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Abstract Algal-bacterial co-cultures, rather than cultures of
algae alone, are regarded as having the potential to enhance
productivity and stability in industrial algal cultivation. As
with other inocula in biotechnology, to avoid loss of produc-
tion strains, it is important to develop preservation methods
for the long-term storage of these cultures, and one of the most
commonly used approaches is cryopreservation. However,
whilst there are many reports of cryopreserved xenic algal
cultures, little work has been reported on the intentional pres-
ervation of both algae and beneficial bacteria in xenic cultures.
Instead, studies have focused on the development of methods
to conserve the algal strain(s) present, or to avoid overgrowth
of bacteria in xenic isolates during the post-thaw recovery
phase. Here, we have established a co-cryopreservation meth-
od for the long-term storage of both partners in a unialgal-
bacterial co-culture. This is an artificial model mutualism be-
tween the alga Lobomonas rostrata and the bacterium
Mesorhizobium loti, which provides vitamin B,
(cobalamin) to the alga in return for photosynthate. Using a
Planer Kryo 360 controlled-rate cooler, post-thaw viability
(PTV) values of 72% were obtained for the co-culture, com-
pared to 91% for the axenic alga. The cultures were success-
fully revived after 6 months storage in liquid nitrogen, and
continued to exhibit mutualism. Furthermore, the alga could
be cryopreserved with non-symbiotic bacteria, without bacte-
rial overgrowth occurring. It was also possible to use less

< Alison G. Smith
as25@cam.ac.uk

Department of Plant Sciences, University of Cambridge,
Cambridge CB2 3EA, UK

Scottish Association for Marine Science, Scottish Marine Institute,
Oban PA37 1QA, UK

Published online: 27 September 2017

controllable passive freezer chambers to cryopreserve the co-
cultures, although the PTV was lower. Finally, we demonstrat-
ed that an optimised cryopreservation method may be
used to prevent the overgrowth potential of non-symbi-
otic, adventitious bacteria in both axenic and co-cultures
of L. rostrata after thawing.
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Introduction

Microbial consortia are ubiquitous across nature and are
now being utilised in a wide variety of biotechnological
applications, such as wastewater treatment (Unnithan
et al. 2013). Consortia may be more productive than axe-
nic cultures, due to effects such as resource-use efficiency
and over-yielding (in which a community as a whole pro-
duces a greater yield than any single species in the com-
munity). Microbial consortia are successfully utilised in
the hydrolytic and methanogenic bacterial communities
of anaerobic digestion (Grosskopf and Soyer 2014), food
production (Herve-Jimenez et al. 2009) and microbial fuel
cells (Nishio et al. 2013), amongst other applications.
Algal-bacterial consortia are being considered for applica-
tion in advanced biorefineries, aquaculture and for envi-
ronmental mitigation (Ramanan et al. 2016).

Algae possess great potential for industrial biotechnology
as a result of their simple cultivation, minimal growth require-
ments and capability to be produced on non-arable land
(Greenwell et al. 2010). However, mass microalgal culture
remains a relatively expensive, energetic process and commer-
cial success has largely been restricted to a few taxa for the
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production of high-value products (Varshney et al. 2015).
High volume, low-value products, such as biofuels, have so
far failed to be commercially viable, due in part to productivity
losses at large scale by contamination of algal cultures by
adventitious organisms, such as other algae, bacteria, fungi
and zooplankton. Contamination is virtually impossible to
avoid even in closed photobioreactors (Day et al. 2012). The
fast growth rates of bacteria, in comparison to microalgae, and
the abundance of nutrients in the culture medium, provides an
ideal environment for bacterial proliferation (Sue et al. 2011).
It is recognised that the contamination of algal cultures by
bacterial pathogens is a significant contributor to the restricted
growth of commercial-scale microalgal biotechnology for
low-value products (Smith and Crews 2014). However, the
presence of bacteria in algal cultures can be beneficial: mutu-
alistic bacteria are extremely important to algal ecology and
have been demonstrated to provide algae with vitamins (Croft
et al. 2005; Paerl et al. 2015), iron (Amin et al. 2009) and
phytohormones (Amin et al. 2015). This has led to the pro-
posal that algal-bacterial co-cultures may be a mechanism to
enhance the productivity of algal cultures, whilst reducing the
likelihood of culture crash by adventitious or extraneous con-
taminating bacteria (Shurin et al. 2013; Kouzuma and
Watanabe 2015).

