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1 Introduction

Consider a quantum field theory in the presence of quenched disorder, that is, spatially

random couplings. As with simpler spatially uniform couplings, the effects of quenched

disorder can be relevant or irrelevant [1, 2]. When relevant, the disorder can drive the

quantum theory into various possible nontrivial low energy phases. Of interest to us in

this paper will be disordered fixed points. At a disordered fixed point, the low energy

physics exhibits an emergent scale invariance. Such fixed points have a different structure

to, for example, relativistic conformal field theories because the spatial dependence of the

couplings at the fixed point means that momentum is not conserved at long wavelengths.

It is not easy to find controlled instances of disordered fixed points where the disor-

dered coupling is stabilized at a finite value [2]. Nonetheless, such critical theories without

momentum conservation are very interesting candidates to understand the universal be-

havior of bad metals [3]. It is therefore of interest to have concrete examples at hand.

Evidence for a disordered fixed point was recently found in a holographic system [4]. The

disordered fixed point itself is dual to a highly inhomogeneous extremal black hole horizon.

In [4], a CFT described by a gravity dual was perturbed by marginally relevant disor-

der. It was shown that the disorder averaged geometry in the far IR regime exhibited an

emergent scaling invariance

ds2 r→∞
= L2

IR

(
−dt

2

r2z
+
dr2 + d~x 2

r2

)
. (1.1)
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Here ds2 is the disorder averaged metric. This result was obtained both by resummation of

perturbation theory and by full-blown numerics. The averaged metric was therefore seen

to be characterized by a dynamical critical exponent z that determines the relative scaling

of space and time [5]. However, it was not completely clear what physical quantities would

be determined by this disorder averaged metric.

In this paper we will revisit the system considered in [4], but now placed at a nonzero

temperature. Our main result, that we again obtain both analytically and numerically, is

that the entropy density of the system scales with temperature as

s ∼ T (d−1)/z , (1.2)

with d the number of spacetime dimensions of the quantum field theory and with the same

z appearing as in the disorder averaged zero temperature IR metric (1.1). Namely, in an

expansion in small disorder strength V̄ ,

z = 1 +
1

2
πd/2−1Γ

(
d

2

)
V̄ 2 +O

(
V̄ 4
)
. (1.3)

Thus, we have shown that the averaged metric indeed accurately captures the scaling

properties of a disordered fixed point. In fact, we will see that the temperature scaling of

the entropy (1.2) is equal to the temperature scaling of the entropy of the averaged metric,

although the coefficients need not agree.

The main technical achievements in this paper are the perturbative and numerical

construction of the T > 0 disordered black hole spacetimes. Section 2 describes the general

setup. Section 3 and section 4 obtain the solution perturbatively in disorder and describe

a resummation of logarithms. Section 5 constructs the solutions numerically. In section 6

we discuss open questions.

2 Setup

In this section we review the holographic description of a CFT perturbed by marginal

disorder [4]. The starting point is a real scalar coupled to gravity in d + 1 dimensions.1

The action is:

S =
1

2κ2
N

∫
dd+1x

√
−g
[
R− Λ− 2∇AΦ∇AΦ− 4V (Φ)

]
. (2.1)

Here κ2
N = 8πGN and Λ = −d(d−1)

L2 is the usual AdSd+1 cosmological constant. The

resulting equations of motion are:

0 = �Φ− V ′(Φ) , RAB = 2∇AΦ∇BΦ +
1

d− 1
gAB [4V (Φ) + Λ] . (2.2)

1Throughout our discussion we will let d denote the boundary spacetime dimensions. We will always

work in signature (−+ + · · ·+). For index conventions, capital Latin indices will denote all bulk directions,

lowercase Latin letters, a, b etc. , will denote boundary spacetime directions, while middle lowercase Latin

letters, i, j etc. , will denote the boundary spatial directions.

– 2 –
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For the scalar potential, we take a negative mass squared:

V (Φ) = − µ

2L2
Φ2 . (2.3)

The holographic dictionary (e.g. [6]) tells us that Φ is dual to an operator O with dimension:

∆ =
d

2
+

√(
d

2

)2

− µ . (2.4)

More explicitly, this is seen by considering the asymptotic behavior of the scalar near the

AdSd+1 boundary. In the Poincaré patch, where the line element approaches:

ds2 =
L2

r2

(
ηabdx

adxb + dr2 + · · ·
)
, (2.5)

as r → 0, the scalar has the following form near the boundary:

Φ(r → 0) = rd−∆Φ1(xa) + r∆Φ2(xa) + · · · . (2.6)

The correspondence then tells us that Φ1 is identified with the source for O while Φ2

encodes the response [6].

Our interest in this paper is to consider the effect of a disordered source for O at finite

temperature T . To be explicit, we will work with a short ranged, quenched, Gaussian

disorder ensemble, where the ensemble of sources is determined by:

Φ1(xi) = 0 , Φ1(xi)Φ1(yi) = V̄ 2δ(d−1)
(
xi − yi

)
. (2.7)

All other moments of the distribution are then fixed by Wick contraction. Note that,

as befits quenched disorder, the random sources only depend on the boundary spatial

directions. Our analytic discussion later will involve a resummation of perturbation theory

in V̄ , whereas the numerics will be exact in V̄ .

