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ABSTRACT 27 
 28 

Uncertainties are ubiquitous and unavoidable in process design and modeling while they can significantly 29 

affect safety, reliability, and economic decisions. The large number of uncertainties in complex chemical 30 

processes make the well-known Monte-Carlo and polynomial chaos approaches for uncertainty 31 

quantification computationally expensive and even infeasible. This study focused on the uncertainty 32 

quantification and sensitivity analysis of complex chemical processes with a large number of uncertainties. 33 

An efficient method was proposed using a compressed sensing technique to overcome the computational 34 

limitations for complex and large scale systems. In the proposed method, compressive sparse polynomial 35 

chaos surrogates were constructed and applied to quantify the uncertainties and reflect their propagation 36 

effect on process design. Rigorous case studies were provided by the interface between MATLABTM and 37 

Aspen HYSYSTM
 for a propylene glycol production process and lean dry gas processing plant. The proposed 38 

methodology was compared with traditional Monte-Carlo/Quasi Monte-Carlo sampling-based and standard 39 

polynomial chaos approaches to highlight its advantages in terms of computational efficiency. The proposed 40 

approach could mitigate the simulation costs significantly using an accurate, efficient-to-evaluate polynomial 41 

chaos that can be used in place of expensive simulations. In addition, the global sensitivity indices, which 42 

show the relative importance of uncertain inputs on the process output, could be derived analytically from 43 

the obtained polynomial chaos surrogate model. 44 

 45 
Keywords: Generalized polynomial chaos; Uncertainty quantification; Process uncertainty; Sensitivity 46 

analysis; Compressed sensing. 47 

  48 



 

3 
 

1. Introduction 49 

The presence of uncertainty is inevitable in the real-world implementation of engineering systems. The 50 

problems of process design under uncertainties have attracted considerable attention, especially regarding 51 

safety, reliability, and economic decisions (Abubakar et al., 2015). On the other hand, the design level needs 52 

to consider the uncertainty in process inputs, such as pressure, temperature, feed flow, pH, density, 53 

concentration, etc. (Arellano-Garcia and Wozny, 2009; Ostrovsky et al., 2012; Sun and Lou, 2008; Vasquez 54 

and Whiting, 2004). These uncertainties often have negative influences on the design accuracy. Hence, they 55 

need to be accounted for when constructing process models (Beck, 1987). Sensitivity analysis can then be 56 

used to identify key parameters that drive the uncertainty of process output predictions qualitatively or 57 

quantitatively (Saltelli et al., 2004a).  58 

 Most tools available for rigorous process design predict the performance without considering the 59 

uncertainties. Hence, it is essential to develop efficient tools for sensitivity analysis (SA) and uncertainty 60 

quantification (UQ). The probabilistic approach is a common framework for tracing the effects of uncertainty 61 

on the model output. Monte-Carlo (MC) and Quasi Monte-Carlo (QMC) methods are representative 62 

probabilistic approaches for the propagation of uncertainties in the model input to its output (Abubakar et al., 63 

2015; Binder, 1998; Caflisch, 1998; Coulibaly and Lécot, 1998; Kroese et al., 2011; Liu, 2008). The principle 64 

of MC/QMC methods is to generate an ensemble of random realizations from its uncertainty distribution, to 65 

evaluate the model for each element of a sample set, and estimate the relevant statistical properties, such as 66 

the mean, standard deviation, and quantile of the output. Despite the simplicity in their implementation, 67 

estimations of the mean converge with the inverse square root of the number of runs, making the MC - based 68 

approach computationally expensive and even infeasible for most complex chemical process problems. One 69 

approach to mitigating the combined simulation cost is to construct an accurate and efficient-to-evaluate 70 

surrogate model that can be used in place of expensive simulations (Celse et al., 2015). 71 

Recently, uncertainty analysis using a surrogate model, such as generalized polynomial chaos (gPC) 72 

expansion was examined for a range of applications, including modeling, control, robust optimal design, and 73 
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fault detection problems. The gPC method, which was first proposed by Wiener (1938), is a spectral 74 

representation of a random process by the orthonormal polynomials of random variables. Nagy and Braatz  75 

(2007) considered the gPC approach for uncertainty quantification and the robust design for a batch 76 

crystallization process. They reported that the gPC approach is more computationally efficient for a system 77 

with a moderate number of random inputs than MC/QMC methods. Duong and Lee (2012, 2014) considered 78 

the PID controller design for fractional order and integer order systems using the gPC method. Du et al. 79 

(2015) examined the fault detection problem by combining the maximum likelihood with the gPC framework. 80 

