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1 Introduction

One of the most recent striking developments in the study of scattering amplitudes is the

discovery of the Cachazo-He-Yuan (CHY) formalism [1, 2] for massless scattering in field

theory. The CHY formalism recasts scattering amplitudes in terms of contour integrals in

the complex plane based on the solutions to the scattering equations.

These contour integrals, reminiscent of the twistor string [3], were shown to origi-

nate from a new class of string theories dubbed ‘ambitwistor strings’ [4]. These allowed

the extension of the original CHY formulae in many directions; loops [5–7], curved back-

grounds [8–11], manifestly supersymmetric versions [12, 13], and even a string field the-

ory [14, 15].

However, some basic aspects of this formalism remain unexplained, such as its gauged-

unfixed form and the connection to standard string theory. Particularly at loop-level

questions related to modular invariance and the integration domain are still not settled [16].
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The extension of some recent developments at one and higher loops [17–19] may rely on a

deeper understanding of these questions.

In [20], two of us argued that the ambitwistor string’s origin is a theory partially

characterized in the literature called null strings. This theory was initially introduced by

Schild [21] as the classical tensionless limit of the usual string theory sigma-model.

The idea that ambitwistor strings, describing only massless field theory scattering,

could be related to a tensionless limit of string theory is actually counter-intuitive, some

evidence for it was present in [22, 23] but was not developed further. In [20] it was

emphasized that this is only a classical statement. Quantummechanically, it is a remarkable

quantization ambiguity, already discovered in the 80’s [24, 25], that truncates the spectrum

of the string to a finite number of states, essentially the massless sector of the usual string

(see also [26–29]).1

The goal of this paper is to build up on the work done in [20] in three directions,

making more precise the relationship of this theory to the CHY formalism. In particular

we hope that this should open the way to a deeper understanding of the loop expansion of

these models. The main results we provide are:

• A study of the complexification of the null string, its symmetries and moduli. These

we match with the ambitwistor string. Understanding the global structure of this

moduli space will eventually lead to a proper determination of the integration cycle

of the ambitwistor string at loop-level, along the lines of [6, 31].

• We use the representation theory of the constraint algebra of the string, called

Galilean Conformal (GCA) [32–35], to show how the chirality of the string emerges

due to decoupling of null states. We characterize its action on the moduli and the

match the zero modes determinant with the ghost determinant from ambitwistor

string. This gives a new perspective on the truncation of the spectrum and its chi-

rality.

• We propose a new computation of tree-level amplitude and one-loop partition func-

tion using operator methods. The scattering equations emerge thanks to the integra-

tion of the original ‘time’ coordinate of the string, an idea originally due to [36]. We

conjecture on modular transformations.

These three results are discussed in sections 2, 3 and 4, respectively. The sections are

mostly self-contained and can be read independently.

2 The complex null string

2.1 From the null string to the ambitwistor string

The null string was originally obtained by Schild as a tensionless limit of the Nambu-Goto

string [21]. The equivalent second order form of this action on which this work is based is

1Another choice of quantization yields a theory more compatible with what is expected from the high

energy limit [30].
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the Lindström-Sundborg-Theodoridis (LST) action [37–40]:

S =

∫

d2σV αV β∂αX
µ∂βX

νGµν (2.1)

where G is the target space-time metric that we take to be flat Gµν = ηµν , Xµ(σ, τ)

are the coordinates of the string, and V α, α = {0, 1} is a vector field with density

weight (−1/2,−1/2).

Th light-cone gauge and BRST quantization of the null string was done in the seminal

work [24]. To the best of our knowledge, it was observed there for the first time that a

quantization ambiguity linked to the ordering of the operators leads to two very different

quantum theories: a higher-spin type one, still poorly understood, and the one of interest

for us, which is essentially the same as the ambitwistor string.

In this quantization the spectrum is truncated to the massless modes of string theory,

and although the bosonic model has negative-norm states, the supersymmetric version is

well-defined and its spectrum is the same as type II supergravity. For a more complete

review of the null string, see [20], where the relation of the null string to the ambitwistor

string was studied.

In this section, we come back on a geometrical aspect that was not discussed in this

reference linked to the complexification of the model. Indeed, the LST action is a real one,

while the ambitwistor string is a complex model. In a longer term perspective, understand-

ing the complexified model, in loops for instance, will crucially rely on understanding the

complexification from the real model itself [41, 42].

So let us describe step-by-step what we call the complex null string, its geometrical

meaning and symmetries.

We first allow the target space to be a complex manifold MD
C

of (complex) dimension

D, as well as allow the worldsheet field V to take complex values. That is, V takes values

in the complexified tangent space to the worldsheet. At this point the worldsheet itself is

still a two dimensional real manifold. This procedure gives a complexified version of the

LST action where X : Σ 7→ MD
C

and V ∈
(

Ω2(Σ)
) 1

2 ⊗ TCΣ are respectively, a map from

the worldsheet to complexified Minkowski space MD
C

≃ C
D, and a complex vector field on

the worldsheet with weight one half.

Because V is complexified, it generically defines a complex structure by requiring

V ∈ T (0,1)Σ, i.e.2

V ∝ ∂̄z̄. (2.2)

Equivalently, it defines a conformal structure on Σ through

g̃αβ := V (αV
β)

(2.3)

where V is the complex conjugate of V . In the real case, i.e. V = V , this metric is

degenerate as is usual in the null string.

2This ∂̄ operator should be interpreted as a worldsheet field, depending on moduli, and not as a fixed

background structure.
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We can therefore think of a choice of V as a choice of complex structure together with

a choice of “scaling”. We now discuss the interpretation of this “scaling” part. Let,

V =

(

dzdz̄

e

) 1

2

⊗ ∂̄z̄. (2.4)

Keeping V fixed while making a holomorphic change of coordinates z 7→ f (z) gives the

following transformation law for “e”:

e 7→ e(∂zf)(∂̄z̄ f̄)
−1. (2.5)

This implies that for a given V we can think of the field e, as the coordinates of a Beltrami

differential:

e dz̄ ⊗ ∂z. (2.6)

As a consequence we have the following geometrical interpretation: if M is the space of

complex structures on Σ then a choice of V is equivalent to choosing a point in Γ := TM.

A quick look at the LST action, now written in terms of complex structure and Beltrami

differential,

S
[

∂̄, e,X
]

=

∫

Σ

dzdz̄

e
(∂̄X)2, (2.7)

is enough to see that this is exactly the second order version of the ambitwistor action

described in [4]:

S[∂̄, e,X, P ] =

∫

dzdz̄
(

P · ∂̄X − e

2
P · P

)

. (2.8)

Note that in this action, the complex structure is a field of the model, being integrated

over, while the ambitwistor string is already gauge-fixed to conformal gauge.

