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TELEMETRY CASE REPORT

Extensive use of mesopelagic waters 
by a Scalloped hammerhead shark (Sphyrna 
lewini) in the Red Sea
Julia L. Y. Spaet1,2*, Chi Hin Lam3, Camrin D. Braun4 and Michael L. Berumen1

Abstract 

Background:  Despite being frequently landed in fish markets along the Saudi Arabian Red Sea coast, information 
regarding fundamental biology of the Scalloped hammerhead shark (Sphyrna lewini) in this region is scarce. Satel-
lite telemetry studies can generate important data on life history, describe critical habitats, and ultimately redefine 
management strategies for sharks. To better understand the horizontal and vertical habitat use of S. lewini in the Red 
Sea and to aid with potential future development of zoning and management plans for key habitats, we deployed a 
pop-up satellite archival transmitting tag to track a single female specimen (240 cm total length) for a tracking period 
of 182 days.

Results:  The tag was physically recovered after a deployment period of 6 months, thus providing the complete 
archived dataset of more than one million depth and temperature records. Based on a reconstructed, most probable 
track, the shark travelled a circular distance of approximately 1000 km from the central Saudi Arabian Red Sea south-
eastward into Sudanese waters, returning to the tagging location toward the end of the tracking period. Mesope-
lagic excursions to depths between 650 and 971 m occurred on 174 of the 182 days of the tracking period. Intervals 
between such excursions were characterized by constant oscillatory diving in the upper 100 m of the water column.

Conclusions:  This study provides evidence that mesopelagic habitats might be more commonly used by S. lewini 
than previously suggested. We identified deep diving behavior throughout the 24-h cycle over the entire 6-month 
tracking period. In addition to expected nightly vertical habitat use, the shark exhibited frequent mesopelagic excur-
sions during daytime. Deep diving throughout the diel cycle has not been reported before and, while dive functional-
ity remains unconfirmed, our study suggests that mesopelagic excursions may represent foraging events within and 
below deep scattering layers. Additional research aimed at resolving potential ecological, physiological and behav-
ioral mechanisms underpinning vertical movement patterns of S. lewini will help to determine if the single individual 
reported here is representative of S. lewini populations in the Red Sea.

Keywords:  Archival tag, Deep diving, Elasmobranch, Indian Ocean, Migration, Satellite telemetry, Saudi Arabia, 
Swimming speed, Sudan, Vertical migration
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Background
A better understanding of habitat use, the temporal and 
spatial scales of movements, and the utilization of key 
sites by animals are of vital importance to biologists and 
conservationists in virtually all ecological systems [1]. 

Yet, in marine ecosystems, such information can be dif-
ficult to acquire. Horizontal and vertical movements of 
animals across a variety of environments can be defined 
via satellite telemetry (see [2] for a review). Studies 
employing this tool have generated important data on 
life history, described critical habitats, and ultimately 
redefined management strategies for a large range of spe-
cies, including sharks, in many ocean systems around 
the world (see [3] for a review). In the Red Sea, satellite 
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telemetry studies have so far focused on Whale sharks 
(Rhincodon typus) [4] and Manta rays (Manta alfredi) [5, 
6]. Other accounts of movements in elasmobranch spe-
cies in this ocean basin are limited to an acoustic tracking 
study on Silky sharks (Carcharhinus falciformis) [7].

The scalloped hammerhead shark (Sphyrna lewini) 
is a slow-growing requiem shark with a circumglobal 
distribution, occurring in warm temperate and tropi-
cal seas. Juveniles of this species inhabit coastal waters, 
while adults are found in groups or as solitary individu-
als further offshore [8, 9]. For the Indian Ocean, the spe-
cies’ maximum observed total length (TL) was reported 
as 316.8  cm and males and females in this region have 
been observed to reach maturity between 180–189.9 
and 220–240  cm TL, respectively [10]. Adult S. lewini 
are pelagic apex predators (trophic level = 4.1 [11]) and 
feed opportunistically on a diet consisting of a wide vari-
ety of teleosts, cephalopods, crustaceans, and rays [12, 
13]. Although S. lewini exhibit high fecundity compared 
to other shark species (14–41 pups [10]), resilience to 
exploitation is low due to the specific evolutionary and 
ecological traits and behaviors developed by sphyrnids 
[14], including late age at maturity (10–30  years [15]). 
Based on International Union for Conservation of Nature 
(IUCN) Red List criteria, S. lewini is globally listed as 
Endangered [15].

