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On the use of Machine Learning to Detect 
Shocks in Road Vehicle Vibration Signals  
The characterisation of transportation hazards is paramount for protective packaging validation. It is 
used to estimate and simulate the loads and stresses occurring during transport which are essential 
to optimise packaging and ensure that products will resist the transportation environment with the 
minimum amount of protective material. Characterising road transportation vibrations is rather 
complex due to the nature of the dynamic motion produced by vehicles. For instance, different 
levels of vibration are induced to freight depending on the vehicle speed and the road surface; which 
often results in nonstationary random vibration. Road aberrations (such as cracks, potholes, speed 
bumps…) also produce transient vibrations (shocks) that can damage products. Because shocks and 
random vibrations cannot be analysed with the same statistical tools, the shocks have to be 
separated from the underlying vibrations.  Both of these dynamic loads have to be characterised 
separately because they have different damaging effects. This task is a challenging because both 
types of vibration are recorded on a vehicle within the same vibration signal. 

This paper proposes to use machine learning to identify shocks present in acceleration signals 
measured on road vehicles. In this paper, a machine learning algorithm is trained to identify shocks 
buried within road vehicle vibration signals. These signals are artificially generated using 
nonstationary random vibration and shock impulses that reproduce typical vehicle dynamic 
behaviour. The results show that the machine learning algorithm is considerably more accurate and 
reliable in identifying shocks than the more common methods approaches based on the crest factor. 
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1 Introduction 
At some point in the supply chain, all products and goods are transported by road freight. This mode 
of transportation contains some risks for shipment integrity. For instance, the imperfections of the 
road induce shocks and vibration to the vehicle. Distribution packaging is designed to protect freight 
from such transport hazards. However inefficient packaging poses a significant problem that costs 
hundreds of billions of dollars, not to mention the additional environmental impact as a result of 
solid waste [1].  On the other hand, excessive packaging increases the shipment weight and volume 
which proves to be costly throughout the supply chain. To overcome these issues, packaging must be 
optimised to offer just the necessary level of protection. 

The characterisation of vehicle vibration is essential to optimise packaging because it can be used to 
produce accurate simulations of the loads and stresses occurring during transport. Due to the nature 
of the dynamic interaction between the road surface and road vehicles, the resulting motion is often 
complex and cannot be characterised by simple statistical means. For instance, different levels of 
vibration are induced to freight depending on the vehicle speed and the variation in road surface 
roughness resulting in highly nonstationary random process. Also, randomly-occurring road surface 
aberrations (such as large cracks, potholes, speed bumps, drains, rail crossings…) produce shocks 
that can be harmful to shipments. These randomly-occurring nonstationary and transient events 
generated during road transportation co-exist and need to be identified, separated and analysed 
separately in order to achieve an accurate and realistic characterisation and simulation of road 
vehicle vibration. 

The nonstationary random component of the road vehicle excitation has been investigated by many 
researchers [2-16]. Limited research has been undertaken into the characterisation of shocks during 
road transportation despite being as important as the random component when simulating vehicle 
vibration. Accurate simulations should include representative distributions of shock occurrences and 
amplitudes [17]. The characterisation of these distributions is challenging because the shocks are 
superimposed onto nonstationary signals which makes them difficult to identify. The methods 
currently used to characterise shocks often rely on moving crest factor analysis [7, 18-23].  This 
approach is not always reliable and is often not appropriate for signals that contain strong 
nonstationarities.  

This paper presents a machine learning algorithm that is able to identify shocks that are 
superimposed (buried) in random road vehicle vibration signals. The basics of machine learning and 
the selected algorithm are first introduced, which is then followed by a learning process used to 
develop the classifier. The classifier validation and comparison with methods based only on the crest 
factor is also presented. 

In this paper, shocks are defined as sudden and severe accelerations of a finite and measurable 
duration. As the excitation is brief, shocks are principally composed of the natural frequencies of the 
system (i.e. the road vehicle).  

2 Machine learning 
Machine learning is a branch of Artificial Intelligence that involves teaching (or training) a computer 
program to solve a problem. Once the training process is completed, the program can solve similar 
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problems to those used for learning using the relationship that was learnt during training. One type 
of machine learning is called classification where the analysed data is divided into discrete classes. 
The classifiers are developed based on the workflow presented in Figure 1. It starts with a learning 
dataset which is a set of data where the classes are known. For vehicle vibration, this is an 
acceleration signal where the locations of the shocks are known. This dataset is processed to reveal 
different data behaviours and characteristics in a format compatible with the learning algorithm. 
This is where machine learning is different to other classification approaches because it can base its 
prediction on several different signal processing methods. For instance, it combines nonstationary 
and shock analysis technique to distinguish transient events (shocks) from signal intensity variations. 
Once the processing is completed, the data is randomly partitioned into two sets: the training set 
and the validation set. Both sets have the same proportion of each class. The training set is used to 
train the algorithm and develop the classifier. The trained classifier is then validated using the 
validation set.  