2.2 Equations of motion and boundary term

To obtain the equations of motion we vary the action with respect to X,3

δS = 2

∫

Σ
d2σ (∂αδXµ)V

α(V X)µ (2.9)

and integrate by parts to obtain boundary term. This is done by rewriting (2.9) as

δS = 2

∫

Σ
d(δXµ) ∧ ǫαβV

α(V X)µdσβ. (2.10)

Then, the integration by part is straightforward

δS = 2

∫

Σ
d
(

(δXµ) ǫαβV
α(V X)µdσβ

)

− (δXµ)d
(

ǫαβV
α(V X)µdσβ

)

, (2.11)

and we can extract equations of motions for the null string

∂α (V
α (V X)µ) = 0 → ∂̄

(

1

e
∂̄Xµ

)

= 0 (2.12)

3Here and everywhere below
√
dσ2 (V X)µ stands for

√
dσ2 V α∂αX

µ. These are D scalar fields on Σ

with density weight one half.
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together with a general expression for the boundary term:

δSboundary = 2

∫

∂Σ
(δXµ) ǫαβV

α(V X)µdσβ . (2.13)

Unfortunately there does not seem to be a set of boundary conditions which gives an

interesting theory of open null strings nor null strings ending on branes. A contraction of

the open string algebra can be done which has been claimed to describe a tensionless open

string [43, 44], but it is not clear how to recover it from appropriate boundary conditions

on the null string.

Therefore we continue we closed null strings. A clean way to understand the above

integrands is as follows. Start with

(V X)µV α d2σ ⊗ ∂α ∈ Ω2 (Σ, TΣ) , (2.14)

which are D vector-valued two-forms on Σ, contracting this object with itself we obtain a

1-form on Σ. The resulting form is just the integrand of (2.13): ǫαβV
α(V X)µdσβ ∈ Ω1 (Σ).

The field equations (2.12) just state that this form is closed.

Finally, considering variations of the action with respect to an infinitesimal variation

of V , we get two constraints:

V β∂βX · ∂αX = 0 ∀α ∈ 0, 1 → ∂̄X · ∂̄X = 0, ∂̄X · ∂X = 0. (2.15)

These can be directly obtain by varying V in (2.1) or by using the parametrization (2.7)

and considering variation of V as

δV = δµ

(

dzdz̄

e

) 1

2

⊗ ∂z −
δe

2e

(

dzdz̄

e

) 1

2

⊗ ∂̄z̄. (2.16)

Here δµ is an infinitesimal variation of the almost complex structure δ∂̄z̄ = δµ ∂z.

Altogether, the constraints (2.15) are the usual null string statement that the pullback

of the space-time metric on the worldsheet gαβ = ∂αX
µ∂βX

νGµν is degenerate, with the

degeneracy direction given by V . Accordingly, integral lines of (V X)µ in space-time are

null lines and these null lines are orthogonal to each other.

2.3 Symmetries of the complexified null string action

From now on, we also consider the worldsheet variables to be complex. Accordingly ΣC

is now taken to be a two dimensional complex manifold with holomorphic coordinates z

and z̃. In particular, z̃ is the complex conjugate of z anymore. Imposing z̃ = z̄ amounts

to an embedding Σ →֒ ΣC of a usual (one dimensional complex) worldsheet Σ into the

complexified one. The interest of this procedure, of course, lies in the fact that z̃ = z̄ is

not the only possible embedding, and we intend to make precise in a following work how

the ambitwistor string can be seen as an alternative embedding of the null string. When

referring to antiholomorphic functions we will mean holomorphic functions of z̃ unless

explicitly stated otherwise. All fields are now holomorphic in (z, z̃) and the worldsheet

integral should be seen as a holomorphic two-form that must be integrated over a two-

cycle. In particular, a choice of real worldsheet gives such a two-cycle.
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Diffeomorphisms. We now consider the action of holomorphic transformations on ΣC

(z, z̃) 7→ (f (z, z̃) , g (z, z̃)) . (2.17)

We will refer to these transformations as diffeomorphisms of the complexified worldsheet.

Infinitesimal diffeomorphisms are

(z, z̃) 7→ (z + ǫ (z, z̃) , z̃ + ǫ̃ (z, z̃)) . (2.18)

and can be thought of as the vector field v = ǫ∂z + ǫ̃∂̃z̃ on ΣC. These infinitesimal

diffeomorphisms act on the fields as

LvX = ǫ ∂zX + ǫ̃ ∂̃z̄X,

LvV =

(

dzdz̃

e

) 1

2

⊗
(

− 1

2e

(

ǫ∂e− e∂ǫ+ ∂̃z̃ (ǫ̃e)
)

∂̄z̃ −
(

∂̃z̃ǫ
)

∂z

)

.
(2.19)

The Noether current for infinitesimal worldsheet diffeomorphisms is obtained by taking

the integrand of the boundary term (2.13) with δX = LvX:

J(v) = vαTαβdσ
β = ǫ

1

e
∂X · ∂̄X dz + ǭ

1

e
∂̄X · ∂̄X dz (2.20)

where the energy momentum tensor T is

T = (∂αX) · (V X)V γǫγβ dσα ⊗ dσβ =
1

e
∂X · ∂̄X dz ⊗ dz +

1

e
∂̄X · ∂̄X dz̄ ⊗ dz. (2.21)

As expected, vanishing of the energy-momentum tensor is equivalent to the vanishing of

the constraints (2.15).

Note that the left part of the energy-momentum tensor4 ι∂T = 1
e∂X · ∂̄X dz is not

simply related to the right part ι∂̃T = 1
e ∂̄X · ∂̄X dz. This is in contrast to the Poliakov

string where one left and right movers contributions to the stress energy tensor are related

by complex conjugation. This chirality of the null string can be traced back to the fact

that V transforms differently under right (i.e. ǫ 6= 0, ǫ̃ = 0) and left diffeomorphisms (i.e.

ǫ = 0, ǫ̃ 6= 0).

The extra null ray symmetry of the complex null string. The complex null string

seems to enjoy one further local symmetry. Recasting it in the first order form (2.7),

this symmetry corresponds to translations along null geodesics as discussed in [4]. This

symmetry is also the origin of the interpretation of that model as living on ambitwistor

space, since if we consider target space as parametrized by the fields {P,X}, then this extra

symmetry implements the symplectic reduction by the constrain P 2 = 0. This reduced

space is the space of null geodesics, also known as ambitwistor space. The infinitesimal

version of the symmetry can be parametrized by a (1, 0)-vector field α = α∂z on Σ and

acts on the fields as follows:

δX =
α

e
∂̄z̄X, δV = − ∂̄z̄α

2e

(

dzdz̄

e

) 1

2

⊗ ∂̄z̄. (2.22)

4Here ιv stands for the interior derivative.
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With the associated Noether Current

J(α) = α
1

e2
∂̄X · ∂̄X dz. (2.23)

Note that this extra symmetry is not be present in the real case since it does not respect

the reality condition X = X. Even more remarkable is that this symmetry mimics the

action of antiholomorphic diffeomorphisms (2.19) but is parametrized by a holomorphic

vector field. The dictionary between them is as simple as setting

ǫ̃ =
α

e
. (2.24)

It is also easy to see using a Hamiltonian formalism that these two gauge redundancies are

the same on-shell, at least infinitesimally. This is analogous to what happens in the case

of the Hamiltonian action of the worldline formalism for a massless particle [45]. There

the worldline diffeomorphisms and translations along null geodesics give the same gauge

redundancy of the action on-shell. It is clear now that to reach the ambitwistor string from

the null string one needs to complexify the latter. This allows us to access this equivalent

parametrization of the antiholomorphic diffeomorphisms by a holomorphic vector field, and

gives a completely chiral theory, the ambitwistor string.