Despite legal protection, S. lewini is among the most 
landed shark species along the Saudi Arabian Red Sea 
coast [16]. Furthermore, S. lewini represents over 3% of 
all species traded in the Arabian Seas region [17]. At the 
same time, S. lewini populations in the western Indian 
Ocean appear fragmented with limited dispersal between 
the Arabian Seas region and other Indian Ocean regions 
[18]; yet, stock assessments and species-specific stud-
ies are missing in the area [19, 20]. Gathering ecologi-
cal information of movement data is a critical first step 
toward appropriate management strategies of shark spe-
cies, and several studies have examined movements of 
S. lewini in different ocean systems (e.g., [21–27]). This 
species is known to conduct offshore migrations and 
to inhabit a highly expanded vertical niche in the open 
ocean, tolerating large fluctuations in depth, temperature, 
and extremely low levels of dissolved oxygen [22, 23, 28]. 
Although several studies have investigated vertical distri-
butions of S. lewini, the tracking duration in these stud-
ies was comparatively short and data resolution coarse 
[e.g., 21, 28]. The complex nature of vertical movements 
is hence still not well understood and might represent a 
range of behaviors such as foraging, thermoregulation, 
energetics, and/or reproduction [29].

To better understand the horizontal and vertical habi-
tat use of this endangered predator in the Red Sea, and 
to aid with potential future development of zoning and 

management plans for key habitats, we used a MiniPAT 
tag (pop-up satellite archival transmitting tag) to track a 
single S. lewini for a period of 182 days and were able to 
describe migration patterns and fine-scale vertical move-
ments over seasonal scales (April–November).

Results
On April 25, 2012, one MiniPAT tag was deployed on 
a female S. lewini measuring 240  cm (TL) at the west-
ern end of Sh’ib Nazar reef (N22°19.089, E038°51.380) 
(Fig. 1). The shark was caught approximately 50 m off the 
outer reef wall in 60 m of depth. Based on previous stud-
ies in the Indian Ocean region, a body length of 240 cm 
indicates that the tagged individual was likely mature or 
nearing maturity [10].

The tag initiated pop-off and started transmitting on 
October 24, 2012, <1 km (N22º19.228, E038°51.432) from 
the deployment site (Fig. 1). It was physically recovered 
on October 28, thus providing the complete archived 
dataset. The archived data contained >1.04-million time 
series data points for recorded depth, temperature, and 
light levels at 15-s intervals over the deployment period.

Horizontal and vertical movements
Based on the most probable track, the shark underwent a 
cyclical migration, approximately 1000 km in length (cir-
cle distance between the tagging location and the furthest 
recorded position). After its release on April 25, 2012, the 
tagged animal travelled southwestward for approximately 
25 days, reaching the central rift of the Red Sea on May 
19, approximately 300  km from the tagging location. It 
spent the following 97 days in coastal and offshore waters 
of the central and southern Sudanese Red Sea, before 
once more crossing the central Red Sea rift around Sep-
tember 10 moving northeast toward the Saudi Arabian 
Red Sea coast.

The next reliable position was recorded on October 
7, 100 km south of the tagging location, from where the 
shark moved northward in coastal waters, before reach-
ing the original tagging location approximately 15  days 
later (Fig. 1).