We will focus on the case of ‘marginal’ disorder; that is, we will take the distribution to

saturate the Harris criterion, which determines when short-range disorder affects critical

phenomena [1, 2]. A simple heuristic way to see this result is to note that since Φ is

dual to an operator of dimension ∆, dimensional analysis tells us that [Φ1] = d −∆ and

therefore (2.7) suggests we assign V̄ a dimension of:

2[Φ1] = 2[V̄ ] + d− 1 ⇒ [V̄ ] =
d+ 1

2
−∆ . (2.8)

We expect then that the disorder is relevant if ∆ < d+1
2 , irrelevant for ∆ > d+1

2 and

marginal for ∆ = d+1
2 . Requiring [V̄ ] = 0 fixes the value of µ in (2.4) to be:

µ =
d2 − 1

4
. (2.9)

To realize the disorder, we will use a spectral representation [7], writing the source as:

Φ1(xi) = V̄
N−1∑
{ni}=1

C{ni}

d−1∏
i=1

cos(ki,nix
i + γni) . (2.10)

– 3 –
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Here the γni are random phases uniformly distributed over (0, 2π) while the specifics of the

distribution are determined by the constants C{ni} and the selection of ki,ni . To strictly

capture the disorder in the thermodynamic limit we must take N → ∞. The disorder

average of a quantity f is then given by:

f = lim
N→∞

∫ [d−1∏
i=1

N−1∏
ni=1

dγi,ni

2π

]
f . (2.11)

We will consider the simplest case of a short range, Gaussian and isotropic disorder distri-

bution, which corresponds to:

C{ni} = C =
(

2
√

∆k
)d−1

, ki,ni = ni∆k ,∆k =
k0

N
. (2.12)

The wavevectors of the modes making up the disordered source (2.10) therefore range from

k0/N to k0. These are the IR and UV cutoffs on the disorder distribution, respectively. In

principle we could take the spacings ∆k to depend on the direction of k, but for simplicity

we take an isotropic distribution.

Since we will be working at finite temperature, it is important to keep the various

scales in mind. It is useful to consider the two dimensionless parameters: κ0 = k0/T and

κIR = κ0/N . The spectral representation requires we take N →∞ and physically we want

k0 � T , but the order of limits is important. Since our aim is to describe a disordered

system at small but finite temperature, we should be taking the N →∞ limit first, and so

in what follows we will work with the following hierarchy:

κIR � 1� κ0 , i.e.
k0

N
� T � k0 . (2.13)

3 Perturbative geometry

In this section we perturbatively construct the spacetime deformed by the disordered

boundary source (2.12). This involves solving the bulk scalar field wave equation sub-

ject to the disordered boundary condition, computing the energy momentum tensor of this

scalar field, and then computing the backreaction on the metric. Our analytic discussion

will largely focus on the lowest order thermodynamic corrections. These will be logarithmic

in temperature, suggesting a natural resummation. We will show later in section 4.1 that

to obtain the entropy as a function of temperature to this lowest order, it is sufficient to

obtain the metric that follows from the backreaction produced by the disorder averaged

scalar stress tensor. This amounts to finding the leading disorder averaged correction to

the metric, which we will now do.

In the appendix we specialize to the d = 2 dimensional case and determine the correc-

tion to the geometry for generic scalar configurations, without averaging. It will be noted

that despite the expressions being rather complicated, no essentially new physics is found

from the full, configuration dependent expressions.

– 4 –
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3.1 Geometry at O(V̄ 0)

We will work throughout in the Poincaré patch at finite temperature. Therefore in the

limit V̄ → 0, the line element reduces to (from here on we set L = 1):

ds2 =
1

r2

[
−f(r)dt2 +

dr2

f(r)
+

d−1∑
i=1

(
dxi
)2]

. (3.1)

Here f(r) is the emblackening factor f(r) = 1− ( r
r+

)d, where r+ is the horizon radius. In

terms of the temperature T , we have T = d
4πr+

. The entropy density of the thermal state

in the dual field theory is then given by the familiar Bekenstein-Hawking entropy:

s =
1

4GN

1

V

∫
dd−1xi

√
−γ =

1

4GN

1

rd−1
+

=
1

4GN
(4π)d−1

(
T

d

)d−1

∼ T d−1 . (3.2)

Here γ is the metric induced on the horizon from (3.1). This scaling of the entropy with

temperature is an important result to keep in mind as our primary objective in this work

is to determine the modification of this scaling relation due to the disorder.

3.2 Scalar solutions at O(V̄ )

We now turn on the disorder with strength V̄ . That is, we introduce bulk scalars whose

near-boundary behavior, modulo a factor of rd−∆, gives the boundary source (2.10). This

scalar solution is determined by the wave equaton in the background (3.1):

0 = rd+1∂r

(
r−(d−1)f∂rΦ

(1)
)

+ r2∂2
i Φ(1) + µΦ(1) . (3.3)

Since we are using a spectral representation of the source on the boundary, we decompose

our bulk scalar into harmonics as well,

Φ(1)
(
r, xi

)
= CV̄

∑
{ni}

φk(r)
∏
i

cos
(
ki,nix

i + γi
)
, (3.4)

where the φk (with k = |~kni |) now solve the ODE:

0 = rd+1∂r

(
r−(d−1)f∂rφk

)
−
(
k2r2 − µ

)
φk . (3.5)

The holographic prescription is to find the linear combination of solutions to this differential

equation which behave as in (2.6) near the boundary and are regular at the horizon r+.

That is, due to the various constants that have been factored out, we are to pick the

solutions of (3.5) that are regular at the horizon and behave at small r as φk(r → 0) =

rd−∆ + · · · .
This differential equation does not have a closed form solution for d > 2, as the

emblackening factor introduces d singular points.2 Fortunately, for reasons that will become

clear below, we only need the large k behavior of the scalars. These large k modes will

2In the appendix we have the closed form solution for d = 2.

