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Universidade de Lisboa, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
5Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

The collision of black holes and the emission of gravitational radiation in higher dimensional space-
times are of interest in various research areas, including the gauge-gravity duality, the TeV gravity
scenarios evoked for the explanation of the hierarchy problem, and the large-dimensionality limit of
general relativity. We present numerical simulations of head-on collisions of nonspinning, unequal-
mass black holes starting from rest in general relativity with 4 ≤ D ≤ 10 spacetime dimensions.
We compare the energy and linear momentum radiated in gravitational waves with perturbative
predictions in the extreme mass ratio limit, demonstrating the strength and limitations of black
hole perturbation theory in this context.
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I. INTRODUCTION

The study of higher-dimensional spacetimes dates back
at least one hundred years to the seminal attempts by
Kaluza and Klein to unify gravitation and electromag-
netism. Higher dimensional arenas would resurface sev-
eral times over the next decades, either in the context
of specific physical theories, such as string theory, or
theories which can be embedded into it. One particu-
larly intriguing example is the class of TeV-scale grav-
ity theories, which propose to lower the fundamental
Planck scale by diluting gravity in a large number of
dimensions [1–5]. These proposals suggest that dynam-
ical processes involving higher dimensional black holes
(BHs) may be relevant for understanding the physics un-
der experimental scrutiny at particle colliders, such as
the Large Hadron Collider (LHC). In these scenarios,
BH production would become possible at much lower en-
ergies than the four-dimensional Planck scale 1019 GeV,
a possibility that remains interesting despite the robust
constraints at current LHC energies [6, 7]. In this frame-
work, the understanding of BH dynamics and gravita-
tional radiation emitted during high-energy encounters
is fundamental [8].

Higher-dimensional spacetimes have also been used
as a purely mathematical construct, where the num-
ber D of spacetime dimensions is regarded as just one
other parameter to be varied. Emparan and collabora-
tors [9–12] have recently added an elegant twist to this
aspect of higher-dimensional spacetimes by focusing on
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the large-D limit. They showed that the physics of four-
dimensional spacetimes can be recovered to good preci-
sion from a large-D expansion, and that the large-D limit
offers precious physical insight into the nature of classical
and quantum gravity in arbitrary dimensions.

The purpose of this work is to extend previous results
on the low-energy collision of BHs to higher dimensions.
This effort was started a few years ago [13, 14], but a com-
bination of gauge issues and difficulties in the regulariza-
tion of variables in the dimensional reduction generated
numerical instabilities, restricting all binary BH simula-
tions to D ≤ 6 spacetime dimensions. Building on earlier
work [15, 16] on the so-called modified cartoon method,
Refs. [17, 18] reported considerable progress in overcom-
ing stability limitations and in the numerical extrac-
tion of gravitational waves (GWs) in higher-dimensional
spacetimes. Using the methods developed therein, we
present new results for the collision of unequal-mass BH
binaries in D = 4, 5, . . . , 10 dimensions, and compare
these with perturbative predictions. We expect our re-
sults to also allow for making contact with the large-D
regime studied by Emparan and collaborators.

II. MODELING FRAMEWORK

The physical scenario we consider in this work consists
of two D-dimensional, nonspinning BHs with masses M1

and M2 ≤ M1 initially at rest, which then collide head-
on under their gravitational attraction and merge into
a single BH. The gravitational radiation released during
the encounter of the two BHs, and its total energy and
momentum in particular, is the key diagnostic quantity
we wish to extract from our calculations. For this pur-
pose, we employ two techniques: (i) a perturbative point-
particle (PP) approximation, and (ii) numerical relativity
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D 4 5 6 7 8
Erad
q2M

0.0104 0.0165 0.0202 0.0231 0.0292

TABLE I. Energy radiated in GWs when a small BH of mass
qM1, q � 1 falls from rest at infinity into a D-dimensional BH of
mass M1.

simulations assuming SO(D−3) isometry. In this section
we review these two methods in turn.

A. Point-particle calculations

The first attempt at understanding this process con-
siders a somewhat restricted parameter space: one of
the BHs is much more massive than the other, i.e.
q ≡M2/M1 � 1 or

η ≡ M1M2

(M1 +M2)2
=

q

(1 + q)2
� 1 , (1)

where η is the symmetric mass ratio. The smaller, lighter
BH is then approximated as a structureless PP, moving
on a geodesic of the background spacetime described by
the massive BH, while generating a stress-energy ten-
sor which perturbs it. This scheme is also sometimes
known as the PP approximation. In such a framework,
the resulting equations to solve are just linearized ver-
sions of the Einstein equations, expanded around a BH-
background spacetime [19–24]. When the massive BH
is nonspinning, the equations reduce to a single ordi-
nary differential equation sourced by the smaller BH
(the PP). In this scheme, to leading order, the total en-
ergy Erad ∝ q2. The exact coefficient was computed in
Refs. [21, 23, 24] for particles falling radially into the BH.

