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1 Introduction and review

1.1 Introduction

Almost two decades ago, a number of gravitational theories were conjectured to be

dual to specific strongly coupled large N maximally supersymmetric Yang-Mills (SYM)

theories [1–4]. These conjectures paved the way to our current understanding of the

gauge/gravity duality paradigm. However, a proof remains elusive. The main difficulty

lies in the fact that the gravitational descriptions are only valid when the corresponding

gauge theory duals are strongly coupled.

While there is accumulating evidence that these dualities hold, most nontrivial tests

are restricted to integrable sectors of the theory [5] or to situations with unbroken super-

symmetry [6, 7] (i.e. zero temperature). However, over the last ten years, a number of

novel techniques have been used to analyse these field theories at strong coupling using

computer lattice simulations [8–16]. These methods allow nonintegrable sectors of the the-

ory to be tested at finite temperature and provide some of the most nontrivial tests of the

gauge/gravity correspondence to date. Despite these efforts, many important gravitational
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phenomena have not been directly verified in the corresponding field theory. These in-

clude thermodynamic phase transitions like the Hawking-Page transition [2, 17–19] dual to

confinement/deconfinement and those arising from a Gregory-Laflamme instability [20–29]

dual to symmetry breaking phase transitions.

Interestingly, several authors have performed lattice simulations of SYM on R(t) × S1

at finite temperature and at strong coupling [30–36]. In a certain limit, this theory has

a conjectured gravity dual, but the corresponding gravitational solutions are unavailable.

These results offer the first quantitative predictions for classical gravity coming from the

gauge-theory side of the correspondence. The aim of this work is to complete this test

of gauge/gravity by numerically constructing the dual black hole solutions. Together with

lattice simulations, these results would comprise the first quantitative test of gauge/gravity

duality with a first-order phase transition.

At strong coupling and large N gauge group, the gravity dual to SYM on R(t) × S1

depends upon the temperature (or energy) scale relative to the circle size and dimensionless

coupling. At high temperatures, the gravity description lies within type IIB supergravity,

while at low temperatures the dual lies in type IIA supergravity. Within the type IIA

regime, the gravity theory exhibits a Gregory-Laflamme instability [20, 21] when the hori-

zon radius of p-branes becomes much smaller than the circle size [23–25, 30, 35, 37–39]. The

instability implies the existence of time-independent solutions that break the symmetries

of the S1. Such solutions compete with solutions that preserve the S1 symmetry, allowing

for the possibility of phase transitions.

Locating phase transitions on the gravity side of the correspondence requires construct-

ing the competing type IIA supergravity solutions and comparing their thermodynamic

quantities. Fortunately, there is a procedure that generates solutions to type IIA super-

gravity from solutions of the simpler 10-dimensional vacuum Einstein equation Rab = 0

with R(1,8) × S1 asymptotics. The process involves an uplift to 11 dimensions, followed

by a boost in the extra direction, then finally a Kaluza-Klein (KK) reduction back to 10

dimensions. Systems with R(1,d−2) × S1 asymptotics are well-studied [40–59] and can be

used to infer the behaviour of type IIA solutions. These results suggest that the d = 10

case of interest contains three types of solutions, corresponding to a uniform phase, a

nonuniform phase, and a fully localised phase. Furthermore, there should be a first-order

phase transition from the uniform phase to the localised phase. However, the only avail-

able thermodynamic quantities in d = 10 correspond to the uniform phase, which is known

analytically.1 We will therefore construct the desired nonuniform and localised phases and

complete the SYM phase diagram from the gravitational side of the duality.

Performing lattice simulations on the gauge theory side, the authors of [35] find a first-

order phase transition at a temperature near the critical zero-mode temperature of the

Gregory-Laflamme instability (see also [38, 39]). Our gravitational results indeed locate a

first-order phase transition at a temperature ratio of 1.093 with respect to the zero-mode

1The nonuniform phase has been constructed for 5 ≤ d ≤ 15 [41, 51, 52, 57, 59]. However, as far as we are

aware, the thermodynamics of this phase has never been displayed for d = 10. The localised phase has only

been constructed in d = 5, 6 [50, 55, 60]. Perturbative results are available for the localised phase, which we

will describe in section 2.3. However, the expected phase transition is located in a non-perturbative regime.
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temperature. While our results are consistent with [35, 38, 39], a more precise test will

await improved lattice computations.

This manuscript is structured as follows. In the next two subsections of this Intro-

duction, we describe the broad context of our study. Namely, in subsection 1.2, we review

Dp-branes, their decoupling limit, and the dual SYM theory. In subsection 1.3, we review

the uniform supergravity solutions that are dual (1 + 1)−dimensional SYM on a circle.

Section 2 revisits the uplift-boost-KK reduction generating technique that allows us to

find solutions of type IIA supergravity by solving the simpler vacuum Einstein equation

in 10 dimensions. In particular, we describe a map between the thermodynamics of vac-

uum gravity and those of (1 + 1)−dimensional SYM on a circle. Section 3 describes our

numerical construction of the nonuniform and localised solutions, and their corresponding

SYM phase diagram is discussed in section 4. We close with a few remarks in 5. For

completeness, the equations of motion for the sector of type II supergravity relevant to our

study are given in appendix A, and the thermodynamics of our solutions within vacuum

gravity are displayed in appendix B. These results complement similar results available in

other dimensions.

1.2 Review of Dp-branes, their decoupling limit, and the dual SYM theory

Let us review the duality between (1 + 1) dimensional SYM theory and supergravity [4].

We begin by considering N coincident Dp-branes in type II string theory (we will later

restrict to the case p = 1 in section 1.3). In general, there are modes that propagate along

the worldvolume of the brane and modes that propagate in the bulk. Ref. [4] identified

a limit where the bulk modes decouple and the worldvolume theory reduces to SYM. By

identifying the low energy sector of the Dirac-Born-Infeld action (describing open string

excitations on Dp-branes) with the SYM action, one can relate the SYM coupling constant

gYM to the string length `s =
√
α′ and string coupling gs via

g2
YM ≡ (2π)p−2gs`

p−3
s . (1.1)

The decoupling limit of [4], valid in the t’Hooft large N limit and for strong t’Hooft coupling

λ = g2
YMN , sends `s → 0 while keeping gYM fixed. This limit suppresses higher-order α′ cor-

rections and, for p ≤ 3 (the case relevant here), sends the gravitational Newton’s constant

G10 to zero. Indeed, recall that identifying the low-energy action of type II (closed) string

theory and the action of type II supergravity yields 16πG10 ≡ (2π)7g2
s`

8
s. This limit can be

taken at finite energy U and charge Kp, where these quantities must also be held fixed. At

finite energies U , the effective dimensionless SYM coupling is given by g2
eff ≈ g2

YMNU
p−3.

For p < 3, perturbative SYM is valid for large U , and the theory is UV free.

On the other hand, a stack of N coincident Dp-branes can also be described within

classical type II supergravity, provided that curvature scales remain small compared to the

string scale (to suppress α′ corrections) and the effective dimensionless string coupling is

sufficiently small (to suppress string loop effects). This classical theory contains a graviton

g, dilaton φ and a Ramond-Ramond (RR) A(p+1) field with action (here in the string frame)

I
(s)
II =

1

(2π)7`8s

∫
d10x
√
−g
[
e−2φ

(
R+ 4∂µφ∂

µφ
)
− 1

2(p+ 2)!
(dA(p+1))

2

]
. (1.2)
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For completeness, the corresponding equations of motion (A.1) and their map to the Ein-

stein frame are given in appendix A. A stack of N coincident non-extremal Dp-branes (at

large N) is described within this theory by p-branes (see e.g. [4, 61–63]):

ds2 = H−
1
2

(
−fdt 2 + dx2

‖

)
+H

1
2

(
dr2

f
+ r2dΩ2

(8−p)

)
,

eφ = gsH
3−p
4 , A(p+1) = (−1)pg−1

s cothβ
(
H−1 − 1

)
dt ∧ dx1 ∧ · · · ∧ dxp,

where f = 1− r7−p
0

r7−p , H = 1 +
r7−p

0

r7−p sinh2 β, dx2
‖ =

p∑
i=1

dx2
i , (1.3)

where the dimensionless string coupling is given by gs = eφ∞ , r0 is the horizon location,

and β is a parameter that sources the gauge potential. The mass, charge, temperature,

entropy, and chemical potential of these solutions are, respectively,

Mp = Vp
Ω(8−p)

16πG10
r7−p

0

[
8− p+ (7− p) sinh2 β

]
,

Qp = Vp
Ω(8−p)

16πG10
(7− p)r7−p

0 sinhβ coshβ,

Tp =
7− p

4πr0 coshβ
,

Sp = Vp
Ω(8−p)

4G10
r8−p

0 coshβ,

µp = tanhβ, (1.4)

where Ωn = 2π
n+1
2

Γ(n+1
2 )

is the area of a unit radius Sn, Vp is the Dp-brane worldvolume.