2.1 Classifier training 
In machine learning, data is king. The classifier prediction accuracy is proportional to the quantity of 
data used in its training. In the case of the detection of shocks in a road vehicle vibration signal, it is 
unrealistic to gather significant amounts of data on real vehicles to train a classifier because that 
requires a survey of many kilometres of road profile to know exactly where the aberrations are and 
to drive a vehicle exactly on the surveyed path. It is more appropriate to use synthetic acceleration 
signals that mimic typical road vehicle vibration as there are no length limitations and the signal 
components are accurately known a priori.  

The nonstationary component of the signal is synthetised with a technique similar to the one used 
by Rouillard [16]. The technique modulates a Gaussian signal to create a nonstationary random 
signal (Figure 2). First of all, a Gaussian signal is synthetised from a Power Density Spectrum (PDS) of 
a signal measured on a real road vehicle. Only the shape of the spectrum is required at the beginning 
because the signal will be rescaled subsequently. Therefore the PDS (Pxx) is normalised with the 
signal’s RMS value: 
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where f∆  is the frequency resolution of the PDS. This normalized PDS is then transformed to an 

amplitude spectrum with a random phase φ uniformly distributed between -180° to 180°: 

 ( ) ( )( ) j
xxX f P f f e φ= ∆ .  (eq. 2) 

This spectrum is then transformed into the time domain using the inverse fast Fourier transform. 
The resulting time signal is Gaussian random signal with an RMS value of 1. The signal becomes 
nonstationary when multiplied by a modulation function representing the variation in the RMS value 
of the signal (Figure 2). 

A two degrees of freedom model of the vehicle, known as the quarter-car model, is used for the 
synthesis of the shocks. The model is composed of a sprung mass Ms, an unsprung mass Mu, two 
springs ks and ku and two dampers cs and cu, illustrated in Figure 3. The numerical values of the 
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components for the model represent typical values used by Cebon [24] for a “quarter-car” truck 

model, shown in Table 1. The model input x(t) is the road profile and the output ( )y t is the vehicle 

body acceleration. The FRF of the model (Figure 4) shows that the first peak is less damped than the 
second. The response decreases after the second peak and its magnitude is less than 10 % of the 
maximum value above 30 Hz. 

The shocks are the quarter-car’s response to impulse functions at the road surface, i.e. short 
Hanning functions (raised single-period cosines). This impulse function can be attributed arbitrary 
amplitudes and duration ranging, in this case, between 5 to 40 mm and 0.5 to 1.6 s, respectively, to 
represent a range of different types of road aberrations and vehicle’s response spectra. These shocks 
are then superimposed onto the nonstationary signal to represent realistic road vehicle vibrations 
(Figure 2). The signal is composed of 100 shocks randomly distributed within its 1000 s duration. The 
predictors are computed from this signal; half of it is used to train the classifier (500 s and 50 shocks) 
and the other half for the validation. The position of the shocks is defined by the step function. 
Values other than zero mean there is a shock in the signal. 

2.2 Predictors 
Machine learning prediction performance depends on the data processing prior to the training 
phase. This processing reveals different signal characteristics, called predictors. In order to detect 
the shocks superimposed in a nonstationary random signal, the predictors come from a range of 
relevant analysis techniques used to characterise both the shock and the nonstationary vehicle 
vibration such as moving Root Mean Square (RMS) values [6, 16, 21-23], moving crest factor [7, 18-
23], the Hilbert Huang Transform (HHT) [10-12] and the Discrete Wavelet Transform (DWT) [8, 13-
15]. 

2.2.1 Moving RMS 
The moving RMS can be used to characterise the nonstationary nature of vehicle vibration signals. 
The major shortcoming of this predictor is its sensitivity to its window time T, i.e. the segment length 
used to compute the RMS values, 

 ( ) ( )2
RMS

0

1 T

m t x t d
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τ τ= +∫ .  (eq. 3) 

As shown by Rouillard [6], window lengths between 0.5 s to 4 s result in different moving RMS 
functions. A shorter window is better to detect the short transient events but is ineffective for long 
Gaussian changes and vice versa for a longer window. Therefore there is no ideal window size. 
Fortunately, machine learning classification has the capability to use multiple predictors. The moving 
RMS predictors are not limited to one window length and four different window lengths (0.5, 1, 2, 
and 4 s) are used. These windows are computed forward to take into account the response of the 
system. In other words, at one moment, the RMS values represent the signal intensity of the next T 
seconds. Figure 5 shows an example of the 0.5 s and 4 s moving RMS predictors applied on signal. 