Table I summarizes those results for different space-
time dimensions. Note that the proportionality coeffi-
cient increases with spacetime dimension at large D. An
extrapolation of these results suggests that the perturba-
tive PP calculation should cease to be valid at sufficiently
large D, since the radiation ultimately becomes too large
and the geodesic approximation breaks down: cf. the
discussion around Fig. 1 of [24]. Thus, even within the
PP approximation, we identify the need to solve the full,
nonlinear Einstein equations at large D.

B. Numerical framework

The only presently known method to solve the Einstein
equations in the dynamic and fully nonlinear regime is to
use numerical tools on supercomputers: see e.g. [25–27].
In higher dimensions, however, the computational cost
increases rapidly with D. To achieve sufficient resolution
of all relevant scales, typical grid sizes in our simula-
tions have O(102) grid points in each dimension, hence
the computational cost increases approximately by this
factor for each increment in D, making it impractical to

consider arbitrary D−1 dimensional spatial grids. Many
physical scenarios of current interest, however, involve
degrees of symmetry in the extra dimensions that facil-
itate a reduction of the effective computational domain
to three or fewer spatial dimensions, as handled in tra-
ditional numerical relativity. The physical effects of the
extra dimensions are then encapsulated in a set of addi-
tional fields on the effective domain. Several approaches
to achieve such a dimensional reduction have been im-
plemented in the literature: see e.g. [15, 28–30]. Here,
we use the modified cartoon method in the form detailed
in [17], which describes a D-dimensional spacetime with
SO(D − 3) isometry.

Specifically, we use the Lean code [31, 32], originally
developed for BH simulations in D = 4 dimensions and
upgraded to generalD spacetime dimension with SO(D−
3) isometry in [17, 28]. We start our simulations with
the D dimensional generalization of Brill-Lindquist [33]
data in Cartesian coordinates XI (Capital Latin indices
I, J, . . . cover the range 1, . . . , D − 1, while lower case
Latin indices i, j, . . . cover the range 1, 2, 3),

γIJ = ψ4/(D−3)δIJ , KIJ = 0 ,

ψ = 1 +
∑
N

µN

4
[∑

K(XK −XK
N )2

](D−3)/2
, (2)

where γIJ and KIJ are the spatial metric and extrinsic
curvature of the Arnowitt-Deser-Misner (ADM) [34] for-
malism and we set G = c = 1. The index N labels the
individual BHs and, in our case, always extends over the
range N = 1, 2. These data are evolved in time with the
Baumgarte-Shapiro-Shibata-Nakamura [35, 36] formula-
tion of the Einstein equations, combined with the moving
puncture [37, 38] gauge and Berger-Oliger mesh refine-
ment provided by Carpet [39, 40] as part of the Cac-
tus computational toolkit [41, 42]. In order to calculate
the GW signal, we compute the higher-dimensional Weyl
scalars, as detailed in [18, 43, 44]. For comparison and to
determine the contributions of the individual multipoles,
we also extract waveforms calculated with the perturba-
tive Kodama-Ishibashi approach [22, 45] as detailed in
[46].

Compared with previous simulations of BH collisions in
higher dimensions, we have implemented two changes we
find necessary to achieve accurate and stable evolutions.
First, we evolve the lapse function α according to

∂tα = βi∂iα− c1αKc2 , (3)

where βi is the shift vector and K the trace of the extrin-
sic curvature; the slicing condition typically used in mov-
ing puncture simulations is recovered for c1 = 2, c2 = 1
– cf. Eq. (11) in [31] – but here we vary these parameter
in the ranges 2 ≤ c1 ≤ 10 and 1 ≤ c2 ≤ 1.5. The ex-
act values vary from configuration to configuration and
have been determined empirically. The second modifica-
tion is an approximately linear reduction of the Courant
factor ∆t/∆x as a function of D from 0.5 in D = 4 to
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0.03 in D = 10. We shall see in Fig. 2 and its discussion
in Sec. III B that the merger becomes an increasingly in-
stantaneous event with an ever sharper burst in radiation
as we increase D. We believe the necessity of reducing
the Courant factor to arise from this increasing demand
for time resolution around merger.

III. RESULTS

In Schwarzschild coordinates, a nonrotating D-
dimensional BH with ADM mass M has a horizon or
Schwarzschild radius given by

RD−3
S =

16πM

(D − 2)AD−2
, (4)

where AD−2 = 2π(D−1)/2/Γ
(
D−1

2

)
. Note that RS is re-

lated to the mass parameter µ of the single BH version
of Eq. (2) by µ = RD−3

S . In consequence of Eq. (4), mass
and length do not have the same physical dimensions un-
less D = 4. Henceforth, we measure energy in units of the
ADM mass M of the spacetime under consideration, and
we measure length and time in units of the Schwarzschild
radius RS associated with this ADM mass according to
Eq. (4).