Duong et al. (2016) analyzed the problem of uncertainty quantification/sensitivity analysis of rigorous 81 

processes with a small number of random inputs using the standard polynomial chaos (PC) method. Xiu and 82 

Karniadakis (2002) further generalized the gPC for non-standard distributions through the Askey scheme.  83 

 When adequate smoothness conditions were provided, the gPC expansion for engineering purposes with 84 

a uniform and Gaussian distribution showed rapid convergence; in some cases, even exponential convergence 85 

was obtained (Ghanem and Spanos, 2003). In theory, there are two main computational schemes for building 86 

up a PC model: intrusive and non-intrusive. In the intrusive schemes, the gPC coefficients are obtained by a 87 

Galerkin scheme that leads to a system of coupled deterministic equations. Alternatively, a non-intrusive 88 

scheme allows the computation of a stochastic model using a set of (decoupled) calls to the existing 89 

deterministic model. A current limitation of the standard full non-intrusive gPC approach, where the 90 

coefficients are estimated using the tensor cubature, is that the number of model evaluations grows 91 

exponentially and may not applicable to systems with a large number of uncertainties. To address this 92 

problem, this paper describes a non-intrusive method that builds a sparse gPC expansion using the 93 

compressed sensing technique. Under the assumption that the model output prediction produces a sparse 94 

representation, the compressed sensing technique can reduce the computational cost compared to the classical 95 

full gPC (Blatman and Sudret, 2011). In addition, the limitation of classical full gPC to a system with a large 96 

number of uncertainties can be overcome to some extent using the compressed sensing method. Moreover, 97 

the Sobol′ sensitivity indices (Sobol′, 2001) can also be obtained directly from the gPC surrogate analytical 98 
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model (Crestaux et al., 2009; Haro Sandoval et al., 2012), which can in turn be used to detect the influential 99 

inputs in the propagation of process uncertainty.  100 

In this paper, the convergence of an algorithm for UQ and SA is first reported on an analytical function: 101 

the Ishigami function. The method is then illustrated using case studies of complex chemical processes, such 102 

as a propylene glycol production process and a lean dry gas processing plant. HYSYSTM was used for a 103 

rigorous process simulation. The results showed that the proposed compressive gPC-based method could 104 

reduce significantly the computational cost (simulation time) for UQ over traditional approaches, such as 105 

MC/QMC/gPC methods.  106 

 107 

2. Uncertainty quantification using compressive polynomial chaos 108 
 109 

Consider a steady-state process described by the following set of nonlinear equations: 110 

( )y = ξM                                                      (1) 111 

where 1 2( , ,..., )Nx x x=ξ  is a process input variable vector expressed by a random vector of mutually 112 

independent random components with probability density functions of ( ) :i i i Rr x +G ® ; and y denotes a 113 

process output (quantity of interest).  114 

The joint probability density of the random vector, ξ , is 
1

N

i
i
r

=

=Õρ , and the support of ξ  is 115 

1

N
N

i
i

R
=

º G ÎÕΓ . The uncertainties in the process inputs, ξ , are then propagated through the entire process, 116 

as shown in Fig.1. The set of one-dimensional orthonormal polynomials, 0{ ( ) }id
i i mf x = , can be defined in finite 117 

dimension space, iG , with respect to the weight, ( )i ir x . Based on a one-dimensional set of polynomials, an 118 

N-variate orthonormal set can be constructed with P total degrees in space, Γ , using the tensor product of 119 

the one-dimensional polynomials, the basis function of which satisfies the following: 120 

1 ,
( ) ( ) ( )

0 ,m n

m n
d

m n
=ì

F F = í ¹î
ò
Γ

ξ ξ ρ ξ ξ .                                      (2) 121 
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Consider a process output variable, y , with the statistics (e.g., mean, variance) of interest, the N-variate 122 

Pth order approximation of the response function can be constructed as follows: 123 

1

( ) ( ) ( );

( )!1
! !

M
P T
N i i

i
y f

N P N PM
N N P

=

= F =

+æ ö +
+ = =ç ÷

è ø

åξ ξ ψ ξF
 ,                                                                (3) 124 

where P is the order of polynomial chaos, and [ ]0( ),..., ( )M= F Fψ ξ ξ  is an assembly of the orthonormal 125 

multivariate polynomial, and { }1,..., Mf f=F  is a vector of the expansion coefficients. The coefficients of 126 

gPC expansion can be found by solving the least square minimization problem as follows: 127 