In order to ensure the sustainability of production and the
stability of algal-bacterial consortia, or microbial consortia
more generally, it is necessary to develop preservation
methods for their long-term storage. It is vital that biological
inocula maintain genetic, phenotypic and functional stability
so that biotechnological processes may be reproducible and
consistent (Stacey and Day 2014). Whilst serial sub-culture is
often the standard method used for algae (Harding et al. 2004),
it may be unsuitable for the long-term storage of cultures, as
genotypic and phenotypic drift can occur, with the potential
loss of important characteristics of the strain (Day et al. 2005).
Furthermore, culture maintenance by serial sub-culture can
also result in contamination by adventitious bacteria and other
microorganisms due to the increased likelihood of human er-
ror associated with frequent handling. For many microorgan-
isms used in biotechnological applications, master stock cul-
tures are stored as lyophilised (freeze-dried) or cryopreserved
samples (Stacey and Day 2014). Unfortunately, lyophilisation
of eukaryotic microalgae has proved largely unsuccessful,
with little or no survival for most species (Day and Brand
2005). In contrast, cryopreservation (storage at an ultra-low
temperature, between —80 and —196 °C) is a viable option for
many algal taxa (Taylor and Fletcher 1998; Day and Brand
2005). Whilst the majority of methodology development has
been performed on axenic cultures, many non-axenic taxa
have also been successfully cryopreserved and examples can
be seen on the websites of the major algal culture collections
including CCAP (Culture Collection of Algae and Protozoa,
www.ccap.ac.uk) and NCMA (National Center for Marine
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Algae and Microbiota, ncma.bigelow.org). Nonetheless, with
the exception of an environmental consortium of mixed algae
and bacteria, employed for bioremediation of a diluted
effluent stream from an anaerobic digestion plant (Silkina
et al. 2017), there is no report to date of a purposeful cryo-
preservation of a defined algal-bacterial co-culture.

In this study, we investigated whether a co-culture compris-
ing the chlorophyte alga Lobomonas rostrata and the rhizobial
bacterium Mesorhizobium loti could be successfully cryopre-
served. This artificial system, first described by Kazamia et al.
(2012), was set up as a model to study alga-bacterial mutual-
ism at the molecular level, and is based on the fact that
L. rostrata is dependent for growth on a supply of cobalamin
(vitamin Bj,), which can be provided by M. loti in exchange
for photosynthate. The interaction is characterised by a stable
algal-bacterial ratio of about 30 M. loti cells per L. rostrata
cell, and is highly regulated, with each partner’s growth de-
pendent on that of the other species (Grant et al. 2014). We
also determined whether L. rostrata could be cryopreserved
alongside non-symbiotic bacteria without the occurrence of
bacterial overgrowth upon thawing. Finally, a comparison of
the practicality and applicability of standard equipment for the
cryopreservation of unialgal-bacterial co-cultures was
performed.

Methods
Cultivation methods

Axenic Lobomonas rostrata SAG 451 was cultured in auto-
trophic TP+ medium supplemented with vitamin B, in the
form of cyanocobalamin at a concentration of 100 ng L™" as
described by Kazamia et al. (2012). Cultures were maintained
at 25 °C with 120-rpm shaking and illuminated by cool white
fluorescent lamps with a photon flux density of 100 pmol
photons m ' 5! in a 16:8 h light-dark regime. Stock cultures
were maintained by transferring 1 mL of dense culture into
25 mL of fresh TP+ (+B;,) once every 4 weeks. Axenicity of
cultures was assessed by visual inspection of cultures grown
on plates, prepared by serial dilution of 1 mL of culture on LB
and TY agar plates following incubation for 3 days at 28 °C
(Ridley 2016).