A. Numerical uncertainties

Our numerical relativity results for the GW energy re-
leased in head-on collisions of BHs are affected by the
following uncertainties:

Discretization error. We estimate the error due to
finite grid resolution by studying a head-on collision of
two BHs in D = 8 dimensions with mass ratio q = 1/20.
We use a computational grid composed of 8 nested re-
finement levels, 2 inner boxes initially centered on the
individual holes, and 6 outer levels centered on the ori-
gin. The grid spacing around the BHs is h1 = RS/113,
h2 = RS/129 and h3 = RS/145, respectively, in our three
simulations for checking convergence, and increases by
a factor 2 on each consecutive outer level. The radi-
ated energy as a function of time is extracted at 40 RS ,
where the grid resolution is Hi = 32hi for the three
runs i = 1, 2, 3. The difference between the high and
medium resolution runs is compared with that between
the medium and coarse resolution runs in Fig. 1. Multi-
plying the former by a factor Q4 = 1.88 (as expected for
the fourth-order discretization of the code) yields good
agreement between the two curves, and using the accord-
ing Richardson-extrapolated result gives an error esti-
mate of 3 % for the medium resolution simulation, which
is closest to our set of production runs in terms of reso-
lution around the smaller BH and in the wave extraction
zone.

We have analyzed several other configurations (includ-
ing the collision in D = 10 dimensions) and find the dis-
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FIG. 1. Convergence plot for the radiated energy Erad ex-
tracted from a q = 1/20 head-on collision inD = 8 at 40 RS as
a function of time for grid spacing h1 = RS/113, h2 = RS/129
and h3 = RS/145. The difference between the high and
medium resolution simulations has been scaled by a factor
Q4 = 1.88 expected for fourth-order convergence and agrees
well with the difference of the coarse and medium resolution
energies.

cretization error to mildly increase with mass ratio and
dimensionality D, from about 1 % for q = 1, D = 5, 6 to
about 4 % for q = 1, D = 10 and about 5 % for q � 1,
D = 8.

Finite extraction radius. The computational domain
used in our simulations is of finite extent, about 200 RS
for the runs analyzed here, so that we cannot extract the
GW signal at infinity. Instead we use finite radii and es-
timate the uncertainty incurred through this process by
fitting the total radiated energy using a polynomial in
1/rex,

Erad(rex) = Erad +
a

rex
+O

(
1

r2
ex

)
, (5)

where a is a parameter determined through fitting and
Erad is the estimate for the radiated energy extracted
at infinity. We then take the extrapolated value at in-
finity as our result, and its difference from the largest
numerical extraction radius as the uncertainty estimate.
Applying this procedure yields a fractional error ranging
from about 0.4 % for all equal-mass collisions to about
4 % for configurations with q � 1.

Spurious waves. Initial data of the type used here
typically contain a small amount of unphysical GWs col-
loquially referred to as “junk radiation”. The amount of
unphysical radiation depends on the initial separation of
the BHs (vanishing in the limit of infinite distance) and
on the number of dimensions. As in Ref. [18], we find the
amount of spurious radiation to be orders of magnitude
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FIG. 2. Normalized energy flux (RS/M)Ėrad as a function
of time for equal-mass collisions, with t = 0 defined by the
maximum in Ėrad. As D increases, the burst of radiation
becomes increasingly concentrated in time.

below the errors due to discretization and extraction ra-
dius. We attribute this to the rapid falloff of gravity in
higher dimensions, so that the constituent BHs of the
Brill-Lindquist data are almost in isolation even for rel-
atively small coordinate separations. We have noticed,
however, that spurious radiation is more prominent in
the Kodama-Ishibashi modes as compared with the re-
sults based on the Weyl scalars. We cannot account for
the precise causes for the seemingly superior behavior of
the Weyl scalars, but we note that similar findings have
been reported for the D = 4 case in [47].

Initial separation. The head-on collisions performed
here start from finite initial separation of the BHs, while
the idealized scenario considers two BHs falling in from
infinity. By varying the initial separation for several col-
lisions in D = 5 and D = 6 we estimated the difference
in Erad due to the initial separation and, as for the junk
radiation above, we found that the differences are well
below the numerical error budget. Again, we attribute
this observation to the rapid falloff of the gravitational
attraction for large D, leading to a prolonged but nearly
stationary infall phase followed by an almost instanta-
neous merger that generates nearly all of the radiation.

In summary, our error is dominated by discretization and
use of finite extraction radii. It ranges from about 1.5 %
for comparable mass collisions in low D to about 9 % for
q � 1 in D = 8. For the gravitational recoil, we find
similar significance of the individual error contributions,
but overall larger uncertainties by about a factor 4. We
attribute these larger uncertainties to the fact that the
recoil arises from asymmetries in GW emission, and in
this sense it is a weaker, differential effect.

400 405 410 415

t / R
S

-0.002

-0.001

0

0.001

0.002

0.003

(R
S

 / M)
1/2

 dΦ
20

 / dt

10 (R
S

 / M)
1/2

 dΦ
40

 / dt

FIG. 3. The l = 2 (solid black line) and l = 4 (dashed red
line) waveforms from the collision of two equal-mass BHs in
D = 10.
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FIG. 4. Fractional energy Erad/M radiated in GWs during
collisions of equal-mass, nonspinning BHs starting from rest,
in D spacetime dimensions. Crosses are numerical data points
and the solid red line is the fit (6). The blue dashed line
shows a fit obtained for the expression b0 2πβ/Γ(β) which re-
sembles even more closely the functional form of the surface
area AD−2 = 2π(D−1)/2/Γ[(D−1)/2] of the D−2 sphere, but
does not match the data points as well.

