-planet mass ratio) on long
time-scales. The smaller the mass of the disc, the more angular
momentum is concentrated in the planet, which means that the slow
mode has a larger contribution from the planet eccentricity. As the
fast mode is damped, therefore, the planet can be expected to make
the transition to being predominantly in the slow mode at an earlier
evolutionary phase in the light case than in the massive simulation.
This is consistent with what we observe in our simulations: in the
light case the planet makes the transition to the slow precession
mode at an earlier evolutionary stage (see Fig. 7).

5.1 Evolution depending on the disc mass

We now illustrate how the difference between the two simulations
can be understood purely in terms of the dependence of the eigen-
vectors on q. In Figs 11 and 12 we plot equations (24) and (25)
and equations (26) and (27) with a set of parameter choices for
each simulation that qualitatively reproduce the main evolutionary
features observed in our simulations (Figs 6 and 7).
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Figure 11. Planet (blue curve) and disc (red curve) eccentricity using equations (24) and (25). The left-hand panel shows a reasonable choice of parameters
for the light case, while the right-hand panel shows a choice for the massive case. The summary of the parameters used can be found in Table 1. The evolution
of C2 stops when C2 = 0.01 is reached, as prescribed in equations (22) and (23), to prevent C2 from becoming negative. Notice that the initial conditions C0

1
and C0

2 and pumping/damping coefficients γ s and γ s are the same in the two simulations, while ωs and ωf were chosen to reproduce the behaviour in the
simulations. The blue-shaded area of the plots marks the time region where the fast f mode is dominant in both the planet and the disc, causing the pericentres
to precess at the fast rate in the anti-aligned configuration; the red-shaded are marks the time region where the slow s mode is dominant in both the planet and
the disc, causing the pericentres to precess at the slow rate in the aligned configuration; the violet area marks the region where the slow mode is dominant in
the planet but not in the disc, causing a decoupling of the precession rates. These figures are not meant to reproduce precisely the eccentricity evolution in
Fig. 6 but to show that a change in the values of the eigenvectors produced by a different q (while keeping fixed all the other relevant parameters) can give rise
to very different evolutionary path of the system.

Figure 12. Planet (blue curve) and disc (red curve) pericentre phase using equations (26) and (27). The left-panel shows a reasonable choice of parameters
for the light case, while the right-hand panel shows a choice for the massive case. The summary of the parameters used can be found in Table 1. The evolution
of C2 stops when C2 = 0.01 is reached, as prescribed in equations (22) and (23), to prevent C2 from becoming negative. Notice that the initial conditions C0

1
and C0

2 and pumping/damping coefficients γ s and γ s are the same in the two simulations, while ωs and ωf were chosen to reproduce the behaviour in the
simulations. The blue-shaded area of the plots marks the time region where the fast f mode is dominant in both the planet and the disc, causing the pericentres
to precess at the fast rate in the anti-aligned configuration; the red-shaded area marks the time region where the slow s mode is dominant in both the planet
and the disc, causing the pericentres to precess at the slow rate in the aligned configuration; the violet area marks the region where the slow mode is dominant
in the planet but not in the disc, causing a decoupling of the precession rates. These figures are not meant to reproduce precisely the eccentricity evolution in
Fig. 6 but to show that a change in the values of the eigenvectors produced by a different q (while keeping fixed all the other relevant parameters) can give rise
to very different evolutionary path of the system.

In both Figs 11 and 12 we prescribe the same pump-
ing/damping prescription: a linearly decreasing fast mode (γ f =
−7.15 × 10−8 �p) and a growing slow mode (γ s = 1.60 × 10−8 �p).
We choose ωs,f to be consistent with those observed in the simula-
tions. The summary of the parameters used in Figs 11 and 12 can
be found in Table 1.

This choice implies ηs/ηf changes from being >1 to <1 between
the simulations. We notice from Fig. 10 that this implies that q/

√
α

is respectively lower and greater than 1 (i.e. that the circular angular

momentum is mainly in the planet in the light case and mainly in
the disc in the massive case). We choose C0

1 � C0
2 for both our

simulations (see caption to Figs 11 and 12). Noting that the ‘density
edge of the cavity’ is located at R ≈ 4.5 in both simulations we
adopt α ≈ 0.25 in both cases. The values of q in the two simulations
are 0.2 and 0.65 for the light and massive cases, respectively.