2.4 Moduli

In this section we study the moduli of the complexification of the vector field V . Using

the equations for the variation of V , (2.19) we define operators P and Q whose zero modes

correspond to automorphisms of the string. Using the natural pairing, the zero modes

of their adjoints P † and Q† are the moduli of the null string. We shall see that after

trading the antiholomorphic diffeomorphisms by the holomorphic scaling symmetry from

the previous section the results found in [6] for the ambitwistor string are reproduced.

As already explained the moduli M of the vector field V can be parametrized by a

complex structure dz̄∂z̄ and a Beltrami differential edz̄∂z, see (2.4). Then a variation δV is

an element of the tangent space TM to the moduli and can be parametrized by a doublet

(δµ dz̄∂z, δe dz̄∂z) of Beltrami differentials, see (2.16).

The infinitesimal gauge transformations of the null string are infinitesimal diffeomor-

phisms given by ǫ∂z (left diffeomorphisms) and ǫ̃∂̃z̃ (right diffeomorphism).5 A generic

variation of V under infinitesimal diffeomorphisms defines a map Γ [TCΣ] → TM given by

two operators

P : Γ
[

T
(1,0)
C

Σ
]

→ TM, Q : Γ
[

T
(0,1)
C

Σ
]

→ TM,

ǫ∂ 7→ Lǫ∂V ǫ̃∂̃ 7→ Lǫ̃∂̃V
(2.25)

comparing (2.16) with (2.19) we obtain

P (ǫ ∂z) = (Pµ , Pe) =
(

−∂̃z̄ǫ dz̃ ∂z , (ǫ ∂ze− e ∂zǫ) dz̃ ∂z

)

, (2.26)

Q
(

ǫ̃ ∂̄z̄
)

= (Qµ, Qe) =
(

0 , −∂̃z̃ (ǫ̃e) dz̄ ∂z

)

. (2.27)

5Recall that z and z̃ are considered independent complex variables.
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By construction, G = Im(P ) ∪ Im(Q) is the subspace of TM spanned by the gauge

transformations. We are looking for variations of the gauge parameters that cannot be the

result of a gauge transformation. By picking a metric on TM, these non-gauge variations

can be taken to be G⊥. One can easily get such a metric by making a choice of hermitian

metric on ΣC, ds
2 = dz⊙ dz̄+ dz̃⊙ d¯̃z. If u and v are any tensor of same type, we note uv

the hermitian pairing induced by the above metric.

We can define G⊥ to be the subset of TM such that for all ǫ, ǫ̃:

∫

Σ
dzdz̃ (δµ̄ Pµ(ǫ) + δēPe(ǫ)) = 0,

∫

Σ
dzdz̃ (δµ̄ Qµ(ǫ̃) + δēQe(ǫ̃)) = 0.

(2.28)

We are therefore looking for Ker(P †)∩Ker(Q†), with P † : TM → Γ[T
(1,0)
C

Σ] , Q† : TM →
Γ[T 0,1

C
Σ] defined by

∫

Σ
dzdz̃

(

δ̄µ Pµ(ǫ) + δePe(ǫ)
)

=

∫

Σ
dzdz̃ P †(δµ, δe) ǫ (2.29)

∫

Σ
dzdz̃ (δµ̄ Qµ(ǫ̃) + δē Qe(ǫ̃)) =

∫

Σ
dzdz̃ Q†(δµ, δe) ǫ̃. (2.30)

We can obtain these operators explicitly by an integration by parts:

∫

Σ
dzdz̃ (δµ̄ (Pµ(ǫ) +Qµ(ǫ̃)) + δē (Pe(ǫ) +Qe(ǫ̃)))

=

∫

Σ
dzdz̃

(

δµ̄ ∂̃ǫ+ δē (ǫ∂e− e∂ǫ) + δē ∂̃(ǫ̃e)
)

,

=

∫

Σ
dzdz̃

(

ǫ
(

−∂̃ δµ̄+ ∂e δē+ ∂ (e δē)
)

− (ǫ̃e) ∂̃δē
)

.

(2.31)

Requiring that this holds for any ǫ and any ǫ̃ gives the equations

∂̄δµ̄− ∂eδē− ∂(eδē) = 0

e ∂̄δē = 0. (2.32)

If we now parametrize the diffeomorphisms in z̄ by a holomorphic field α = eǫ̃ using

the equivalence of these diffeomorphisms with the scaling symmetry, we recover the same

equations for the moduli as [6]. Here too it was essential that the null string be complexified

in order to match the ambitwistor string.

3 Symmetry algebra

In this section we come back on the symmetry algebra of the null string. Following recent

terminology [33–35] is called a 2-dimensional Galilean Conformal Algebra, gca2. This alge-

bra is isomorphic to the 3-dimensional Bondi-Metzner-Sachs bms3 algebra — the symmetry

algebra of the null boundary of 3-dimensional Minkowski spacetime. This isomorphism is

– 8 –
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at the root of various conjectures concerning flat space holography [46–48] which have trig-

gered interest for gca2 representations and supersymmetric extensions thereof [32, 49–62].

See also [63] for a connection with Carrollian ultra-relativistic physics.6 In the text, we

frequently use the BMS terminology, and call the GCA transformations superrotations and

supertranslations.

Our motivation in studying GCA’s comes from wanting to set up a vertex operator

formalism for the null string where the loop-momentum zero modes are already integrated.

In addition, the symmetry algebra of the null string is a GCA and not just the traditional

Virasoro algebra of string theory, it would appear necessary to start from scratch and work

out the equivalent of the basic tools that we have in ordinary CFTs; state-operator map

and vertex operator formalism.

In this section, we will show that the representation theory of the gca2 for the null string

actually forces the representations to truncate down to the usual Virasoro representations.

To do so, we will mostly use of the analysis of null states of the gca2 presented in [32].

This surprising fact justifies intuitively why it has been possible to use standard CFT

tools so far both in the ambitwistor and null string (see in particular the recent work on

one-loop null string amplitudes of [64]). It will also shed a new light on the remarkable

chirality of the ambitwistor and null strings and the truncation of their spectrum.

Before starting, we would like to briefly comment on conformal non-relativistic sym-

metries, mostly to disambiguate the terminology. The algebra studied here is not the

Schrödinger algebra of [65–68] but the algebra obtained by an Inönü-Wigner contraction

of the usual Poincaré algebra. It exists in any dimensions, and only in two dimensions it

has the infinite dimensional extension which also makes it a contraction of a product of

two Virasoro algebras [32, 69, 70]. We refer to [32, 71] for further details and references.

3.1 Gauge fixing and residual symmetries

Consider partially gauge-fixing the null string action (2.1) by making a choice of complex

structure. Looking at the variations of V , (2.19), we see that the “right-diffeomorphisms”

(ǫ = 0) preserve this gauge choice. However, requiring that “left-diffeomorphisms” (ǫ̃ = 0)

preserve this complex structure imposes ∂̃ǫ = 0, that is, it is only a function of z.

