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Analysis of anisotropically permeable surfaces for turbulent drag reduction
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The present work proposes the use of anisotropically permeable substrates as a means to
reduce turbulent skin friction. We conduct an a priori analysis to assess the potential of these
surfaces, based on the effect of small-scale surface manipulations on near-wall turbulence.
The analysis, valid for small permeability, predicts a monotonic decrease in friction as
the streamwise permeability increases. Empirical results suggest that the drag-reducing
mechanism is however bound to fail beyond a certain permeability. We investigate the
development of Kelvin-Helmholtz-like rollers at the surface as a potential mechanism for
this failure. These rollers, which are a typical feature of turbulent flows over permeable
walls, are known to increase drag and their appearance is known to limit the drag-reducing
effect. We propose a model, based on linear stability analysis, that predicts the onset of
these rollers for sufficiently large permeability and allows us to bound the maximum drag
reduction that these surfaces can achieve.
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I. INTRODUCTION

In the present work, we carry out an analysis of coatings with anisotropic permeability devised
to reduce turbulent skin friction. We explore the possibility of using such coatings to produce the
apparent slip that riblets [1] or superhydrophobic surfaces [2] produce to reduce turbulent drag.
Hahn et al. [3] found that, in a similar fashion, streamwise-permeable walls reduce skin friction by
creating an effective slip for the overlying turbulent flow. In their study, the walls were permeable in
the streamwise and spanwise directions only and impermeable in the wall-normal direction. They
observed that high values of drag reduction were obtained with low or no spanwise permeability.
Intuitively, the surface would then offer less resistance to longitudinal flow than to transverse flow,
as riblets do [4]. Real materials cannot however be permeable in only certain directions, but they
can have a preferential direction with higher permeability. The seal fur studied by Itoh et al. [5] is,
at least in part, an example of such anisotropically permeable material, as it is made up of fibers
aligned preferentially in the streamwise direction. Such substrates produce a higher resistance for
the crossflow compared to the streamwise flow and indeed Itoh et al. [5] reported drag reduction
properties similar to those of riblets, albeit slightly superior, as shown in Fig. 1. Previous studies
have shown how a surface can reduce turbulent drag if it induces a streamwise-preferential effect
[4,6,7]. Taking some length scale of the surface texture as reference, the drag reduction increases
linearly with that length, when scaled in viscous units.

The theoretical framework developed in [4,6,7] assumes that the texture is vanishingly small
compared to the length scales in the flow. However, as the texture size increases, deleterious effects
are experimentally observed and the performance saturates, as studied for riblets by García-Mayoral
and Jiménez [8] or for superhydrophobic surfaces by Seo et al. [9] and García-Mayoral et al. [10].
The mechanisms for the onset of the deleterious effects vary, leading to more or less abrupt failures.
These failures also occur for different texture sizes, depending on the type of surface.

In permeable substrates, one possible mechanism for the breakdown of drag reduction is the
appearance of spanwise coherent rollers over the surface. These are typical of turbulent flows
over permeable surfaces when the permeability is large enough [11–15]. While a substrate with a
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FIG. 1. Drag reduction DR = −�τ/τ0 of the seal fur surface from Itoh et al. [5]: �, seal fur; �, trapezoidal
flat-peak riblets, also from Itoh et al. [5]. For the seal fur, the wavelength identified by Itoh et al. by analogy
with the riblet pitch s+ has been used to express their results in terms of a viscous length scale.

preferential streamwise permeability might yield the drag-reducing effect of Hahn et al. [3] and
Itoh et al. [5], permeable surfaces have generally been reported to increase turbulent drag. This
was the case in the direct numerical simulation studies of Jiménez et al. [11], where the wall was
permeable in the wall-normal direction only, and of Breugem et al. [12], where a substrate of
packed particles with isotropic permeability was studied. In both cases, the large increase in drag
was associated with the appearance of Kelvin-Helmholtz-like rollers, which enhance momentum
transfer and increase the Reynolds stresses near the wall [8]. It is worth noting that Jiménez et al. [11]
found that wall-normal permeability alone could trigger the appearance of spanwise rollers and
increase drag. This suggests a competition between the beneficial drag-reducing effect, driven by
the longitudinal permeability, and the detrimental appearance of Kelvin-Helmholtz-like rollers,
driven by the wall-normal permeability. The relaxation of the zero wall-normal velocity condition
in complex surfaces is generally responsible for the appearance of nonzero tangential Reynolds
stress, increased mixing, and thus increased friction [16,17]. Kelvin-Helmholtz-like rollers appear
frequently over complex substrates [18–20] and are indeed a common feature over a wide range of
obstructing surfaces [21]. In riblets, they have been identified as the cause for the degradation of
performance beyond the linear drag reduction regime, due to the additional Reynolds stresses that
they generate [8]. The resemblance of the drag curves for riblets and for the surface of Itoh et al. [5],
shown in Fig. 1, could suggest that the degradation is due to a similar mechanism. This work aims
to characterize the linearly increasing drag reduction of surfaces with anisotropic permeability, but
also to provide an upper bound, based on the development of Kelvin-Helmholtz-like rollers, for what
would otherwise be an ever-increasing performance. Our study does not rule out the appearance of
additional degrading phenomena, which could be triggered at smaller permeabilities and limit the
drag reducing performance further. Nevertheless, the evidence on permeable substrates cited above
strongly suggests that the spanwise rollers are a prevalent phenomenon and will eventually appear.
The onset of rollers will therefore pose a limit to the maximum achievable performance and can be
used to establish a bound to this performance a priori.