The sequenced strain of M. loti (MAFF303099) ( Kaneko
et al. 2000) was cultured in TY broth (tryptone 5 g L yeast
extract 3 g L', CaCl,.2H,0 0.875 g L") at 28 °C for 4 days.
Mesorhizobium loti pre-culture aliquots (1 mL) were centri-
fuged and the biomass pellet was washed twice in sterile 1.5%
NaCl solution to remove residual medium, before resuspen-
sion in 1 mL of the NaCl solution. Aliquots (1 mL) of dense
L. rostrata culture were washed by centrifugation and resus-
pended in 1 mL sterile TP+ medium, and transferred into
25 mL of fresh TP+ without vitamin B, to which 5 uL of
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the washed and resuspended M. loti culture was added. Co-
cultures were maintained under the standard L. rostrata culti-
vation conditions for 7-10 days to allow the mutualism to
establish and the ratio of M. loti to L. rostrata to reach between
10:1 and 30:1, which was confirmed by assessing cell densi-
ties by using a Beckman Coulter Z2 cell counter (UK), fol-
lowing the method developed for this co-culture by Kazamia
et al. (2012). To produce artificially contaminated L. rostrata
cultures, two bacteria were used, Pseudomonas fluorescens
(MAFF76a) and Curtobacterium flaccumfaciens, both of
which were derived from non-axenic L. rostrata cultures
(Ridley 2016). An inoculum of 1 x 10° cells mL ™" of each
of these bacteria was transferred into L. rostrata and
L. rostrata + M. loti cultures to reach a final L. rostrata to
bacterial-contaminant ratio of 1:1. The L. rostrata / bacterial
mix was then cryopreserved.

To test preservation of the mutualistic co-culture, thawed
samples of cultures were used to inoculate TP+ medium and
grown for several days under standard conditions. Cell counts
of L. rostrata were determined with a Coulter counter, and
those for M. loti by colony-forming units after plating serial
dilutions on TY agar plates.

Cryopreservation protocol

The majority of experiments performed in this study used a
Planer Kryo 360 controlled-rate cooler (Planer ple, UK), to
allow the precise control of parameters required to optimise
the protocol. Samples with known numbers of algal cells from
cultures of L. rostrata or L. rostrata + M. loti were pretreated
before freezing by dilution 1:1 into TP+ medium (+B;, or
—B,, respectively) containing different cryoprotectants/
cryoprotective agents (CPA), namely dimethyl sulphoxide
(DMSO), methanol (MeOH) or glycerol, at 5 or 10% (v/v in
culture medium). After addition of the cryoprotectant, samples
were incubated at room temperature for 10 min. Aliquots
(1 mL) were then transferred to pre-labelled cryovials. A
two-step cryopreservation protocol based on that established
by Morris (1981), cooling at 1 °C minute ™' to —40 °C, with the
addition of automated ice-nucleation at —5 °C was employed.
After being held for 15 min at —40 °C, all samples were
plunged into liquid nitrogen. Non-treated samples were sim-
ply diluted 1:1 into culture medium without CPA, and then
frozen under identical conditions.

Comparative cryopreservation methods were performed
using a Mr. Frosty passive cooler from Nalgene (Thermo
Fisher Scientific Inc., USA) in place of the Planer Kryo 360
unit. The Mr. Frosty unit was prepared as per the manufac-
turers’ instructions, with the addition of 250 mL of isopropanol
in the reservoir adjacent to the chamber containing cryogenic
vials and was then placed in a refrigerator overnight to equili-
brate at approximately 4 °C. The samples were placed into the
Mr. Frosty unit and stored in a —80 °C freezer for 90 min to

provide a nominal cooling rate of —1 °C minute ' to —80 °C,
before plunging into liquid nitrogen. All samples were trans-
ferred to a cryostorage dewar for storage in liquid phase liquid
nitrogen for at least 1 week before thawing.