LǫX = ǫ ∂zX,

LǫV =

(

dzdz̃

e

) 1

2

⊗
(

− 1

2e
(ǫ∂e− e∂ǫ) ∂̃z̃

)

,

Lǫ̃X = ǫ̃ ∂̃z̃X,

Lǫ̃V =

(

dzdz̃

e

) 1

2

⊗− ∂̃z̃ (ǫ̃e)

2e
∂̃z̃.

(3.1)

We can further gauge-fix by choosing a particular value for the Lagrange multiplier scale

field e. Residual symmetries then have to satisfy

ǫ∂ze− e∂zǫ+ ∂̃z̃(ǫ̃e) = 0, ∂̃z̃ǫ = 0. (3.2)

Taking e to be constant, these symmetries are generated by vector fields of the form

ǫ∂z + ǫ̃∂̃z̃ = f(z)∂z + (z̃∂zf(z) + g(z)) ∂̃z̃ (3.3)

6It is known that in two dimensions, ultra- and non-relativistic physics are classically equivalent, essen-

tially because there are as many space and time dimensions.
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where f, g are any holomorphic functions. The associated Noether currents are

Jf = f(z)
(

∂̃X · ∂X − z̃∂
(

∂̃X · ∂̃X
))

dz̃ and J̃g = g(z)
(

∂̃X · ∂̃X
)

dz̃. (3.4)

These vector fields form a GCA which play the same role in the null string as the Virasoro

algebra does in the usual string. Note that the GCA contains a single copy of the Virasoro

algebra as a subalgebra giving the null string its chiral character.

Put differently, the transformation (3.3) defines two operators that we can call L(F )

and M(g) whose mode expansion are given by

L(f) =
∑

n∈Z

fnLn, M(g) =
∑

n∈Z

Mngn (3.5)

with

Ln = −zn(z∂z + (n+ 1)z̃∂z̃) , Mn = zn+1∂z̃ . (3.6)

In the BMS language, Ln and Mn are the generators of superrotations and supertransla-

tions, respectively.7 They obey the following commutation relations

[Ln, Lm] = (n−m)Ln+m, [Ln,Mm] = (n−m)Mn+m, [Mn,Mm] = 0 . (3.7)

At the quantum level, central extensions are admissible. The centrally-extended algebra is

[Ln, Lm] = (n−m)Ln+m +
cL
12

m(m2 − 1)δm+n,0

[Ln,Mm] = (n−m)Mn+m +
cM
12

m(m2 − 1)δm+n,0

[Mn,Mm] = 0 .

(3.8)

For the ambitwistor string, cM = 0 and cL = d − 2 is canceled by the inclusion of the b-c

and b̃-c̃ ghost systems. The vacuum chosen to study the representations of the GCA is the

same as the one used in the ambitwistor quantization and is defined by8

Ln|0〉 = 0 , Mn|0〉 = 0 , ∀n ≥ 0 . (3.9)

3.2 GCA Hilbert space and null states

We now proceed to investigate the GCA representations. We will use the analysis of [32]

and argue that they simply truncate down to a chiral Virasoro representation.

The upshot is that due to how the P 2 = 0 constraint is imposed, the GCA action

automatically descends to a chiral CFT action at the level of the spectrum.

7The combination L′

n = Ln−i(n+1) z̃
z
Mn = −zn+1∂z generates exactly chiral conformal transformations

we are after. However, since the change of generators involves the variables themselves, it is not clear what

can be made of this observation.
8In the other quantization, supposed to produce a higher-spin theory [24, 72], the operator ordering stip-

ulates that all the modes of P annihilate the vacuum. Therefore, all the modes of the constraint annihilate

the vacuum ∀n ∈ Z, Ln|0〉 = Mn|0〉 = 0, and it is not clear how to build non-trivial representations. This

may reflect that the theory is likely to be free, as expected from the Coleman-Mandula theorem.
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We would like to conjecture that for this reason we can have a well-defined state-

operator map for the chiral CFT as well as a standard vertex operator formalism. It still

remains an important question to understand these issues in full generality in the GCA

and may open the way towards massive theories for instance, where the constraint P 2 = 0

should not be applied.

We start by reviewing some elements of the analysis of [32] on the representations of

the gca2 algebra. We look at states with well-defined scaling properties

L0|∆〉 = ∆|∆〉. (3.10)

Then, since [L0,M0] = 0 the representations are actually indexed by another quantum

number ξ called “rapidity” [32, 73]

L0|∆, ξ〉 = ∆|∆, ξ〉, M0|∆, ξ〉 = ξ|∆, ξ〉. (3.11)

Descendant states are then built out by the successive action of the operators L−n,M−m,

n,m > 0.

We now follow the analysis of [32, section 5] on the GCA null states. Here cM = 0 and

the physical state conditions impose ∆ = 2, and, importantly, ξ = 0. The first condition

states that physical states are primaries of conformal weight two. The second condition is

on-shellness of the state, i.e. kµkµ = 0 for a state with momentum kµ.

This is this last condition that actually implies that the null string does not use of the

full GCA symmetry. We will see that it implies that the M−n descendants decouple. The

argument adapted from [32], goes as follows.

At level one, there are two descendant states L−1|∆, 0〉 and M−1|∆, 0〉. It is immediate

to see that the second one, M−1|∆, 0〉, is orthogonal to all other states in the Hilbert space.

Therefore M−1|∆, 0〉 = 0. At level two, descendants made of powers of M−1 and M−2 are

the following states

(M−1)
2|∆, 0〉, L−1M−1|∆, 0〉 , M−2|∆, 0〉 . (3.12)

The first two states vanish immediately, because M−1|∆, 0〉 = 0. The second state is,

again, orthogonal to all other states, precisely because M0|∆, 0〉 = 0. The whole sector of

the Hilbert space made of M−n’s is therefore null and decouples from the physical Hilbert

space. We are then left with a chiral Virasoro module. This is the reason why it is possible

to treat the null string and ambitwistor string as a chiral CFT, and intuitively, is the origin

of the holomorphicity of all twistor string models.

3.3 Gauge-fixing the global GCA

After the gauge-fixing, there is still a residual gauge symmetry which is given by the global

part of the GCA. Below we explain how this residual gauge redundancy is removed by

fixing the positions of 3 operators, in analogy with the similar string-theoretic version.

The method previously used in [32, 73] was to consider the gca2 as a contraction of

the usual Vir×Vir algebra, under which the coordinates z, z̃ are scaled as

z = t+ ǫx

z̃ = t− ǫx
(3.13)
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with ǫ → 0. An SL(2,C) transformation then induces the following transformation

t+ ǫx → a(t+ ǫx) + b

c(t+ ǫx) + d
=

at+ b

ct+ d
+ ǫ

x

(ct+ d)2
. (3.14)

Here, again following our wish to work out the details of the model, we will derive

these relations from the explicit form of the global GCA transformations.

We start from the representation of eq. (3.6). The generators L0, L1, L−1 and M0,

M1, M−1 constitute the global part of the gauge group. Their expressions read

L−1 = −∂t , L0 = x∂x− t∂t , L1 = −2tx∂x − t2∂t ,

M−1 = ∂x , M0 = t∂x , M1 = t2∂x .
(3.15)

We claimed that these generators are globally defined, but there is a subtlety here.