We consider an anisotropically permeable layer such as that depicted in Fig. 2, characterized by
its thickness h and its streamwise, wall-normal, and spanwise permeabilities Kx , Ky , and Kz, which
are assumed to be along the principal directions of the permeability tensor K. Given the preliminary
nature of the present analysis, we restrict ourselves to a simple model to characterize the flow within
the porous substrate. We assume that the substrate is formed by a matrix of obstacles much smaller
than any infinitesimal volume relevant to our problem so that homogenization can be applied on any
arbitrarily small volume within the coating [22,23]. The permeability could decrease by increasing
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FIG. 2. Schematic representation of a permeable layer for drag reduction.

the number of obstacles, rather than their size, and vice versa. Under these conditions, the inertial
terms are negligible and the resulting Stokes flow within the pores can be volume averaged to yield
the Darcy equation [24]

νK−1u + ∇p = 0, (1)

where u is the velocity vector; u, v, and w are the velocity components along the principal axes; p

is the kinematic pressure; and ν is the kinematic viscosity of the fluid.
Darcy’s equation is an adequate model for the flow in the core of the permeable material, but fails

to represent the flow in the vicinity of impermeable walls or at the interface with an outer free flow.
In order to model the flow near these interfaces, the classical approaches are the Darcy-Brinkman
model and the Beavers-Joseph jump condition [25,26]. Both approaches are considered in this work
and it is shown below that they lead to similar conclusions.

The paper is organised as follows. The linear drag-reducing effect is studied in Sec. II. The
triggering of the drag-increasing Kelvin-Helmholtz rollers is analyzed in Sec. III, where a simplified
model is proposed. Combining the results in the preceding sections, Sec. IV proposes an upper limit
for the maximum drag reduction that permeable coatings could achieve. Section V summarizes the
conclusions of the study.

II. DRAG REDUCTION MECHANISM

While for conventional smooth walls the velocity is zero at the wall, complex surfaces can yield
nonzero velocities at the permeable–free-flow interface. This generates an apparent slip that can
reduce drag. The theory for the underlying mechanism was proposed by Luchini et al. [4], Jiménez
[6], and Luchini [7]. When the surface texture is vanishingly small with respect to the length scales
in wall turbulence, the overlying turbulent eddies are comparatively very large and slow and the
shear that they induce over the wall is quasihomogeneous and quasisteady sufficiently away from
the wall, typically a few texture heights. Above this height, the effect of the surface can be reduced
to an effective slip condition at a notional wall plane, for instance, the mean interface plane. In the
streamwise and spanwise directions, we can express the slip condition in terms of the corresponding
slip lengths

u|y=0 = �x

∂u

∂y

∣∣∣∣
y=0

, w|y=0 = �z

∂w

∂y

∣∣∣∣
y=0

, (2)

where �x and �z are the streamwise and spanwise slip lengths, as depicted in Fig. 3. In viscous units,
the resulting mean streamwise slip velocity at the wall is U+

s = �+
x , so both slip length and slip

velocity can be used interchangeably. In riblet literature, the slip lengths �+
x and �+

z are also referred
to as protrusion heights [4,27], interpreting them as the depth below the wall where the uniform
overlying shear would be extrapolated to zero, that is, where the virtual origin for the corresponding
velocity profile would lie.

When the surface is anisotropic, �+
x and �+

z can be different. In the case of riblets, Luchini
et al. [4] identified this difference as responsible for their drag-reducing capability. Jiménez [6] later
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FIG. 3. Sketch of (a) streamwise and (b) spanwise slip lengths. In (b), the top arrow represents an overlying
spanwise perturbation, which is perceived locally as quasisteady and quasistationary under the assumption of
vanishingly small surface texture.

generalized this result to any surface producing different streamwise and spanwise slip lengths, so
long as they remain small compared to the typical length scales of near-wall turbulence.

We should note that for permeable substrates the theory assumes that the characteristic size of the
pores is much smaller than any other length scale in the problem and in particular the viscous length
scale. A real material would have a finite pore size that, as the Reynolds number increases, would
eventually not be negligible compared to the viscous length scale and the model for vanishingly
small texture would stop holding. However, it is shown below that for other drag-reducing surfaces
the theory holds reasonably well up to texture sizes of O(10) wall units [28]. Similarly, roughness
typically behaves as hydraulically smooth up to roughness sizes of three to five wall units [29], so
we can expect the effect of the granularity of the surface to be negligible up to these sizes.