B. Equal-mass collisions

The collision of two equal-mass BHs has already been
studied in D = 4, 5 [13], and D = 6 [14] spacetime di-
mensions. We have verified those results, extending them
to D = 7, 8 , 9 , 10. For illustration, in Fig. 2 we plot a
normalized energy flux (RS/M)Ė for collisions in D = 4,
6, 8 and 10 spacetime dimensions. As D increases, the
burst of radiation becomes increasingly concentrated in
time. This concentration suggests that the burst may
approach a δ distribution in the large-D limit; it would
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be interesting to see if this is borne out in the large-D
limit formalism of [9–12].

For further illustration, in Fig. 3 we plot the Kodama-
Ishibashi waveform Φ̇l0 [14, 22, 45, 46] for D = 10; the
qualitative features of the signal are the same for all other
D. The waveform consists of a precursor part with small
amplitude when the two BHs are widely separated, fol-
lowed by a smooth merger phase connecting to ringdown.
A perturbative calculation, using direct integration tech-
niques, yields the following two modes for gravitational-
type scalar perturbations: ωRS = 1.2346 − 0.9329i and
ωRS = 2.4564 − 0.9879i. These are the decoupling (or
saturating) and nondecoupling (or nonsaturating) modes
in the language of Refs. [48, 49] (Ref. [50]). We find
agreement to the level of ∼ 0.1% or better with Ref. [50]
and very good agreement with the analytical, large-D
estimates of Ref. [48]. A one-mode fit of numerical wave-
forms yields very poor agreement with any of the frequen-
cies above. However, a two-mode fit yields the following
two frequencies: ωRS = 2.48− 0.94i, 1.22− 0.91i. Given
the errors in numerical simulations, this is a reasonable
level of agreement with linearized predictions, and it in-
dicates that both modes are excited to comparable am-
plitudes for this particular simulation.

When plotted as a function of the number D of di-
mensions (Fig. 4), the fraction of center-of-mass energy
radiated in GWs by equal-mass head-on collisions reaches
a maximum Erad/M ∼ 9.1 × 10−4 for D = 5. Beyond
this value, we find the total radiation output to rapidly
decrease as a function of D. This suppression is con-
sistent with the fact that the spacetime is nearly flat
outside the horizon: in fact, the gravitational potential
(RS/r)

D−3 vanishes exponentially with D [9]. Another
intuitive explanation for this rapid decay is that, as D in-
creases, the energy is radiated almost instantaneously (cf.
Fig. 2): spacetime is flat except extremely near the hori-
zons, and bremsstrahlung radiation is suppressed. These
features have also been seen in zero-frequency limit cal-
culations [51]. Thus, at large D, radiation is emitted in a
burst precisely when the BHs collide, but this is also the
instant where one would expect common horizon forma-
tion, and consequent absorption of a sizable fraction of
this energy. This is, of course, a very loose description,
unable to give us a quantitative estimate. The results in
Fig. 4 are (perhaps surprisingly) well described by the
following simple analytic expression,

Eq=1
rad

M
= a0

(2π)
β

Γ[β]
, β =

D − a1

a2
, (6)

where a0 = 1.7288×10−6, a1 = 1.5771, a2 = 0.5497. This
fit reproduces our numerical results to within ∼ 1% for
all D = 4, . . . , 10. It is tempting to relate this expression

to the area AD−2 = 2π(D−1)/2

Γ( D−1
2 )

of a (D − 2)-dimensional

unit sphere, but we do not see an evident connection as

the numerical factors do not match exactly1.
The results for the radiated energy are in stark contrast

to the predictions one would get by applying the PP re-
sults of Table I to the equal-mass case q = 1, where,
instead of a strong suppression of Erad at large D, we see
a mild increase in the radiative efficiency. While the PP
approximation is by construction not expected to cap-
ture the equal-mass limit with high precision, it is valu-
able to understand the origin of this qualitative discrep-
ancy. A tantalizing suggestion in this context was made
by Emparan and collaborators [9], who pointed out that
– for large D – BH spacetimes contain two scales L of
interest for BH physics. One scale can be parametrized
by the areal radius L ∼ RS of the horizon. The other
scale, absent at low D, is related to the strong local-
ization of the gravitational potential close to the hori-
zon: L ∼ RS/D. For equal-mass collisions the excita-
tion of the latter modes (and the radiation output) are
strongly suppressed at large D [9]. However, dynami-
cal processes are very sensitive to the dominant scale in
higher dimensions [9, 51]. In the next section, we explore
in more detail unequal-mass collisions and indeed find
that these collisions can trigger the excitation of smaller-
scale modes even at the low energies considered in our
simulations.

C. Unequal-mass collisions and the point-particle
limit

The stark contrast between the PP results summarized
in Table I and the numerical relativity calculations of the
previous section strongly points towards a qualitatively
different behavior of the radiated energy as a function
of D for comparable-mass binaries (where Erad rapidly
drops beyond D = 6) as compared with the high mass-
ratio regime (where Erad mildly increases with D). The
question we are now facing is: does the difference in the
behavior arise from the dominance of different physical
mechanisms in the respective regions of the parameter
space, and where does the crossover from one regime to
the other occur? To shed light on this issue, we have
performed collisions of unequal-mass, nonspinning BHs
focusing on the range q = 1, . . . , 1/100 and D = 4, . . . , 8.
The GW energy and linear momentum radiated in these
collisions are summarized in Figs. 5-7.