These quantities satisfy the thermodynamic first law dMp = TpdSp+µpdQp and the Smarr

relation (7− p)Mp = (8− p)TpSp + (7− p)µpQp.
One arrives at the conjectured duality [4] between a gravitational theory and SYM

by taking the corresponding decoupling limit of this configuration in classical type II su-

pergravity. To do so, we must complete the relationships between quantities in (1.3) and

stringy quantities gs and `s, and then match them to SYM quantities gYM , U , and Kp.

The coupling constants are already related via (1.1) and 16πG10 ≡ (2π)7g2
s`

8
s. The relation

between charges is given by

Kp ≡
(2π)7g2

sQp

(7− p)VpΩ(8−p)`
2(1−p)
s

=
(2π)7−pgsN

(7− p) Ω(8−p)`
3−p
s

, (1.5)

which can be obtained by matching the p-brane charge, computed in the string frame via

Qp =
Vp

(2π)7`8s

∫
S8−p

?dA(p+1) , (1.6)

with the charge of N Dp-branes Qp ≡ N tpVp, where tp = (2π)−p`
−(p+1)
s g−1

s is the Dp-brane

tension. The energy U can be related via U = r
`2s

and U0 = r0
`2s

. One way to see this is

to place one of the Dp-branes at a position r. This configuration breaks the symmetries

– 4 –
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U(N)→ U(N−1)×U(1), giving an expectation value (with dimensions of energy) to some

of the fields that scales as r [4]. To summarise, the decoupling limit is given by [4]

`s → 0, g2
YM = fixed, U ≡ r

`2s
= fixed, U0 ≡

r0

`2s
= fixed, Kp = fixed. (1.7)

The result of applying this decoupling limit to (1.3) gives the near-horizon limit of N

non-extremal Dp-branes:2

ds2 = `2s

 U
7−p
2√

dpgYM

√
N

(
−

(
1− U7−p

0

U7−p

)
dt2 + dx2

‖

)

+

√
dpgYM

√
N

U
7−p
2

(1− U7−p
0

U7−p

)−1

dU2 + U2dΩ2
(8−p)

 ,
eφ = (2π)2−p g2

YM

(
dpg

2
YMN

) 1
4

(3−p)

U
1
4

(3−p)(7−p)
,

A(p+1) = (−1)p(2π)p−2`p+1
s

U7−p

dpg4
YMN

dt ∧ dx1 ∧ · · · ∧ dxp ,

with dp ≡ 27−2pπ
3(3−p)

2 Γ

(
7− p

2

)
. (1.8)

The energy above extremality, Ep ≡ Mp − Qp, the entropy Sp and temperature Tp of

these near-horizon solutions are [4, 45, 61, 63, 64]3

Ep = Vp
p− 9

8π2(p− 7)

1

dp

1

g4
YM

U7−p
0 , Sp = Vp

1

π(7− p)

√
N√
dp

1

g3
YM

U
9−p
2

0

Tp =
7− p

4π

1√
dpN

1

gYM
U

5−p
2

0 , (1.9)

which obey the thermodynamic first law dEp=TpdSp and the Smarr relation Ep= 1
2

9−p
7−pTpSp.

As we have mentioned, classical supergravity is only valid when curvature scales are

much smaller than the string scale and for small dimensionless string coupling. The cur-

vature is given by α′R ∼ 1/geff , and the effective string coupling goes as eφ ∼ g
(7−p)/2
eff /N .

Together, these give [4]

1� g2
eff � N4/(7−p) . (1.10)

Thus, the validity of classical supergravity requires the dual SYM theory to be strongly

coupled and N to be large. Note that for p 6= 3, geff depends on the energy U , so at fixed

gYM, the validity of the supergravity theory depends upon the energy (or temperature).

2Note that we gauge away the constant term in A(p+1) and used the fact that β →∞ in the decoupling

limit. Note that β itself can be related to SYM quantities in this limit via (1.5).
3Note that the energy (1.9) of (1.8) agrees with the energy computed using holographic renormalization

if we further use the supersymmetric limit to fix a constant that is left undetermined by the holographic

renormalization procedure [63, 64].
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For future use, it will be convenient to rewrite the validity window (1.10) in terms of the

temperature for p 6= 3:

λ
1

3−pN
− 2(5−p)

(7−p)(3−p) � Tp � λ
1

3−p , (1.11)

where we have introduced the t’Hooft coupling λ ≡ g2
YMN . Note that the lower bound

in (1.11) ensures that the dilaton (at the horizon) is small and thus string coupling correc-

tions are suppressed (i.e. it corresponds to the upper bound in (1.10)). On the other hand,

the upper bound in (1.11) is required to have small curvature in string units (so that α′

corrections are negligible), i.e. it corresponds the lower bound in (1.10).

1.3 Review of supergravity duals to SYM on a circle

We now restrict ourselves to the p = 1 case of interest where type II supergravity theory

is more specifically type IIB. Moreover, here henceforth we will drop the index p = 1 from

all the expressions, to avoid the proliferation of indices. Additionally, we take the brane

direction to be compactified on a circle S1 with length L. In this case, the gauge theory is

(1+1)-dimensional SYM on R(t) × S1 with dimensionless t’Hooft coupling

λ′ ≡ g2
YMNL

2. (1.12)

To describe the gravity side, we take dx‖ ≡ dx with identification x ∼ x+L and introduce

the dimensionless coordinates, θ = 2π
L x, u = LU, u0 = LU0. We now have θ ∼ θ + 2π

and (1.8) reduces to

ds2 = `2s

[
u3

√
d1λ′

(
−
(

1− u6
0

u6

)
dt2

L2
+

dθ2

(2π)2

)
+

√
d1λ′

u3

((
1− u6

0

u6

)−1

du2 + u2dΩ2
(7)

)]
,

eφ = 2π
λ′

N

√
d1λ′

u3
, A(2) = − `2s

(2π)2L

N

λ′
u6

d1λ′
dt ∧ dθ, with d1 = 26π3. (1.13)

This geometry has a horizon with topology S7 × S1. Its dimensionless energy above ex-

tremality ε ≡ EL, entropy σ ≡ S, and temperature τ ≡ T L are

ε =
1

384π5

N2

λ′ 2
u6

0, σ =
1

48π5/2

N2

λ′
3
2

u4
0, τ =

3

16π5/2

u2
0√
λ′
. (1.14)

Provided that the supergravity limit remains valid, it is conjectured [4, 30] that (1.13)–

(1.14) is the gravitational dual to the uniform phase at temperature τ of (1+1)-dimensional

SYM on the circle S1, in the ’t Hooft large N limit and large t’Hooft coupling λ′. Accord-

ingly, the uniform SYM thermal state holographically dual to (1.13) has energy ε, entropy

σ and temperature τ given by (1.14).

Now let us discuss the validity of the supergravity description (1.13) in terms of the

temperature τ [4, 30]. The requirements (1.11) become
√
λ′/N2/3 � τ �

√
λ′. When the

lower bound is crossed, the effective string coupling becomes large, but one can still obtain

a supergravity description via S-duality [4]. For our purposes, we will not take the S-dual

and instead take N to be sufficiently large so that this bound is not crossed.

However, there are now two additional requirements which comes from the circle com-

pactification. First, the curvature scale must be small enough so that excitations of string

– 6 –
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winding modes wrapping the S1 are suppressed. In the neighbourhood of the horizon, the

mass of winding modes in string units (Mw`s) is given by the winding number LH/`s with

LH =
√
gθθ
∣∣
H

. The supergravity description (1.13) is valid when these winding modes

are massive in curvature scale units, Mw/
√
R ∼ λ′

1
4
√
τ � 1, which implies τ � 1/

√
λ′.