A. Drag reduction by slip lengths

We summarize here the relationship between �x , �z, and drag reduction, as laid out by Jiménez
[6], Luchini [7], and García-Mayoral and Jiménez [30]. In the classical theory of wall turbulence,
surface manipulations only modify the intercept of the logarithmic velocity profile, while the von
Kármán constant κ ≈ 0.41 and the wake function are unaffected [31,32]. The mean velocity profile
U in the logarithmic layer can be expressed as that for a smooth wall plus a shift �U ,

U+ = κ−1 log y+ + B+ + �U+, (3)

where B+ is the near-wall intercept for a smooth wall and the plus superscript indicates viscous-unit
scaling. The shift of the logarithmic velocity profile can be directly connected to variations in skin
friction. For a constant freestream velocity and boundary layer thickness and assuming small changes
of �U+ and the friction coefficient cf , Luchini [7], Spalart and McLean [33], and García-Mayoral
and Jiménez [30] showed that expression (3) leads to

�cf

cf0

≈ −�U+

(2cf0 )−1/2 + (2κ)−1
, (4)

where cf0 is the skin friction for the reference smooth wall. If �U+ is positive the logarithmic profile
is shifted upward and friction is reduced, and vice versa if negative. In turn, �U+ relates to the slip
length induced at the surface. In the limit of vanishingly small surface manipulations, �U+ satisfies

�U+ = μ0(�+
x − �+

z ) = μ0�
+
s , (5)
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where μ0 ≈ 0.66–0.785 is a universal constant [30,34]. This concept was proposed by Luchini
et al. [4] and Luchini [7] for riblets and Jiménez [6] found that Eq. (5) holds for any vanishingly
small surface manipulation. Intuitively, if the crossflow is more impeded than the streamwise flow, the
motion induced by quasistreamwise vortices is hindered, so they are pushed away from the notional
wall perceived by the mean streamwise flow, as sketched in Fig. 3. This reduces the entrainment
of momentum from layers farther away from the wall, reducing the shear at the wall and thus the
skin friction. Min and Kim [35] showed that the presence of streamwise slip attenuates turbulent
fluctuations, while the spanwise slip has the opposite effect, intensifying turbulence fluctuations;
this had been done previously for riblets by Choi et al. [36]. Busse and Sandham [28] conducted
simulations for a wide range of slip lengths and their results are consistent with Eq. (5) up to slip
lengths less than or approximately equal to five wall units.

Equations (4) and (5) provide an estimate for the drag reduction DR in the range of validity of
small slip lengths. For typical flows at friction Reynolds numbers Reτ ≈ 1000–10 000, the friction
coefficient is cf0 ≈ 0.006–0.0025 and the drag reduction produced by a given �+

x and �+
z pair is

DR ≈ −�τ

τ0
≈ −�cf

cf0

≈ μ0

(2cf0 )−1/2 + (2κ)−1
�+

s ≈ 0.05(�+
x − �+

z ). (6)

Note that Eq. (6) is constructed using Eq. (5), which holds only for small surface manipulations. For
high values of �+

s , Eq. (5), and consequently Eq. (6), would cease to hold as other mechanisms set
in. In the seal fur experiments of Itoh et al. [5], for instance, DR only increases up to �+

s of order
2–4.

B. Slip lengths by porous media

In the case of an anisotropic permeable coating such as that depicted in Fig. 2, the slip lengths
can be calculated by solving the flow within the porous layer in response to an overlying shear. This
is analogous to the calculation of slip lengths for superhydrophobic textures [37,38] or of protrusion
heights for riblets [4]. When the porous medium is configured as a swarm of particles [25,39,40], the
flow is highly connected and any section through the material would cut mostly through fluid. The
macroscale shear between the fluid on either side of the section would in general not be negligible
and can be accounted for by adding a macroscale viscous term to Eq. (1),

ν̃∇2u − νK−1u − ∇p = 0, (7)

where the apparent viscosity ν̃ accounts for diffusion in scales much larger than the pore size
[25,39,41], i.e., the large-scale diffusion that would be missed by the volume average νK−1u, the
classical Darcy term. Equation (7) is the Darcy-Brinkman equation [24,25], which was also obtained
by Taylor [39] for a matrix of infinitesimal obstacles. In general, the empirically observed ν̃ is
different from ν, which accounts for the macroscale diffusive effects acting less efficiently than in
the absence of obstacles.

If the material configuration is better represented as a matrix of microducts, rather than a swarm
of obstacles, large-scale diffusion is essentially impeded and the Brinkman term should be omitted,
recovering Eq. (1). At interfaces, a discontinuity in the macroscale velocity is empirically observed,
which can be represented by a jump condition. For these configurations, here we use the widespread
jump condition proposed by Beavers and Joseph [26], which along the streamwise direction reads

dU

dy

∣∣∣∣
s

= αBJ√
Kx

(Us − UD), (8)

where UD is the velocity inside the coating, produced by the Darcy term, αBJ is an empirical
coefficient, which depends on the interface and the permeable material, and the subindex s denotes
variables right above the interface.