Due to the term −2tx∂x, L1 is not well defined for t → ∞, unless x = 0. We shall see

later that it is always possible to fix x = 0, and moreover that these terms produce only

off-diagonal terms in the determinant of the zero modes which anyway do not contribute

to the total determinant. It is also intriguing to see that, at fixed t, all the Mn’s for all

n ∈ Z are well defined, but only M−1 is for all values of t. Infinitesimal transformations

associated to these six generators can be written easily, an read for the L−1, L0, L1 with

parameters δa−1, δa0, δa1:

δt = δa−1 + (δa0)t− (δa1)t
2

δx = −δa0x− 2(δa1)tx
(3.16)

and for the Mi’s with parameters δb−1, δb0, δb1

δt = 0

δx = δb−1 + (δb0)t+ (δb1)t
2 .

(3.17)

To integrate to the finite form, in principle one has to solve a differential equation. Take

the special conformal transformation of the conformal group, generated by δz = −(δα)z2.

It is solved by writing δz
z(α)2

= δα which gives 1/z̃ − 1/z = α, i.e. z̃ = z
1+αz . In the case of

the GCA transformations, only the L1 requires a little care. Calling s = a1, it reads

δt

t(s)2
= −δc,

δx

x(s)
= −2δs× t(s) (3.18)

where we have made the dependence on c explicit in the functions t, x. Integrating t gives

t(s) = t(0)/(1 + st(0)), which can be plugged into δx/x to give x(s) = x(0)/(1 + st)2.

Combining with L0 and L−1 we obtain the following finite transformations:

t → t̃ =
at+ b

ct+ d
, x → x̃ =

x

(ct+ d)2
(3.19)

for the Li’s and

t → t̃ = t, x → x̃ = x+ e+ ft+ gt2 (3.20)

for the Mi’s.
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Given 3 points (ti, xi) on C
2 we apply the finite transformations above to perform the

usual gauge fixing of the t’s to 0, 1,∞ and fix x1, x2, x3 to zero. For four points, we have

determined explicitly that this produces the two GCA-independent quantities found in [32]

using the previously described squeeze limit:

t =
t23t14
t12t34

,
x

t
=

x12
t12

− x14
t14

− x23
t23

+
x34
t34

. (3.21)

This means that for x1 = x2 = x3 = 0, t1 = 0, t2 = 1 and t3 = ∞, we just have t4 = t

and x4 = x. The finite BMS3 transformations have been computed in [74], it would be

interesting to understand if they have any geometrical interpretation in the gca2 side.

Lastly we compute the Jacobian for gauge-fixing the global GCA. In a BRST frame-

work this comes from integrating out the zero modes of the ghosts associated to the con-

straints (2.15). There are six ghosts, one for each global generator of the GCA (3.15).

Therefore there are six global sections which we can fix by picking three points on the

worldsheet {(t1, x1), (t3, x3), (t3, x3)} and calculating the determinant of the matrix of zero

mode sections evaluated at these points

M =

(

A 0

B −A

)

, where A =







1 1 1

t1 t2 t3
t1

2 t2
2 t3

2






, B =







0 0 0

x1 x2 x3
−2x1t1 −2x2t2 −2x3t3






.

(3.22)

This matrix has an off-diagonal part because the Ln and Mn generators do not commute,

in contrast to the left- and right-handed Virasoro algebra in usual 2D CFTs. However, the

off-diagonal does not contribute to the determinant which is

det(M) = −((t1 − t2)(t2 − t3)(t3 − t1))
2 , (3.23)

which is precisely the same as found in the ambitwistor string. Note that since the x coor-

dinates decouple from the determinant their fixed values are immaterial to the correlation

function, effectively all that is needed to fix the global GCA is choosing three points in

the t coordinate. This is precisely what happens in the ambitwistor string, where one only

fixes three holomorphic coordinates to fix the global GCA at tree-level.

4 Operator formalism and scattering equations

4.1 Formalism

As we mentioned, the ambitwistor complexified gauge is an elegant way to reproduce the

CHY formulae. However, subtleties show up at loop-level which render this power some-

what useless, in particular when discussing questions related to modular invariance and the

role of the loop momentum for instance. In this section, we set up an operator formalism9

which will remain somewhat agnostic about the complexification since the manipulations

are purely algebraic. We then use it to gain insights into the appearance of the scattering

equations in the ambitwistor string by comparing the amplitude computed in these two

9Here done somewhat heuristically since we neglect the ghosts for the most part.
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different ways. We also make connection with an interesting one-loop computation using

CFT methods presented in [64].

The formalism will essentially follow the analogous operator construction in string

theory, presented in the classic reference [75]. To set up the formalism, we consider the

canonical quantization of the null string in Schild’s gauge [24]:

V ∼ ∂τ . (4.1)

Note that this is a Lorentzian gauge fixing condition and should be contrasted with the

more Euclidean condition chosen earlier in (2.2).

Even though the amplitude calculation is only well-defined in the model with two

supersymmetries, we work in the purely bosonic model since it has all the important

features without the added combinatorial complexity of having the fermions. This feature

will prove sufficient to exhibit the essential properties of the model, the scattering equations

in particular.

The relevant field to quantize is X, for which the equation of motion ∂2
τX = 0 gives

the following classical solutions

X(τ, σ) = Y (σ) + τP (σ) (4.2)

which we expand in modes

Y (σ) =
∑

n∈Z

yne
−iσn, P (σ) =

∑

n∈Z

pne
−iσn , (4.3)

with canonical commutation relations [yn, pm] = iδm+n,0. Here and below we omit Lorentz

indices for convenience. In this gauge, the two constraints are given by ∂τX · ∂σX = 0

and ∂τX · ∂τX = 0. The mode expansion of these in terms of the corresponding L and M

generators and their commutation relations can be found in [20, 34]. For what follows, we

only need the zero modes of these operators: L0 generates rotations along the circle and

M0 is the worldsheet Hamiltonian (we provide their explicit expression below).

We postulate that a vertex operator with momentum k placed at the (σ, τ) = (0, 0)

assumes the following form

V (0, 0) := (ǫ · Ẋ(0, 0))2eik·X(0,0) = (ǫ · P (0))2eik·Y (0). (4.4)

where εµν = ǫ(µǫν) is the graviton’s polarization. The amplitude is obtained from a correla-

tor of local insertions of these operators. First we apply a vertex operator to the incoming

vacuum, propagate this state using the worldsheet propagator ∆, act with another vertex

operator, and so on, until we contract with the outgoing vacuum. That is, at four points,

〈ǫ1; k1|V2(0, 0)∆V3(0, 0)|ǫ4; k4〉. (4.5)

The full amplitude is obtained by summing over permutations of the external particles.

We use the following expression for the worldsheet propagator;

∆ =
δ(L0 − 2)

M0
=

∫

dρdφe−ρM0e−iφ(L0−2). (4.6)
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This formulation is closely related to one used in [76] for the HSZ string and has its origin

in the descent procedure from [5]. It would be interesting to compare this expression with

the expression derived rigorously in [6].