Second, perturbations that carry momentum along the circle must not excite string oscil-

lators. This requires that the length of the circle near the horizon is large in string units,

or LH/`s � 1, which implies τ � λ′ −1/6.

Note that together, the upper bound τ �
√
λ′ and lower bound τ � λ′ −1/6 (or also

τ � 1/
√
λ′) imply that λ′ � 1. This in turn picks out one of the lower bounds as more

restrictive. Altogether, we have that the supergravity description (1.13) is good when
√
λ′/N2/3 � τ , λ′ −1/6 � τ �

√
λ′ , (λ′ � 1) . (1.15)

This supergravity approximation breaks down for small temperatures τ . λ′ −1/6. Since

λ′ = g2
YMNL

2, this critical temperature can be considerably high for a small circle length L.

As pointed out in [4, 30], for temperatures below λ′ −1/6, one should T-dualise in the

θ-direction to obtain a new valid supergravity description. Indeed, T-duality transforms

the circle length and string coupling as

L→ L̃ = (2π)2`2s
1

L
, gs → g̃s =

2π`s
L

gs . (1.16)

Let z be a coordinate with dimension of length such that z ∼ z + 2π`s. T-duality trans-

forms this coordinate into a coordinate z̃ still with dimension of length and with identifi-

cation z̃ ∼ z̃ + 2π`s. The associated T-dual Buscher transformation rules [65–67] for the

NS fields are

e2φ̃ =
e2φ

gzz
, g̃zz =

1

gzz
, g̃µz =

Bµz
gzz

, g̃µν = gµν −
gµzgνz −BµzBνz

gzz
,

B̃µz =
gµz
gzz

, B̃µν = Bµν −
Bµzgνz − gµzBνz

gzz
, (1.17)

where we note that the NS 2-form B is absent in our solution and these rules are valid in

the string frame. For the RR potentials A(p) the rules are:

Ã(p)
µ...ναz = A(p−1)

µ...να − (p− 1)
A

(p−1)
[µ...ν|z g|α]z

gzz
,

Ã
(p)
µ...ναβ = A

(p+1)
µ...ναβz + pA

(p−1)
[µ...να gβ]z + p(p− 1)

A
(p−1)
[µ...ν|z B|α|z g|β]z

gzz
. (1.18)

Applying these Buscher rules, with the identifications z ≡ `sθ, z̃ ≡ `sθ̃ and p = 1, to (1.13)

one gets4

ds̃ 2 = `2s

[
− u3

√
d1λ′

(
1− u6

0

u6

)
dt2

L2
+

√
d1λ′

u3

((
1− u6

0

u6

)−1

du2 + u2dΩ2
(7) + (2π)2dθ̃ 2

)]
,

eφ̃ = (2π)2 λ
′

N

(
d1λ
′

u6

)3/4

, Ã(1) = − 1

(2π)2

`s
L

N

λ′
u6

d1λ′
dt, with d1 = 26π3, (1.19)

4It is permissible to T-dualise the near-horizon geometry (1.13) rather than the full geometry since

taking the near-horizon limit commutes with T-duality.
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where θ̃ ∼ θ̃+2π. After the T-duality, the solution of type IIB supergravity (1.13) is now a

solution of type IIA supergravity that describes a collection of D0-branes uniformly smeared

along the transverse circle S̃1 with length L̃ parametrised by θ̃. The thermodynamic

quantities of this solution are still given by (1.14). Note that even after T-duality, the

corresponding SYM theory still lies in the same manifold R(t) × S1.

Consider now the validity of the type IIA supergravity description (1.19). Smallness of

the curvature in string units still requires that τ�
√
λ′. However, the requirement that the

dilaton (1.19) at the horizon is small now yields τ�λ′ 5/18/N4/9. As for the requirements

from the circle size, the mass of winding modes now goes as Mw ∼ λ1/4/(`su
3/2
0 ), so the

condition Mw/
√
R� 1 and (1.14) now lead to the requirement that τ� 1. Additionally,

avoiding string excitations from modes with momentum along the circle requires τ�λ′ −1/6.

Altogether, removing redundant bounds, we have

λ′ 5/18/N4/9 � τ , τ � λ′−1/6 , τ �
√
λ′ . (1.20)

Note that as long as N is sufficiently large, the IIA description is valid for much lower

temperatures than the IIB description.

The D0-brane configuration (1.19) uniformly smeared along the S̃1 circle exhibits a

Gregory-Laflamme (GL) instability [20, 21, 23–25, 30, 62] that will be the focus of this work.

When u0 � 1, the D0-brane has a separation of length scales where the horizon radius is

much smaller than the circle length L̃. Such a configuration is unstable to deformations

that break the symmetries of the S̃1. Note that this GL physics can be addressed only in

the type IIA description since, from (1.14), u0 . O(1) implies that τ . O(1/
√
λ′), which

lies outside the validity of type IIB.

However, temperatures τ . O(1/
√
λ′) are accessible within IIA for certain values of λ′

and N . Our bounds (1.20) require N4/7 � λ′ � 1. These criteria as well as the bounds of

IIA and IIB are illustrated in figure 1.

This instability was explicitly confirmed in [30], where the zero-mode onset of the

instability was found to be at u0

∣∣
GL

= (2π)2a0 or, equivalently, at5

τGL =
3

4
√
π

(2πa0)2

√
λ′

=
2.243√
λ′
, for a0 ≈ 0.3664. (1.21)

The presence of this zero mode implies the existence of new stationary solutions that break

the symmetries of the S̃1 [30]. Such solutions should describe a collection of D0-branes

that are non-uniformly smeared along the circle. From studies of similar systems with

GL instabilities [40, 42, 46], it is expected that if one continues along this new branch of

solutions, the deformations along the S̃1 grow and the S7× S̃1 topology eventually changes

to S8. After the topology change, the solution should describe D0-branes that are localised

on the S̃1. There are thus three solutions that compete in a given thermodynamic ensemble:

the uniform phase, the nonuniform phase, and the localised phase. Again, previous studies

of GL instabilities [47–53, 55–59] suggest that the localised phase is dominant at small

energies and temperatures, while the uniform phase is dominant for larger energies and

temperatures, and the phase transition is first order. However, without the nonuniform

phase and the localised phases, these expectations remain heuristic and unverified.

5The value found in [30] was a0 ≈ 0.37. The value in (1.21) improves the accuracy.
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Figure 1. Schematic regime of validity for IIA and IIB. Here, we take N4/7 � λ′ � 1, which is

required for the GL transition to be visible within supergravity.

In the (1+1)-dimensional gauge theory on the circle S1, the GL instability is dual to

spontaneously symmetry breaking. It has also been proposed that the gravitational first

order phase transition between the uniform and localised phases on the circle S1 is dual to

localisation of the eigenvalue distribution associated to a Polyakov loop on the S1 [30, 35].

If these expectations prove correct, the gravitational computation gives the critical value

for the first order phase transition, at strong coupling, which can be tested with the critical

value computed using SYM lattice computations (already started in [30, 35, 38, 39]).

2 Map between gravitational vacuum solutions and SYM thermal states

2.1 Generating type IIA solutions from vacuum Einstein gravity solutions

Rather than obtaining solutions to type IIA supergravity by directly solving the equations

of motion, we will first solve the much simpler vacuum Einstein equation Rab = 0 in 10

dimensions, and then generate a solution to type IIA supergravity via an uplift-boost-KK

reduction procedure which we will now review (see e.g. [30, 45]).

We begin with any static, axially symmetric solution of vacuum Einstein gravity

Rab = 0, that is asymptotically R(1,8) × S̃1. Such a solution can be written in isotropic

coordinates where the metric takes the form

ds̄ 2 = −A2dT 2 + V 2
(
dρ2 + ρ2dΩ2

7

)
+B2dx̃ 2, (2.1)

where x̃ ∼ x̃+L̃ parametrises the compact circle S̃1 with length L̃, and A, V,B are functions

of ρ, x̃ which approach unity at large radial direction ρ. We further assume that the solution

is a black hole and therefore A vanishes at the horizon location, ρ = ρ0.