The tagged S. lewini occupied depths between 0 and 
971 m (Fig. 2a; Additional file 1) with a mean (±SD) of 
155 ± 230 m. It spent >70% of its time in the upper 100 m 
(Fig. 2a), yet relatively little time in surface waters (<2.5% 
of time in the upper 10 m; data not shown). Mean day-
time and nighttime depths were 161 and 147 m, respec-
tively, indicating relatively little difference in diel depth 
occupation. Similar results were found for diel tempera-
ture differences (means 25.5 and 25.9  °C for day and 
night, respectively). Temperatures ranged from 21.5 to 
32.7  °C, with a mean of 25.7 ±  2.6  °C. The majority of 
temperature records fell between 25 and 29  °C, but the 
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shark also spent nearly 23 and 17% of its time in 21–22 °C 
during day and night, respectively, generating a bimodal 
temperature use signature (Fig. 2b).

Excursions to mesopelagic depths interspersed with 
constant vertical movement (i.e., oscillatory diving) in 
the upper 100 m of the water column occurred through-
out the entire deployment. Deep dives (beyond 850  m) 
mainly took place between 7 p.m. and 3 a.m., while shal-
lower dives (<500 m) occurred more scattered through-
out the diel cycle (Fig.  3; Additional file  1). As the 
deployment progressed, the frequency of mesopelagic 
excursions to depth >850 m increased (Fig. 4), first dur-
ing nighttime (as reflected by a high coefficient of vari-
ation) and, starting in July, also during daytime, leading 
to a marked increase in time spent at greater depths 
over the deployment period (from 5% in May to 10% in 
October).

Depth profiles
Swimming depths generally followed one of three dis-
tinct patterns, differing by the amount of time spent at 
the deepest depth (Fig. 5). Vertical activities in the upper 
100  m of the water column were dominated by rapid 
repetitions of symmetrical ‘V’ dives, in which the shark 
ascended immediately after reaching the deepest depth 
(Fig.  5a; Additional file  1). Although, ‘V’ patterns were 
also observed to reach depths >100 m, this behavior was 
less frequent and tended to intermix with other patterns. 
The second identified pattern, ‘U’ dives, was character-
ized by descending and then remaining at a certain depth 
for as long as 2.5 h (Fig. 5b–d; Additional file 1). We also 
identified a third pattern, ‘Uv’ dives. This pattern is char-
acterized by extended bottom time, as seen in ‘U’ dives, 
but also shows one or several small vertical excursions 
during the ascents (Fig. 5b). The maximum depth reached 

Fig. 1  Reconstructed track based on daily records of light levels from April 25 to October 24, 2012. Green and red triangles denote the tagging and 
pop-up locations, respectively. Solid black line indicates missing positions between September 15 and October 7 due to poor geolocation around 
the equinox. Gray shading indicates confidence regions for position estimates
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Fig. 2  Percent time spent in given depth (a) and temperature (b) ranges for day (white) and night (black) periods as recorded by the PSAT tag. 
Percentages were calculated based on archival data from the recovered tag with depth and temperature values recorded every 15 s. Error bars 
represent ± 1 SE
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during the majority of ‘U’ and ‘Uv’ dives was within two 
particular depth strata, 670–675.5 and 850–885 m (Fig. 5; 
Additional file  1). The maximum vertical descent speed 
was 6.43  ms−1. Descent speed on dives was 1.6× faster 
on average than ascent speed. Duration of dives within 
a shallower depth range (median depth down to 200 m) 
was proportionally shorter than dive duration for greater 
depths (median depths 400–800  m) to cover the longer 
vertical distance.

Discussion
Although the movement ecology of S. lewini has received 
much attention in the Pacific [e.g., 9, 21–24, 27, 30, 31], 
data for this species from the Indian Ocean are rare [28]. 
This study represents the first record of PSAT technol-
ogy used to collect movement data for an S. lewini in the 
Indian Ocean and provides the longest high-resolution 

dataset of vertical movements of this species globally. 
While the low sample size in this study limits our capac-
ity to draw broader conclusions on a species-level, it 
is clear that PSAT technology has the potential to offer 
great insights into this species movement ecology in the 
Red Sea.