Obviously our simulations are not supposed to share the initial
conditions and mode pumping/damping rates, in contrast with what
we prescribed. However, we remark that Figs 11 and 12 are not
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Table 1. Summary of the parameters used to produce Figs 11 and 12.

Simulation q α C0
1 C0

2 γ s/�p γ f/�p ωs/�p ωf/�p ηs ηf

Light case 0.2 ≈0.25 0.004 0.1 1.60 × 10−8 −7.15 × 10−8 7.95 × 10−6 6.35 × 10−5 2.3 −0.2
Massive case 0.65 ≈0.25 0.004 0.1 1.60 × 10−8 −7.15 × 10−8 −1.60 × 10−5 6.35 × 10−5 0.4 −1.3

meant to reproduce precisely the eccentricity evolution in Fig. 6.
We find it more instructive to show a comparison between the two
regimes while keeping fixed all the other relevant parameters in
order to highlight the role of the mass ratio q in determining the
evolution of the system.

We believe that these images show clearly that a change in the
values of the eigenvectors produced by a different q (while keep-
ing fixed all the other relevant parameters) can give rise to very
different evolutionary path of the system, despite our inability to
model properly the evolution during the initial phases of the sim-
ulation. Furthermore, we see from Figs 11 and 12 that this simple
parametrization does an extraordinarily good job of reproducing the
main features of the planet and disc eccentricity evolution on long
time-scales (compare with Figs 6 and 7).

In the light case the planet makes the transition to the slow mode
significantly before the disc because the simulation is in the regime
q � √

α where the two eigenvectors are very different. In the mas-
sive case the value of q/

√
α is closer to 1 and so the eigenvectors

are more similar to each other. Consequently the disc and the planet
follow more similar evolution of the eccentricity and indeed they
make the transition to being predominantly in the slow mode at
nearly the same time. By the end of the simulation both simulations
are mainly in the slow mode and hence the ratio of eccentricities is
given simply by the eigenvector of the slow mode.

The main conclusion that can be drawn from these considerations
is that, assuming a damping of the fast mode, the system will end
up in a configuration where ep > ed for all those cases in which
q/

√
α = Jd/Jp < 1 (light discs) and vice versa ep < ed for all those

cases in which q/
√

α > 1 (massive discs). As a consequence, under
this assumption one should expect that low mass discs favour the
growth of the eccentricity at long time-scales. We caution however
that the assumption about the fast mode damping is tentative since
it is based only on the two simulations we performed. A larger
number of simulations are required to address the reliability of
this assumption and the direction that further investigations should
take.

It should be noted that our simulations show that higher disc
masses can pump higher levels of planetary eccentricity at short
time-scales (as previously pointed out by Dunhill et al. 2013). In
addition, we have carried a third simulation with a much more
massive disc (q = 2), in order to compare with the previous results
obtained by Papaloizou et al. (2001), finding that such a high disc
mass allows the planet to reach eccentricities as high as e = 0.3
during the first 3 × 103 orbits (see Fig. 13), consistently with what
they previously found. This shows that the eccentricity of the planet
acquired over hundreds of orbits does indeed increase with disc
mass as one would naively expect but, if our analysis holds for
such massive discs, we expect the eccentricity to decay on a longer
time-scale (105 orbits).

We do not attempt to run this simulation for as many orbits
as the two cases we presented in this paper. Due to the required
computational resources, it is beyond the scope of this paper to
further verify whether massive discs lead to more damping of the

Figure 13. Eccentricity evolution of planet (blue curve) and disc (red curve,
AMD based) during the early stages of the simulation for a q = 2 planet–disc
system. This behaviour is consistent with what was observed in the previous
work by Papaloizou et al. (2001). However, our analysis suggests that this
is a transient growth phase, and we expect the eccentricity to decay on a
longer time-scale

planet on long time-scales, but future work should address this
statement.