By analyzing the waveforms for the most extreme mass
ratios we find good agreement between the ringdown
stage and estimates from linearized perturbations. How-
ever, our results indicate that only the high-frequency
modes (the “nonsaturating” modes) are excited. Since

1 The expression b0 2πβ/Γ(β) resembles even more closely that
of the surface area AD−2, but yields a less accurate fit to the
data points (cf. Fig. 4). It also does not establish a satisfactory
relation between AD−2 and the numerical parameters appearing
in the fit for β, now given by β = (D − 2.4772)/0.7671.
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FIG. 5. Left panel: fractional energy Erad/MADM radiated in GWs in collisions of nonspinning BHs starting from rest with mass
ratio q in D spacetime dimensions. Right panel: same data as in the left panel, but rescaled by η2 (i.e. we plot Erad/(Mη2))
in order to facilitate the comparison with PP calculations of the radiated energy, which are shown as filled symbols at η = 0.

these modes probe the small scales presumably excited
by the smaller BH [10, 12], it is reassuring to find high-
frequency excitations.

Figure 5 shows the fractional center-of-mass energy re-
leased as GWs when two BHs collide, with and without
normalization by (the square of) the kinematic, symmet-
ric mass ratio parameter η. Note that η is directly con-
nected to the reduced mass of the system and is known
to yield a very good rescaling of all quantities in four-
dimensional spacetimes (see for instance Refs. [52–54]).
For low D (in particular for D = 4, 5) the total radi-
ated energy Erad/(Mη2) is weakly dependent on η. At
small mass ratios q, or equivalently at small η, our re-
sults smoothly approach the PP limit of Table I (shown
in Fig. 5 as filled data points at η = 0).

For q . 1 and sufficiently large D, the radiated energy
decreases monotonically with D (left panel of Fig. 5).
This behavior would clearly contradict the PP results if
it held for arbitrarily small mass ratio. In fact, at small
mass ratios the behavior of the radiated energy changes.
The maximum of the radiated energy as a function of
D shifts from D = 5 to D = 6 between q = 1/4 and
q = 1/10. Results for even smaller q indicate a further
shift towards D = 7, and possibly yet higher D as we ap-
proach the PP limit. Furthermore, we see from the right
panel of Fig. 5 that Erad/(Mη2) shows a steep increase
for very small η and large D. This behavior supports our
interpretation that new scales are being probed. If this is
indeed the correct interpretation, and if the new scale is
of order RS/D, one can estimate the mass ratio at which
these new scales are excited. By using Eq. (4), and recall-

ing that M2/M1 = q, we get the scaling (r2/RS)
D−3

= q,
with r2 the scale of the small BH and RS the scale of the
large BH in terms of coordinate quantities. If we equate
the “small scale” RS/D to the size r2 of the second col-

D 4 5 6 7 8

−102b1 0.54 0.95 2.82 3.63 3.58

b2 0.72 1.18 0.83 0.44 0.19

TABLE II. Fitting coefficients of Eq. (8), describing the η depen-
dence of the total radiated energy.

liding object we find the threshold mass ratio

q ∼ D3−D . (7)

It seems sensible to understand the mass ratio depen-
dence by fixing the PP limit to be that of Table I. In
other words, we fit our results to the expression

Erad

Mη2
= b0 + b1η

b2 , (8)

where b0 are the PP values listed in Table I. The expo-
nents b2 obtained by fitting our data are listed in Table II.
These numbers are consistent with the behavior shown in
Fig. 5: the dependence of the total radiated energy on η
is more complex for large D. In particular, at large D the
expansion of Erad in powers of η converges more slowly,
and the convergence of the PP results (a leading-order
expansion in mass ratio) is poor in the small-η regime.
It would be interesting to find an analytical prediction
for the coefficient b2.

D. Kicks

In Fig. 6, we show the gravitational recoil (or “kick”)
velocity of the post-merger BH as a function of D for
fixed values of the mass ratios q. As in the case of the
radiated energy (left panel of Fig. 5), we observe a shift
in the maximum kick towards higher D as the mass ratio
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q in D spacetime dimensions. Note that the agreement with
PP predictions in the small-q limit is very good for D = 4,
and degrades for higher D.
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FIG. 7. As Fig. 6 but here symbols denote the kick for fixed
D as a function of the symmetric mass ratio η. The lines are
the simple two-parameter fit of Eq. (10).

decreases. In particular, the maximum shifts from D = 6
to D = 7 as we change q from 1/4 to 1/10. In Fig. 7 we
show the same results, but now plotting the kick for fixed
D as a function of the symmetric mass ratio η.