This solution can be uplifted to 11-dimensions with an extra Z coordinate via

ds2
11 = ds̄2 + dZ2. We can now boost this solution along the Z-direction, T = coshβ t +

sinhβ z, Z = sinh β t+ coshβ z, which gives

ds2
11 = e−

1
6

(φ̃−φ̃∞)ds2
(E) + e

4
3

(φ̃−φ̃∞)
(

dz − Ãtdt
)2
, (2.2)

with ds2
(E) = e−

1
2

(φ̃−φ̃∞)ds̃ 2, and φ̃ and Ãt are to be defined in (2.3) below. This procedure

yields a solution of vacuum Einstein gravity in 11 dimensions.
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Finally, we can do a Kaluza-Klein reduction along the z-direction. This yields a so-

lution of type IIA supergravity action (1.2) with p = 0, where the graviton, dilation, and

1-form field are given (in the string frame) by6

ds̃ 2 =
(
cosh2 β −A2 sinh2 β

)1/2 [− A2

cosh2 β −A2 sinh2 β
dt2+V 2

(
dρ2 + ρ2dΩ2

7

)
+B2dx̃2

]
,

eφ̃ = g̃s
(
cosh2 β −A2 sinh2 β

)3/4
, Ãt = − 1

g̃s

(
A2 − 1

)
coshβ sinhβ

cosh2 β −A2 sinh2 β
. (2.3)

The original vacuum solution (2.1) of 10-dimensional vacuum Einstein gravity can be a

static uniform black string, a nonuniform black string or a localised black hole on the circle

S̃1. In each of these three cases, the uplift-boost-KK reduction procedure above generates

an associated uniform, nonuniform or localised solution of type IIA supergravity with a

dilaton and 1-form.

As an example, let us obtain the type IIA uniform distribution of D0-branes (1.19)

through this procedure. The line element for the asymptotically R(1,8) × S̃1 uniform black

string is just the product of a circle with a Schwarzschild-Tangherlini black hole:

ds̄ 2 = −fdT 2 +
dr2

f
+ r2dΩ2

7 + dx̃ 2 , f = 1− r6
0

r6
. (2.4)

Under the coordinate transformation r = ρ
(

1 +
ρ60
ρ6

)1/3
and r0 = 21/3ρ0, this metric can

be brought to isotropic form (2.1) with

A =
ρ6 − ρ6

0

ρ6 + ρ6
0

, B = 1 , V =

(
1 +

ρ6
0

ρ6

)1/3

. (2.5)

Applying the uplift-boost-KK reduction procedure, we find that (2.3) reduces in this par-

ticular case to

ds̃ 2 = −H−
1
2 fdt2 +H

1
2

(
dr2

f
+ r2dΩ2

7 + dx̃ 2

)
,

eφ̃ = g̃sH
3/4 , Ãt = −g̃−1

s cothβ
(
H−1 − 1

)
,

f = 1− r6
0

r6
, H = 1 +

r6
0

r6
sinh2 β . (2.6)

This IIA solution is the full geometry of the near-horizon solution (1.19) that describes a

collection of D0-branes uniformly smeared along the transverse circle S̃1 parametrised by

x̃. To check this is indeed the case apply to (2.6) the transformations r = `2s
L u, r0 = `2s

L u0,

x̃ = `2s
L 2πθ̃ and the identification sinh β =

√
d1λ′L

2/(`2su
3
0) which leads to

ds̃ 2 = `2s

[
−
(
`4s
L4

+
d1λ
′

u6

)− 1
2
(

1− u
6
0

u6

)
dt2

L2
+

(
`4s
L4

+
d1λ
′

u6

)1
2

((
1− u

6
0

u6

)−1
du2+u2dΩ2

(7)+(2π)2dθ̃ 2

)]
,

eφ̃ = (2π)2
λ′

N

(
`4s
L4

+
d1λ
′

u6

) 3
4

,

Ã(1) = − 1

(2π)2
L3

`3s

u30√
d1
√
λ′
N

λ′

(
`4s
L4

+
d1λ
′

u60

) 1
2

[
`4s
L4

(
`4s
L4

+
d1λ
′

u6

)−1
− 1

]
dt, (2.7)

6One could also T-dualise (2.3) to get a solution of type IIA supergravity action (1.2) with p = 1.
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where we have used the T-dual relation (1.16) as well as the definitions (1.1) and (1.12) to

replace g̃s. The identification sinh β =
√
d1λ′L

2/(`2su
3
0) can be understood in the following

manner: by applying a T-duality to (2.6) we get the metric corresponding to a stack of

N coincident D1 branes in flat space; we then use (1.5) with p = 1. Finally, from (2.7),

gauging away a constant term in Ã(1) and taking the decoupling limit `s → 0 yields (1.19).

For the non-uniform and localised solutions on the circle S̃1, the vacuum Einstein field

equations can only be solved numerically or, in the localised case for small energies, within

perturbation theory [43, 54]. Nevertheless, once these vacuum solutions are constructed, the

uplift-boost-KK reduction procedure can be used to generate the associated IIA partner.

It is worth emphasising that the uniform solution (2.7), like others that we will gen-

erate in this way, is asymptotically R(1,8) × S̃1 and therefore corresponds to the full ge-

ometry rather than the near-horizon limit (1.19). The near-horizon limit is dual to the

decoupling limit that introduces the SYM theory. Therefore, in order to properly com-

pare supergravity results with SYM, we must take the near-horizon decoupling limit (1.7).

We further note that the zero mode of the Gregory-Laflamme instability (1.21) was also

obtained [30] studying perturbations of the full geometry (2.7) rather than from the near-

horizon limit (1.19). This is justified by the fact that the zero mode in the full geometry

has support mostly near the horizon and decays exponentially. So, it is therefore likely to

lie within the near-horizon geometry.

2.2 SYM thermodynamics from the thermodynamics of vacuum solutions

Now we explain how to obtain the thermodynamic quantities of thermal states of SYM on

R(t)×S1 from a given asymptotically R(1,8)×S̃1 solution (2.1) to the 10-dimensional vacuum

Einstein equation [30, 45]. The process, briefly, begins with performing the uplift-boost-KK

reduction procedure to a vacuum solution in the form (2.1) to obtain the thermodynamic

quantities of the corresponding type IIA supergravity solution on the circle S̃1. We then

T-dualise to get the thermodynamics of the associated IIB supergravity solution on the

S1. Finally, we take the decoupling limit (1.7) which yields the thermodynamics of the

corresponding near-horizon solution. From there, we can obtain SYM thermodynamic

quantities through the duality.

Applying the uplift-boost-KK reduction procedure to the vacuum solution (2.1) one

gets a static type IIA solution (2.3) with a RR 1-form that asymptotes to R(1,8) × S̃1. A

given family of such solutions can be parametrised by a dimensionless quantity ξ0 = ρ0/L̃,

where ρ = ρ0 is the location of the horizon and L̃ is the length of the circle S̃1, and by the

RR gauge (KK boost) parameter β. The R(1,8) × S̃1 asymptotics imply that the functions

A(ρ, x̃) and B(ρ, x̃) in (2.1) or (2.3) admit an asymptotic Taylor expansion around ρ =∞
of the form,

A = 1− a(ξ0)
L̃6

ρ6
+ · · · , B = 1 + b(ξ0)

L̃6

ρ6
+ · · · , (2.8)

where (for a given ξ0) a, b are integration constants that depend on the solution at hand,

i.e. they cannot be determined by an expansion at infinity alone and are fixed after solving

the equations of motion subject to some interior boundary condition (in the present case,

regularity at the horizon). The decay of the remaining function V is fixed by a and b.
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The conserved ADM charges, namely the mass M and the electric charge Q, of the

static solution (2.3) are then a function of a, b and β [30, 43, 45, 68, 69],7

M =
L̃7 Ω7

8πG10

(
7a(ξ0)− b(ξ0) + 6 a(ξ0) sinh2 β

)
, Q =

L̃7 Ω7

8πG10
3 a(ξ0) sinh 2β. (2.9)