The zero point energy contribution for L0 occurs when one picks the ambitwistor

vacuum (3.9), also defined in terms of the pn, ym modes:

pn|0〉 = 0; yn|0〉 = 0 ∀n > 0, (4.7)

and equivalently the following operator ordering

: ynpm :=

{

ynpm if m > 0

pmyn if n > 0
(4.8)

which is the appropriate one here. These operators are responsible for moving vertex

operators along the worldsheet as

e−ρM0e2iπφL0V (0, 0)eρM0eiφL0 = V (ρ, φ) (4.9)

and are given by

L0 =
∑

n∈Z

n : p−n · yn : , M0 =
1

2

∑

n∈Z

p−n · pn. (4.10)

The correlator (4.5) becomes
∫

dρdφ〈ǫ1; k1|V2(0, 0)V3(ρ, φ)|ǫ4; k4〉 . (4.11)

The only place where Y appear is in the exponentials, so the commutator between them

and polynomials of P are easy to evaluate and will not have any dependence on ρ. The only

term with non-trivial dependence on the modulus ρ is given by commuting the exponential

parts of V2 through the other vertex operators, for example

eik2·Y−(0)eik3·Y+(φ)+iρk·P+(φ) = eik3·Y+(φ)+iρk·P+(φ)eik2·Y−(0)e−iρk2·k3G(0,φ) (4.12)

where the Y±(φ) =
∑

±n≥0 yne
−inφ and the same for P . The function G(φ1, φ2) = (1 −

e−i(φ1−φ2))−1 is the propagator on the cylinder. We give more details on its computation

in the next section.

The full computation of the correlator for an n point scattering is actually done using

the Baker-Campbell-Hausdorff formula. Its full dependence of on the moduli ρ comes in

the exponential

exp

(

iρ

(

k3 · k1 +
k3 · k2
1− 1

z

))

(4.13)

with z = e−iφ. Here is where the complexification comes in. Complexifying the moduli

and changing the integration contour of ρ,10 such that the above exponential integrates to

10Together with a change of variable ρ → ρ

z
.
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a delta-function, its argument coincides with the four point scattering equation

k3 · P (z) =
∑

i 6=3

k3 · ki
z − zi

= 0. (4.14)

Here the gauge {z1, z2, z4} = {0, 1,∞} appears naturally. In the original coordinates

this corresponds to picking {σ1, σ2, σ4} = {i∞, 0,−i∞}, which can only be achieved with

complex moduli.

The inclusion of fermions does not change the above calculation of the exponential

factors, the same is true if more vertex operators are included. The dependence on the

moduli associated to the Hamiltonian M0 is always exponential and, by picking the right

contour, can be integrated into the delta functions imposing the scattering equations. This

way of obtaining the scattering equations is reminiscent of the descent procedure described

in [5], but here we made no use of the CFT description. To recover actual gravity amplitudes

we simply use the N = 2 version of the null string and consider correlators of the form

〈ǫ1; k1|V2∆V3∆ · · ·∆Vn−1|ǫn; kn〉 (4.15)

and sum over permutations. The vertex operators have the form

V (0, 0) = (ǫ · P + ǫ · ψk · ψ)2eik·Y (0, 0). (4.16)

After expressing all the propagators in terms of moduli and commuting them through to

the vacuum the calculation is essentially the same as in the ambitwistor string up to change

of coordinates in the moduli space.

4.2 Cylinder propagator and n-point scattering equations

Here we give more details on the computation of the propagator 〈XX〉 on the cylinder

using the operator formulation. A similar computation was performed proposed in [64]

using a operator and path integral methods — we find agreement with these results. With

this propagator we see how the scattering equations in the operator formalism arise from

a contour deformation of the time variable τ . Similar observations were made in [36, 64].

It is important for us to revisit these analyses because it allows us to constrain further

the complexification of the null string. Using the definitions of the previous section, the

correlator is given by:

〈X(τ1, σ1)X(τ2, σ2)〉 = T (X(τ1, σ1)X(τ2, σ2))− : X(τ1, σ1)X(τ2, σ2) : (4.17)

where T (. . .) and : . . . : denote time and normal ordering, respectively. The usual ordering

would be τ -ordering, however the computation does not change if we use a σ-ordering.

The reason why we make this comment is because there is an intuitive sense in which the

ambitwistor normal ordering amounts to exchanging space and time on the worldsheet, as

described by Siegel in [36].
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Suppose τ1 > τ2, (or σ1 > σ2):

〈X(τ1, σ1)X(τ2, σ2)〉 =
∑

n,m∈Z

(yn + τ1pn)(ym + τ2pm)− : (yn + τ1pn)(ym + τ2pm) :

=
∑

n>0,m<0

(

τ1(pnym − ympn) + τ2(ynpm − pmyn)
)

einσ1+imσ2

= −i(τ1 − τ2)
∑

n>0

ein(σ1−σ2)

(4.18)

finally giving

〈X(τ1, σ1)X(τ2, σ2)〉 = −i(τ1 − τ2)
z1

z1 − z2
(4.19)

where we put zi = exp(iσi). In terms of σ and τ this can be rewritten 〈X(τ1, σ1)X(τ2, σ2)〉 =
(τ1−τ2)

(

cot
(

σ1−σ2

2

)

+ 1
)

/2 where the invariance by translation symmetry is now obvious.

The constant piece will drop out of the propagator by 1 ↔ 2 symmetry, so we can as well

remove it from the start. This amount to replace the previously derived propagator by

〈X(τ1, σ1)X(τ2, σ2)〉 = − i

2
(τ1 − τ2)

z1 + z2
z1 − z2

. (4.20)

The null-string’s Koba-Nielsen factor, abbreviated
∑

ki · kj〈XiXj〉, then reduces to
∑

ki · kj〈XiXj〉 = − i

2

∑

i,j

ki · kjτij
zi + zj
zi − zj

= − i

4

∑

i<j

ki · kjτi
zi + zj
zi − zj

= − i

2

n
∑

i=1

τizi





n
∑

j=1

ki · kj
1 + zi/zj
zi − zj





(4.21)

where to go from the first to second line we used momentum conservation.

Then, as argued above, the τi integration should be complexified in such a way as to

give rise to the scattering equations, (this last fact was originally proposed by Siegel in [36])
∫

dτie
Eiτi ∼ δ(Ei) . (4.22)

with Ei the term in the parenthesis in eq. (4.21). Note that due to global GCA invariance,

there are only n − 3 independent GCA cross ratios and hence n − 3 scattering equations.

In our present case, with the conformal mapping σ → exp(iσ) used here, the scattering

equations appear first as

∀i = 1, . . . , n− 3 , Ei =
∑

j

ki · kj
(

1

zij
+

zj
zizij

)

= 0 . (4.23)

Using the partial fraction identity
zj

zizij
= 1

zij
− 1

zi
and momentum conservation they reduce

to the CHY scattering equations. The extra factor of zi with τi in the exponential finally

ensures that the measure is invariant. When τi → τ̃i = ziτi and σi → zi = exp(iσi):

dσidτi → dzidτ̃i (4.24)

up to numerical factors of 2iπ.
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4.3 Partition function

The operator formalism can also be used to give a tentative calculation of the partition

function. Consider the trace

Z(ρ, φ) = Tr(exp(2πiφP − 2πρH)). (4.25)

Here P = L0 − c
24 is the generator of translations in space along φ, and H = M0 is the

Hamiltonian generating time evolution along ρ. Here we have Wick rotated to Euclidean

signature, hence the absence of a factor of i in front of the Hamiltonian. A generic state

in the Hilbert space is given by polynomials of the negative modes yn and pn

|φI〉 = xµ1
a1 · · ·xµn

anp
ν1
b1
· · · pνmbj |k〉 (4.26)

where |k〉 = exp(x0 · k)|0〉 is the vacuum with momenta k and I is a multi-index.