5.2 Effects of disc viscosity and thickness

Disc viscosity (ν) and thickness (H/R) are expected to play a role
in the eccentricity evolution of the planet–disc system.

The effects of viscosity might act to either increase or damp
the eccentricity. On the one hand, an increase in the disc viscos-
ity implies stronger damping effects (Teyssandier & Ogilvie 2016),
providing thus an overall faster decrease of the system eccentricity.
On the other hand, more viscous discs have smaller cavities, mod-
ifying the surface density at resonant locations and thus produce
a stronger resonant interaction and faster evolution of the grow-
ing/decreasing trend. The pumping or damping nature of this latter
effect depends on the type of resonances (Lindblad or co-rotation)
that are strengthened.

Regarding the disc thickness, a higher H/R also provides a nar-
rower gap, hence stronger resonant interaction again. Furthermore,
the resonance width is broadened by pressure effects, and scales
as (H/R)2/3, so higher H/R implies that resonances operate on a
broader disc region, which also increases the growth/decrease rate.
Higher H/R implies a faster propagation speed of the mode, making
the growth of a trapped slow mode more difficult in the inner re-
gions (Teyssandier & Ogilvie 2016). Finally, larger H/R increases
the effect of pressure, which drives retrograde precession. This op-
poses the gravitational secular interaction, which drives prograde
precession.

Finally, large eccentricity gradients imply large fluid relative
velocities that approach the sound speed when Rde/dR ∼ H/R
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and produce the crossing of fluid trajectories when Rde/dR ∼ 1
(Ogilvie 2001), possibly inducing shocks and large pressure gra-
dients that might limit the further growth of the disc eccentricity.
Whether this implies that the planet eccentricity scales with H/R
(Duffell & Chiang 2015) still needs to be addressed with further
work, although note that in our simulations we reach planet ec-
centricities ≈0.1, well in excess of the value of H/R ≈ 0.036. A
further exploration of the parameter space is required to address the
dependence of the evolution on these parameters.

5.3 Effects of the disc evolution

While our toy model reproduces the qualitative features we have
highlighted so far, as already noticed in Section 3 a careful inspec-
tion of Fig. 6 reveals that the oscillation frequency of the eccen-
tricity is not fixed in time. This effect cannot be captured within
our modelling but it indicates that the viscous evolution of the disc
has a role in determining the precession rate (eigenfrequencies)
and modes relative strength (eigenvectors): as the disc viscously
spreads the effective q and α change, causing an evolution of the
eigenfrequencies. The accretion of material at the inner edge causes
a further decrease of the effective q. In addition, it is very important
to remember that the eccentricity values of the planet have an effect
in determining the size and the density profile of the cavity edge
(Artymowicz & Lubow 1994; Thun et al. 2017) causing a variation
of the effective α.

As a consequence, it should be noticed that any system naturally
evolves towards a situation where q/

√
α < 1 due to the progressive

disc dispersal. This implies the existence of a period in which the
planet eccentricity grows above that of the disc. However, the growth
of the eccentricity occurs on a very long time-scale, thus if the disc
disperses too rapidly, this final growth might not occur at all.

In the massive case the disc switches to the slow mode after
2 × 105 orbits. The dominance of this single mode produces an
abrupt change in the disc eccentricity and density profile. In partic-
ular, in this mode the resonant region is very depleted. This not only
explains the stalling of migration but also the fact that the eccen-
tricity stops growing and is then subject just to very slow damping
for the last ∼105 orbits (likely due to viscous effects in the disc).

6 C O N C L U S I O N S

We performed two long time-scale 2D hydrodynamical simulations
of a planet embedded in a gaseous disc using two different disc
masses (light case and massive case), in order to study the long-
term evolution of both the planet and disc eccentricities.

The planet–disc interaction induces an eccentricity exchange be-
tween the planet and the disc in the form of periodic oscillations
of both planet and disc eccentricity superimposed on a growing or
decreasing trend, depending on the disc mass.