Let us consider the flow within the coating driven by an overlying uniform streamwise shear Sx

alone. The spanwise and wall-normal velocities are zero and the pressure is homogeneous. Since
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the flow is assumed to be shear driven, UD ≈ 0 and Eq. (8) in viscous units becomes

S+
x ≈ αBJ√

K+
x

U+
s . (9)

This equation and its analog along the spanwise direction lead to estimations of the slip lengths
based on the Beavers-Joseph jump condition

�+
x ≈

√
K+

x

αBJ
, �+

z ≈
√

K+
z

αBJ
. (10)

Let us now address swarm-of-obstacles configurations, described by Eq. (7). Again, the pressure
terms are zero and the flow is driven by the overlying uniform streamwise shear Sx . The streamwise
component of Eq. (7) becomes then

∂2u

∂y2
− ν

ν̃

1

Kx

u = 0, (11)

which has solutions of the form u ∝ exp (y/
√

Kxν̃/ν). Boundary conditions can be obtained by
imposing no slip at the bottom boundary, y = −h, and continuity of the tangential shear stress at
the interface with the overlying flow, y = 0. The resulting flow depends linearly on Sx , and the
relationship between u and ∂u/∂y at y = 0 gives an Sx-independent slip length, which expressed in
wall units is

�+
x =

√
ν/ν̃

√
K+

x tanh

(
h+

√
ν̃/ν

√
K+

x

)
. (12)

An analogous expression can similarly be derived for the spanwise slip

�+
z =

√
ν/ν̃

√
K+

z tanh

(
h+

√
ν̃/ν

√
K+

z

)
. (13)

Equations (10) and (12) are in agreement with the experimental measurements of Suga et al. [42],
who found streamwise slip lengths of O(

√
K+

x ) for �+
x � 3.

An expression for DR can be obtained by introducing the estimates of Eqs. (12) and (13)
into Eq. (6). As we are interested in obtaining drag reduction from a positive effective slip �+

s =
�+

x − �+
z > 0, we focus on drag reducing configurations with �+

x > �+
z and thus K+

x > K+
z . With

this constraint, depending on the relative value of h, we can distinguish three regimes. For small
values of substrate thickness h+ �

√
K+

z , both slips tend to the same value �+
x ≈ �+

z ≈ h+ and
therefore �+

s ≈ 0, resulting in no drag reduction DR ≈ 0. For intermediate substrate thickness√
K+

x � h+ �
√

K+
z , a positive drag reduction is obtained since �+

x ≈ h+ is greater than �+
z ≈

√
K+

z ,

giving as a result DR ∝ (h+ −
√

K+
z ). Finally, if h+ �

√
K+

x the slip lengths are �+
x ∝

√
K+

x and
�+

z ∝
√

K+
z , yielding

DR ≈ 0.05

√
ν

ν̃
(
√

K+
x −

√
K+

z ). (14)

Of the three regimes, the latter is the most advantageous, as it gives the highest performance for
a given anisotropic material with a set K. We can conclude that, provided that the substrate has a
sufficient depth h+ �

√
K+

x , an optimal design should have high anisotropy in order to maximize
K+

x while keeping K+
z as low as possible.

The Beavers-Joseph model leads to conclusions similar to those from the Brinkman model above.
Using Eqs. (6) and (10) yields

DR ≈ 0.05
1

αBJ
(
√

K+
x −

√
K+

z ), (15)
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which closely resembles Eq. (14) and where the same influence of
√

K+
x −

√
K+

z is observed. With
this model, however, αBJ takes the place of ν̃/ν in the relationship between shear stress and velocity
at the interface, with drag reduction increasing with decreasing values of αBJ.

Equations (14) and (15) also allow us to identify the influence of the permeability and thickness of
the substrate. The drag reduction is essentially determined by the difference between streamwise and
spanwise permeabilities

√
K+

x −
√

K+
z and the wall-normal permeability does not play a significant

role in this linear regime. Both models agree that the permeable material should ideally be highly
anisotropic in order to obtain a large

√
K+

x −
√

K+
z and therefore high drag reduction. These models

also show that the connectivity of the microstructure of the substrate, condensed in either ν̃ or αBJ,
also plays an important role. Materials with high connectivity will allow larger slip at the interface
and therefore have a positive effect on DR. We must however note that expressions (14) and (15) only
provide an estimate of the order of magnitude of the drag reduction and that a more refined character-
ization of the permeable substrate would be required for more precise estimates. The main source of
uncertainty in Eqs. (14) and (15) are the estimates for ν̃/ν or αBJ, which encapsulate the interaction
between fluid and porous material at the interface. Zampogna and Bottaro [22] and Lācis and Bagheri
[23] have recently proposed homogenization techniques to predict this interaction accurately.

As we can see, using either model results in expressions for the slip lengths that closely resemble
each other, when deep coatings are assumed. The coefficients αBJ and

√
ν̃/ν play the same role, as

proposed by Neale and Nader [43], which allows us to write Eqs. (14) and (15) in the form

DR ≈ 0.05ξ (
√

K+
x −

√
K+

z ), (16)

where ξ is either
√

ν/ν̃ or α−1
BJ .

This result provides an expression for the order of magnitude of drag reduction obtained by
permeable coatings. The above derivation neglects the effect of pressure within the substrate, which
is negligible in most industrial applications. For example, in order to produce drag reduction of
O(10%), the permeability of the material would be

√
K+

x ≈ 2–3, which would require a thickness
h+ ∼ O(10). In industrial ducts and pipelines, for instance, the Reynolds number is 105–107 and
the above thickness would correspond to h ∼ O(100 μm), resulting in an additional cross section
of O(1%). The additional drag caused by the pressure drop acting in this increased cross section
would then be O(1%), much smaller than the DR caused by the slip effect. Moreover, this pressure
drop would create additional Darcy flow within the coating, resulting in increased flow rate not only
within the coating, but also across the whole section. This would mitigate the deleterious effect and
could even negate it, depending on the coating parameters. In turn, in external flows, like aeroplane
fuselages, the pressure gradient is generally milder and therefore its effect on the substrate would
not contribute significantly to drag. The coating thickness would also be of order of microns in this
case and the shape, and hence the form drag, would not change noticeably.