( )2argmin ( ) ( )Té ù= -ê úë û
E ψ ξ ξ

!
M

F
F F ,                                                         (4) 128 

where [ ]E  denotes the expectation operator. 129 

For a standard full gPC expansion with the quadrature technique, the solution of Eq. (4) can be 130 

approximated as Eq. (A.3). On the other hand, the number of simulations increases exponentially, making it 131 

unsuitable for a system with a large number of inputs. In other words, to solve the problem with these large 132 

number of inputs, other approaches are used to solve Eq. (4), such as the standard least squares and 133 

compressed sensing. These techniques can be explained below. 134 

Given a sample set with the size 2 3Q M» -  of random inputs, { }(1) ( ),..., Qξ ξ  (experimental design), and 135 

the corresponding model outputs, { }(1) ( ),..., Qy y=Y , the gPC coefficients can be recovered by the least 136 

squares method as follows 137 

     
( )2

2
2( ) ( )
2

1

argmin ( ) ( )

1argmin ( ) ( ) argmin

T
ls

Q
T i i

i
AF

Q =

é ù= -ê úë û

é ù» - = -ë ûå

E ψ ξ ξ

ψ ξ ξ

!

F

F F

F F

F

M

M Y
,                                (5)                               138 

where »  denotes empirical analogue; ( )( ) 1,..., ; 1,...,i
ij jA i Q j M=F = =ξ is the experimental matrix. The 139 

solution of the least square problem (5) is 1( )T T
ls A A A-=
!

YF . In this study, the points in the random 140 
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experimental design were obtained from the Halton sequence (Kroese et al., 2011; Tempo et al., 2012).    141 

In most engineering applications, only low order interactions between the inputs tend to be important 142 

(Doostan and Owhadi, 2011). In other words, the model given in Eq. (1) can be expressed by a sparse 143 

expansion in Eq. (3), where most coefficients are zero or negligible. To find the significant polynomials and 144 

associated coefficients directly, a selection algorithm, which is known as compressed sensing, can be used. 145 

Under the sparsity assumption, the coefficients of a gPC model can still be recovered effectively with a 146 

small sample set with a size Q M<  of random inputs and corresponding model outputs as follows: 147 

( )2 2

1 2 1
argmin ( ) ( ) argminT M F AF Fl lé ù= - + » - +ê úë û

E ψ ξ ξ
!

Y
F F

F F                                                  (6) 148 

where the regularization term, 
1
: 0Fl l > , forces the minimization to favor the sparse solutions. The 149 

optimization problem by Eq. (5) is also known as a 1l  regularized regression. The 1l  regularized regression 150 

is a convex optimization that can be solved effectively by many convex optimization techniques, including 151 

the alternative direction method of the multiplier (Boyd et al., 2011). There are several reasons why the 152 

alternative by Eq. (6) (compressed sensing) might be considered as a least square estimate by Eq. (5) (Hastie 153 

et al., 2015), such as  154 

• The prediction accuracy of a least square solution can be improved by shrinking the value of the 155 

coefficients or setting some coefficients to zero.  156 

• With a large number of coefficients, the aim would be to identify a smaller subset of these 157 

coefficients that are significant. 158 

• The size of the training set (experimental design set) for the compressed sensing method is much 159 

smaller than for the standard least square (Q<M). 160 

Let AM  be a surrogate model obtained with the given experimental design; ( ) ( )( )i i
A
- ξM  is the surrogate 161 

model that has been obtained by the experimental design, { } { }(1) ( ) ( ),..., \Q iξ ξ ξ , i.e., when the ith design point 162 

is removed. The leave one out error (prediction accuracy) is defined as 163 
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( )
2

( ) ( ) ( )

1

1 ( ) ( )
Q

i i i
LOO A

i

Err
Q

-

=

= -å ξ ξM M                                                                                                          (7) 164 

The leave one out error can be calculated without the need for an explicit calculation of Q in the separate 165 

gPC models (Blatman and Sudret, 2011): 166 

2( ) ( )

1

1
1

( ) ( )1 ,
1

,..., ,..., ( ( ) )

i iQ
A

LOO
i i

T T
i Q

Err
Q h

h h h diag A A A A

=

-

æ ö-
= ç ÷-è ø

é ù =ë û

å ξ ξM M
                                                                                                            (8)                                     167 

The regularization coefficient, l , in Eq. (6) was selected to minimize the leave one out error defined above. 168 

Once the vector of the gPC coefficients, { }1,..., Mf f
! !!

F= , has been obtained by solving Eq. (6), the statistical 169 

properties of the output can be obtained directly as follows. Note that the hat for the coefficients denotes it 170 

as an approximation obtained by solving the compressed sensing problem. More detail on compressed 171 

sensing techniques can be found elsewhere (Foucart and Rauhut, 2013; Hastie et al., 2015) and the references 172 

therein. 173 

The mean value of the output can be expressed as 174 

1
1

[ ] ( ) ( ) ( )
M

P
y N j j

j
y y d f d fµ r r

=G G

é ù
= = = F =ê ú

ë û
åò òE ξ ξ ξ ξ ξ
! !