– 5 –
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be responsible for the leading IR singular behavior after disorder averaging. In the large k

regime we can employ a WKB approximation to find (letting κ = kr+ and ρ = r/r+):

φκ(ρ) =
ρ

d−1
2

f1/4(ρ)
exp

[
−κρ 2F1

(
1

2
,

1

d
, 1 +

1

d
, ρd
)]

. (3.6)

The WKB limit here is κ = kr+ → ∞, or k/T → ∞. These modes are largely insensitive

to the presence of the horizon, decaying well before reaching the horizon, whereas the small

κ� 1 modes will only weakly vary between the boundary and the horizon.

3.3 Geometry at O(V̄ 2)

Once the scalars are turned on in the bulk, they source the Einstein equations at order

V̄ 2. As mentioned above, to start with we will find the geometry induced by the averaged

stress tensor. To leading order this is the disorder-averaged finite temperature metric. To

that end, we calculate the averaged trace-reversed stress tensor:

κ2
NΘAB = 2∂AΦ(1)∂BΦ(1) +

4

d− 1
gABV (Φ) = 2∂AΦ(1)∂BΦ(1) − 2µ

d− 1
gAB(Φ(1))2 . (3.7)

The needed averages are simple to calculate using the spectral decomposition (3.4), and

the resulting sources are:

κ2
Nf
−1Θtt =

µV̄ 2C2

2d−2(d− 1)

∑
{ni}

φ2
k

r2
, (3.8)

κ2
NfΘrr =

V̄ 2C2

2d−2

∑
{ni}

[
f(φ′k)

2 − µ

d− 1

φ2
k

r2

]
, (3.9)

κ2
NΘii =

V̄ 2C2

2d−2

∑
{ni}

(
r2k2

i,ni
− µ

d− 1

)
φ2
k

r2
. (3.10)

Since we have taken an isotropic distribution, the scalar sources in the spatial direction Θii

are equal for all i. This will simplify the resulting geometry considerably.

With these sources, we search for a perturbative solution for V̄ � 1 of the form:

ds2 =
1

r2

[
−f(r)

(
1 + V̄ 2A(r)

)
dt2 +

dr2

f(r)
+
(
1 + V̄ 2B(r)

) d−1∑
i=1

(dxi)2

]
. (3.11)

Plugging this ansatz into Einstein’s equations then yields the following system of cou-

pled ODEs:

0 = f2A′′ +
df(f − 3)

2r
A′ +

(d− 1)f(rf ′ − 2f)

2r
B′ − 2κ2

NΘtt , (3.12)

0 = A′′ −
(

1

r
− 3f ′

2f

)
A′ + (d− 1)

[
B′′ −

(
1

r
− f ′

2f

)
B′
]

+ 2κ2
NΘrr , (3.13)

0 = fB′′ − d+ f(d− 2)

r
B′ − f

r
A′ + 2κ2

NΘii . (3.14)

– 6 –
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These equations can be re-expressed as a first order constraint equation plus two decoupled

second order equations. The second order equations are:

0 =
2 [d+ (d− 2)f ]2

r1−df1/2
∂r

[
r1−df3/2

d+ (d− 2)f
∂rA

]
+ jA(r) , (3.15)

0 = 2rd−1f1/2∂r

[
f1/2

rd−1
∂rB

]
+ jB(r) , (3.16)

where the scalar sources have been repackaged into:

jA(r) = − 2κ2
N

{
[d+ 3(d− 2)f ]f−1Θtt − [d− (d− 2)f ]

(
fΘrr −

∑
i

Θii

)}
, (3.17)

jB(r) =
2κ2

N

d− 1

[
f−1Θtt + fΘrr +

∑
i

Θii

]
. (3.18)

The decoupled second order equations (3.15) and (3.16) can be solved exactly. It is

useful to work with the rescaled coordinate

ρ ≡ r

r+
. (3.19)

If we further rescale the sources r2
+jA/B → jA/B, then we can write the solution as:

A(ρ) = α1 + α2f
−1/2[(d− 2)f − d]

+
1

d

∫ 1

ρ

dρ̃

ρ̃d−1

[
d− (d− 2)f(ρ̃)

f1/2(ρ̃)
− d− (d− 2)f(ρ)

f1/2(ρ)

]
f1/2(ρ̃)jA(ρ̃)

[d+ (d− 2)f(ρ̃)]2
, (3.20)

B(ρ) = β1 + β2r
d
+

[
f1/2(ρ)− 1

]
+

1

d

∫ 1

ρ

dρ̃

ρ̃d−1

[
1− f1/2(ρ)

f1/2(ρ̃)

]
jB(ρ̃) . (3.21)

Thus we have reduced the scalar backreaction to two integrals. There are a number of

integration constants in (3.20) and (3.21). Indeed, the behavior of the metric at the hori-

zon is entirely determined by these constants. Plugging these solutions into (3.13) (or,

equivalently, into the first order equation that can be derived from the three equations

above) shows that β2 is fixed by α2, β2 ∝ α2 (we only need to say they are proportional,

as they will both be zero shortly). In showing that the remaining equation is satisfied, it

is important to verify that the disorder averaged energy momentum tensor is conserved.