In the light disc case the planet eccentricity, after an apparent
stalling of its evolution, grows linearly with time up to ep ≈ 0.12
(reached after 3 × 105 orbits). After 2 × 105 orbits the growth
appears to slow down, probably because of some saturation effects.
The disc eccentricity rapidly reaches ed ≈ 0.1 at the beginning of the
simulation and then decreases linearly. At the end of the simulation
the planet-to-disc eccentricity ratio is (ep/ed)light ≈ 3.

In the massive case instead the planet eccentricity grows expo-
nentially up to ep ≈ 0.14 during the initial phases of the simulation
but then linearly decreases as a function of time. As in the low mass
case, in the massive case the disc eccentricity grows rapidly during

the initial phases of the simulation up to ed ≈ 0.1 and then decreases
linearly as a function of time. In this case the planet eccentricity
exceeds the disc one (ep/ed > 1) up to t ≈ 2 × 105 orbits, when a
rapid transition to ep/ed ≈ 0.3 occurs.

In our simulations we find that the planet eccentricity can reach
values ep � 0.1, well in excess of the value of H/R ≈ 0.036 sug-
gested by Duffell & Chiang (2015) as the maximum value of the
eccentricity. Furthermore, Goldreich & Sari (2003) and Duffell &
Chiang (2015) have argued for the need of a non-zero initial eccen-
tricity of the planet to ensure the saturation of the corotation torque,
and subsequent growth of the eccentricity. In our simulations, both
the planet and the disc are initially on circular orbits, suggesting that
corotation resonances might not necessarily need to be saturated to
cause eccentricity growth.

We interpret the coupled evolution of the planet and disc ec-
centricity in terms of a superposition of secular modes whose rel-
ative amplitudes are slowly modified by resonant pumping and
viscous damping. These modes are generically a rapidly precess-
ing mode with anti-alignment between disc and planet pericentres
and a slowly precessing aligned mode. The ratio of disc to planet
eccentricity in each of these modes is generically >1 and <1, de-
pending on the ratio between the planet and disc angular momenta.
The dominance of the disc eccentricity in the fast mode implies that
viscous damping preferentially damps the fast mode. The system
thus ends up being completely in the slow mode at the end of the
simulation but following very different evolutionary paths.

At the end of the low mass simulation, the planet is describ-
able as being primarily in the slow mode which is growing very
slowly whereas the disc is executing high-frequency low amplitude
libration about this slow precession. The high mass simulation has
instead evolved to a situation where the planet is on an almost cir-
cular orbit with stalled migration and the eccentric disc undergoes
retrograde precession due to pressure effects. At the end of this sim-
ulation the region encompassing the Lindblad resonances has been
cleared of material so failing re-supply of this region (by accretion
from the outer disc), the orbital evolution of the planet is stalled in
an almost circular orbit.

We provide a simplified toy model in which we treat the disc as a
second ‘virtual’ planet undergoing the secular interaction with the
real one. This model depends only on two variables q = Md/Mp and
α = ap/ad, predicts the presence of two eigenmodes with respective
eigenvalues (setting the precession rate) and eigenvectors (setting
the ratio ep/ed).

Under the same initial conditions and pumping/damping prescrip-
tion, we are able to qualitatively reproduce with our toy model the
two very different evolutions of eccentricity and pericentre phase
in the light case and massive one (Figs 11 and 12, to be compared
with Figs 6 and 7). The different behaviour of the two simulations
can be understood in terms of different eigenvectors characterizing
the fast and slow precession modes. Indeed equation (20) (see also
Fig. 10) predicts that, for the same α, low values of q produce a
slow mode with ep > ed, and high values of q predicts ep < ed. This
is in perfect agreement with the outcome of our simulations.

Simply requiring a different mass ratio between the ‘virtual’
planet and the real one the toy model is able to explain:

(i) Oscillations in the eccentricity.
(ii) Transition from the fast to slow mode.
(iii) Aligned and anti-aligned configurations of the pericentre

precession.
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(iv) Faster transition to the slow mode of the planet in the light
case than in the massive one.

(v) Final values of the eccentricity when the system is fully in
the slow mode.