.                                  (9) 175 

The variance of the output can be evaluated as follows: 176 

 2 2 2
1 1

1 1 2
[( ) ] ( ( ) ( ) )( ( ) ( ) ) ( )

M M M

y y y j j j j j
j j j

D y f f f f d fs µ r
= = =G

= = - = F - F - =å å åòE ξ ξ ξ ξ ξ ξ
! ! ! ! !

.                   177 

(10)  178 

The distribution function of the output is obtained by sampling the surrogate model in Eq. (3). 179 

Remarks: An input ix  is distributed according to the density ( )i ir x , and { }( )i if x are polynomials that are 180 

orthonormal with respect to ( )i ir x . For several commonly used distributions, such an association between 181 

( )i ir x  and { }( )i if x  is given by the Askey scheme. For a general distribution, the methods in Gautschi (2004) 182 

and the references therein can be used to construct an associated set of polynomials. The gPC coefficients 183 
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can also be calculated by numerical integration with a cubature, which will be referred as a full (non -184 

intrusive) gPC expansion. Note that the number of simulations required using a full gPC expansion increases 185 

exponentially, leading to a significant computational burden. More details on full (non -intrusive) gPC 186 

expansion and Askey scheme are given in Appendix A. 187 

 188 

3. Variance based-sensitivity analysis using compressive gPC 189 
 190 

To separate the single and collective contribution of each input, the gPC expansions in Eq. (3) can be 191 

reordered as follows.   192 

Define the set of multi-indices 
1 ,..., sk kI  such that (Haro Sandoval et al., 2012): 193 

{ }
1,..., 1, 2 1( ,..., ) : 0 , 0, {1,..., }\{ ,..., }

s

j j
k k s k k sk k k P k n k k= £ £ = ÎI g g                                                            (11) 194 

where j
kg  is the one-dimensional polynomial degree. Using this notation, the first order sensitivity function 195 

can be expressed as 196 

2

i

j
j I

i
f

f
S

D
Î=
å
!

.                                                                                                                                              (12) 197 

The estimated sensitivity function of a higher order can be obtained in the same manner as follows: 198 

,...,1

1

2

,...,
i is

s

j
j I

i i
f

f

S
D

Î
=
å
!

.                                                                                                                                (13) 199 

The total sensitivity functions, iT , can be obtained by summing all the sensitivity functions involving the 200 

input ix . This quantifies the total impact of an input ix , including all the interactions with the other inputs. 201 

 202 

4. Examples 203 
 204 

In this section, the proposed compressive gPC-based method was applied to the uncertainty quantification 205 

and sensitivity analysis of an analytical example and two complex chemical process examples. This study 206 
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aims to explain the practical, accurate, and efficient-to-evaluate procedure involving SA and UQ. 207 

4.1. Example 1: Ishigami functions  208 
 209 

The Ishigami function, which is a well-known example in uncertainty quantification and sensitivity 210 

analysis, was considered to demonstrate the accuracy of compressive polynomial chaos:  211 

2 4
1 2 3 1sin( ) sin ( ) sin( )y a bx x x x= + +  ,                                (14) 212 

with 1,..3i ix =  distributed uniformly in [ ]p p- .  The total variance yD  and partial variance ,...jD   can 213 

be computed analytically as 214 

2 4 2 8

4 2 8

1

2 2 8 2 8

2 13

3 12 23 123

1
8 5 18 2

1
5 50 2

8 18 18
0

y
a b bD

b bD

a b bD D

D D D D

p p

p p

p p

= + + +

= + +

= = -

= = = =

 .                                  (15) 215 

For a numerical study, 7, 0.1a b= = . The true value of the sensitivity indices can be obtained easily from 216 

Eq. (23).  Owing to the very high non-linearity of the Ishigami function, a relatively high polynomial degree 217 

of 14P =  is needed to achieve a satisfactory result for a full gPC and compressive gPC. Table 1 lists the 218 

results of compressive gPC along with those of full gPC and QMC (with Halton sequence). The convergence 219 

rate of the QMC method was quite slow compared to the other two methods and it had a negative value for 220 