The entropy, temperature and chemical potential can be obtained from β and horizon

quantities [30, 43, 45, 68, 69]

S =
L̃8 Ω7

4G10
coshβ sh(ξ0), T =

1

L̃

th(ξ0)

coshβ
, µ = tanhβ , (2.10)

where

sh = ξ7
0B(ξ0)V (ξ0)7, th =

A′(ξ0)

2πV (ξ0)
. (2.11)

Fixing the length of the asymptotic circle L̃ and β = 0, we recover the thermodynamic

quantities of the 10-dimensional vacuum Einstein solution where quantities obey the first

law and Smarr relations [30, 43, 45, 68, 69]:

dM(ξ0, 0) = T (ξ0, 0) dS(ξ0, 0) ,
L̃7 Ω7

4πG10
3 a(ξ0) = T (ξ0, 0)S(ξ0, 0). (2.12)

It follows that (2.9) and (2.10) obey the first law of thermodynamics

dM(ξ0, β) = T (ξ0, β) dS(ξ0, β) + µ(β) dQ(ξ0, β). (2.13)

At this stage we have the thermodynamic quantities {M,Q, S, T, µ} in the full geome-

try (2.3) of IIA supergravity. We now apply the T-duality (1.16) and take the decoupling

limit (1.7) to obtain the thermodynamics {ε, σ, τ} of the associated IIB near-horizon geom-

etry. Moreover, according to the holographic conjecture of [4, 30], {ε, σ, T } describe also

the thermodynamics of thermal states on the dual SYM theory on R(t) × S1.

More concretely, to obtain the above dictionary {M,Q, S, T, µ} → {ε, σ, τ} we apply

the decoupling limit (1.7)8 and the T-duality relations (1.16) for the circle length L̃(L) and

string coupling g̃s(gs). In this process, recall that (2.9)–(2.10) correspond to type IIA quan-

tities, where Newton’s constant translates to field theory language as 16πG10 ≡ (2π)7g̃ 2
s `

8
s.

Also recall that the string coupling of IIB with a RR 2-form is given in terms of the SYM

coupling by gs ≡ 2π`2sg
2
YM. Altogether, we find that the SYM dimensionless energy, entropy

and temperature are:

ε =
16π7

3

[
4a(ξ0)−b(ξ0)

] N2

λ′ 2
, σ =

16π11/2

3

sh(ξ0)√
2a(ξ0)

N2

λ′
3
2

, τ = 2π5/2
√

2a(ξ0) th(ξ0)
1√
λ′
.

(2.14)

7In (2.9) and (2.10) the extensive quantities M/L̃, Q/L̃ and S/L̃ give, respectively, the mass, charge

and entropy densities along the transverse circle S̃1. The extra powers of L̃ follow from working with the

adimensional horizon radius ξ0 = ρ0/L̃. Further note that setting β = 0 in (2.9) and (2.10) we get the

thermodynamics of the vacuum Einsteins solution (2.1).
8Note that the charge computed in (2.9) is that of a distribution of D0, while we need to keep fixed in

the decoupling limit the D1 brane charge.
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Given a vacuum Einstein gravity solution in isotropic coordinates (2.1) that asymptotes to

R(1,8)× S̃1, we can read the parameters a(ξ0) and b(ξ0) from the asymptotic decay (2.8) of

the functions A(ρ, x̃) and B(ρ, x̃) and the parameters sh(ξ0) and th(ξ0) from the horizon

via (2.10) and (2.11). However, it is not always practical to obtain a solution in isotropic

coordinates. It is thus desirable to write the SYM quantities (2.14) in terms of gauge in-

variant gravitational quantities. First, we obtain the mass M , entropy S, and temperature

T within 10-dimensional vacuum Einstein using standard ADM techniques. We can then

match these with the expressions (2.9) and (2.10) (with β = 0). Together with the Smarr

law (2.12), this matching gives four equations to solve for a(ξ0), b(ξ0), sh(ξ0) and th(ξ0).

Inserting these into (2.14) gives the SYM thermodynamical quantities

ε = 64π4
(

2M̂ − Ŝ T̂
) N2

λ′2
, σ = 16

√
2π3

√
Ŝ

T̂

N2

λ′3/2
, τ = 4

√
2π Ŝ 1/2 T̂ 3/2 1√

λ′
,

(2.15)

where

M̂ =
G10M

L̃7
, Ŝ =

G10S

L̃8
, T̂ = L̃ T (2.16)

are the dimensionless gravitational mass, entropy, and temperature, respectively.

To summarise, given the thermodynamics of a vacuum asymptotically R(1,8)× S̃1 grav-

itational solution, the thermodynamics of the dual SYM theory follows directly from the

map (2.15). We can therefore bypass the type IIA equations of motion entirely and solve the

simpler vacuum Einstein equations. Once the uniform, nonuniform, and localised phases

are available, the preferred phase in a given thermodynamic ensemble can be determined

by comparing thermodynamic potentials through the map (2.15).

2.3 Thermodynamics for the uniform and perturbative localised phases

Let us apply the map discussed in the previous two subsections to phases for which one has

an analytical or perturbative solution. The only asymptotically R(1,8)×S̃1 vacuum Einstein

solution known entirely in closed form is the uniform black string, which has horizon

topology horizon topology S7× S̃1. Its line element in isotropic coordinates (2.1) was given

by (2.5). Then, from a series expansion at infinity (2.8), we find that a = 2ξ6
0 and b = 0.

At the horizon, we find from the definitions (2.11) that sh = 27/3ξ7
0 and th = 3/(24/3πξ0).

Plugging this directly into (2.9) and (2.10) one finds that the thermodynamics of the

uniform black string branch is

M(ξ0) =
L̃7

G10

7π3

12
ξ6

0 , S(ξ0) =
L̃8

G10

21/3π4

3
ξ7

0 ,

T (ξ0) =
1

L̃

3

24/3π

1

ξ0
, F (ξ0) =

L̃7

G10

π3

12
ξ6

0 , (2.17)

where F = M − TS is the Helmoltz free energy. For the purpose of later presenting our

results in section B, it will be useful for us to express the entropy as a function of the

energy and the free energy in terms of the temperature:

S(M) =
31/628/3√π

77/6

(
G10

L̃7
M

)7/6 L̃8

G10
, F (T ) =

243

1024π3

1

(T L̃)6

L̃7

G10
. (2.18)
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However, we are mainly interested in the SYM thermodynamics dual to (2.17). These

have already been presented in (1.14) which can be obtained directly from the uniform phase

within type IIA or type IIB supergravity. As a check, following the procedure outlined in

the previous subsection, i.e. plugging the values of {a, b, sh, th} for the uniform solution

into (2.14) gives exactly (1.14), as expected (this procedure is equivalent to applying the

map (2.15) directly).9 Later, in section 4, it will be useful to have the entropy as a function

of the energy and the free energy f = ε−τσ as a function of the temperature τ for this phase:

σ(ε) =
22/3π5/6

31/3

(
λ′ 2

N2
ε

)2/3
N2

λ′ 3/2
, f(τ) = −16

81
π5/2

(√
λ′ τ
)3 N2

λ′ 2
. (2.19)

Another asymptotically R(1,8)× S̃1 solution of vacuum Einstein gravity is a black hole

localised on the circle S̃1 with horizon topology S8. When energies are low compared

to the circle size, the geometry near the horizon resembles that of an asymptotically flat

10-dimensional Schwarzschild-Tangherlini black hole. At larger energies, the presence of

the circle deforms the horizon. When these deformations are small, they can be captured

perturbatively through an expansion in ξ0 = R0/L̃� 1, where R0 is the horizon radius and

L̃ is the size of S̃1 [43–45, 54]. In particular, thermodynamic quantities (within vacuum

Einstein) can be found in section 6 of [43]:10

M(ξ0) =
L̃7

G10

Ω8

2π
ξ70

(
1 +

ζ(7)

2
ξ70 +O(ξ140 )

)
, S(ξ0) =

L̃8

G10

Ω8

4
ξ80

(
1+

8ζ(7)

7
ξ70 +O(ξ140 )

)
,

T (ξ0) =
1

L̃

7

4πξ0

(
1− 8ζ(7)

7
ξ70 +O(ξ140 )