The elongated nature of the Red Sea in concert with 
the lack of significant oceanographic features (e.g., strong 
surface thermal gradients) poses considerable challenges 
in reconstructing horizontal movements in this ocean 
basin. Despite these difficulties, we were able to extract a 
most probable track of the tagged animal based on availa-
ble light-based geolocation data only. Although ETOPO2 
bathymetry data (www.ngdc.noaa.gov/mgg/global/
etopo2.html) are available for our study region, the qual-
ity is questionable. The data neither match regional 
admiralty charts, nor data obtained through recent 
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Fig. 3  Cumulative daily maximum depth of the tagged S. lewini binned by hour of day over the 182-day deployment period
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underwater glider operations. The latter indicate depths 
exceeding 1000  m much closer to shore than suggested 
by ETOPO2 data (Burton Jones pers. comm.). The lack of 
accurate bathymetric data limits our ability to assess the 
accuracy of our reconstructed track given what we learnt 
from the shark’s routine use of depths >670 m. Nonethe-
less, when ETOPO2 depth estimates were overlaid with 
our reconstructed track and the associated confidence 

regions, areas with depths >500 m were found in reason-
able proximity to the estimated shark’s daily positions 
(Fig. 1; Additional file 2).

The tagged animal conducted a cyclical migration to 
offshore habitats, similar to what has previously been 
reported for a conspecific in the Gulf of California [22]. 
Possible functions underlying such cyclical migra-
tory behavior could be related to a number of factors, 
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Fig. 4  Mean hourly depth occupation of the tagged S. lewini by month (black) and associated coefficient of variation (blue) over the course of a 
local day. Gray shading indicates nighttime
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including social (e.g., sexual segregation and schooling), 
reproductive, or feeding activities [32, 33]. S. lewini is 
known to seasonally aggregate at offshore islands or sea-
mounts in schools of up to 225 individuals, which are 
generally dominated by females [8]. Such schools have 
been observed at offshore reefs in Sudan, the majority of 
which lie within our tracking area [34, 35]. Furthermore, 
schools of 8–12 individuals have been observed in deeper 
waters (45–60  m) at offshore reefs in the northern and 
southern Saudi Arabian Red Sea (T.S. Habis and Dream 

Divers Jeddah, pers. comm.). The observed circular 
migration of the tagged individual might thus form the 
basis of temporal schooling behavior along one or both 
coasts of the Red Sea and suggest connectivity among 
aggregation areas.

While the tagged animal spent most of its time in the 
epipelagic zone, deep vertical movements, including 
mesopelagic excursions, occurred during day and night 
throughout the entire migratory circuit and increased 
over the deployment period (Fig.  4). Dives to >850  m 

Fig. 5  Representative dive profiles of the tagged S. lewini. Depth and temperature profiles recorded at 15-s intervals during 4 days (a–d). Dashed 
lines indicate times of local sunrise and sunset. Dotted lines indicate depths of 650 and 850 m, respectively
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occurred more frequently during the night, while dives 
between 650 and 700  m were common during the day, 
typically occurring 1–3  h after sunrise (Fig.  3; Addi-
tional file 1). Overall, there was no significant difference 
between the mean depths of the shark throughout the 
diel cycle. This result contrasts with those of previous 
studies where deep diving in S. lewini was reported to 
occur almost exclusively during nighttime and/or even-
ing twilight [21, 22, 25, 30]. Changes in diving behavior 
of other shark species have previously been attributed to 
stress reactions in response to the capture and handling 
process [e.g., 36]. Sphyrnids in particular were shown to 
be inherently vulnerable to capture stress [e.g., 37, 38]. 
However, our tagging operation (from the shark being 
hooked to its’ release) took less than 6 min; we thus con-
sider it unlikely that the observed increase in mesopelagic 
excursions 2 months into the tracking period was related 
to a possible capture trauma. Furthermore, it has been 
hypothesized that alterations in diving behavior might be 
related to predator avoidance [39]. In the central Red Sea, 
however, the abundance of marine predators that could 
pose a threat to a shark the size of our study animal is 
extremely low [16, 20, 34]. In addition, one would expect 
vertical movements to be fast and unpredictable, if they 
were a response to predator encounters [39]. Yet, the 
observed diving behavior was characterized by constant 
and uniform oscillatory patterns, which are unlikely to be 
the result of predator avoidance.