S3, which is a non-negative quantity by definition. The compressive gPC approach can provide a similar 221 

result to the full gPC expansion with considerably fewer simulations. Fig.2 presents the density function of 222 

the Ishigami function with 10000 QMC simulations and the density function from sampling the compressive 223 

and full gPC models. The density function by the three methods matched well with each other. Note that for 224 

uncertainty quantification purposes, only 250 simulations were sufficient to construct the compressive gPC 225 

model that can predict the density function of the Ishigami function accurately, whereas the full gPC model 226 

with a similar number of simulations (343 runs) showed an apparent deviation from the true density function, 227 

as shown in Fig.2. 228 
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4.2. Example 2: propylene glycol production process with six uniform uncertainties in process inputs 229 
 230 

Referring the conceptual model from HYSYSTM, Fig. 3 presents a flow diagram of a propylene glycol (PG) 231 

production process. In this process, propylene oxide (PO) is reacted with water to produce PG in a 232 

continuously-stirred-tank reactor (CSTR). Because the reaction is exothermic, a coolant fluid circulates 233 

within the reactor jacket to maintain its temperature. The reactor outlet stream is then fed to a distillation 234 

column, where essentially all the glycol product is recovered from the column bottom with 99.5 wt. % of PG. 235 

The distillation column has 10 stages with a full reflux condenser and reboiler operating at atmospheric 236 

pressure. 237 

In this example, the flow rates of PO and water, the temperature and pressure of the mixed stream, the 238 

temperature of the reactor effluent, and the reflux ratio of the column were assumed to be independently 239 

uncertain and distributed uniformly in intervals of  240 

{ }o  o[61.2; 74.8 kgmol/h], [249.3; 304.7 kgmol/h], [21.5; 26.3 C], [1.1; 1.3 bars], [57; 63 C], [0.9; 1.1] , respectively. 241 

A simulation set of 1000 samples from the QMC sequence was generated using the MATLABTM code Halton 242 

set and was passed to HYSYSTM, where the PG process in Fig.3 was modeled rigorously. The outputs from 243 

HYSYSTM were collected and used for the compressive sensing problem in Eq. (5) to recover the gPC 244 

coefficients of the gPC model with a total order of 12. The order of gPC was chosen to be the lowest so that 245 

the gPC model can reflect the non-linearity of the distillation column. The size 1000Q =  was chosen for the 246 

experimental design set based on the heuristic studies and guidelines from Doostan and Owhadi (2011). Note 247 

that the full gPC expansion requires 106 simulations, which leads to an excessive increase in the 248 

computational time (approximately 1000 times slower than the proposed method). Because the true estimates 249 

of the output for the process studied are unavailable, the results from the proposed method were compared 250 

with those from the QMC method with a sufficiently large number of samples. The number of samples for 251 

the QMC method can be chosen according to the Chernoff bound (Tempo et al., 2012) for an accurate 252 

estimation of the probability. Table 2 lists the statistical properties of the reboiler duty (Q) obtained from the 253 

compressive gPC method (proposed) and the conventional QMC methods. Fig.4 compares the density 254 
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functions of the reboiler duty obtained from the compressive gPC/ QMC methods. The results from the 255 

proposed gPC method matched those from the traditional QMC method. Table 2 also lists the computational 256 

time required for both methods. The computational time for the proposed method includes the computational 257 

time for both solving the compressed sensing problem and performing the simulations from the experimental 258 

design. 259 

The gPC coefficients can be used to calculate the Sobol′ sensitivity indices, which can identify the 260 

influential inputs in the propagation of process uncertainty, as well as further reduce the number of 261 

simulations and the computational efforts needed for the uncertainty quantification up to 10-100 times. Table 262 

3 lists the sensitivity indices obtained from the gPC model. The results showed that the water flow rate and 263 

the reflux ratio are two inputs that matter. In other words, the propylene oxide flow rate, the temperature and 264 

pressure of the mixed stream, and the outlet temperature of the reactor effluent are non-influential and can 265 

be excluded from the analysis of uncertainty propagation. Therefore, owing to the effective detection of non-266 

influential input of compressive gPC, one can simplify the model, and the standard gPC approach with 267 

cubature, which requires only 49 simulations, can be used for UQ instead of the compressive gPC.  On the 268 

other hand, for the QMC, the same number of simulations are still needed to obtain a reliable prediction of 269 

the uncertainty.  Fig. 5 compares the density distributions predicted using the standard gPC and QMC 270 

methods with two influential random inputs (i.e., the water flow rate and the reflux ratio) and that by the 271 

QMC method (with 10000 simulations from Halton sequence) with all six random inputs. 272 