Our model is not able to capture the intrinsic nature of the pump-
ing and damping mechanism and thus it cannot be used as predictive
tool to determine under which conditions the slow mode grows or
decreases the eccentricity. However, we expect the disc thickness
and viscosity to have a role in determining the intensity of the
pumping and damping mechanisms as pointed out in Section 5.2.
The absolute mass of the planet might be relevant as well affecting
the strength of the resonant planet–disc interaction. In contrast it
provides larger cavities, and some resonances might be saturated.

Nevertheless, the model predicts some useful relationships that
apparently hold between the planet and disc eccentricity depending
on the disc-to-planet mass ratio and disc cavity size.

If we assume that the damping of the fast mode on very long time-
scales is a general result, massive discs appear to disfavour values
of planet eccentricity higher than light discs at late stages of their
evolution. For relatively high Md/Mp, and disc density comparable
with that produced by a 13 MJ planet, the system ends up in a slow
mode configuration characterized by ep/ed < 1. In contrast, light
discs are expected to produce a slow mode with ep/ed > 1, in fact
favouring higher values of ep. This goes in the opposite direction of
what is often found in the literature, where high planet eccentricities
have been observed to develop in presence of high disc masses on
short time-scales (Papaloizou et al. 2001): they found that a 30 MJ

planet can reach ep ≈ 0.3 in less than 103 torb with Md/Mp ≈ 2.
To support the results by Papaloizou et al. (2001), we report that
some preliminary simulations we performed reached eccentricity
values as high as ep ≈ 0.3 for Md/Mp ≈ 2 after t ≈ 103torb (see
Fig. 13). If the damping of the fast mode at long time-scales is
confirmed to be a general feature, this implies in fact a reversal of the
dependence on the disc mass of the eccentricity evolution on short
time-scales.

We caution that our last claim is tentative and supported only by
two numerical simulations. A larger number of simulations explor-
ing a wider range of disc masses is required in order to properly
investigate the issue. In general, a more complete understanding
of the origin of the mechanisms for pumping or damping of the
eigenmodes is obviously required in order to make quantitative
predictions about the eccentricity evolution at very late times and
constitutes a possible follow-up of this work.

It should be also considered that in principle any planetary system
passes through a phase in which the ratio Md/Mp � 1, due to the
progressive disc dispersal and accretion of material on the planet,
which increases its mass. If we for now adopt the assumption that
planets attain larger eccentricities in the case of lower mass discs,
then it raises some interesting possibilities about planet eccentricity
evolution during disc dispersal. Whereas rapid dispersal (i.e. on a
time-scale �105 orbits) would simply freeze the planet’s eccen-
tricity at its previous value, slow dispersal could instead cause the
planet eccentricity to rise in the last stages. However, further in-
vestigations are required to understand how the secular eccentricity
evolution is affected by substantial changes in the disc parameters
throughout its lifetime.

Finally, we believe that this work demonstrates the importance of
carrying out long time-scale simulations when studying the planet–
disc interaction in protoplanetary discs: both our simulations indeed
undergo a complete inversion of the evolutionary trend on long
time-scales with respect to those shown in the initial phases. This

however does not occur before 5 × 104 orbits, which is beyond the
time-scales explored in previous simulations.
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A P P E N D I X A : TH E L I M I T I N G C A S E q = 0

To understand the physical meaning of the two eigenmodes, it is
instructive to consider the limit q = 0. This case is particularly inter-
esting from a physical point of view because it is the case in which
the second outer planet has negligible mass. Thus it constitutes the
reference situation for all those simulations in which the binary
is kept fixed on its initial orbit with constant orbital eccentricity
and semimajor axis (D’Angelo et al. 2006; Müller & Kley 2013;
Duffell & Chiang 2015; Thun et al. 2017). The problem becomes
in fact the classical restricted three-body problem in which a test
particle orbits a binary object.