Instead, the functional role of the observed dive pat-
terns is likely attributable to a combination of various 
ecological, environmental, and physiological drivers, e.g., 
behavioral thermoregulation, navigation, energy conser-
vation, or foraging [e.g., 40–43]. As previously suggested 
for S. lewini, constant oscillatory ‘V’ diving could serve 
navigational purposes based on the increase in inten-
sity of local magnetic gradients with depth [30]. Based 
on the collected data alone and considering the lack of 
data on bottom topography, we are unable to determine 
possible point-to-point movements or directionality of 
the swimming behavior, which would be suggestive of 
a navigational function of the shark’s oscillatory diving 
[30]. Clearly, more experimental research on orientation 
behavior is required to uncover the underlying mecha-
nisms governing shark navigation behavior and to find 
ways to identify such behaviors based on tracking data 
alone.

‘V’ dives observed here were characterized by a ‘fast 
descent, slow ascent’ dive profile, which in other shark 
species has been postulated to be motivated by prey 
searching behavior [44–47]. In air-breathing marine 
vertebrates, ‘U’ dives, including a bottom phase without 
wiggles, and ‘Uv’ dives, characterized by one or several 
wiggles during the bottom phase or during the ascent, 

have been associated with feeding events [48, 49]. Dive 
profiles and depth occupancy of the individual tagged 
in our study could hence indicate that dives in the 650–
700  m layer and below 850  m may represent short and 
longer feeding events, respectively (Additional file 1). The 
observed preference of the shark for the 650–700 and 
>850 m depth layers may reflect foraging on mesopelagic 
fish, which are believed to be the main component of 
the deepest of four scattering layers at 600–800 m in the 
Red Sea [50]. Echosounder data collected in the broader 
tracking area suggest that squids, which can make up over 
49% of S. lewini’s diet [51], form patches during the day 
in and below the deepest scattering layer and leave the 
deep waters at night (Stein Kaartvedt, unpublished data). 
The same data also suggest that prey density in mesope-
lagic depths is generally extremely low during nighttime, 
which might explain the observed increase in daytime 
vertical habitat use over the tracking period. Nightly 
mesopelagic excursions could be related to foraging on 
deep benthos based on previous observations on S. lewini 
hunting at night for benthic prey on or in sediments, 
probably using their bioelectric sensory system and other 
senses [52]. Dietary studies of S. lewini reported high 
proportions of mesopelagic prey items, such as teleosts, 
cephalopods, and crustaceans in gut content analyses, 
further pointing toward mesopelagic feeding behavior in 
this species [32, 52–54]. Potential daytime feeding of the 
focal shark at mesopelagic depths contrasts the findings 
of a number of previous studies suggesting that feeding in 
S. lewini occurs exclusively at night, while daytime serves 
as a resting phase, which is spent refuging in shallow 
waters close to seamounts or islands [9, 22, 32, 51–55]. 
While data from a single individual cannot be extrapo-
lated to the species level, the repetitive nature of con-
tinuous vertical movements performed by this individual 
over the entire 182-day tracking period suggests that for-
aging may be continuous throughout day and night.