The constants are fixed by the boundary conditions we impose on the metric, both at

the conformal boundary and at the horizon. The physical requirements for the geometry

are that it is asymptotically AdSd+1 and that it is regular at the horizon. Regularity at the

horizon is easily seen to require α2 = 0 (and hence β2 = 0). At the conformal boundary, we

require A(0) = B(0). The actual value of A(0) can be scaled away by redefining coordinates

so we will impose the simple condition A(0) = B(0) = 0, that is:

α1 = − 1

d

∫ 1

0

dρ

ρd−1

[
d− (d− 2)f(ρ)

f1/2(ρ)
− 2

]
f1/2(ρ)jA(ρ)

[d+ (d− 2)f(ρ)]2
, (3.22)

β1 = − 1

d

∫ 1

0

dρ

ρd−1

[
1− 1

f1/2(ρ)

]
jB(ρ) . (3.23)

Thus we obtain an explicit expression for the metric at order V̄ 2.

– 7 –
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3.4 Large momentum backreaction

In this section, we will look at the backreaction induced by the large momenta (relative to

the temperature) scalar modes, where the WKB solutions (3.6) are valid. In particular, we

are interested in the behavior of the metric at the horizon, as this is what determines the

entropy. To get the metric at the horizon, we must determine the integration constants α1

and β1 (because the integrals in (3.20) and (3.21) vanish at the horizon ρ = 1). We will

see that these large momentum modes give the leading singular contribution to α1 and β1.

Since the average stress tensor is a decoupled sum of contributions from each wavevec-

tor, we write jA/B =
∑

~κ jA/B,κ. The large momentum contribution to α1, β1 can be readily

evaluated in the limit κ→∞, using the WKB solutions (3.6):

α1,κ = − 1

d

∫ 1

0

dρ

ρd−1

[
d− (d− 2)f(ρ)

f1/2(ρ)
− 2

]
ρ1−df1/2(ρ)jA,κ(ρ)

[d+ (d− 2)f(ρ)]2

= − κ1−d∆κΓ(d+ 1)

2dd(d− 1)
+O

(
κ1−2d

)
, (3.24)

β1,κ = − 1

d

∫ 1

0

dρ

ρd−1

[
1− 1

f1/2(ρ)

]
jB,κ(ρ) = O

(
κ−d

)
. (3.25)

The integrals are performed by noting that at large κ, the small ρ (near boundary) region

dominates (specifically, ρ ∼ 1/κ). This means that the WKB solution (3.6) goes like e−κρ,

while the remaining terms in the integrand can be expanded about ρ = 0.

Recall that κ ≡ kr+, so that the WKB limit is k/T →∞. We can sum the above large

κ terms up to find:

κ0∑
κ�1

α1,κ ' −
∫ κ0

κ�1
dd−1κ

κ1−dΓ(d+ 1)

2dd(d− 1)
= −

∫ κ0

dκ
π

d
2
−1Γ

(
d
2

)
2κ

' −π
d
2
−1Γ

(
d

2

)
log κ0 . (3.26)

In the last step we have picked out the singular contribution due to the upper endpoint

κ0 � 1 of the integral. The large κ contributions to β1 in (3.25) are smaller by a power of

κ than the large κ contributions to α1. There is no singular contribution in that case.

Since α1 and β1 will also generically receive non-zero contributions from all momenta,

we write:

α1 = η1 − π
d
2
−1Γ

(
d

2

)
log κ0 , β1 = η2 . (3.27)

If η1, η2 have no singular dependence on r+ in the range κ0/N � 1 � κ0, then this

information is all we need to determine the low temperature scaling of the entropy density.

But this last statement is indeed true. It may be verified by numerically evaluating all

the necessary integrals. Alternatively, we can note physically that the only place that such

dependence could arise is from the IR cutoff κ0/N ; however the modes near the IR cutoff,

in the limit N → ∞, are essentially constant between the boundary and the horizon and

so their contribution will be that of a κ = 0 mode, which won’t introduce any singular r+

dependence.

– 8 –
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The logarithmic divergence in (3.26) has essentially the same origin as the zero tem-

perature logarithm found in [4], as well as the logarithms arising in earlier works [8, 9].

4 Thermodynamics

We can easily obtain the thermodynamic properties of the averaged geometries constructed

in the previous section. First we recall that the temperature of the horizon is determined

by the surface gravity, κ̂, which now receives contributions from α1:

T =
κ̂

2π
=

d

4πr+
+

1

2
f ′(r+)A(r+)V̄ 2 +O

(
V̄ 4
)

(4.1)

=
d

4πr+

[
1 +

1

2
η1 −

1

2
π

d
2
−1Γ

(
d

2

)
V̄ 2 log(k0r+)

]
+O

(
V̄ 4
)
. (4.2)

If, in the spirit of [4], we throw caution to the wind and exponentiate the logarithm, then

to this order we can write:

T ∼ r−z+ , (4.3)

where

z = 1 +
1

2
π

d
2
−1Γ

(
d

2

)
V̄ 2 +O

(
V̄ 4
)
. (4.4)

This is precisely the dynamical critical exponent identified at T = 0 in [4]. The constant

η1 has gone into the prefactor in this scaling relation.

Now that we know how the temperature scales with the horizon, we can determine the

entropy density scaling:

s =
1

4GN

1

V

∫
r=r+

dd−1x
√
γ =

1

4GN

r
−(d−1)
+

V

∫
dd−1x

[
1 +

d− 1

2
V̄ 2B(r+) +O

(
V̄ 4
)]
. (4.5)

Since B(r+) is simply an r+-independent constant at low temperatures, we see that this

entropy scales as:

s ∼ r−(d−1)
+ ∼ T

d−1
z . (4.6)

This scaling relation is the first incarnation of our primary result. In particular, we see

that the exponent z is a true critical exponent and that the disorder has indeed affected

thermodynamic properties. The result (4.6) relates the entropy and temperature of the

averaged metric. In the following subsection we show that this relation also holds for the

true entropy as a function of temperature.