The data in Figs. 6 and 7 are in good agreement with
PP recoil calculations [24, 55, 56]: for example, in D = 4
the PP calculation yields Prad/M = 8.33 × 10−4q2, or
vkick = 250q2 km/s. This is in percent-level agreement
with the D = 4, η = 0.01 simulation, for which we get
vkick = 0.026 km/s (for such small mass ratios, of course,
q ' η = 0.01). As D increases, the PP prediction be-
comes less accurate: the relative error is 4% in D = 4,

D 4 5 6 7 8

vD [km/s] 232.9 746.9 915.2 714.8 349.0

v
(1)
kick,max [km/s] 4.166 13.361 16.372 12.787 6.244

ṽD [km/s] 255.8 798.4 1034 989.9 630.7

cD 0.5629 0.5445 0.5821 0.7214 0.9110

ηmax 0.1951 0.1965 0.1936 0.1837 0.1718

v
(2)
kick,max[km/s] 4.148 13.314 16.297 12.822 6.457

TABLE III. Fitting coefficients of Eqs. (9) and (10), describing
the η dependence of the kick velocity.

21% in D = 6 and 54% in D = 7. This is consistent
with the trend observed for the radiated energy and with
physical expectations: according to Eq. (4), for a fixed
q the less massive black hole appears less and less like
a PP. It is also possible that some of this disagreement
comes form the larger errors in the high-D, small-mass
ratio simulations.

Following previous work on unequal mass collisions in
D = 4 dimensions [57] we first tried to fit the data using
the following mass ratio dependence (see e.g. the classic
work by Fitchett & Detweiler [58]):

v
(1)
kick = vDη

2
√

1− 4η , (9)

where the superscript (1) means that this is a one-
parameter fit. According to this simple formula, the max-
imum recoil occurs when η = 0.2 (q ' 0.38) for all D.

Note that for η = 0.2 we get v
(1)
kick,max ' 0.018vD, so the

parameter vD is related to the maximum kick by a simple
proportionality relation.

However, our previous considerations suggest that the
mass ratio dependence of the radiated energy and of the
recoil velocity should vary with D. As a simple way to
investigate this D dependence we used a two-parameter
fitting function:

v
(2)
kick = ṽDη

2(1− 4η)cD . (10)

Assuming this dependence, the maximum kick v
(2)
kick,max

will correspond to a D-dependent ηmax that can be ob-
tained by fitting the data.

The fitting coefficients and maximum kicks obtained
with these two expressions are listed in Table III. Note
that the D dependence of ηmax is very mild for all but the
largest D simulations. More accurate simulations may be
needed to resolve the issue of the D-dependence of ηmax

and of the maximum kick velocity. However, the follow-
ing conclusion is quite independent of the assumed func-
tional dependence: the maximum kick is ∼ 16.3 km/s,
and it is achieved for D = 6 and ηmax ' 0.2.

IV. CONCLUSIONS

We have numerically simulated head-on collisions of
black holes in D = 4, . . . , 10 dimensions, extracted the
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GW signal and computed the energy and linear momen-
tum radiated in the collisions. Starting with the equal-
mass case, we find values for the radiated energy in
agreement with previously published results for D = 5
and D = 6 dimensions. The radiated energy, measured
in units of the ADM mass M , is maximal in D = 5,
where Erad/M = 9.1 × 10−4. For larger D we ob-
serve a strong reduction in the radiated energy: the fit
Erad/M = (2π)β/Γ(β), β = (D− 1.5771)/(0.5497) mod-
els our results to within 1 % for all D simulated. This
functional dependence closely resembles that of the sur-
face area AD−2 = 2π(D−1)/2/Γ[(D − 1)/2], but the dis-
crepancy in the numerical parameters in the argument
suggests a more complicated relation between the two
quantities.

The numerical results for the equal-mass case differ
strikingly from those obtained in the PP approximation,
which predicts a mild increase of Erad/(q

2M) with D
when a small BH of mass qM1, q � 1 falls into a BH of
mass M1. We reconcile these seemingly different predic-
tions by numerically simulating a wider set of BH colli-
sions with mass ratios ranging from q = 1 to q = 1/100
in up to D = 8 dimensions. In the right panel of Fig. 5
we observe that the (symmetric mass ratio-normalized)
energy Erad/(Mη2) increases in the PP limit q → 0. This
increase becomes particularly steep for D = 7 and D = 8,
and the numerical data extrapolated to q = 0 are in good
agreement with the PP predictions.

These findings can be understood by invoking the pres-
ence of multiple length scales in the large-D limit, as
identified in [9]: Additionally to the length scale RS of
the Schwarzschild horizon, the large-D limit reveals a
shorter scale RS/D for the spatial variation of potential
terms in the equations governing BH perturbations. It is
natural then to assume that these shorter length scales
will be excited with much higher efficiency by a small ob-
ject falling into a BH, while they are largely insensitive
to the collision of two objects of size RS . The parameter
regime in between these two extremes, on the other hand,
is characterized by excitations of comparable magnitude
on both length scales.