2.2.2 Moving Crest Factor 
The moving crest factor is the ratio between the signal x(t) and the moving RMS value of a window 
length T, 
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Theoretically, the crest factor ratio increases with the presence of a transient event. Therefore they 
can be detected when the crest factor is above a certain threshold. As opposed to the moving RMS 
predictor, the moving crest factor predictor is more accurate when using a longer moving window. 
This is because a longer window averages out the effect of the shock at the crest factor’s 
denominator without affect its numerator, which results to a greater sensitivity to shocks. However, 
a too long window has been shown to misclassify a short RMS variation as a shock.  Four Crest Factor 
predictors with window lengths of 8, 16, 32 and 64 s are used in the machine learning classifier. An 
example of the 8 s and 64 s crest factor predictor is shown in Figure 6. 

2.2.3 Hilbert-Huang Transform (HHT) 
The HHT is an adaptive time-frequency analysis method that provides different types of predictors 
from vehicle vibration signals [25, 26]. In simple terms, the HHT divides the signal into different 
narrow banded components. These components, called Intrinsic Mode Functions (IMFs), provide 
information that can be useful for the classification. For instance, the IMFs are directly used as 
predictors for their amplitude and instantaneous frequency functions which reveal other details 
from the signal [10, 11]. Figure 7 shows, for illustration purposes, IMF 1, 5 and 9 of a signal along 
with IMF 5’s amplitude and instantaneous functions.  

2.2.4 Digital Wavelet Transform (DWT) 
The DWT is another time-frequency (or more specifically time-scale) analysis method that provides 
predictors which are more sensitive to signal changes and can be useful for transient detection [13]. 
The DWT coefficients issued from the Daubechies 10 wavelet analysis are directly used as predictors. 
Figure 8 shows an example the DWT predictors of four different scales of signal. 

During the DWT analysis, the signal sampling rate is halved for every scale. The number of scales is 
limited to 12, so the largest scale has a frequency range up to 0.25 Hz (for a sampling rate of 1000 
Hz) which can be considered to be refined enough for road vehicle vibration analysis purposes. This 
resampling also causes the number of coefficients to decrease at every scale. To create predictors 
with sampling rates that match the original signal and the other predictors, the coefficients an are 
replicated to match the sampling rate of the signal, as shown in Figure 9. 

2.3 Support Vector Machine Classifier 
There is a vast variety of machine learning classification algorithms available today. The Support 
Vector Machine algorithm was selected because it has good accuracy in classification when the data 
has only two classes as is the case for shock-on-random signals. During the learning phase, this 
algorithm finds a hyperplane that maximise the distance between the two classes’ data points 
represented in all their dimensions (predictors). The new data points are then classified using this 
hyperplane as a classification test. Kernel transformations can be used on the data when there is no 
single hyperplane that can separate the classes. Without going into too many details, these Kernels 
functions transform the data into a space where the classes are more distinct. Mathematical details 
on Kernel functions can be found in Kinani and Oudadess [27]. Preliminary investigations have 
shown that more accurate predictions are obtained with a Gaussian function used as a Kernel 
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transform. Gaussian Kernel transformation is therefore applied with the Support Vector Machine 
algorithm used in this paper. Refer to [28-31] for more details on SVM. 

3 Validation 
The second half of the synthetic signal is used to validate the machine learning classifier and to 
compare its performance with detections based on the moving crest factor alone. There are many 
ways to assess the performance of classifiers depending on their application. The True Positive Rate 
(TPR) is used in this paper to assess the classifier’s ability to correctly detect shocks. It is expressed as 
the proportion of true shocks detected over the total number of shocks in the signal by the 
classification,  

 
true shock

TPR
shock

= ∑
∑

 . (eq. 5) 

Conversely, the False Positive Rate (FPR), or fall-out, represents the proportion of incorrectly 
detected shocks over signal segment length without shocks, 

 
false shock

FPR
no shock

= ∑
∑

.  (eq. 6) 

These two values are inherently related; while the sensitivity of a classifier can be adjusted to 
increase the TPR, the FPR will also increase. This relationship for a specific classifier is given by the 
ROC (Receiver Operating Characteristic) curve which is used to select the optimal operating point, 
i.e. the optimal TPR and FPR values. This point is obtained using the minimax criterion [32] which 
minimises the cost function: 

 ( ) ( )1 11 TPR FPR 1m fC p C pℜ = − + −   (eq. 7) 

where Cm and Cf are respectively the cost of a misdetection and a false detection and p1 is the 
probability of having a shock in the signal. For any shock probability, the optimum operating point is 
the closest point on the ROC curve to the minimax equation: 

 ( )1 TPR FPRm fC C− = .  (eq. 8) 

For the sake of the classifiers assessment, in this paper both misdetection and false detection have 
been attributed the same cost. 