)
, F (ξ0) =

L̃7

G10

Ω8

16π
ξ70

(
1+4ζ(7)ξ70 +O(ξ140 )

)
;

S(M) =

(
105π4

211

)1/7(
G10

L̃7
M

)8/7(
1 +

15ζ(7)

4π3

G10

L̃7
M +O(M2)

)
L̃8

G10
,

F (T ) =
117649

122880π4

1

L̃7T 7

(
1− 823543 ζ(7)

4096π7

1

(L̃T )7
+O(T−14)

)
L̃7

G10
. (2.20)

The dual SYM quantities can be obtained through the map (2.15):

ε(ξ0) =
384π7

35
ξ70

(
1 +

8ζ(7)

9
ξ70 +O(ξ140 )

)
N2

λ′ 2
, (2.21)

σ(ξ0) =
128π11/2

7
√

15
ξ
9/2
0

(
1 +

8ζ(7)

7
ξ70 +O(ξ140 )

)
N2

λ′
3
2

,

τ(ξ0) =
14π3/2

√
15

ξ
5/2
0

(
1− 8ζ(7)

7
ξ70 +O(ξ140 )

)
1√
λ′
,

f(ξ0) = −128π7

21
ξ70

(
1− 8ζ(7)

5
ξ70 +O(ξ140 )

)
N2

λ′ 2
;

σ(ε) =
25/251/7π

38/775/14

(
λ′ 2

N2
ε

)9/14(
1 +

5 ζ(7)

96π7

λ′ 2

N2
ε+O(ε2)

)
N2

λ′
3
2

,

f(τ) = −21/5152/580π14/5

74/5343

(√
λ′ τ
)14/5 [

1 +
21/5152/53 ζ(7)

74/549π21/5

(√
λ′τ
)14/5

+O(τ28/5)

]
N2

λ′ 2
.

9Note that ξ0 = u0

21/3(2π)2
. This follows from ξ0 = ρ0/L̃ with ρ0 = 2−1/3r0 and r0 = u0`

2
s/L.

10Note that [43] sets L = 2π. Here, we express their results in terms of the dimensionless parameter

ξ0 = R0/L. ζ(s) =
∑∞
k=1 k

−s is the Riemann zeta function and Ω8 = 32
105

π4.
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For larger energies, the localised solutions can only be obtained numerically, which we

will be done in the next section. In section 4 we will compare our numerical results with

the perturbative results (2.21). We will find that the expressions (2.21) give an excellent

approximation, even beyond the regime where they may be expected to be valid.

3 Non-uniform and localised phases

Now we numerically construct the remaining non-uniform and localised phases. For this

section, we will stay within the language of 10-dimensional vacuum Einstein gravity with

R(1,8) × S̃1 asymptotics where the S̃1 has circumference L̃. Afterwards, in section 4, we

use the results of section 2 and its map (2.15) to read off the thermodynamics of the dual

SYM theory on R(t) × S1.

Our numerical formalism of choice is the DeTurck method [55, 56, 70, 71]. This method

requires that we first choose a reference metric g. This metric need not be a solution to

the Einstein equation, but must contain the same symmetries and causal structure as the

desired solution. With the reference metric chosen, the DeTurck method then modifies the

Einstein equation Rµν = 0 to

Rµν −∇(µξν) = 0 , ξµ ≡ gαβ [Γµαβ − Γ
µ
αβ ] , (3.1)

where Γ and Γ define the Levi-Civita connections for g and ḡ, respectively. Unlike Rµν = 0,

this equation yields PDEs that are elliptic in character. But after solving these PDEs, we

must verify that ξµ = 0 to confirm that Rµν = 0 is indeed solved.11 Fortunately, the results

of [70] have proven that static solutions to (3.1) must satisfy ξµ = 0. Nevertheless, we will

still monitor ξµ as a measure of numerical accuracy.

3.1 Nonuniform black strings

The non-uniform black strings we seek are asymptotically R(1,8) × S̃1 and have horizon

topology S7 × S1. They are static and axisymmetric, and so only depend upon a periodic

coordinate χ and a radial coordinate y. Since the uniform black string solution has the

same symmetries and causal structure, we are free use it as a reference metric to find the

non-uniform strings. We choose the reference metric

ds
2

= L̃2

(
−Gy2 dt2 +

4 y2
+ dy2

G (1− y2)4 + dχ2 +
y2

+

(1− y2)2 dΩ2
7

)
, (3.2)

where

G =
(
2− y2

) (
y4 − 3y2 + 3

) (
y4 − y2 + 1

)
. (3.3)

We can arrive at this line element by taking the black string the more familiar coordinates

of (2.4), and performing the redefinitions r = y+/(1 − y2), T = L̃t, x = L̃χ, r0 = y+. In

these coordinates, y ∈ [0, 1], and χ ∈ [0, 1) is periodic.

11The condition ξµ = 0 also fixes all gauge freedom in the metric.
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We can now use this reference metric to create a metric ansatz

ds2 = L̃2

(
−Gy2 q1 dt2 +

4 q2 y
2
+ dy2

G (1− y2)4 + q4(dχ+ q3 dy)2 +
y2

+

(1− y2)2 q5 dΩ2
7

)
, (3.4)

where, qi are unknown functions of χ and y. This ansatz is the most general form allowed

by the symmetries. With a reference metric and ansatz, we can now solve the Einstein-

DeTurck equation (3.1) subject to the following boundary conditions. Horizon regularity is

required at y = 0 where we impose q1

∣∣
y=0

= q2

∣∣
y=0

and Neumann conditions ∂yqi
∣∣
y=0

= 0

for i 6= 1. R(1,8) × S̃1 asymptotics requires that the metric be the same as the reference

metric at y = 1. Lastly, while χ is periodic in χ ∈ [0, 1), the expected non-uniform string

also has a Z2 symmetry in this coordinate. We make use of this symmetry by taking

χ ∈ [0, 1/2] and imposing Neumann conditions for all qi at χ = 0 and χ = 1/2.

We solve these equations numerically using a Newton-Raphson algorithm. Discretisa-

tion is done using pseudospectral methods with Chebyshev-Gauss-Lobatto grids, and the

resulting linear equations are solved using LU decomposition. To get a first seed, we added

the GL linear perturbation to the uniform black string solution (2.4).

The entropy and temperature of this black string are

S =
L̃8

G10

π4

6
y7

+

∫ 1/2

0
dχ
√
q4(χ, 0) q5(χ, 0)7/2, T =

1

L̃

3

2π

1

y+
(3.5)

and we see that y+ directly determines the temperature and parametrises our family of

solutions. (Our equations of motion do not depend on L̃ which just sets a scale.) To obtain

the remaining thermodynamic quantities, we integrate the first law of thermodynamics

dF = −S dT to get the free energy F and the energy is then M = F + TS. We could,

alternatively, read the energy directly at spatial infinity, which lies in the 1/r6 term in

an asymptotic expansion. This would require that we accurately compute six derivatives

at spatial infinity. While this is possible to do with enough precision, we opt to use the

first law instead. We then tested the accuracy of the first law method by performing high

resolution runs on a couple of points in moduli space, and compared the result for the

energy extracted directly at spatial infinity with the results obtained from extracting the

energy via the first law. The methods revealed an agreement that could be as small as 0.1%

for the high resolutions runs. With the vacuum Einstein thermodynamics, {M,S, T, F},
the SYM thermodynamics {ε, σ, τ} can be obtained from (2.15) and (2.16). The free energy

is then f = ε− τσ.

3.2 Localised black holes

Within 10-dimensional vacuum Einstein gravity, localised black holes are asymptotically

R(1,8) × S̃1 black holes with horizon topology S8. For small energies, a perturbative con-

struction of these solutions is available [43–45, 54], as reviewed in subsection 2.3. For higher

energies, one must resort to numerical methods which we present here. The perturbative

results will provide a valuable check on our numerics, while our numerical results will assess

the regime of validity of the perturbative expansions (2.20)–(2.21).
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Like nonuniform strings, localised black holes, are also static and axisymmetric. How-

ever, the nonuniform strings contain a horizon that covers the entire axis, while the axis

is partially exposed in localised black holes. This introduces a fifth boundary in the in-

tegration domain which complicates the construction of localised black holes. A suitable

reference metric for localised black holes therefore must contain an axis, a topologically S8

horizon, and asymptote to R(1,8) × S̃1. Furthermore, there is a periodic coordinate con-

taining a Z2 symmetry, which we use to halve the integration domain. To accommodate

these five boundaries, we opt to work in two different coordinate systems. One of these is

adapted to infinity, and the other to the horizon.