III. LIMITING MECHANISM FOR DRAG REDUCTION

Just like in the classical studies of Jiménez [6] and Luchini [7], the model presented in Sec. II
predicts a drag reduction ever increasing with the surface permeability, scaled in viscous units. Let
us take a given substrate configuration (Kx,Kz,Ky,h), yielding an effective slip �s > 0. By simply

increasing the friction velocity of the flow, the viscous length scale would decrease and
√

K+
x ,

√
K+

z ,
and h+ would increase by the same proportion, with the corresponding increase in DR, as given by
Eq. (16). This is obviously not the case, because the theory and the resulting models cease to hold
once the texture size, in viscous units, reaches a certain value. The theory developed by Luchini
et al. [4], Luchini [7], and Jiménez [6] assumes slip lengths much smaller than one viscous unit, or
in our case

√
K+

x � 1. The linear behavior is nevertheless observed to hold for
√

K+
x � 5, but even

beyond this value the drag reduction keeps increasing monotonically with
√

K+
x [28]. In experience,
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however, other mechanisms, different from the slip effect and dependent on the type of surface, can
be expected to set in at some

√
K+

x and limit the drag reducing capability of the surface.
In an attempt to establish some limit for the linear behavior of Eq. (16), we propose a model to

predict the onset of the Kelvin-Helmholtz-like rollers discussed in the Introduction. While other dele-
terious effects may appear at smaller

√
K+

x , the evidence on permeable substrates strongly suggests
that such rollers will eventually appear [11–14], causing additional Reynolds stresses that will de-
grade drag [8,11,12]. Other phenomena, limiting the performance further, cannot be ruled out, but the
present model gives an order-of-magnitude limit that could not be exceeded by permeable surfaces.
This can therefore be interpreted as an upper bound for the maximum drag reduction achievable.

A. Model from linear instability

To capture the onset of Kelvin-Helmholtz-like rollers, we propose a model based on the linear
stability analysis of the mean flow in a turbulent channel with symmetric permeable walls. Mean-flow
analysis has been shown to adequate capture instabilities, and in particular Kelvin-Helmholtz rollers,
in flows with a fluctuating turbulent component [44,45] and has been extensively used in turbulent
flows over complex surfaces [8,11,19,46]. Here we follow closely the methodology of Jiménez
et al. [11] and García-Mayoral and Jiménez [8].

Kelvin-Helmholtz instabilities are essentially inviscid and linear and can therefore be captured by
the equations for linearised inviscid perturbations [11,19], with the fully viscous analysis showing
no fundamental difference in the results [11,47]. Therefore, we restrict our analysis to the inviscid
case. We conduct the analysis on the flow outside the permeable substrate and the influence of the
substrate appears as a boundary condition at the interface, provided by the analytical solution of the
underlying flow, detailed below.

We seek wavelike solutions for the velocity and pressure perturbations, of the form f =
f̂ exp[i(αx + βz − ωt)], which permits a modal analysis. The resulting expression is Rayleigh’s
equation [48]

(U − c)(∂yy − k2)v̂ − U ′′v̂ = 0, (17)

where U is the base flow, α and β are the wave numbers in the streamwise and spanwise directions,
respectively, v̂ is the corresponding perturbation mode of the wall-normal velocity, k2 = α2 + β2,
ω is the complex frequency, c is the complex phase velocity defined as ω = αc, and the primes
indicate derivatives with respect to y.

The difference between the present analysis and a smooth-wall case lies in the presence of the
permeable substrate, which imposes an impedancelike boundary condition on the core flow [8,11,49].
To derive the boundary condition, we focus on the response of the flow within the permeable medium
to the overlying pressure fluctuations p̂|y=0+ . Note that this flow regime is entirely different from
that discussed in Sec. II B, which was driven by shear. Indeed, since Kelvin-Helmholtz is an inviscid
instability, the perturbation field of the overlying flow is now assumed to be inviscid, so it cannot
exert any shear on the flow below, which is therefore free to slip with respect to the external velocity.

Let us now consider the flow within the substrate on the bottom wall of the channel, which extends
from y = −h to y = 0. The flow is described by Eq. (7). The Brinkman diffusive term ν̃∇2u is
typically negligible except in thin layers, of thickness of order ∼

√
Kx , where the flow transitions

from the Darcy solution to the no-slip boundary value, as it does in boundary layers for external
flows. As we consider deep coatings h 


√
Kx , the Brinkman layer at y = −h is far from the flow

near y = 0 and does therefore not have an influence on it. At the same time, at y = 0 there is free slip
with the inviscid perturbation flow above and no Brinkman layer forms. In the absence of Brinkman
layers, we neglect the effect of the Brinkman term and Eq. (7) becomes the classical Darcy equation
(1). Combined with incompressibility, it leads to a Poisson equation for p̂. Assuming impermeability
at y = −h, the solution is a function of the value of p̂ at y = 0,

p̂ = p̂0[tanh (α̃h�xy) sinh (α̃y�xy) + sinh (α̃y�xy)], (18)
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FIG. 4. Growth rate σI = Im(σ ) of the most amplified modes given by (21). (a) Isotropic case with �xy = 1
and h/H = 1. Curves are shown for (