4.3. Example 3: lean dry gas processing plant with six uniform uncertainties 273 
 274 

Fig. 6 shows a process flow diagram of a lean dry gas production process (AspenHYSYS, 2006). A natural 275 

gas stream containing N2, CO2, and C1 - n-C4 is processed in a refrigerated system to remove the heavier 276 

components. The combined feed stream enters an inlet separator, which removes the free liquids. The 277 

overhead gas from the separator is fed to the gas/gas exchanger, where it is pre-cooled by an already 278 

refrigerated gas. The cooled gas is then fed to the cooler, where further cooling is accomplished. In the cooler, 279 

a sufficient quantity of heavier hydrocarbons condense such that the eventual sales gas meets the dew point 280 
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requirements of the pipeline for that particular hydrocarbon. The cold stream is then separated in a low-281 

temperature separator. The cold dry gas is fed to the gas/gas exchanger and is then sent for sale, whereas the 282 

condensed liquids are mixed with the free liquids from the inlet separator. In this process, the lean dry gas 283 

produced will meet the hydrocarbon dew point requirements, and heat duty specifications, etc. Furthermore, 284 

the liquid stream coming from the mixer is fed to a depropanizer column to produce a low-propane-content 285 

bottom product. In this example, the sale gas heating value is controlled while the flow rates (F1 and F2), 286 

temperature (Tn) and pressure (Pn) of two natural gas inlets, the outlet temperature of the cooled gas (Tc), 287 

and the reflux ratio in the distillation column (R) are assumed to have uncertainties with a uniform distribution 288 

in the range, F1 ∈ [1.90; 2.32 kg/s], F2 ∈ [1.25; 1.52 kg/s], Tn ∈ [14.0; 17.1 °C], Pn ∈ [37.2; 45.5 bars], 289 

Tc ∈ [-16.8; -13.8 °C] and R ∈ [0.9; 1.1].  290 

Fig. 7 shows the density functions for the net heating value of sale gas using the compressive gPC/ QMC 291 

methods. The results from the compressive gPC method (10th order gPC with 1000 simulations) closely 292 

matched those from the QMC methods with 10000 simulations. Table 2 lists the statistical properties of the 293 

lean gas heating value and simulation parameters from the proposed gPC and QMC methods. In addition, 294 

Table 3 lists the sensitivity indices obtained from the surrogate gPC model. The sensitivity indices indicate 295 

that the pressure of the NG inlet and the outlet temperature of the cooled gas affect the uncertainty 296 

propagation while other parameters can be fixed. Again, the standard gPC approach can be used for UQ with 297 

only 2 random inputs. Fig. 8 shows the density functions of lean gas production with two influential random 298 

inputs using the standard gPC method (with 100 simulations) and by the QMC method (with 10000 299 

simulations); the result compares well with that of the QMC method using all six random parameters with 300 

10000 simulations. As a result, the sensitivity indices from the compressive gPC method can identify the 301 

influential inputs correctly. The order and size of the experimental design were selected to be the same as 302 

those in the previous example.  303 
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Remark Owing to the exponential increase in simulation efforts for cases with six random inputs, the 304 

standard gPC method was not considered for UQ in Examples 2 and 3.  In addition, the QMC method was 305 

not used for SA in Examples 2 and 3 because of the requirement of huge computational effort for SA using 306 

the QMC method (This will be approximately 8 times more than the effort for UQ). For more details on SA 307 

with the QMC method, please see Appendices B and C. 308 

 309 

5. Conclusions 310 
 311 
Sensitivity analysis and uncertainty quantification can be useful for a range of purposes, such as 312 

• Testing the robustness of a process model in the presence of uncertainty, 313 

• Increasing the understanding of the relationships between the input and output of a process model,  314 

• Achieving model simplification by fixing the uncertain inputs that have little effect on the output.  315 

To tackle the practical and time-consuming problems of uncertainty propagation and sensitivity analysis, a 316 

sparse polynomial chaos method with compressed sensing was proposed for complex chemical processes 317 

with a moderate/large number of uncertain parameters. In most engineering applications, only low order 318 

interactions between the parameters tend to be important: a process model (1) can be expressed by a sparse 319 

expansion in terms of polynomial chaos. The compressed sensing technique allows sparse polynomial chaos 320 

to be recovered from a small number of sampling points. HYSYSTM was used to obtain a rigorous result in 321 

all simulations. The results showed precise agreement with those of the conventional approaches, such as the 322 

QMC/ standard gPC methods, which might be beyond the computational capability for large scale complex 323 

chemical process problems with a moderate/large number of uncertainties. The compressive gPC approach 324 

has advantages over the popular QMC/gPC approaches, mainly in terms of the computational cost when a 325 

large number of random inputs are considered. Sobol′ sensitivity indices, which can be used to detect non-326 

influential inputs, simplified the models for UQ of the propylene glycol production process and the lean dry 327 

gas processing plant. 328 

 329 
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APPENDIX A:  Full gPC expansion with numerical integration and Askey scheme 339 