Our intuitive interpretation is strengthened by the
analysis of the quasinormal mode frequencies: for q = 1
(and large D) the ringdown exhibits comparable contri-
butions from two frequencies, corresponding to the “sat-
urating” and “unsaturating” modes in the language of
[50], while the ringdown is dominated by the unsaturat-
ing modes for q � 1. For large D, the emission of grav-
itational waves therefore appears to be sensitive to the
properties of the two BHs. It is interesting to contrast
this observation with the corresponding insensitivity of
the collision dynamics in high-energy collisions in D = 4
[59, 60]. This contrast naturally raises the question which
effect dominates in high-energy, large-D collisions: sen-
sitivity to structure due to large D or universality due to
high energy?

With regard to the large-D limit, we notice a further
connection in the shape of the energy flux as a function

of time. In units of the Schwarzschild horizon associated
with the ADM mass of the spacetime, the flux becomes
increasingly peaked in higher D and it appears to ap-
proach the shape of a δ distribution, which is what one
would intuitively expect in the large-D limit, where the
spacetime exterior to a BH approaches Minkowski.

Finally, we analyze the gravitational recoil resulting
from the asymmetric emission of GWs in unequal-mass
collisions. We find the data to be well fitted by Fitchett’s
[58] formula commonly applied to the four-dimensional
case, but we also observe a mild indication that the mass
ratio maximizing the recoil varies with D at large D. The
maximum kick due to gravitational recoil (vkick,max ∼
16.3 km/s) is achieved for D = 6, and for a symmetric
mass ratio η = ηmax ' 0.2 (q ' 0.4). When regarding
both energy or linear momentum as a function of D at
fixed mass ratio q, we observe a shift in the maximum
towards higher D as we move from the equal-mass case
q = 1 to the PP limit q � 1. This observation fur-
ther confirms one of our main conclusions: the PP limit
provides exquisitely accurate predictions for small mass
ratios, but it must be taken with a grain of salt when
extrapolated to the comparable-mass regime in higher
dimensions.

ACKNOWLEDGMENTS

We are grateful to Roberto Emparan for numerous sug-
gestions and for sharing with us some numerical results.
We thank Pau Figueras, Markus Kunesch, Chris Moore,
Saran Tunyasuvunakool, Helvi Witek and Miguel Zilhão
for very fruitful discussions on this topic. V.C. is in-
debted to Kinki University in Osaka for hospitality while
the last stages of this work were being completed. U. S.
and V. C. acknowledge financial support provided under
the European Union’s H2020 ERC Consolidator Grant
“Matter and strong-field gravity: New frontiers in Ein-
stein’s theory” grant agreement no. MaGRaTh–646597.
Research at Perimeter Institute is supported by the Gov-
ernment of Canada through Industry Canada and by the
Province of Ontario through the Ministry of Economic
Development & Innovation. E. B. was supported by
NSF Grants No. PHY-1607130 and AST-1716715, and
by FCT contract IF/00797/2014/CP1214/CT0012 under
the IF2014 Programme. This work has received fund-
ing from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-
Curie grant agreement No 690904, the COST Action
Grant No. CA16104, from STFC Consolidator Grant
No. ST/L000636/1, the SDSC Comet, PSC-Bridges and
TACC Stampede clusters through NSF-XSEDE Award
Nos. PHY-090003, the Cambridge High Performance
Computing Service Supercomputer Darwin using Strate-
gic Research Infrastructure Funding from the HEFCE
and the STFC, and DiRAC’s Cosmos Shared Memory
system through BIS Grant No. ST/J005673/1 and STFC
Grant Nos. ST/H008586/1, ST/K00333X/1. W.G.C. is



9

supported by a STFC studentship.

[1] Ignatios Antoniadis. A Possible new dimension at a few
TeV. Phys. Lett. B, 246:377–384, 1990.

[2] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali. The
hierarchy problem and new dimensions at a millimeter.
Phys. Lett. B, 429:263–272, 1998. hep-ph/9803315.

[3] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and
G. R. Dvali. New dimensions at a millimeter to a Fermi
and superstrings at a TeV. Phys. Lett. B, 436:257–263,
1998. hep-ph/9804398.

[4] L. Randall and R. Sundrum. A large mass hierarchy from
a small extra dimension. Phys. Rev. Lett., 83:3370–3373,
1999. hep-ph/9905221.

[5] L. Randall and R. Sundrum. An alternative to com-
pactification. Phys. Rev. Lett., 83:4690–4693, 1999. hep-
th/9906064.

[6] Morad Aaboud et al. Search for new phenomena in di-
jet events using 37 fb−1 of pp collision data collected at√
s =13 TeV with the ATLAS detector. 2017.

[7] Albert M Sirunyan et al. Search for black holes in
high-multiplicity final states in proton-proton collisions
at sqrt(s) = 13 TeV. 2017.

[8] V. Cardoso, L. Gualtieri, C. Herdeiro, and U. Sper-
hake. Exploring New Physics Frontiers Through Nu-
merical Relativity. Living Rev. Relativity, 18:1, 2015.
arXiv:1409.0014 [gr-qc].

[9] R. Emparan, R. Suzuki, and K. Tanabe. The large
D limit of General Relativity. JHEP, 06:009, 2013.
arXiv:1302.6382 [hep-th].

[10] R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe, and
T. Tanaka. Effective theory of Black Holes in the 1/D
expansion. JHEP, 06:159, 2015. arXiv:1504.06489 [hep-
th].