Thawing and recovery procedure

Cryopreserved samples and non-cryopreserved controls were
removed from liquid nitrogen and immediately placed into a
40 °C water bath until thawed. The exterior of the vials was then
surface sterilised with 70% ethanol to minimise the risk of ad-
ventitious contamination. The samples were aseptically re-
moved, followed by 10-fold dilution into sterile TP+ medium
(+/— By») to reduce final cryoprotectant concentration to < 0.5%.
To test whether light-affected post-thaw viability (PTV) of cryo-
preserved samples, cells were either analysed immediately or
incubated in the dark at 24 °C for 24 h prior to analysis.

Assessment of post-thaw viability of L. rostrata

Post-thaw viability (PTV) of L. rostrata was calculated as the
percentage of viable cells after cryopreservation versus the cell
counts of the samples before cryopreservation. The viability of
cells was assessed using the non-toxic fluorescent vital stain 6-
carboxyfluorescein succinimidyl ester (CFSE) (Thermo Fisher
Scientific Inc., USA), by addition of 0.4 pL of a 0.6 uM CFSE
stock to 1 mL of culture, either before cryopreservation or after
thawing a sample removed from liquid nitrogen. Samples were
analysed by examination under epifluorescence at 400x mag-
nification using mirror unit UMWSG2 (Olympus, Japan) and
filter set 41020 (Chroma Technology Corp, USA). An addition-
al confirmatory staining method using 3-amino-7-
dimethylamino-2-methylphenazine hydrochloride (neutral red)
from Sigma-Aldrich (USA) was used to assess cellular damage
and viability after cryopreservation. In viable algal cells, vacu-
oles are stained red, whilst non-viable cells lack this localisation
and display a yellow/orange cytosol (Zetsche and Meysman
2012). Cells were visualised on an Olympus BX51
epifluorescence microscope equipped with phase-contrast and
DIC optics. At least 50 algal cells were counted for each sam-
ple. Data were analysed using Student’s ¢ test or one-way
ANOVA using Microsoft Excel. A P value of < 0.05 was con-
sidered statistically significant. All error bars display standard
deviation from at least three replicate experimental runs.

Results

Cryopreservation of axenic L. rostrata and L.
rostrata + M. loti co-culture

We first tested the survival of axenic cultures of L. rostrata
and M. loti using different CPA, as shown in the left part of
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Fig. 1. Post-thaw viability was quantified by counting viable
cells stained using CFSE as described in the Methods, and
expressed as a percentage of cells originally cryopreserved.
For the samples with no CPA, the PTV was 11 + 3%. Whilst
the use of 5% glycerol as the CPA resulted in an increased
PTV (25 = 14%), this was not significant (P = 0.1). The use of
DMSO and MeOH as CPA all yielded higher PTV values than
the absence of CPA, or 5% glycerol. The most effective CPA
tested appeared to be 10% MeOH, resulting in a statistically
significant increase in PTV of 65 + 13% (P < 0.001).
However, this value was statistically indistinguishable from
5% DMSO or 5% MeOH (52 + 11% and 61 + 40%, respec-
tively). Previous cryopreservation studies have found that
PTV can be enhanced by a period of dark incubation after
thawing (Silkina et al. 2017). A 24-h dark incubation of axenic
L. rostrata cells increased PTV significantly using both 5%
(P =0.0005) and 10% MeOH (P = 0.01) as CPA (Fig. 2).