4.1 Configuration dependence

In this section, we discuss the entropy of a typical, configuration dependent metric. With-

out the enhanced symmetry of the averaged configuration to simplify matters, the line

element will in general look like:

ds2 =
1

r2

−f(r)
(
1 + V̄ 2A(xi, r)

)
dt2 +

dr2

f(r)
+
∑
ij

(
1 + V̄ 2Bij(x

i, r)
)

dxidxj

 . (4.7)
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We cannot solve analytically for the metric functions A,Bij in general. However, the

entropy depends only on the induced metric on the horizon. To leading order:

s =
1

4GN

1

V

∫
r=r+

dd−1x
√
γ =

1

4GN

r
−(d−1)
+

V

∫
dd−1x

√
det(1 + V̄ 2Bij(r+))

=
1

4GN

r
−(d−1)
+

V

∫
dd−1x

[
1 +

1

2
V̄ 2
∑
i

Bii(r+)

]
=

1

4GN

1

rd−1
+

[
1 +

1

2
V̄ 2
∑
i

Bii(r+)

]
.

(4.8)

Here we have used det(1+ εA) = 1+εtrA+O(ε2) and the fact that the metric components,

being given by linear combinations of sines and cosines, are self averaging. This result tells

us that, to the order at which we are working, the entropy density only depends on the

averaged spatial metric, and we can use the result of the previous section to conclude that

s ∼ r−(d−1)
+ , just as before. Therefore to determine if the entropy of the averaged metric is

distinct from the entropy of a typical configuration dependent metric all we need to do is

find the surface gravity.

The surface gravity is easily worked out to lowest order in full generality:

κ̂2 =
[f ′(r+)]2

4

[
1 + V̄ 2A(r+, x

i) +O
(
V̄ 4
)]

⇒ κ̂ =
|f ′(r+)|

2

[
1 +

1

2
V̄ 2A(r+, x

i) +O
(
V̄ 4
)]
. (4.9)

It is a theorem (for metrics of the form we are considering) that the surface gravity must

be constant along the horizon. Therefore we can replace A(r+, x
i) in the previous equation

by its average:

κ̂ =
|f ′(r+)|

2

[
1 + V̄ 2A(r+) +O

(
V̄ 4
)]
. (4.10)

More explicitly, averaging κ̂ over the horizon is trivial since it is a constant, whereas

averaging A(r+, x
i) over space is the same as averaging over the disorder ensemble. Using

our results for the average metric to we can deduce:

κ̂ ∼ T ∼ |f
′(r+)|
2

[
1− 1

2
π

d
2
−1Γ

(
d

2

)
V̄ 2 (log k0r+ + const.)

]
∼ r−z+ , (4.11)

where z is again the exponent identified above and in [4].

The temperature and entropy scalings, r+ ∼ T−1/z and s ∼ r−(d−1)
+ , combine to give:

s ∼ r−(d−1)
+ ∼ T (d−1)/z , (4.12)

now as a result for the actual entropy as a function of temperature. In the remainder of the

paper we will verify this result with full blown numerics, beyond the perturbative regime.
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5 Numerics

In order to construct the fully backreacted black hole solution, at finite disorder strength

V̄ , we use the DeTurck trick [10, 11]. The method works in a general number of dimensions,

and we shall use it for d = 2, 3 (boundary spacetime dimensions). We will detail the d = 3

construction, since it is more involved and has not yet appeared in the literature.3

The black hole solution we search for is static, which means we can introduce an

adapted coordinate system in which ∂t is a Killing direction. Furthermore, the line element

should be invariant under the discrete transformation t → −t. The most general line

element and scalar field compatible with these symmetries can be written

ds2 =
1

y2

[
−
(
1− y3

)
Ay2

+ dt2 +
B

1− y3
dy2+ (5.1)

y2
+S1

(
dx1 + F1dy + F2dx2

)2
+ y2

+ S2

(
dx2 + F3dy

)2
]
, (5.2)

Φ =
y

y+
Φ̃ , (5.3)

where A, B, S1, S2, F1, F2, F3 and Φ̃ comprise a total of 8 functions that depend on y,

x1 and x2. The first step in using the DeTurck method is to choose a reference metric ḡ.

This reference metric should have our desired boundary conditions (i.e. contains a regular

horizon and has the correct asymptotics). For the reference metric, we choose the planar

Schwarzschild black hole, which can be obtained from the line element (5.2) by setting

A = B = S1 = S2 = 1 and F1 = F2 = F3 = 0 . The reference metric does not depend on

the boundary spatial coordinates x1 and x2, and so is automatically periodic with respect

to these. Finally, y+ is a parameter which controls the black hole temperature: 4πT = 3 y+.

The second step in the DeTurck method consists of solving the following set of equations

GAB ≡ RAB −∇(AξB) − 2∇AΦ∇BΦ− 1

d− 1
gAB [4V (Φ) + Λ] = 0 .

�Φ− V ′(Φ) = 0 , (5.4)

where ξM = gPQ[ΓMPQ(g)− Γ̄MPQ(ḡ)] and Γ̄(ḡ) is the Levi-Civita connection associated with

the reference metric ḡ. Furthermore, V (Φ) is given by (2.3) with a mass saturating the

Harris criterion (2.9). The advantage of this method is that the above eqs. (5.4) form a

set of elliptic PDEs [10] for the metric ansatz (5.2), unlike the eqs. (2.2). For solutions of

eq. (5.4) to also be solutions of eq. (2.2), we must have ξM = 0. In some cases (such as

vacuum Einstein), there is a proof that all solutions to eq. (5.4) also have ξM = 0 [11]. In

our case, we lack such a proof, so we must verify that ξM = 0 after solving the equations.