Normally when a full gPC expansion is considered, all gPC coefficients in Eq. (3) are obtained from the 340 

multidimensional integral, 341 

[ ( )] ( ) ( ) ( )i i if M M dr
G

= F = FòE ξ ξ ξ ξ ξ .                                                                                                         (A.1). 342 

In the discrete projection approach, Eq. (A.1) can be computed numerically using the following procedure 343 

(Xiu and Karniadakis, 2002): 344 

• Choose an N-dimensional integration rule with 1 ... Nq q´ ´ cubature nodes/weights,  345 
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=å å ò ξ ξ ξ! " ,                                               (A.2) 346 

where 1 ... [ ]Nq q´ ´ ×! denotes the multivariate cubature approximation. Normally, the Gaussian tensorized 347 

cubature is used. 348 

• Approximate the gPC coefficients in Eq. (A.1) using the numerical integration rule in Eq. (A.2). 349 
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where jf
!"  is approximated numerically by the cubature. ( ) ( )jFξ ξM plays a role of ( )g ξ  in Eq. (A.2). The 351 

number of nodes (simulations) in the cubature rule increases exponentially. 352 

 The set of polynomials is orthonormal with the weight function, which is the probability density function. 353 

The Askey scheme below links the distributions of a random variable and the type of classical orthonormal 354 

gPC basis. 355 

 356 

 357 

 358 

 359 

 360 



 

17 
 

Table A1. Orthogonal polynomial corresponding to several commonly used continuous distributions from 361 

the Askey scheme 362 

Type of random input Polynomial chaos Weight (density function) and Support 

Gaussian Hermite 

2 /21( )
2

i
i i e xr x

p
-=   

( ),iG = -¥ ¥   

Beta Jacobi 
1

( 2)( ) (1 ) (1 )
2 ( 1) ( 1)i i i i

a b
a b

a br x x x
a b+ +

G + +
= - +

G + G +
  

[ ]1,1iG = -  

Gamma Laguerre 
( ) / ( 1)i
i i i e

xar x x a-= G +  

( )0,iG = ¥   

 363 

Note that Legendre polynomials are a special case of the Jacobi polynomial with parameter 0a b= = .  The 364 

first three Legendre polynomials (for uniform input) are 365 

2
0 1 2( ) 1, ( ) 1.7321 , ( ) 3.3541 1.1180i i i i if x f x x f x x= = = - . 366 

 367 

APPENDIX B: Brief theory of variance-based sensitivity analysis 368 

Consider the system described in Fig.1 and Eq. (1). The mean and variance of the output are defined as 369 

1

1
1

... ( ,..., ) ( )
N

N

y N i i i
i

y dµ x x r x x
=G G

= Õò ò                                                                                                              (B.1) 370 

1

2

1
1

... ( ( ,..., )) ( )
y

N

N

y N i i i
i

D y dx x µ r x x
=G G

é ù= -ë û Õò ò .                                                                                             371 

The system output can be decomposed into a sum of terms with increasing dimensions as follows: 372 

(Saltelli et al., 2008; Saltelli et al., 2004a, b): 373 
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where 0 yy µ= . 375 

The terms in Eq. (12) can be expressed as  376 
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where y( ) ixé ùë ûE ξ   (resp. y( ) ,i jx xé ùë ûE ξ ) is the conditional expectation of ( )y ξ  when ix  is set (resp. ix and 378 

jx are set).  379 

Provided that the random input factors are independent, the decomposition in Eqs. (B.2) and (B.3) is unique. 380 

By taking the variance of both sides of Eq. (B.2), the variance of the output function can be decomposed as 381 

follows: 382 
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Note that in ( )var ( ( )) ,i jf y x xé ùë ûE ξ , the inner expectation is greater than all the factors except for ,i jx x , 386 

and the outer variance is greater then ,i jx x . 387 

The first order Sobol′ sensitivity index (function) can be defined as 388 

y

i
i

f

DS
D

= .                                                                                                                                                      (B.6) 389 
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The first order index, iS , measures the amount of the output variance that is explained by the parameter, ix , 390 

alone. iS  lies in [0,1]. The sum of the first order indices will equal 1 for the additive models. 391 

Similarly, define the sensitivity functions of a higher order, a sensitivity measure that describes what part 392 

of the total variance is due to uncertainties in the set of inputs, 
1

{ ,..., }
si ix x , as 393 

1
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,...,

k

k

y

i i
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f

D
S

D
= .                                                                 (B.7) 394 

The Sobol′ total effect function for the factor, ix , can be expressed as 395 

~var( ( ( ) | ))
1

( )
y

y i
i

f

f
T

D t
= -

E ξ ξ
.                                                                                                                    (B.8) 396 