Validation of the efficacy of the protocol was carried out
with an additional vital stain using neutral red (Fig. 3).
Lobomonas rostrata cells that had not been frozen contained
multiple red-stained vacuoles indicative of viable cells (Fig.
3b). On subjecting cells to lethal cryo-stress by plunging
samples directly into liquid nitrogen, staining indicates that
the intracellular structures such as the cup-shaped chloroplast
visible in Fig. 3a, were disrupted with the neutral red stain
diffusely visible across the cell (Fig. 3c). In contrast, these
features are retained in cells that had been cryopreserved
using the standardised protocol (Fig. 3d).

After demonstrating successful cryopreservation of axenic
L. rostrata, the protocol was then tested on the L. rostrata +
M. loti co-culture. To ensure that cryoprotectant efficiency
was consistent between axenic L. rostrata and the co-
cultured algae and bacteria, the same CPAs were tested (Fig.
1, right-hand part). The optimal CPA was again found to be
10% MeOH (94 + 43%), resulting in a significant increase in

ONo CPA 05% Glycerol 05% DMSO

B10% DMSO B5% MeOH ©10% MeOH
160%
2 * % %
5 140%
3
< 120% -
- * %
‘S 100% A
Z .y * %k ok
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S 60% A
3
8 40%
-
2 20% -
o
0% T
L. rostrata L. rostrata + M. loti

Fig. 1 Effect of cryoprotective agents on post-thaw viability (PTV).
Cultures of L. rostrata (left) and L. rostrata + M. loti (right) were cryo-
preserved with different CPAs, then thawed and tested for viability by
CFSE staining. Values are mean of three samples + standard deviation of
the mean. Significance is marked by asterisks (*P < 0.05, **P < 0.01,
###P < 0.001)
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Fig.2 Effect of a dark incubation period on PTV. Cultures of L. rostrata
(left) and L. rostrata + M. loti (right) were cryopreserved in 5 or 10%
MeOH, and then either placed directly in the light after the removal from
liquid N,, or incubated in the dark for 24 h after thawing before illumi-
nation. PTV was assessed as previously. Values are mean of three samples
+ standard deviation of the mean. Significance is marked by asterisks,
where *P < 0.05, #**P < 0.01, ***P < 0.001

PTV compared to samples with no CPA (P < 0.001). There
were no significant differences in PTV between axenic
L. rostrata and the co-culture with M. loti. Again, a 24-h dark
incubation period enhanced PTV compared to samples imme-
diately transferred and incubated in the light (P = 0.004) as
shown in Fig. 2 (right-hand side). Using this protocol, final
post-thaw viability values of 91% (+ 15%) for axenic
L. rostrata and 72% (£ 16%) for L. rostrata in co-culture with
M. loti were obtained.

To determine if the mutualistic bacterium M. loti survived
the cryopreservation process, and to investigate the mainte-
nance and stability of the symbiotic interaction after long-
term storage in liquid nitrogen, cryopreserved co-cultures
were thawed after ~ 6 month storage in liquid nitrogen and
used to inoculate fresh TP+ medium. After 24-h dark incuba-
tion, cultures were placed in the light and, as shown in Fig. 4a,
L. rostrata cells survived and regrew successfully, in fact more
effectively than the axenic L. rostrata sample (light grey line).
Similarly, M. loti cells from the co-culture grew well over the
time course (Fig. 4b). Moreover, the co-culture medium
contained no supplementation of vitamin B, or a carbon
source, whereas it was necessary to supplement the medium
for the axenic cultures with vitamin B ,. This indicates that the
bacterium continued to supply this micronutrient to the alga,
confirming that the mutualistic interaction had persisted. A
further characteristic of this artificial co-culture is that there
is regulation of the numbers of bacterial and algal cells, at an
equilibrium ratio of ~ 10-30 to 1 (Kazamia et al. 2012; Grant
et al. 2014). For the specific experiment shown here, the co-
culture had an initial ratio of ~ 15 M. loti cells per L. rostrata
cell, which rose to 78 (£ 13) bacteria to algae 4 days after
thawing, before dropping back to the original level (Fig. 4c).
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Fig. 3 DIC microscopy of neutral red-stained L. rostrata cells. a
Unstained, untreated L. rostrata cell. b Control, non-cryoprotected,
non-cooled/frozen L. rostrata cell stained with neutral red. ¢ Non-viable
cell, post-thaw with damaged vacuolar membranes. d Viable neutral red-