The local uniqueness property of elliptic equations guarantees that solutions with ξM 6= 0

cannot be arbitrarily close to those with ξM = 0.

In order to complete the system of partial differential equations, suitable boundary

conditions must be imposed. In addition, these must be consistent with zero DeTurck

3The DeTurk method was used to construct disordered spacetimes in [4] and [12]. Other numerical

studies of strong disorder in holography have been in the probe limit [13–15].
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vector ξM . At the boundary, located at y = 0, we demand A(0, x1, x2) = B(0, x1, x2) =

S1(0, x1, x2) = S2(0, x1, x2) = 1 and F1(0, x1, x2) = F2(0, x1, x2) = F3(0, x1, x2) = 0. Fur-

thermore, we demand Φ̃(0, x1, x2) = Φ1(x1, x2), with the scalar source Φ1(x1, x2) defined

in eq. (2.10). The reader might be surprised with the extra factor in eq. (5.3) dependent

on y+. However, we note that, asymptotically, the relation between the Fefferman-Graham

coordinate r defined in eq. (2.5) and y reads y = y+ r +O(r2).

At the horizon, y = 1, the Einstein-DeTurck equations demand A(1, x1, x2) =

B(1, x1, x2), which is equivalent to having a well defined bifurcating Killing horizon, with

our choice of reference metric. The boundary conditions at the horizon for the remain-

ing variables follow from expanding the equations in a power series off the horizon - they

all turn out to be of the Robin type. For the x1 and x2 directions, we demand periodic

boundary conditions.

Now we are in a position to solve the PDE system (5.4) subject to the above mentioned

boundary conditions. To solve the equations, we use a standard damped Newton-Raphson

iteration algorithm based on pseudo-spectral collocation on a Chebyshev (in y) and Fourier

grids (in x1 and x2). In d = 2, there are additional subtleties associated with the boundary

behaviour of the scalar field Φ, which introduces several non-analytic behaviours in the

metric and scalar field functions. To deal with these, we patch a grid of finite differences

onto the Chebyshev collocation grid parametrising the holographic radial direction y [4].

The space of solutions is 4-dimensional, depending on V̄ , k0, N and T . However, since

our underlying UV microscopic theory is conformally invariant, we only need to worry

about dimensionless ratios of these quantities. In order to access the true IR physics,

we need to preserve the hierarchy presented in eq. (2.13). That is, we must make sure

the temperature range we probe is in between the short and long distance cutoffs on the

disorder distribution. In the Schwarzschild background with V̄ = 0, the temperature is

given by T = d/(4πr+), and it is r+ rather than 1/T that sets the scale that should

be compared to cutoffs. This is helpful because it pushes the IR cutoff down to lower

temperatures (by a factor of d/(4π)) than the rough window (2.13) would suggest.4 In

all computations detailed in this section we measure all quantities in units of k0 (which

effectively sets k0 = 1) and either we take N = 50 in d = 2, or N = 5 in d = 3. T is then

allowed to vary freely in the required range (2.13). Note that for these values of N , the

Fourier grids must be very dense, having at least 500 points in the periodic direction in

d = 2 and 50 in d = 3.5 Typical profiles for the boundary source in d = 2 and d = 3 are

depicted in figure 1.

4Having the IR cutoff on the disorder be behind the horizon also resolves the following technical issue

that arises at T = 0. While the disorder is marginally relevant, the homogeneous mode of the scalar is

strongly relevant. In the energy range (2.13) the growth of the homogeneous mode is subdominant to

the disorder physics due to the presence of many higher harmonics. However, below the IR cutoff on the

disorder, the homogeneous mode will eventually dominate and drive a flow away from AdS. This is an

artifact of needing to work with an IR cutoff, and can complicate zero temperature numerics, but not the

numerics herein.
5The choice of number of points in each periodic direction is such that we should be able to resolve

up to the fifth harmonic of the highest wave number appearing in our scalar field potential (2.10). Since

each harmonic descendent decays exponentially [16] in multiples of the relevant wavenumber, we expect our

resolution to capture all the relevant physics.
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(a)
0 50 100 150 200 250 300
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x1 k0

Φ1

(b)

Figure 1. Disordered sources: plot (a) shows a scalar source Φ1 as a function of x1 k0 at the

boundary. Plot (b) is a density plot of Φ1, now in d = 3, as a function of boundary directions x1 k0
and x2 k0. In both cases we have chosen V̄ = 0.1. The characteristic width of the peaks in these

plots is determined by the short distance cutoff, ∆x|peak ∼ π/k0.

Having these solutions at hand, there are several quantities we can monitor. We

decided to focus on the entropy, since it is a direct probe of the infrared geometry. We

will discuss the results for d = 2 and d = 3 separately, starting with d = 2. In figure 2(a)

we show a plot of the logarithmic derivative of the entropy, as a function of the black hole

temperature, for several values of the disorder amplitude V̄ . The data is represented by

disks, and the solid lines indicate the analytic prediction of eq. (4.12), namely s ∝ T (d−1)/z

with z given by (4.4). From top to bottom, we have V̄ = 0.1, 0.2, . . . , 1.0. The agreement

between our perturbative analytic prediction and the numerics is striking. This numerical

scaling result is compelling evidence for the emergence of a disordered fixed point at T = 0,

characterized by a dynamical critical exponent z.