This total effect index measures the contribution to the output variance of ix , including all the variances 397 

caused by its interactions, of any order, with any other parameters. In other words, if Ti   is close to zero, the 398 

ith parameter, ix , can be neglected. 399 

 400 

APPENDIX C: Estimation of Sobol′ indices by the MC/QMC methods 401 

This section briefly describes the MC method for estimating the Sobol′ indices (Saltelli et al., 2008; 402 

Saltelli et al., 2004b). 403 

• Generate a Q N´A  matrix (Q is the size of sample) from a given density function of inputs. 404 
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• Generate a Q N´B  matrix (independent from A ) from the given density function of inputs. 406 
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• Define a matrix, iC , which is formed by all columns of B  except the ith column, which is taken 408 

fromA . 409 

• Compute the output of the model (1) for all input values in the sample matrices , , iA B C , 410 

obtaining vectors of model output ( ) , ( ) , ( )
i iy M y M y M= = =A B CA B C  . 411 

• The first order indices are estimated as follows: 412 
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where ( )
2

2 ( )
0

1
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Q
j

i
M Q y

=

æ ö
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è ø

å A  is the empirical mean of the model output. 414 

The total order indices are estimated as follows: 415 
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Because there are N inputs, the cost of this approach is 2Q runs of the model for matrices ,A B  plus N times 417 

Q for matrices iC . Hence, the total computational cost is Q(N+2). 418 

 419 
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Table 1. Sensitivity indices of the compressive gPC/standard gPC/QMC methods for Example 1 604 

(Ishigami function) for different sizes of the experimental design set 605 

Method  S1 S2 S3 T1 T2 T3 

True value 0.31390 0.44241 0 0.55758 0.44241 0.24368 

Proposed 

(compressive 

gPC) 

100 

samples 

0.31360 

 

0.48352 

 

0 0.54590 

 

0.48647 

 

0.20297 

 

500 

samples 

0.31399 

 

0.44248 

 

0 0.55769 

 

0.44244 

 

0.24369 

 

1000 

samples 

0.31390 

 

0.44241 

 

0 0.55758 

 

0.44241 

  

0.24368 

 

QMC 500 

samples 

0.35642 

 

0.46549 

 

-0.13610 

 

0.75706 

 

0.30972 

 

0.15349 

 

2500 

samples  

0.32222 

 

0.44231 

 

-0.04484 

 

0.58609 

  

0.40711 

  

0.18485 

 

5000 

samples 

0.31395 

 

0.43938 

 

-0.02143 

 

0.55543 

  

0.45050 

 

0.25567 

 

Full gPC 125 

samples 

0.22969 0.59198 0 0.40801 0.59198 0.17831 

1000 

samples 

0.31402 0.44219 0 0.55781 0.44219 0.24378 

3375 

samples 

0.31390 0.44241 0 0.55758  0.44241 0.24368 

 606 

 607 

 608 
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Table 2. Simulation parameters and computational time profiles for obtaining the statistical characteristics of the compressive gPC/ QMC methods for Examples 

2 and 3 (case of 6 random inputs). 

 

 

 

 

 

 

 

 

 

 

 

Method 

Example 2 Example 3 

No. of 

simulations 

Runtime 

(sec.) 

Mean  

µQ 

Variance 

DQ 

 No. of 

simulations 

Runtime 

(sec.) 

Mean  

µG 

Variance 

DG 

QMC 10000 19607.6 5730.6 172691.9  10000 19693.8 1091.1 

 

35.5 

Compressive 

gPC 

1000 1303.2 5730.5 

 

172832.7  1000 1318.8  1091.1 35.4 
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Table 3. Sobol′ sensitivity indices from the surrogated gPC model for Examples 2 and 3. 

 

Sobol′  Sensitivity Indices (Si, Ti) 

Example 2 

S1 S2 S3 S4 S5 S6 T1 T2 

0.0104 0.8532 1.802e-09 3.687e-09 0.0096 0.1260 0.0105 0.8539 

T3 T4 T5 T6     

6.039e-07 4.906e-07 0.0097 0.1267     

 
 
Example 3 

S1 S2 S3 S4 S5 S6                            T1 T2 

4.564e-04 4.557e-04 0.0039 0.5521 0.4429 0 4.57e-4 4.57e-4 

T3 T4 T5 T6     

0.039 0.5523 0.4431 4.369e-12     
 
 

 