Cryopreservation of xenic algal cultures containing
non-symbiotic bacteria

We also wanted to determine whether L. rostrata could be
effectively cryopreserved when non-mutualistic bacteria were
present, whilst avoiding bacterial overgrowth upon thawing,
and whether the presence of the mutualistic partner had any
impact on this. Two bacteria, which had previously contami-
nated cultures of L. rostrata grown under outdoor conditions
(Ridley 2016), were chosen as test species. Pseudomonas
fluorescens (MFAF76a) is a suspected pathogen of
L. rostrata, whilst Curtobacterium flaccumfaciens is a com-
mensal bacterium with no effect on L. rostrata growth (Ridley
2016). To simulate contamination, an inoculum of 1 X 10°
cells mL™" of each of these bacteria was added into cultures
of either L. rostrata or L. rostrata + M. loti at a final
L. rostrata to bacterial-contaminant ratio of 1:1. The
L. rostrata / bacterial mix was then cryopreserved using the
standardised protocol. After approximately 1 month storage
under liquid nitrogen, samples were thawed and used to inoc-
ulate cultures as described above. Measurement of cell num-
bers (Fig. 5) revealed an initial increase in the ratio of the
contaminating bacteria (P. fluorescens or C. flaccumfaciens)
to L. rostrata in both axenic L. rostrata and L. rostrata + M.
loti cultures in a similar pattern to that observed with M. loti
(Fig. 4c). However, 3 days post-thaw, all ratios had reduced to
be approximately equal to, or less than, pre-cryopreservation
levels and no bacterial overgrowth was observed.

Comparison of cooling rates

A comparison was made between the Kryo 360 controlled-
rate cooler method (used up to this point in the study) and a
passive freezing compartment, Mr. Frosty, to assess whether
this relatively low-tech approach could be employed for the
cryopreservation of the microbial consortia studied. Using the
Mr. Frosty passive cooler compartment was not found to have
a significant difference on the PTV of axenic L. rostrata cul-
tures, or on the L. rostrate + M. loti co-culture when compared

stained cells after cryopreservation employing n 5% MeOH as CPA,
followed by thawing and 24-h dark incubation. Scale bar is 10 um in
length. Cell size is not indicative of a change in viability

between the two different freezing methods (Fig. 6). However,
a significant reduction in PTV was observed for the
L. rostrata + M. loti co-culture (52.6 £ 8.6%) compared to
axenic L. rostrata (105.6 £ 23.1%) when using the Mr. Frosty
(P =0.001).