Intervals between deep dives generally lasted around 
30 min and were characterized by oscillatory diving in the 
upper 100 m of the water column. One of the most widely 
proposed functions for oscillatory diving has been ther-
moregulation, with shallow depth intervals between deep 
diving events serving as a ‘warming period’ to recover 
from heat loss prior to the next dive into colder depths 
[25, 32, 44]. The water column in the Red Sea, however, is 
only poorly stratified [56, 57]. The minimum temperature 
experienced by the tagged individual during deep dives 
was relatively high compared to other regions (21.5 vs. 5.8 
[25], 4.8 [23], 5.9 °C [28]), and the experienced maximum 
change in temperature was relatively low (depending on 
the season between 5 and 10 vs. 24.5 [25], 23  °C [23]), 
making it less likely that surface warming-intervals would 
be necessary to maximize time at depth. In addition, not 
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all deep dives were interrupted by shallow water intervals, 
as would be expected if they were related to thermoreg-
ulatory behavior. Moreover, S. lewini are ectothermic 
fishes, lacking extensive retes for heat storage [40]. Other 
shark species have been shown to actively use shallow, 
warm waters to increase their core body temperature in 
order to optimize rates of digestion, growth, and gesta-
tion [58–60]. Juvenile S. lewini were found to have a Q10 
(the increase in the rate of biological functions caused by 
a 10 °C increase in temperature [61]) of 1.34 at 21–29 °C 
[62]. While extrapolating metabolic rate data from juve-
nile to adult sharks is problematic [63], it is expected that 
even in adults, movements between temperatures may 
result in changes in physiological rate functions. Every 
shallow water interval could hence indicate a preced-
ing successful feeding event. Missing ‘warming intervals’ 
between dives on the contrary could indicate an unsuc-
cessful hunting event during the preceding dive.

Conclusions
We present the first movement data for S. lewini in the 
Red Sea. Our results provide information on the vertical 
migrations of this species at hitherto unknown detail. We 
identified previously unreported continuous deep div-
ing behavior throughout the 24-h cycle over a tracking 
period of 182 days. The increased daytime vertical habitat 
use observed over the tracking period may suggest adap-
tations to foraging behavior. However, additional studies 
addressing diet composition of S. lewini in concert with 
the fine-scale distribution of prey species throughout the 
water column in the Red Sea are needed.

The observed site fidelity to the tagging location and 
the migration pattern across the Red Sea provide evi-
dence of complex spatial structure and dynamics that 
encompass both pelagic and heavily fished coastal envi-
ronments. Local-scale no-take MPAs may hence not be 
effective at protecting S. lewini populations on a regional 
scale, and species-specific protection strategies are 
warranted.

Methods
Study site
The shark was tagged at the western end of Sh’ib Nazar, 
a submerged reef platform located about 24  km off the 
coast of the fishing village Thuwal and ~80  km north of 
Jeddah in the Saudi Arabian Red Sea (Fig. 1). It is the larg-
est (~0.5 km2) and southernmost reef in a chain of barrier 
reefs arranged on a north–south axis. Sh’ib Nazar has a 
shallow (2–3 m deep) reef crest with a steep slope on its 
western (seaward-facing) side and southern tip. At a depth 
of about 20 m, the reef wall meets the sandy seabed, which 
slopes more gradually and reaches a depth of over 1000 m 
about 300 m away from the reef wall. On its eastern side, 

the reef slope is less steep and reaches the seabed at a 
shallower depth of about 10–15  m. The slope eventually 
reaches a depth of over 1000  m on the eastern side at a 
distance ranging from about 0.5 (near the south tip of the 
reef) to 3.2 km (further north) away from the reef.

Field techniques
Tagging was conducted on April 25, 2012. The shark 
was captured using a handline consisting of 85  m of 
nylon line (6 mm diameter), with an 18/0 non-offset cir-
cle hook attached to one end and baited with 200  g of 
Striped bonito (Sarda orientalis). As soon as the shark 
was hooked, a large float (45 cm diameter) was attached 
to the handline to provide buoyancy to the gear. Once 
brought alongside the vessel, the shark was measured for 
total length (TL) to the nearest cm and its sex visually 
determined by the absence of claspers (female). A small 
tissue sample was clipped from the left pectoral fin for 
genetic analysis [18]. One uniquely numbered external 
tag (FT-1 Dart Tag) was inserted in the basolateral dorsal 
musculature with a hollow canula (Floy Tag, Seattle, WA, 
USA). A MiniPAT tag (Wildlife Computers, Inc., WA, 
USA) was inserted into the musculature at the base of 
the dorsal fin with a handheld tagging lance. The tag was 
anchored with a plastic wilton anchor (Wildlife Comput-
ers, Inc., WA, USA) and trailed from 15  cm of 1.2-mm 
stainless steel wire-rope coated in heat shrink tubing. The 
hook was completely removed by cutting the barb and 
rotating the hook free immediately prior to release.