√
KxKy/H

2)(UH/ν) = 10[−2(0.4)6]. (b) Anisotropic case obtained using
all possible combinations of h/H = 10[−1,0,1] and �xy = 10[−3(1)3]. Curves are shown for K̃ = 10[−2(1)6].

where �xy = √
Kx/Ky is the streamwise-to-wall-normal anisotropy ratio, α̃2 = α2 + β2Kz/Kx ,

and the subscript 0 indicates magnitudes at the interface y = 0. This solution can be introduced in
the Darcy equation for the wall-normal velocity, giving

v̂0 = −α̃[ν−1
√

KxKy tanh(α̃h�xy)]p̂0. (19)

Equation (19) can be used as an impedance boundary condition in the stability analysis of the
overlying flow. On the opposite side of the channel, an analogous impedance condition can be
obtained, resulting in the same form of Eq. (19), but reversed in sign.

As in the work of Jiménez et al. [11] and Tilton and Cortelezzi [50], Squire’s transformation [51]
reduces the problem of Eqs. (17)–(19) to an equivalent spanwise-homogeneous, two-dimensional
problem with α2D = α̃, β2D = 0, and modified permeabilities. The equivalent problem has lower
permeabilities than the spanwise-homogeneous, two-dimensional problem with α = α2D and β = 0
and, as shown below, reducing the permeabilities has a stabilizing effect. Consequently, we will
only consider solutions with β = 0, as for each α they are the most amplified. Note that this is in
agreement with the observed Kelvin-Helmholtz structures being predominantly spanwise coherent
[8,11,18,21].

B. Results for a piecewise-linear mean velocity profile

Before turning our attention to a quantitative analysis using turbulent mean profiles as base flows,
it is useful to study a piecewise-linear one

U (y) =
{
U∞y/H for y < H

U∞ for y � H.
(20)

For this profile the solution is algebraic and the basic mechanisms are more easily understood. Note
that the base flow has U ′′ = 0 everywhere except at y = H , where it becomes singular. Equations
(17) and (19) lead then to a second-order equation for the complex phase velocity c,

−2Kσ 2 + [−2i + K(1 + 2α′ − e−2α′
)]σ + (K − i)(1 − 2α′ − e−2α′

) = 0, (21)

where α′ = αH , σ = α′c/U∞, and

K =
√

KxKy

H 2

(
U∞H

ν

)
tanh

(
α′ h

H
�xy

)
. (22)

The results of (21) as a function of K are shown in Fig. 4(a). The limit K 
 1 provides a physical
interpretation of the nature of the instability. In this limit, the boundary condition (19) is equivalent to
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p(0) = 0, which can be reduced to ∂yv̂(0) = 0, and enforces symmetry on the perturbation flow. This
gives the same solution as extending the base profile antisymmetrically about y = 0. The problem
becomes then that of the instability of a shear layer, whose solutions are the Kelvin-Helmholtz
unstable waves of a free shear layer. In the opposite limit K � 1, the neutrally stable solution of
smooth impermeable walls is asymptotically approached. The intermediate values of K connect the
Kelvin-Helmholtz solution with the stable solution for the impermeable case.

Expression (22) depends not only on the properties of the porous coating, but also on the reduced
spectral wave number α′, which is not a physical property of the permeable layer but part of the
solution. In an attempt to remove the dependence on the flow we propose the empirical fit

K̃ =
√

KxKy

H 2

(
U∞H

ν

)
tanh

(
h

H
�xy

)
. (23)

Figure 4(b) shows results, as a function of K̃, for several combinations of Kx , Ky , and h. For the same
values of K̃, solutions for different coatings agree well, except perhaps for low values of K̃, for which
the instability is not fully developed. Other than for those low values, the parameter K̃ encompasses
the combined influence of Kx , Ky , and h. Note that, while the amplification is determined by K̃, the
most amplified wavelength does not scale with the characteristic permeability length scale,

√
Kx

or
√

Ky . As in the work of García-Mayoral and Jiménez [8], the wavelength scales with the height
y = H of the singularity in U ′′, that is, it is determined by the shape of the base flow.

C. Results for turbulent mean velocity profile

Although the analysis on the piecewise-linear velocity profile provides qualitative information on
the nature of the instability, quantitative results require more realistic profiles. We use approximate
turbulent mean profiles as in the work of Jiménez et al. [11], Dupont et al. [46], and García-Mayoral
and Jiménez [8]. In particular, we use the profiles of Cess [52], which have previously been used for
flow stability analysis by Reynolds and Tiederman [53] and more recently by del Álamo and Jiménez
[54]. In contrast with the linear profile used in the preceding section, the stability problem (17),
with the boundary condition (19), no longer leads to an algebraic expression and the full generalized
eigenvalue problem must be discretized and solved numerically. For every Fourier mode α the
wall-normal direction is discretized using Chebyshev polynomials with 256–1536 collocation points,
depending on the Reynolds number, which provide a resolution at the wall �y+ � 0.01. Obtaining
insight from the solution becomes less straightforward, but some analogies can be established with
the piecewise-linear results.