Acting with these translation operators on a generic state and tracing over gives

Z(ρ, φ) =

∫

dk

(2π)
e−πρk2e2iπφc/24

∞
∏

a=1

∞
∏

b=1

∞
∑

Na=0

∞
∑

Nb=0

e2πiaNaφe2πibNbφ . (4.27)

Performing the Gaussian integral and the sum we arrive at

Z1(ρ, φ) = (4π2ρ)−1/2qc/24
∞
∏

b=1

(1− qb)−2 (4.28)

where q = e2πiφ is in principle a complex number of unit modulus. In the above we neglected

the spacetime indices of the oscillators,11 so in D dimensions the partition function is

Z(ρ, φ) = (4π2ρ)−D/2qc/24

(

∞
∏

b=1

(1− qb)−2

)D

. (4.29)

Note how similar it is to the partition function of a (non-chiral) single boson

ZX = (4π2τ2)
−1/2

∣

∣

∣

∣

∣

q1/24
∞
∏

n=1

(1− qn)−1

∣

∣

∣

∣

∣

2

(4.30)

but in this case q is the modular parameter of the torus, not a unit norm complex number

as in the null string.

Comparing to the partition function of the ambitwistor string found in [5] we see that

there is an extra modulus, ρ, in the null string. Furthermore, the modulus q is the modular

parameter of the torus in [5] while in the null string it is a complex number of unit norm.

The ambitwistor string also has an explicit integration over the zero mode of P , leading to

a loop-momentum integration. In the case of the null string the loop-momentum integral

is exchanged for an integral over the extra modulus. We expect that it is this modulus ρ

11We also threw out a dimension dependent overall constant which is basically the volume of a D − 1

sphere.
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which controls the UV behaviour of the theory. From the previous sections we know that

the moduli space of the complexified null string is the cotangent to the moduli space of

Riemann surfaces. So it is natural to conjecture that the moduli space of the real null

string is a some real cycle in this space. In fact, recent work in one-loop amplitudes in the

null string [64] seems to support this hypothesis. The partition function computed in this

paper by different methods seems to be the same as ours with a specific choice of contour.12

4.4 Comment on modular invariance

After complexifying we can imagine that the null string is a Galilean conformal field theory

obtained by contracting some CFT. Then the parameters (ρ, φ) should inherit modular

transformations from the parent theory, see [77–79]. With respect to the parent CFT

Virasoro, the GCA zero mode operators are

L0 = L0 − L̄0

M0 = ǫ(L0 + L̄) .

Here, ǫ is a parameter that we will take to zero to perform the algebra contraction. Call

ζ, ζ̄ the parameters associated13 with L0 and L̄0, respectively, then the GCA parameters

are 2φ = ζ + ζ̄ and 2ρ = ζ − ζ̄, associated to L0 and M0, respectively. The parameter ζ

and its complex conjugate are the modular parameters of the torus carrying an action of

the modular group SL(2,Z)

ζ → aζ + b

cζ + d
, a, b, c, d ∈ Z, ab− dc = 1 . (4.31)

When taking the limit, ρ scales as ǫ since it is associated with M0. Making this explicit in

the above and expanding to first order in ǫ gives

φ+ ǫρ → a(φ+ ǫρ) + b

c(φ+ ǫρ) + d
=

aφ+ b

cφ+ d
+ ǫ

ρ

(cφ+ d)2
. (4.32)

The claim is then that the modular transformations for the null string are generated by

(φ, ρ) → (φ+ 1, ρ) (4.33)

(φ, ρ) →
(−1

φ
,
ρ

φ2

)

. (4.34)

With these transformations in hand we can examine how the partition function behaves

under them. Rewriting it in terms of the eta-function η(τ) = q1/24
∏∞

n=1(1− qn) gives

ZXP = (4π2ρ)−D/2(η(φ))−2D. (4.35)

Under modular transformations the eta-function behaves as

η(τ + 1) = exp(iπ/12)η(τ)

η(−1/τ) = (−iτ)1/2η(τ) .

12The part that was computed there was the matter part; it matches our expression, up to numerical

factors. The integration contour was, there also, conjectured.
13In the sense of defining the partition function as above.
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It’s clear that under these transformations ZXP picks up a phase. But all is not lost yet, so

far we haven’t included the ghost sector. Naively the partition function for the ghosts is just

η4. This is even worse since it picks up factors of φ under modular transformations. But the

ghost partition function should not be taken into account without the anti-ghost insertions

which builds the measure in the moduli space. Instead of deriving this measure we will

assume modular invariance and show that it uniquely fixes the ghost partition function and

the measure on the moduli space. The claim is that the ghost partition function is ρη(φ)4

since this picks up a phase independent of φ under modular transformations. Combining

these partition functions gives

ZXPZg = (4π2ρ)−D/2(η(φ))−2Dρ(η(φ))4. (4.36)

Its easy to see that the relative phases cancel when D = 26.14 There is also a unique

modular invariant measure in the space of (φ, ρ) which combines with the partition function

to give

∫

dφdρ

(ρ)2
(4π2ρ)−13(η(φ))−52ρ(η(φ))4 . (4.37)

Note that in the above formula there was no need of assigning a modular transformation

to the field P to get a modular invariant function like in [5]. As expected, its role has been

taken over by the factor (ρ)−13. An integrand that goes with it also will not depend on

the zero mode of P , but will depend on a new modulus. Like the tree-level amplitude we

expect this dependence to be exponential which might allow for new loop-level scattering

equations without an explicit loop momentum.

As we mentioned, a one-loop amplitude in the bosonic null string has been proposed

in [64]. Given a particular choice of contour the authors recovered scalar boxes in Schwinger

parametrization. It would be very interesting to compute the one-loop amplitude using the

above operator formalism and compare with their results.

5 Discussion

Summary. In this paper, we pushed the study of the null string into three different

but related directions. First we complexified the worldsheet and target space where we

noticed an emergent symmetry which does not preserve the original real contour. This

symmetry is on-shell gauge equivalent to holomorphic diffeomorphisms and corresponds to

translations along null geodesics which is the same as one of the gauge symmetries of the

ambitwistor string. In the same section we also studied the moduli space of the null string

and concluded it is the same as the ambitwistor string when viewed through the lens of

this emergent symmetry.

Next we studied the role of the Galilean conformal algebra in the structure of the

null string. We showed how the constraints of the null string restrict the state space to

be the same as a chiral CFT. This motivates why one can use the usual state-operator

14That is sufficient, not necessary.
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correspondence in these models. Then we showed how the residual symmetry acts locally

and globally, and how to gauge fix it gives rise to a Jacobian which matches with the

ambitwistor string ghosts correlator. In doing this we showed how the chiral gauge-fixing

of the ambitwistor string translates into the gauge fixing of the nulls string and vice versa.