Let us now design our reference metric, beginning with the coordinates adapted to

infinity. Our starting point is the R(1,8) × S̃1 solution

ds2
R(1,8)×S̃1 = −dT 2 + dR2 +R2dΩ7 + dx̃2 , (3.6)

where x̃ ∈ (− L̃
2 ,

L̃
2 ) is periodic. Scale out L̃ by using the redefinitions T = π t/L̃, R = π r/L̃,

and θ̃ = π x̃/L̃ to get

ds2
R(1,8)×S̃1 =

L̃2

π2

(
− dt2 + dr2 + dθ̃ 2 + r2dΩ7

)
, (3.7)

where θ̃∈(−π/2,π/2) is periodic. Then perform a change of coordinates r=ρ
√

2−ρ2/(1−ρ2)

and θ̃ = 2 arcsin(ξ/
√

2) to

ds2
R(1,8)×S̃1 =

L̃2

π2

[
−dt2 +

4dρ2

(2− ρ2)(1− ρ2)4
+

4dξ2

2− ξ2
+
ρ2(2− ρ2)

(1− ρ2)2
dΩ7

]
. (3.8)

Now the coordinate ranges are the more convenient ρ ∈ [0, 1] and ξ ∈ [−1, 1]. Since we will

be exploiting the Z2 symmetry in ξ, we will instead take ξ ∈ [0, 1] and demand reflection

symmetry at ξ = 0 and ξ = 1. There is an axis at ρ = 0 and asymptotic infinity is at ρ = 1.

At this point, we take our reference metric to be

ds
2

=
L̃2

π2

[
−m dt2 + g

(
4dρ2

(2− ρ2)(1− ρ2)4
+

4dξ2

2− ξ2
+
ρ2(2− ρ2)

(1− ρ2)2
dΩ7

)]
, (3.9)

where m and g are functions of ρ and ξ that we need to specify. We have chosen this

particular form (3.9) for a number of reasons. First, note that the dρ2 and dξ2 compo-

nents in the metric came directly from dr2 + dθ̃ 2, which is manifestly flat. It is therefore

straightforward to transform (3.9) to other orthogonal coordinates. Our aim is to perform

such a coordinate transformation where we can easily choose m and g so that the refer-

ence metric describes a black hole. Second, when the black hole has small energy (high

temperature), we would like the reference geometry near the horizon to resemble asymp-

totically flat 10-dimensional Schwarzschild-Tangherlini, as expected of the final solution.

With the reference metric in the form (3.9), it is easier to accommodate this by using

Schwarzschild-Tangherlini in isotropic coordinates.
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The coordinate transformation we use and its inverse are given by

χ =

√√√√√√√√1−
sinh

(
ρ
√

2−ρ2
1−ρ2

)
√
ξ2 (2− ξ2) + sinh2

(
ρ
√

2−ρ2
1−ρ2

) , y =
y0

(
1− ξ2

)√
ξ2 (2− ξ2) + sinh2

(
ρ
√

2−ρ2
1−ρ2

) ;

ρ =

√√√√√√1− 1√
1+arcsinh2

(
y0(1−χ2)√

y2+y20 χ
2(2−χ2)

) , ξ =

√
1− y√

y2 + y2
0 χ

2 (2− χ2)
, (3.10)

which can be derived from a conformal mapping.12 In these new coordinates, the reference

metric becomes

ds
2

=
L̃2

π2

{
−m dt2 + g

[
y2

0

h

(
dy2

y2 + y2
0

+
4dχ2

2− χ2

)
+ s

(
1− χ2

)2
dΩ2

7

]}
, (3.11)

where we assume m and g transform as scalars, y0 > 0 and

h = y2 + y2
0χ

2
(
2− χ2

)
, s =

arcsinh2

(
y0(1−χ2)√

y2+y20 χ
2(2−χ2)

)
(1− χ2)2 . (3.12)

Note that s is positive definite and regular, even at χ = 1. h is positive except at χ = y = 0,

where it vanishes. In these new coordinates, the axis is at χ = 1 and asymptotic infinity

is at the coordinate ‘point’ χ = y = 0. The locations ξ = 0 and ξ = 1 where we require

reflection symmetry have been mapped to χ = 0 and y = 0, respectively. The location

ρ = 0, ξ = 0 has been mapped to y → ∞. We have introduced the constant y0 in

anticipation of placing a horizon at y = 1. y0 therefore moves the location of this horizon

in the {ρ, ξ} coordinates. A small y0 resembles a ‘small’ black hole, and a large y0 resembles

a ‘large’ black hole. A sketch of the integration domain and grid lines of constant χ and y

are shown in figure 2.

Now we choose the functions m and g. These functions must satisfy a number of

requirements. Our asymptotics requires that they must approach 1 at χ = y = 0. The

reflection symmetries requires that m and g be even functions of y and χ. Lastly, they

must give a regular horizon. Ideally, we would also like the geometry near the horizon for

small y0 to resemble asymptotically flat Schwarzschild-Tangherlini in isotropic coordinates,

which in d-dimensions can be written

ds2
Schw = −

(
1− yd−3

1 + yd−3

)2

dt2 + y2
0(1 + yd−3)

4
d−3

(
dy2

y4
+

1

y2
dΩd−2

)
. (3.13)

Note that these coordinates look similar to the y0 → 0 limit of our reference metric (3.11).

This suggests that we choose

m =
1

1 + y2
0χ

2(2− χ2)

(
1− y6

1 + y6

)2

, g = (1 + y6)2/3 . (3.14)

12It is also a mapping from elliptic coordinates to bipolar coordinates, both of which can be obtained

from a conformal mapping of Cartesian coordinates.
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horizon

ℤ2

ℤ2

→∞

axis

Figure 2. Sketch of integration domain in {r, θ̃} coordinates. The {ρ, ξ} coordinates we use are

directly related to these coordinates via r = ρ
√

2− ρ2/(1 − ρ2) and θ̃ = 2 arcsin(ξ/
√

2). The grid

lines are lines of constant χ and constant y.

Note that we used d = 9 components from (3.13) rather than d = 10 because of the

requirement that m and g be even functions of y. The extra χ dependence in m is placed

to fix regularity of the horizon. These functions can be mapped back to {ρ, ξ} coordinates

through (3.10).

To summarise, we now have a reference metric in two coordinate systems (3.9), (3.11)

where auxiliary functions given in (3.12), (3.14), and the coordinates are related by (3.10).

We now give our metric ansatz:

ds2 =
L̃2

π2

{
−mf̃1dt2 + g

[
4f̃2 dρ2

(2− ρ2)(1− ρ2)4
+

4f̃3

2− ξ2

(
dξ − f̃5

ξ(2− ξ2)(1− ξ2)ρ

(1− ρ2)2
dρ

)2

+ f̃4
ρ2(2− ρ2)

(1− ρ2)2
dΩ2

7

]}
,

=
L̃2

π2

(
− f1 dt2 + g

{
y2

0

h

[
f2 dy2

y2 + y2
0

+
4f3

2− χ2

(
dχ− f5

χ
(
2−χ2

)(
1−χ2

)
y
(
1−y2

)
h

dy

)2]

+ f4 s
(
1− χ2

)2
dΩ2

7

})
, (3.15)

where f̃i are unknown functions of {ρ, ξ}, and fi are unknown functions of {χ, y}. The

known functions should instead be treated as scalars, transforming between coordinate

systems as (3.10).

Now we discuss boundary conditions. At the asymptotic boundary ρ = 1 we impose

that the solution approaches the reference metric, which is a Dirichlet condition. Regu-

larity at the horizon y = 1 requires that fi obey certain Robin boundary conditions (with

expressions that are long and unilluminating). fi and f̃i obey Neumann conditions at the

remaining boundaries either due to regularity at the axis ρ = 0 (or χ = 1), or reflection

symmetry at ξ = 0 (or χ = 0) and at ξ = 1 (or y = 0).