As in Sec. III B, we find that the length scale of the problem is determined by the shape of the
U profile. The energy-producing term U ′′ is larger between y+ = 5 and 20, peaking near y+

c ≈ 8,
which plays the same role as the singularity at y = H for the piecewise-linear profile [8]. This
height is independent of the Reynolds number when scaled in wall units and is responsible for
the inner scaling of the instability observed in Fig. 5(a). The solution, portrayed in Fig. 5(a) for
isotropic substrates, is qualitatively similar to the one for the piecewise-linear profile, evolving as
the permeability increases from the neutral smooth-wall solution to increasingly amplified solutions
and eventually reaching a limit solution for high permeabilities.

We are particularly interested in the most amplified mode for each surface configuration, as
this will be the most prevalent [8,11]. This mode forms rollers turning alternatively clockwise and
counterclockwise that penetrate into the porous material below y+ = 0, as portrayed in Fig. 5(b).

As in Sec. III B, we aim to describe the solution using a simplified characterizing parameter. By
analogy with Eq. (23) we propose

K̃+ =
√

K+
x K+

y tanh

(
h+

y+
c

�xy

)
. (24)
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FIG. 5. (a) Growth rate σ+ = α+Im(c+) of the most amplified mode as a function of the longitudinal
wavelength λ+

x : −·−, Reτ = 180; −−, Reτ = 550; −−−, Reτ = 1000. For the isotropic case �xy = 1, K+ =
10[−0.66(0.66)2.66], h+ = 100. (b) Stream-function contours of the mode with the highest growth rate at Reτ = 550
for fully developed instability K̃+ = 104. Solid and dashed lines correspond to clockwise and counterclockwise
rotation, respectively.

Figure 6(a) illustrates how scaling with this parameter results in a reasonable collapse for different
K+

x , K+
y , and h+. For high values of K̃+ there is good agreement, while for low values we observe

some scatter depending on the value of h+�xy . The growth rate of the most amplified mode for
each set of parameters is portrayed separately in Fig. 6(b) as a function of K̃+, showing that
the effect of the modulation with h+�xy is small and only appears for low permeabilities K̃+ � 5.
García-Mayoral and Jiménez [8] found a similar S-shaped curve for the relationship between σ+ and
the characteristic length scale of riblets. In their case, the degradation of drag reduction empirically
observed roughly coincided with the sharp transition between the quasineutral and the fully amplified
regimes. They suggested that the model could therefore be used as an indicator for the onset of
Kelvin-Helmholtz-like rollers and to obtain estimates for the riblet size, in viscous units, for which
the degradation of drag would roughly set in.

In the present case, the transition between the quasineutral and fully amplified regimes occurs
at K̃+ ≈ 5–10. Note that, beyond K̃+ = 5, the scatter for low values of K̃+ discussed above is
not significant. Hence, �xyh

+ should have little effect on the triggering of rollers. For that reason,
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FIG. 6. (a) Growth rate σ+ = α+Im(c+) of the most amplified mode as a function of the longitudinal
wavelength λx : −−−, �x = 10−3 and h+ = 10; −−, �x = 103 and h+ = 10; �, �x = 1 and h+ = 1; ◦,
�x = 1 and h+ = 100; �, �x = 1 and h+ = 10. Here K̃+ = 10[0.36,0.82,1.28,2.20] at Reτ = 550. (b) Maximum
growth rate σ+ as a function of the permeability K̃+ at Reτ = 550: −−−, �x = 10−3 and h+ = 1; −−, �x = 103

and h+ = 100; −·−, �x = 1 and h+ = 10.
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Δτ/τ0

−DRlim

K+

FIG. 7. Schematic summarizing the initial linear behavior of DR = �τ/τ0 for low permeability. The
hatched area represents the region K̃ > K̃KH, where the drag reducing effect is destroyed by the appearance of
Kelvin-Helmholtz rollers.

the term tanh(�xyh
+/y+

c ) in expression (24) can be approximated by its rapidly approached limit
tanh(�xyh

+/y+
c ) ≈ 1, taking into account that y+

c ≈ 8 and that for the configurations of practical
interest �xy 
 1 and h+ � 10. The criterion for the onset of the Kelvin-Helmholtz-like instability
can then be roughly set to

K̃+
KH ≈

√
K+

x K+
y ≈ 5–10. (25)

For flows over permeable substrates of diverse depth and permeability, it is difficult to find in the
literature details of the structure of the near-wall flow. Breugem et al. [12] reported the appearance
of Kelvin-Helmholtz rollers at K̃+ ≈ 80. Zampogna et al. [15], on their permeable layer model for
canopy flow, also observe rollers at K̃+ ≈ 300. It is worth noting that, although Rosti et al. [13] did
not observe Kelvin-Helmholtz rollers directly in their simulations, with K̃+ < 1, they observed a
weak Kelvin-Helmholtz signal in their velocity correlations. This is in agreement with the very low
amplification that our model predicts for low K̃+.

In any event, the appearance of rollers for K̃+ � K̃+
KH will degrade the linear performance

assumed in Sec. II, as the rollers introduce additional Reynolds stresses [8]. In the absence of earlier
degrading mechanisms, the maximum drag reduction would occur for K̃+ = K̃+

KH, so K̃+
KH can be

taken as an upper bound for the limit of the drag-decreasing regime.