Discussion

Whilst there have been previous studies that have investigated
the implications of bacteria in the cryopreservation of algae
(Amaral et al. 2013), and have cryopreserved communities of
several different microbes (Kerckhof et al. 2014), to our
knowledge, this study is the first to have successfully cryopre-
served a mutualistic unialgal-bacterial co-culture with known
characteristics (Kazamia et al. 2012) including a stable algal/
bacteria ratio. A process of methodological refinement result-
ed in a highly efficient cryopreservation method that produced
high post-thaw viability for axenic L. rostrata and
L. rostrata + M. loti co-cultures. The optimal cryoprotectant
tested for both L. rostrata and L. rostrata + M. loti was deter-
mined to be MeOH, in accordance with previous studies that
identified MeOH as the more effective CPA for
Chlamydomonas reinhardtii than DMSO, which is a more
frequently employed cryoprotectant (Morris et al. 1979; Day
and Brand 2005). Omission of a CPA, or the use of glycerol,
was ineffective. The starting point for the development of this
protocol was a two-step protocol developed for C. reinhardtii,
which yielded PTV levels in our study of 72-91%, well above
the minimum PTV threshold of 60% previously recommend-
ed by Day and Fleck (2015) to ensure the successful preser-
vation of cultures. Moreover, the characteristics of the
L. rostrata + M. loti co-cultures were recovered, even after
6-month storage in liquid nitrogen. Firstly, the nutrient ex-
change that is the basis of the mutualism was maintained since
L. rostrata continued to grow without the need for vitamin B,
supplementation (Fig. 4a). Secondly, the ratio of L. rostrata
cells to M. loti cells in an actively growing co-culture is stable
at between 1:10 and 1:30 (Kazamia et al. 2012). In this study,
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Fig. 4 Regrowth of cultures after thawing from 6 months’ storage in
liquid nitrogen. a Growth over 7 days of axenic L. rostrata (light grey)
and L. rostrata + M. loti (dark grey) measured by cell counts in Coulter
counter. b Growth over 7 days of M. loti in L. rostrata + M. loti co-
culture, measured by CFUs. ¢ Ratio of numbers of M. loti: L. rostrata
cells. Values are mean of three samples + standard deviation of the mean

the ratio was found to increase immediately after thawing, but
decreased within expected values after several days (Fig. 4c).
No overgrowth by M. loti, i.e. no bacterial “bloom” that re-
sults in restriction of growth or death of the algae, was ob-
served, which suggests that co-cultures may be cryopreserved
for at least several months. In theory, such stability might be
maintained for decades, if not indefinitely (Grout 1995) and
previous studies have demonstrated that a range of algal spe-
cies remains stable after 20 years in cryostorage (Day et al.
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Fig. 5 Testing for overgrowth by contaminating bacteria. Cultures of a
L. rostrata, or b L. rostrata + M. loti were inoculated with either
P, fluorescens, or C. flaccumfaciens, then cryopreserved and thawed as
previously detailed using 5% MeOH as CPA and 24-h dark treatment.
The number of contaminating bacteria was determined, and this is plotted
as the ratio to L. rostrata cells. “Pre-cryo” is a control ratio calculated
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+ standard deviation of the mean
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or Mr. Frosty passive cooler, then thawed with 24-h dark treatment. PTV
was assessed by CFSE staining. Values are mean of three samples +
standard deviation of the mean. Significance is marked by asterisks,
where *P < 0.05, #**P < 0.01, ***P < 0.001

1997). Additionally, we have demonstrated that algac may be
cryopreserved, even with non-symbiotic bacteria, without the
occurrence of bacterial overgrowth (Fig. 5). The issue of bac-
terial overgrowth in thawed algal cultures is a major concermn
in Biological Resource Centres (BRCs), as lysis of damaged
cells releases additional bio-available nutrients into the recov-
ery medium, which can stimulate a bacterial “bloom™ and
overgrowth of the algal culture. Heesch et al. (2012) deter-
mined that a minimum algal PTV of 25-50% was required
to ensure rapid recovery of the macroalga Ectocarpus, and
they included a wash step in the post-thaw process to remove
the cryoprotectant and any carbon released from lysed cells.
This approach has not been widely applied to microalgae as a
centrifugation step is required, and this may result in addition-
al damage to already compromised cells (Fleck 1998). In the-
ory, antibiotics could be incorporated into the recovery medi-
um, but in the case of CCAP this has not been routinely ap-
plied due to concerns of disrupting potential positive unialgal-
bacterial interactions.