In d = 3 the calculations are more involved, since we have to generate many solutions

to the 3D PDE system we described above. This means we do not have as much data as

for the d = 2 case. In particular, we have focussed on a single value V̄ = 0.1. We also

have a narrower window of temperatures in which to access the IR scaling regime (2.13)

because N is smaller. In figure 2(b) we plot the logarithmic derivative of the entropy, as

a function of the black hole temperature for V̄ = 0.1. The disks represent the data, and

the solid line indicates the analytic prediction s ∝ T (d−1)/z of (4.12), with z again given

by (4.4). Again, the agreement as the temperature is lowered is rather encouraging.

The computations of the entropy we have discussed are for a given realization of

disorder. This is the entropy we have been after. With the numerical data at hand, we can

compare this (physical) entropy with the entropy of the averaged metric, as discussed in

previous sections. The averaged metric is easily obtained from the numerics by integrating

over x and y (see the more extended discussion in [4]). To compare the averaged entropy

with the entropy of the averaged metric, we did the following: we computed the entropy

of the average metric and the entropy of the full metric. We subtracted one from the

– 13 –
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(b)

0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

1.90

1.92

1.94

1.96

1.98

2.00

T

k0

d log 
d logT

Figure 2. Emergence of an IR dynamical scaling exponent. Plot (a) shows the logarithmic deriva-

tive of the entropy for several values of V̄ in d = 2. These plots have N = 50. From top to bottom,

we have V̄ = 0.1, 0.2, . . . , 1.0. Plot (b) shows the logarithmic derivative of the entropy for V̄ = 0.1

in d = 3. This plot has N = 5.

other and found a maximum disagreement around 1%. We then did a similar subtraction,

but this time for the dynamical critical exponent measured with both entropies, and we

found a maximum disagreement of 10−4%, which is well within the error in our integration

scheme in d = 3. We take this as strong evidence that the dynamical critical exponent

yields the same value whether measured with the entropy of the average or full metric, as

we have argued in the previous section. This result also substantiates the claim in [4] that

the averaged metric is a useful bulk quantity to identify the scaling properties of the IR

fixed point.

The reader might also be interested in the difference between the sources shown in

figures 1 and the scalar field evaluated at the horizon, ΦH. For completeness, we show the

latter in figures 3. We see that some of the structure of the UV clearly survives in the IR. At

first sight, the disorder appears to have been smoothened out on the horizon relative to the

sources shown in figure 1. However, this is simply the fact that upon renormalizing down

to the horizon, structure on scales smaller than the temperature scale have been integrated

out. This illustrates the need to keep the long distance cutoff on the disorder distribution

sufficiently large in order to access the correct disorder physics in the IR geometry.

Finally, in an attempt to characterize the geometry of the horizon, we plot in figure 4

the Ricci scalar, (2)R, of the induced metric on a spatial cross section of the horizon — a

disordered horizon.

6 Discussion

In this paper we have presented evidence for the existence of a disordered fixed point in the

far IR of a spacetime with a marginally relevant disordered boundary source. In addition

to constructing numerical disordered black hole spacetimes, we showed that the dynamical

critical exponent z of the IR fixed point could be obtained by resumming logarithmic
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Figure 3. Disordered horizons. Plot (a) shows the scalar field ΦH evaluated at the horizon as

a function of x1 k0. Plot (b) is a density plot of ΦH, now in d = 3, as a function of boundary

directions x1 k0 and x2 k0. The sources for these solutions are those shown in figure 1. Plot (a) is

at temperature T/k0 = 0.0478 while plot (b) has T/k0 = 0.0798. The characteristic width of the

peaks in these plots is now determined by the temperature scale, so that ∆x|peak ∼ πr+. This is

the expected statement that the temperature serves as the short distance cutoff on the disorder

distribution at the horizon.

Figure 4. Disordered horizon — Ricci scalar. Plot of the Ricci scalar of the induced metric on a

spatial cross section of the horizon. The parameters used are the same as in figure 3. Because the

metric depends on the square of the scalar field, the metric functions oscillate twice as quickly and

hence the structures appear half the size of those in figure 3.
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divergences that appear in perturbation theory in the strength of the disorder. However,

this perturbation theory is an expansion about the UV spacetime. The whole point of

fixed points is that they are self-contained and well-defined without reference to a UV

completion. Therefore, an intrinsic description of the disordered horizon (at T = 0) as

a solution to Einstein’s equations should exist. Characterizing the disordered horizon on

its own, IR, terms could potentially lead to a greatly expanded understanding of what

extremal horizons can look like. It would, presumably, explain why a näıve resummation

of logarithmic divergences at low orders in perturbation theory appears to give the correct

answer for the dynamical critical exponent. It would also clarify exactly which quantities

can be accurately determined from the corresponding disorder averaged spacetime.

Given the construction of the background geometries, it is very natural to study corre-

lation functions in these backgrounds. If the full frequency and momentum dependence can

be found, then this should verify the value of z that we have found, giving correlators that

are scaling functions of ω/kz. The study of transport, in particular, in these backgrounds

was one of the motivations to construct these solutions in the first place. The disordered

fixed point does not conserve momentum and will therefore have intrinsically finite trans-

port properties [3]. This is a qualitatively distinct regime from the case in which disorder

can be described as an irrelevant perturbation about a clean IR fixed point [17–21].