IV. LIMIT TO DRAG REDUCTION BY PERMEABLE COATINGS

In Sec. II we analyzed the drag reduction for substrates of vanishing permeability. For these
substrates, the slip lengths can be estimated as a function of the permeability, resulting in Eq. (16),
which connects DR with the properties of a particular permeable substrate. Within the limits of the
vanishingly small assumption, Eq. (16) denotes an ever-increasing DR with

√
K+

x . This result is
consistent with numerical experiments on walls with anisotropic slip lengths [3,28,35]. However,
this behavior will eventually fail for large permeabilities, once the assumptions in the model break
down or additional mechanisms set in. To bound the range of validity of the model, in Sec. III
we investigated the appearance of Kelvin-Helmholtz-like rollers, which are a common feature in
flows over porous materials [11,12]. The appearance of these rollers results in enhanced mixing,
increasing drag and posing a limitation to the aforementioned linear behavior. These two concepts
are depicted together in Fig. 7, which shows the initial linear behavior for low permeabilities as well
as the limit to drag reduction DRlim for high permeabilities, due to the Kelvin-Helmholtz instability.
Note that DRlim must only be considered as an upper limit estimate, since in the intermediate
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%DRlim

FIG. 8. Limit for the maximum drag reduction achievable as a function of the anisotropy ratio of the
permeable layer �xy . The dashed lines denote Eq. (26) for K̃+

KH = 5 and 10, and ξ = 1. The light gray shaded
region indicates the range for which Kelvin-Helmholtz rollers are expected to appear. The dark gray shaded
region indicates the range for which the Kelvin-Helmholtz rollers would be fully developed.

range of permeabilities beyond
√

K+
x � 1 we cannot rule out additional mechanisms that may

degrade drag further. For riblets, the analogous linear behavior roughly extends until the onset of the
Kelvin-Helmholtz mechanism [8], although this may not be the case for the present porous coatings,
as other degrading phenomena could appear before reaching K̃+

KH.
Section II shows that in order to obtain high drag reduction one would need to maximize the

difference
√

K+
x >

√
K+

z , while in order to delay the appearance of the drag degrading spanwise
rollers the product of permeabilities needs to stay below a threshold

√
K+

x K+
y < K̃+

KH , as shown in
Sec. III. A high value of ξ , corresponding to substrates with sparse internal structure, is also desirable,
noticing that previous research appears to agree that ξ tends to 1 for very sparse porous matrices
[40]. These results can be combined to obtain an estimate for the limit to drag reduction produced
by different substrates. Let us consider a permeable material with a preferential permeability K+

x >

K+
y = K+

z . The resulting anisotropy ratio �xy = √
Kx/Ky = √

Kx/Kz can be used in Eqs. (16) and
(25) to obtain an expression for the order of magnitude of the upper limit for drag reduction

DRlim ≈ 0.05ξ (1 − �xy
−1)

√
�xyK̃

+
KH. (26)

Figure 8 portrays an example of the resulting �xy-DR curves for both K̃+
KH = 5 and 10, in the limit

of ξ = 1. The region enclosed by the two curves represents the range for which Kelvin-Helmholtz
rollers can be expected to appear and delimits the range of realizable values for DR. For an anisotropy
ratio of order �xy ≈ 5–10 the maximum drag reduction achievable would be below 20–30 %. Note,
however, that for substrates that impede diffusion the drag reduction capability can be substantially
smaller. For the substrate of [23], for instance, ξ ≈ 0.25, which would yield a drag reduction of no
more than 5–7 %. Thus, we can only estimate that DRlim = O(10%) with an anisotropy of order
�xy ≈ 5–10.

V. CONCLUSION

In the present work we have proposed a simplified model to estimate the drag reduction properties
of anisotropically permeable coatings. For small permeabilities, permeable substrates can potentially
reduce skin friction if the surface obstructs more the spanwise than the streamwise flow, as riblets
and some other drag reducing surfaces do. Using simplified models, a relationship between drag
reduction, slip length at the interface, and the properties of the porous material is established.
This results in the drag reduction being approximately proportional to the difference between the
streamwise and spanwise permeabilities, provided that the coating is sufficiently deep, h+ �

√
K+

x >√
K+

z .
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We have also investigated a limit to the drag-reducing capabilities of these surfaces, given
by the triggering of Kelvin-Helmholtz-like rollers over the surface. These are common features
of turbulent flows over permeable substrates and other complex surfaces and are responsible for
increased momentum transfer that degrades drag. Their appearance will limit the drag reduction
performance, which, in the absence of degrading mechanisms, would continuously improve as the
permeability of the surface, measured in wall units, increases. This can be used to set an upper
bound for the performance of the surfaces under consideration. A model derived from inviscid
linear stability analysis indicates that the critical parameters for the onset of rollers scale in viscous
units. The appearance of rollers is estimated to trigger for

√
K+

x K+
y � K̃+

KH ≈ 5–10. This implies
that the anisotropically permeable substrates considered could yield drag reductions of O(10%),
for anisotropy ratios of

√
K+

x /K+
y =

√
K+

x /K+
z ≈ 5–10. This preliminary figure is promising, but

requires further study to delimit more precisely the potential of these surfaces.
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