[11] Roberto Emparan, Ryotaku Suzuki, and Kentaro Tan-
abe. Evolution and End Point of the Black String Insta-
bility: Large D Solution. Phys. Rev. Lett., 115(9):091102,
2015.

[12] Roberto Emparan and Kentaro Tanabe. Universal quasi-
normal modes of large D black holes. Phys. Rev.,
D89(6):064028, 2014.

[13] H. Witek, V. Cardoso, L. Gualtieri, C. Herdeiro, U. Sper-
hake, and M. Zilhão. Head-on collisions of unequal
mass black holes in D = 5 dimensions. Phys. Rev. D,
83:044017, 2011. arXiv:1011.0742 [gr-qc].

[14] H. Witek, H. Okawa, V. Cardoso, L. Gualtieri,
C. Herdeiro, M. Shibata, U. Sperhake, and M. Zilhão.
Higher dimensional Numerical Relativity: code compar-
ison. Phys. Rev. D, 90(8):084014, 2014. arXiv:1406.2703
[gr-qc].

[15] F. Pretorius. Numerical relativity using a generalized
harmonic decomposition. Class. Quantum Grav., 22:425–
452, 2005. gr-qc/0407110.

[16] H. Yoshino and M. Shibata. Higher-dimensional numeri-
cal relativity: Formulation and code tests. Phys. Rev. D,
80:084025, 2009. arXiv:0907.2760 [gr-qc].

[17] William G. Cook, Pau Figueras, Markus Kunesch, Ulrich
Sperhake, and Saran Tunyasuvunakool. Dimensional re-
duction in numerical relativity: Modified cartoon formal-
ism and regularization. In 3rd Amazonian Symposium on

Physics and 5th NRHEP Network Meeting: Celebrating
100 Years of General Relativity Belem, Brazil, Septem-
ber 28-October 2, 2015, volume 25, page 1641013, 2016.
arXiv:1603.00362 [gr-qc].

[18] William G. Cook and Ulrich Sperhake. Extraction of
gravitational-wave energy in higher dimensional numeri-
cal relativity using the Weyl tensor. Class. Quant. Grav.,
34(3):035010, 2017. arXiv:1609.01292 [gr-qc].

[19] T. Regge and J. A. Wheeler. Stability of a Schwarzschild
Singularity. Phys. Rev., 108:1063–1069, 1957.

[20] F. J. Zerilli. Gravitational field of a particle falling in
a schwarzschild geometry analyzed in tensor harmonics.
Phys. Rev. D, 2:2141–2160, 1970.

[21] M. Davis, R. Ruffini, W. H. Press, and R. H. Price. Grav-
itational radiation from a particle falling radially into a
schwarzschild black hole. Phys. Rev. Lett., 27:1466–1469,
1971.

[22] H. Kodama and A. Ishibashi. A master equation for grav-
itational perturbations of maximally symmetric black
holes in higher dimensions. Prog. Theor. Phys., 110:701–
722, 2003. hep-th/0305147.

[23] E. Berti, M. Cavaglia, and L. Gualtieri. Gravitational
energy loss in high energy particle collisions: ultrarela-
tivistic plunge into a multidimensional black hole. Phys.
Rev. D, 69:124011, 2004. hep-th/0309203.

[24] E. Berti, V. Cardoso, and B. Kipapa. Up to eleven: ra-
diation from particles with arbitrary energy falling into
higher-dimensional black holes. Phys. Rev. D, 83:084018,
2011.

[25] Frans Pretorius. Binary Black Hole Coalescence. In
M. Colpi et al., editor, Physics of Relativistic Objects in
Compact Binaries: From Birth to Coalescence. Springer,
New York, 2009. arXiv:0710.1338 [gr-qc].

[26] J. M. Centrella, J. G. Baker, B. J. Kelly, and J. R.
van Meter. Black-hole binaries, gravitational waves, and
numerical relativity. Rev. Mod. Phys., 82:3069, 2010.
arXiv:1010.5260 [gr-qc].

[27] U. Sperhake. The numerical relativity breakthrough for
binary black holes. Class. Quant. Grav., 32(12):124011,
2015.

[28] M. Zilhão, H. Witek, U. Sperhake, V. Cardoso,
L. Gualtieri, C. Herdeiro, and A. Nerozzi. Numerical rel-
ativity for D dimensional axially symmetric space-times:
formalism and code tests. Phys. Rev. D, 81:084052, 2010.
arXiv:1001.2302 [gr-qc].

[29] E. Sorkin. An Axisymmetric generalized harmonic
evolution code. Phys. Rev. D, 81:084062, 2010.
arXiv:0911.2011 [gr-qc].

[30] H. Yoshino and M. Shibata. Higher-Dimensional Numer-
ical Relativity: Current Status. Prog.Theor.Phys.Suppl.,
189:269–310, 2011.

[31] U. Sperhake. Binary black-hole evolutions of excision
and puncture data. Phys. Rev. D, 76:104015, 2007. gr-
qc/0606079.

[32] U. Sperhake, E. Berti, V. Cardoso, J. A. González,
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