Finally, having developed the numerical and analytical methods needed to understand

disordered spacetimes, we may soon be in a position to tackle the more difficult case of

relevant (rather than marginally relevant) disorder.
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A d = 2 solution

In d = 2, one can go (slightly) further in describing the geometry of individual configura-

tions in terms of some explicit indefinite integrals. The first key difference is that in d = 2

the scalar solution at finite temperature can be written explicitly:

Φ(1)(r, x) = V̄

N−1∑
n=1

φn(r) cos(knx+ γn) , (A.1)

where:

φn(r) = C

√
1

π

∣∣∣∣Γ(3

4
− iknr+

2

)∣∣∣∣2√rP− 1
2

+iknr+

(
r

r+

)
. (A.2)
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Here Pν(x) is the Legendre function (for the particular values of the index ν = −1
2 + iκ

these are also known as parabolic cylinder functions). Throughout this section we will use

the notation:

θn = knx+ γn , θ±nm = θn ± θm . (A.3)

A further simplification in the d = 2 case is simply that the spatial metric is much less

complicated when there is only one spatial direction. The order V̄ 2 geometry is given as:

ds2 =
1

r2

[
−f(r)

(
1 + V̄ 2A(r, x)

)
dt2 +

dr2

f(r)
+
(
1 + V̄ 2B(r, x)

)
dx2

]
. (A.4)

The equations of motion for A,B are particular combinations of Einstein’s equations:

0 = 2f1/2
[
∂r∂x

(
f1/2A

)
+ 4f1/2∂rΦ

(1)∂xΦ(1)
]
, (A.5)

0 = rf−1/2∂r

[
f3/2

r
∂rA

]
+

2

r2

[
r2f

(
∂rΦ

(1)
)2
− r2

(
∂xΦ(1)

)2
− µ

(
Φ(1)

)2
]
, (A.6)

0 = rf1/2∂r

[
f1/2

r
∂rB

]
+

2

r2

[
r2f

(
∂rΦ

(1)
)2

+ r2
(
∂xΦ(1)

)2
− µ

(
Φ(1)

)2
]
, (A.7)

0 = r3f−1/2∂r

[
f3/2

r
∂rA

]
+ r2∂2

xA− rf∂rA− r∂rB − 4µ
(

Φ(1)
)2

. (A.8)

Plugging in the scalar solution (A.1) and (A.2), it is straightforward to determine:

A(r, x) = α1(r) + f−1/2(r)α2(x) + Ã(r, x) , (A.9)

where:

Ã(r, x) =
∑
m

a1
m(r) cos 2θm +

∑
m 6=n

a2
mn(r)km

(
cos θ+

mn

k+
mn

+
cos θ−mn
k−mn

)
, (A.10)

where the radial profiles for the harmonics are:

a1
m(r) = f−1/2(r)

∫ r+

r
dr̃ f1/2(r̃)φ′m(r̃)φm(r̃) , (A.11)

a2
mn = 2f−1/2(r)

∫ r+

r
dr̃ f1/2(r̃)φm(r̃)φ′n(r̃) . (A.12)

The function α1(r) in (A.9) is given by integral expressions similar to what we found for

general d:

α1(r) = η1 + η2r
2
+

[
f−1/2(r)− 1

]
−
∑
m

∫ r+

r

dr̃

r̃3

[
1−

√
f(r̃)/f(r)

] [
r̃2f(r̃)

(
φ′m(r̃)

)2 − (r̃2k2 + µ)φ2
m

]
. (A.13)

Turning now to the spatial metric component, it can be written as some integration

functions and a particular solution:

B(r, x) = β1(x) + β2(x)r2
+

[
f1/2(r)− 1

]
+ B̃(r, x) . (A.14)
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The particular solutions can be written as:

B̃(r, x) =
∑
m

[
b0m(r) + b1m(r) cos2 θm

]
+
∑
m 6=n

[
b2mn(r) cos θ+

mn + b3mn(r) cos θ−mn
]
, (A.15)

where:

b0m(r) = 2

∫ r+

r

dr̃
[
f1/2(r)− f1/2(r̃)

]
f1/2(r̃)r̃3

[r̃kmφm(r̃)]2 , (A.16)

b1m(r) = 2

∫ r+

r

dr̃
[
f1/2(r)− f1/2(r̃)

]
f1/2(r̃)r̃3

{
f(r̃)[r̃φ′m(r̃)]2 − (r̃2k2

m + µ)φ2
m(r̃)

}
, (A.17)

b2mn(r) =

∫ r+

r

dr̃
[
f1/2(r)− f1/2(r̃)

]
f1/2(r̃)r̃3

{
r̃2
[
f(r̃)φ′m(r̃)φ′n(r̃)− kmknφm(r̃)φn(r̃)

]
−µφm(r̃)φn(r̃)} , (A.18)

b2mn(r) =

∫ r+

r

dr̃
[
f1/2(r)− f1/2(r̃)

]
f1/2(r̃)r̃3

{
r̃2
[
f(r̃)φ′m(r̃)φ′n(r̃) + kmknφm(r̃)φn(r̃)

]
−µφm(r̃)φn(r̃)} . (A.19)

There are a few integration functions left we need to fix. In particular, the constants

η1, η2 and the functions α2(x), β1(x), β2(x). As we discussed before, η1 receives a logarith-

mic contribution from the WKB modes, which works out to be:

η1 = −1

2
V̄ 2 log k0r+ + · · · , (A.20)

while η2, α2 and β2 are all forced to vanish by regularity at the horizon. This leaves β1(x),

which is determined by fixing A(0, x) = B(0, x). Our solutions for A and B allow one to

write explicit integral expressions for β1, though they do not appear to be illuminating so

we have not written them out.
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