To further simplify the equations, we assume also α � 1, so that β
≈ 5/4α (Murray & Dermott 1999). In this limit the eigenfrequencies
reads

ωs0 = 0, (A1)

ωf 0 = �sec
√

α, (A2)

while the nonunit component of the eigenvectors η reads

ηs0 = 4

5α
, (A3)

ηf 0 = 0. (A4)

With reference to equation (18), these values for eigenfrequencies
and eigenvectors imply the following two limiting cases: first, the
system is completely in the fast f mode, the inner planet (Mp) has
ep = 0 while the outer planet (for this case Md = 0) orbits with
arbitrary eccentricity with a pericentre precession frequency given
by equation (A2), no oscillations of the outer-planet eccentricity
are observed. Second, the system is completely in the slow s mode,
the inner planet has an eccentricity ep = C1ηs0 �= 0 while the outer
one orbiting with an eccentricity ed = ep/ηs0 = C1, its pericentre
phase does not experience any form of precession, no oscillations of
the outer-planet eccentricity are observed. In both cases, obviously
the inner planet pericentre phase do not experience any precession
since in this limit it does not feel the the presence of the outer planet
at all.

In a mixed situation (the system is both in the slow mode and in the
fast mode, i.e. ep �= 0, ed �= ep/ηs0) if ed > ep/ηs the outer planet will
experience a complete precession (the pericentre phase of the outer
planet will complete a revolution of 360◦ around the central star)
with a precession rate given by A2. In contrast if ed < ep/ηs0, the
outer planet librates around the pericentre phase of the inner planet
spanning a range of phases that becomes progressively smaller as ed

→ ep/ηs0. We can further expand ωf0 in equation (A2) expliciting
�sec

ωf 0 = 3

4
α7/2�p

Mp

M�

, (A5)

associated with a precession period tprec of the outer planet pericen-
tre phase given by

tprec = 4

3
α−7/2

(
Mp

M�

)−1

torb, (A6)

which is perfectly consistent with the precession rate predicted by
Moriwaki & Nakagawa (2004) for the restricted three-body prob-
lem apart from higher order corrections in e in the expansion of
the perturbing potential and with the interpretation of the preces-
sion frequency in the fixed planet simulations in Thun et al. (2017)
(equivalent to the q = 0 case). Furthermore, ep/ηs0 has the equiv-
alent role of eforced in Moriwaki & Nakagawa (2004) and also in
this case the two expressions are perfectly consistent apart from
higher order corrections in e in the expansion of the perturbing
potential.

APPENDI X B: PHASE EVOLUTI ON

In this section we will present some analytical approximations of
equations (26) and (27) through which it will be possible to obtain
equation (28). In order to simplify the notation, we will refer to
the modulus part of the eigenmodes as A and B, implying that
A = ηsC1(t) and B = ηfC2(t) for the planet equations, and that
A = C1(t) and B = C2(t) for the disc ones. With this simplifying
substitution, equation (21) reads

|E|ei
 = Aeiωst + Beiωf t , (B1)

which can be restated also as:

|E|ei


= ei
ωs+ωf

2 t (A+B)

[
cos

(
ωf −ωs

2
t

)
+i

B−A
A+B sin

(
ωf −ωs

2
t

)]
︸ ︷︷ ︸

(A+B) cos( �ω
2 t)+i(B−A) sin( �ω

2 t)=Ae−i �ω
2 t+Bei �ω

2 t

.

(B2)

We can obtain the pericentre phase 
 applying the logarithm on
both sides and taking only the imaginary part:


 = arg(|E|ei
) = � [
log

(
Aeiωst + Beiωf t

)]
(B3)
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which gives:4


 = ωs

2
t + ωf

2
t + �

{
log

[
cos

(
ωf − ωs

2
t

)

+i
B − A
A + B sin

(
ωf − ωs

2
t

)]}
. (B4)

4 Obtained exploiting log x = 1/2log x + 1/2log x.

Expanding equation (B4) to the first order in A/B → {0, 1, ∞},
one then gets


 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωst +

≈ B
A sin(�ωt)︷ ︸︸ ︷

�
[

log

(
1 + B

Aei(ωf−ωs)t

)]
, if B � A

ωs
2 t + ωf

2 t + B2−A2

4AB tan
(

�ωt
2

)
, if A ∼ B

ωf t + �
[

log

(
1 + A

B e−i(ωf−ωs)t

)]
︸ ︷︷ ︸

≈− A
B sin(�ωt)

, if A � B

, (B5)

where �ω = ωf − ωs.
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