For a classification based purely on chance (guessing), the ROC curve is a diagonal going from (0, 0) 
to (1, 1) where TPR equals FPR, shown in Figure 10. Any classifier with an ROC curve above this 
diagonal perform better than guessing, as is the case for both the crest factor and the machine 
learning classifiers. The Area Under the ROC curve (AUC) is a common method used to assess the 
classifier performance [33, 34]. The ideal classifier has an AUC of 1 and a classifier only based on 
chance has an area of 0.5. 



7 
 

3.1 Crest Factor detection 
The detection performance of the machine learning classifier is compared with the most commonly-
used detection method, the moving Crest Factor. This method is simple; a shock is detected when 
the Crest Factor is above a certain predetermined value. The Crest Factor value depends on the 
window length (eq. 4).  As there is no clear indication in the literature on the optimal window length 
[7, 18-23], a performance comparison was performed using window lengths between 2 s to 64 s, 
shown in Figure 10. Table 2 shows that, for the type of typical RVV signal used here, the crest factor 
performs best with a window length above 32 s. 

3.2 Machine learning performance 
At the optimal operating point, the machine learning classifier shows better performances than the 
crest factor classifiers, except for a 32 s crest factor window size which has a slightly better TPR than 
the machine learning (3% increase) but a significantly higher FPR (50 % increase), as shown in Table 
2. The machine learning’s AUC is 13% higher than the best crest factor classifiers. Figure 11 shows 
that the machine learning classifier has a better performance at the first portion of the ROC curve, 
i.e. when the TPR is below 0.95. Above this point, both classifiers have similar performance (FPR 
above 0.80). 

Figure 12 shows the maximal acceleration distributions of the shocks present in the signal and the 
detections made with the machine learning and crest factor methods. For maximal accelerations 
below 10 m/s2, both methods have more shock occurrences than there exists in the signal. The 
machine learning performs better in this area. Its distribution is closer to the real shocks distribution 
which means there are fewer false detections than with the crest factor detections.  Above 10 m/s2, 
there is less discrepancy between all the distributions. The machine learning method missed and 
falsely detected slightly fewer shocks than the crest factor approach. The general shape of those 
distributions shows that most of the false detections are below 9 m/s2 and the most missed 
detection are around 10-11 m/s2. 

4 Conclusion 
Detecting shocks buried in random road vehicle vibration signals allows accurate characterisations of 
the load and stress induced in freight during transportation which is essential to optimise protective 
packaging systems. The comparative study presented in this paper showed that the most popular 
current method to detect road vehicle vibration shocks, the crest factor, can be replaced by more 
effective methods based on machine learning. Classifiers based on the crest factor only with 
different window lengths and operating points using the minimax criterion. Machine learning 
outperformed these classifiers in all cases except the 32 s window length, which has similar a TPR 
but higher FPR and lower AUC. 

Compared to the classic detection methods, machine learning has the ability to integrate many 
predictors (prediction parameters) in its process. This overcomes many issues related to the classic 
method, such as the window length selection to compute the crest factor, because it can integrate 
more than one window length. In this paper a total of 64 predictors were used using several 
techniques such as the moving RMS, crest factor, HHT and DWT. These predictors can be refined and 
optimised to increase to accuracy of the machine learning algorithm. Furthermore, the algorithm 
itself can also be optimised.  A support vector machine classifier was used, but other classifier types 
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can also be investigated for this application. While the classifier presented in this paper is not a 
definitive method to detect shocks buried in road vehicle vibration signals, it is a clear 
demonstration that machine learning methods can provide more accurate shock detections than the 
moving crest factor methods. Before establishing a new detection method, machine learning 
algorithms need to be applied on real vehicle signals and assess how the real vehicle’s shock 
response spectrum which may vary between shocks could affect the detection. Further research 
should also assess the specificity of the machine learning algorithms. For instance, does the 
algorithm have to be trained for every truck type or model or load type? These are the main 
challenges to the shock detection using machine learning that will be addressed in future research. 
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6 Tables 
Table 1: Components of the two degrees of freedom 
model of a typical truck [24] 
 

Component Value 
Ms 8900 kg 
Mu 1100 kg 
ks 2 000 kN/m 
ku 3 600 kN/m 
cs 40 kN s/m 
cu 4 kN s/m 

 

Table 2: Classifiers’ performance comparison at the 
optimal operating point 
 

Method TPR FPR AUC 
Crest Factor 2 s 0.64 0.55 0.55 
Crest Factor 4 s 0.64 0.40 0.66 
Crest Factor 8 s 0.64 0.33 0.70 
Crest Factor 16 s 0.62 0.29 0.73 
Crest Factor 32 s 0.79 0.40 0.74 
Crest Factor 64 s 0.72 0.32 0.74 
Machine Learning 0.77 0.20 0.85 
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