The enhanced PTV observed after a period of incubation in
the dark following the thawing of cultures may be related to
recovery from cryo-induced damage associated with the pho-
tosynthetic apparatus. Previous studies suggest that the inclu-
sion of a short incubation period in the dark immediately after
thawing cryopreserved cells could increase PTV levels (Day
and Brand 2005) and further extension of this to at least 48 h
resulted in PTV increasing from < 1 to > 75% for the benthic
diatom Planothidium frequentissimum (Buhmann et al. 2013).
Cryo-induced damage to photosynthetic apparatus in algae
has also been observed in Euglena gracilis as a result of free

radical production, due to metabolic uncoupling (Fleck et al.
2000). For some highly stress-tolerant algae like
Haematococcus pluvialis, the presence of a coordinated anti-
oxidant respond to oxidative stress, which is lacking in
E. gracilis, may be the reason for its high cryo-tolerance
(Fleck et al. 2003).

Choice of cryoprotectant may also influence the growth of
bacteria post-thaw. The use of glycerol as the CPA to cryopre-
serve the marine red alga Gracilaria tikvahiae has been report-
ed to be associated with bacterial overgrowth and subsequent
culture contamination (van der Meer and Simpson 1984).
Amaral et al. (2013) explored the implications of cryoprotectant
choice on both efficacy of the cryopreservation procedure and
the implications to the proliferation of partner organisms in
non-axenic, mucilaginous algae and noted an increase in
bacterial overgrowth when methanol, versus DMSO, was
used as the CPA for a variety of microalgal species. However,
in the present study, the use of methanol as CPA was not
associated with bacterial overgrowth. Amaral et al. (2013) re-
covered, on average, slightly less than 50% of the cells after
cryopreservation using DMSO or MeOH as CPA, whilst in this
study, up to 71% PTV was achieved in the best case. Therefore,
it is possible that the high PTV we achieved prevented the
overgrowth of the commensal bacteria.

A final component of this study was to determine whether a
specialist controlled-rate cooler (Planer Kryo 360) was neces-
sary for the cryopreservation of unialgal-bacterial co-cultures,
or if a passive freezer compartment would be sufficient. No
significant difference was observed between the PTV of
L. rostrata and L. rostrata + M. loti using the controlled-rate
cooler. Similarly, no significant differences were detected for
axenic L. rostrata or the co-culture in the Planer compared to
the Mr. Frosty. However, a significant decrease in PTV was
identified for the co-culture when using the Mr. Frosty passive
freezer compartment, compared to axenic L. rostrata. This
result suggests that for axenic algal strains, the quick and easy
Mr. Frosty method may be sufficient, but for the cryopreser-
vation of unialgal-bacterial co-cultures, a controlled-rate cool-
er may be necessary. The reasons for such a difference are
unclear, but more precise control of the cooling rate and the
possibility of controlling the point at which ice-nucleation/
seeding occurs may be factors. It is possible that the two or-
ganisms differentially cryo-dehydrated in Mr. Frosty, due to
the length of the treatment and the fact that the controlled-rate
cooler did not go below —40 °C, whereas the Mr. Frosty was in
a —80 °C freezer. During this phase of the cryopreservation
process, cells are trapped in brine channels, which in sensitive
taxa results in both physical damage and osmotic stress (Day
and Fleck 2015). It is conceivable that the damage resulting
from these differential stresses somehow disrupted the mutu-
alism in the co-culture, perhaps triggering the observed over-
growth of M. loti upon the lysis of L. rostrata cells using this
cooling method.
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The techniques presented in this study demonstrate the
ability to cryopreserve a unialgal-bacterial co-culture. Using
a well-characterised model system, we demonstrated that the
mutualism, evidenced by the algal/bacteria ratio observed,
remained stable after the cryopreservation process and this
indicates the possibility of successfully cryopreserving more
complex microbial consortia. There are many examples of
algal-bacterial consortia in development that may be applied
to industrial biotechnology in the near future (Do Nascimento
et al. 2013; Kouzuma and Watanabe 2015; Cho et al. 2015),
which may benefit from such a technique. We believe that
cryopreservation is the most suitable method to ensure the
availability of stable and functional inocula for industrial bio-
technology, particularly if complex consortia are to be utilised.
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