Tag details and programming
Pop-up satellite archival transmitting tags record time 
series of light levels, depth, and temperature during 
deployment and archive the data until the tag self-releases 
from the shark after a user-programmed amount of 
time. Once at the surface, it transmits summarized data 
to orbiting Argos satellites. MiniPAT tags are 12  cm in 
length, have a volume of 60 cm3, and weigh approximately 
50 g. The MiniPAT tag was programmed to release from 
the animal after 180 days, to record water depth (±0.5 m) 
and temperature (±0.05  °C) every 15  s for a period of 
182 days, and to summarize the data into 24-h temporal 
bins for satellite data transmission. Time-at-depth and 
time-at-temperature data were arranged in 12 strata.

Track reconstruction
Light-based geolocation was used to reconstruct a 
most probable track from the full-resolution light level 
and depth time series in the recovered tag. Light levels 
were first corrected as surface measurements follow-
ing a simple two-layer depth model [64], implemented 
in TrackIt [65]. Scatter plots and histograms of daily 
light levels were then visually inspected to identify a 
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single threshold (110 relative light units) for select-
ing times of sunrise and sunset. From these selected 
times, a draft track was calculated using GeoLight [66] 
and then refined by a state-space Kalman filter model, 
Kftrack [67]. The Kftrack model utilizes an underlying 
random walk movement model that describes the over-
all diffusion and advection for the entire track and pro-
vides error estimates in the form of confidence regions. 
The refined track, referred to as the most probable track, 
remained in the ocean for the entire deployment and 
thus required no further correction using bathymetry or 
sea surface temperature. Parameter estimates (see [67] 
for details) were as follows: u = 0.0025 nautical mile (nm) 
day−1, v = −0.0457  nm  day−1, D =  83.435  nm2 day−1, 
sy = 2.1488 degree, a0 = 0 degree, and b0 = −9.8247 day. 
Averaged diffusive speed for the entire track (0.11 ms−1, 
calculated from D) is within the range of horizontal 
speed (maximum = 0.83 ms−1) obtained from short-term 
acoustic tracking [30]. Light-based geolocation is least 
reliable during times around the equinoxes, when day 
length is the same for anywhere on Earth [65, 68, 69]. In 
our tagged shark, positions could not be estimated for a 
period in September. We did not attempt to interpolate 
positions for this period, given no subsequent analyses 
required georeferenced information.

Statistical analysis
Basic statistics were derived using base functions in R 
(version 3.3.2) [70]. To characterize changes in swim-
ming depth, depths were averaged hourly over the 24-h 
period for each month of the deployment. A coefficient 
of variation was also calculated that expressed the stand-
ard deviation in hourly depth as a percentage of the 
mean hourly depth. To aid analysis, a definition for a 
dive was arbitrarily defined, after visual examination of 
all swimming depths. A dive is defined to begin with the 
first instance that the shark descended below 100 m and 
to end with the first instance of ascending above 100 m. 
Swimming depths above 100 m were considered shallow 
activities.

Additional files

Additional file 1. Daily depth temperature profiles of the tagged S. lewini 
over 182 days at liberty. Depth and temperature profiles recorded at 15 s 
intervals from April 26th, 2012–October 22nd, 2012. Dashed lines indicate 
times of local sunrise and sunset. Dotted lines indicate depths of 650 and 
850 m, respectively.

Additional file 2. Reconstructed track based on daily records of light lev-
els from April 25th to October 24th, 2012. Green and red triangles denote 
the tagging and pop-up locations, respectively. Solid black line indicates 
missing positions between September 15th and October 7th due to 
poor geolocation around the equinox. Grey shading indicates confidence 
regions for position estimates. Bathymetry data based on ETOPO2.
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