Lastly we looked at tree-level amplitudes using an operator formalism. There we

showed explicitly at four points how the extra moduli of the null string can be used to

obtain the tree-level amplitudes in the CHY form, that is, localized to the scattering

equations. Next we calculated the cylinder propagator and gave an n-point argument for

how the scattering equations appear at tree-level. We closed the section by calculating

the partition function from operator methods, pointing out its differences and similarities

with other ambitwistor partition functions in the literature and showed that our partition

function is invariant under a conjectured action of modular transformations in the moduli

space of the null string.

Perspectives. Going forward, there are many directions of research which this work

opens.

First, a full treatment of the path integral in the real setting, if it makes sense, would

be illuminating and might follow the lines advocated in [80]. The idea would be then to

determine the complex integration cycle (that are known as Lefchetz thimbles [6, 31, 81])

by computing the intersection between the real and complex case.

It would also be very interesting to understand the details of the procedure sketched in

section 4.2. In particular, it seems that there could be a choice in the order of integration,

τ or z first. Even at tree-level doing so is difficult but could lead to a new representation

of the CHY formulae. At loop-level, an interesting possibility arises, the loop momenta

would naturally arise within the scattering equations instead of being an explicit variable of

integration. If it is possible to do the z integral first, then the τ integral seems to reduce to

a Schwinger proper-time parametrization. Evidence for this was proposed in [64]. However,

we already mentioned that a lot of subtleties are present at loop-level, and it is not at all

obvious that such a thing is possible. For this reason it will be necessary to understand

further the moduli space of the null string at loop-level.

Recently another proposal for a gauge-unfixed version of the ambitwistor models in

a first order setting was put forward in [82]. It argued that the resulting models are

essentially topological, and the BRST localization [6] of the ambitwistor string on the

scattering equations is essentially a kind of topological localization. It would be interesting

to connect the two approaches and put in perspective the earlier results of [80].

Concerning supersymmetry, we mentioned that the analysis presented here can be

carried straightforwardly in the RNS model of Mason-Skinner [4], or in the pure spinor

version of the formalism [7, 12, 13].

In our previous paper [20] we noticed that there are chiral models in which the tension

is still present as a free parameter, these were later studied in [27, 28, 36, 83]. It would be

interesting to see if the methods developed in this paper can be applied to these models

and how they relate to the null string and the usual string.
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Finally, and in relation with the comment at the beginning of section 3 on non-

relativistic symmetries, it would be interesting to see if there exist other type of string

models which could be quantized following the methods exposed in this paper. In particu-

lar, as recalled in [84], Kar claimed in [85] that Schild’s strings (by opposition to our LST

strings) enjoy a larger set of reparametrisations, spanning the full Newman-Unti group.

They are given by (τ, σ) → (f(τ, σ), g(σ)). It would be interesting to study the quantiza-

tion of these strings and see if they can be related to LST strings.
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A Comments on worldline symmetries

The equivalence between the antiholomorphic diffeomorphisms and translations along null

geodesics in the null string closely resembles a similar phenomenon of the particle action.

Here we review the this equivalence in the worldline in order to illustrate what happens in

the null string.

The worldline action for a massless particle is written in second order form as

S =

∫ √−ggττ (∂τx)
2. (A.1)

This action is invariant under diffeomorphism. Under τ → ǫ(τ), the metric transforms as

δgττ = ǫ∂τgττ + 2gττ∂τ ǫ, δ(
√
g) = ∂τ (ǫ

√
g) . (A.2)

We write the action in the first order formalism by introducing the canonical momenta p

S(p,x) =

∫

(

p∂tx− e

2
p2
)

.

The corresponding equation of motion for p is e−1∂tx = p. Importantly, since the above

action is equivalent to (A.1) it still is diffeomorphism invariant. Under τ → τ + ǫ(τ) the

fields transform as

δx = ǫ∂tx, δp = ǫ∂tp, δe = ∂t(ǫe) (A.3)

where we identify e =
√
gττ . However, it is also the case that the gauge symmetries are

generated by the constraints. In this case the constraint p2 generates the gauge symmetry

of the system

δx = αp, δp = 0, δe = ∂tα . (A.4)
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These two symmetries should be somehow equivalent, except that in the Hamiltonian form

we usually discard time parametrization, as these are produced by changing the values of

the Lagrange multipliers in the extended Hamiltonian.

Henneaux and Teitelboim describe this phenomenon in their book ([45, chapter 3.1.5,

Trivial gauge transformations]) in some details. The important fact to notice here is that

the two symmetries just differ by a trivial “equation of motion symmetry”. In other words,

an α transformation is equal, on-shell, (∂tp = 0) to a diffeomorphism, with parameter

ǫ = eα. The gauge transformation that is obtained from the difference between these two

is a trivial gauge transformation. These trivial transformations that vanish on-shell can

always be written as [45, theorem 3.1],

δ′yi = ǫij
δS

δyj
(A.5)

for canonical variables yi with action S and, crucially, ǫij some antisymmetric variable. In

our case, (A.3)–(A.4) gives

δ′x = ǫ(∂tx− ep) =
δS(p,x)

δp

δ′p = ǫ∂tp = −
δS(p,x)

δx
.

(A.6)

These transformations form an ideal within the set of gauge transformation (their com-

mutator with other always give another equation of motion symmetry). They should be

disregarded, and a way to see this is that the associated charge is a function that vanishes

identically.

Something very similar happens in the complexified null string. The antiholomor-

phic or τ diffeomorphisms are equivalent on-shell to the scaling symmetry present in the

ambitwistor string generated by the P 2 constraint.

It would be interesting to revisit this analysis using the light-front formalism developed

in [86] to understand more conceptually the constraint analysis presented here.

B Electrostatic equilibrium

It was observed long ago that the scattering equations actually describe an electrostatics

equilibrium on the sphere [30, 87]. We comment on this observation from the point of view

of the real null string.

Starting from the real LST action, the insertion of plane wave vertex operators in the

path integral, induces the addition of source terms to the action, which play the role of

boundary conditions in the path integral:

∫

d2σ



V αV β∂αX · ∂βX + i
n
∑

j=1

kj ·X(σ, τ)δ(2)(σ − σj , τ − τj)



 . (B.1)

The corresponding X equations of motion read

∂α(V
αV β∂βX

µ) + i
n
∑

j=1

kµj δ
(2)(σ − σj , τ − τj) = 0 . (B.2)
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We want to interpret the following vector field as our electric field (or rather a collection

of electric fields, for µ = 0, . . . , D − 1)

Ẽα
µ = V αV β∂βXµ . (B.3)

This vector field has a density weight, which we can compensate by introducing an auxiliary

metric g on the worldsheet, so we should

√−gEα
µ = V αV β∂βXµ (B.4)

so that E is then a proper vector field. The equation of motion (B.2) then gives straight

away Gauss’s law in the presence of sources. It would be interesting to work out the similar

configuration at loop level, pushing further the analysis of [16].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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