As in the nonuniform case, we solve the equations of motion (3.1) numerically with

a Newton-Raphson algorithm. To discretise, we divide the integration domain into two

patches as shown in figure 3. Chebyshev-Gauss-Lobatto grids are placed in each patch

using transfinite interpolation [71]. At the patch boundaries, we require equivalence of the
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ρ

ξ

Figure 3. Integration domain with two patches in {ρ, ξ} coordinates. Chebzshev-Gauss-Lobatoo

grids are placed using transfinite interpolation. The patch near the horizon (the quarter circle in

the lower left) is mapped from {χ, y} coordinates using (3.10).

line elements given by (3.15), as well as equivalence of the normal derivative across the

patch boundary. As a first seed, we choose the reference metric with y0 = 1/10.

Given fi(χ, y), the entropy and temperature of the localised black holes are:

S =
L̃8

G10

∫ 1

0
dχ

28/3 y0 arcsinh7

(
y0(1−χ2)√

1+y20 χ
2(2−χ2)

)
3π4
√

(2− χ2)
(
1 + y2

0 χ
2 (2− χ2)

) √f3(χ, 1) f4(χ, 1)7/2 ,

T =
1

L̃

3

24/3

√
1 + y2

0

y0
. (3.16)

Our numerical solutions are parametrised by y0, which defines the temperatures. L̃ just

sets a scale and drops out of our equations of motion. Note our choice of reference metric

has restricted our temperature range to T L̃ < 3/24/3 ≈ 1.19. We are actually not far from

saturating this bound, but the purpose of this manuscript is not to study how localise

black holes merge with non-uniform strings. Instead, what we want is to show a phase

transition exists, and this turns out to occur for values of T L̃ smaller than 3/24/3. To

get the free energy F we integrate the first law of thermodynamics, dF = −S dT , and

the energy is then M = F + TS. The SYM thermodynamics {ε, σ, τ} can be obtained

via (2.15) and (2.16). The free energy is f = ε− τσ.

4 Thermodynamics of SYM on a circle at strong coupling

In this section we present the thermodynamic phase diagrams of SYM on R(t)×S1 at large

N and strong coupling λ′ as obtained from the gravitational side of the correspondence.

The complementary phase diagrams within vacuum gravity can be found in appendix B.

Recall that the thermodynamic quantities of the uniform SYM phase is given in (2.19)

and low-energy perturbative expressions for the thermodynamic quantities of localised

SYM phase are given in (2.20). The nonuniform phase and the localised phase at higher
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Figure 4. Left panel: phase diagram of thermal phases of SYM(1+1) on a circle S1 in the micro-

canonical ensemble. ∆σ gives the entropy difference between a given thermal phase and the uniform

phase with the same energy ε. Right panel: phase diagram of thermal phases of (1+1)-dimensional

SYM on a circle S1 in the canonical ensemble. ∆f gives the free energy difference between a given

thermal phase and the uniform phase with the same energy ε. In these diagrams the horizontal

(dashed red) line describes the uniform thermal phase. The orange points represents the nonuniform

thermal family and the blue points describes the localised thermal phase. The magenta dashed line

represents the perturbative results for localised black holes.

energies are obtained numerically as described in the end of subsections 3.1 and 3.2. The

phase diagram can be obtained in either the microcanonical ensemble where energy is

fixed and the phase with highest entropy is dominant, or in the canonical ensemble where

temperature is fixed and the phase with lowest free energy is dominant.

The phase diagram in the microcanonical ensemble is presented in the left panel of

figure 4. We plot the dimensionless entropy difference, λ′ 3/2∆σ/N2, where ∆σ = σ(ε)−σ0(ε),

with σ0 being the entropy of the uniform phase. The horizontal dashed line is the uniform

thermal phase. It is unstable for ε < εGL with the GL zero mode being at εGL = 77.988 N2

λ′2

(green diamond in figure 4). This GL zero mode is a bifurcation point to the orange

curve branch that describes the nonuniform SYM phase. This nonuniform phase exists for

ε > εGL and ∆σ < 0. The uniform phase is therefore preferred over the nonuniform phase.

The localised phase is represented by the blue curve. This curve intersects that of the

uniform phase at an energy

εPhT = 97.067
N2

λ′2
= 1.245 εGL , (4.1)

For low energies ε < εPhT, the localised phase is the solution with highest entropy and

thus the one that dominates the microcanonical ensemble. However, the uniform phase

becomes dominant for ε > εPhT. The phase transition is first order.

The phase diagram in the canonical ensemble is shown in the right panel of figure 4,

where we plot the dimensionless free energy difference, λ′ 2∆f/N2, where ∆f = f(τ)− f0(τ),

with f0 being the free energy of the uniform phase. The colour scheme is the same as in
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Figure 5. Convergence of DeTurck norm (left) and entropy (right) for localised black holes at

y0 = 5/2. Note the log scale indicating exponential convergence.

the microcanonical ensemble. The GL zero mode is at τGL = 2.243/
√
λ′ (green diamond)

where the uniform thermal phase (horizontal dashed line) is unstable for τ < τGL. We find

that the localised phase has lowest free energy and is therefore dominant for τ < τPhT, and

the uniform phase is dominant for τ > τPhT. The transition at

τPhT =
2.451√
λ′

= 1.093 τGL (4.2)

is first order. Finally, the nonuniform phase is never dominant.

As in studies of the same system in other dimensions [40, 42, 46–53, 55–59], we expect

the uniform and localised phases to merge at a conical transition point. To be consistent

with the first law, one of these curves must form a cusp in the phase diagrams of figure 4.

Close to the merger, it is expected that the phase diagram will develop an intricate zig-

zagged line structure with a (possibly infinite) series of nearby cusps [52, 59]. Unfortunately,

we were unable to find this cusp, let alone the merger, with our present numerical methods

and resources.

Now we compare our numerical results with the perturbative results (2.21) for the

localised phase. Recall that the perturbative results are expected to be valid strictly for low

energies, which in SYM thermodynamics also corresponds to low temperatures. However,

we find that the perturbative results agree remarkably well with the numerical results all

the way up (and even beyond) the first order phase transition point. This is best illustrated

in figures 4: the perturbative prediction is represented by the magenta dashed line and it

essentially agrees with the numerical curve. This tests our numerical results and concludes

that we can use the perturbative results (2.21) for the localized SYM phase well beyond

what would be expected. This strong agreement may be due in part to the high powers

within the perturbative expansion.

Finally, let us demonstrate the convergence of our numerical method. In the left panel

of figure 5, we plot the maximum value of the DeTurck norm ξ2 for the localised black holes.
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Recall that ξµ is guaranteed to be zero by the theorems in [70]. We find that this value

vanishes exponentially with increase grid size, as expected of our pseudospectral methods.

In all plots of phase diagrams, we use a resolution high enough so that all numerical

solutions satisfy ξ2 < 10−10. In the right panel, of figure 5, we show the convergence of the

entropy RS(N) = |1− SN/SN−1|. This quantity also decreases exponentially, as expected.

5 Discussion

Let us recapitulate our main results. Thermal states of SYM on R(t) × S1 with circle

length L have three dimensionless parameters: N from the gauge group, the dimensionless

coupling λ′ = g2
YMNL

2, and some dimensionless thermodynamic quantity like the energy

ελ
′2

N2 or temperature τ
√
λ′, here expressed in units of the circle length L. At large N , large

λ′ and temperatures τ � λ′−1/6, the theory is conjectured to be dual to classical type

IIA supergravity, describing the near-horizon geometry of a collection of D0 branes on

a circle. Through an uplift-boost-KK reduction procedure, solutions to classical type IIA

supergravity can be generated from solutions of asymptotically R(1,8)×S1 vacuum Einstein

solutions. We numerically construct nonuniform and localised phases within vacuum Ein-

stein gravity and then map their thermodynamics to the conjectured SYM thermodynamic

variables. In the microcanonical ensemble, we find a first-order phase transition at

εPhT
λ′2

N2
= 97.067 , (5.1)

while in the canonical ensemble we find a first-order phase transition at the temperature

τPhT

√
λ′ = 2.451 . (5.2)

The phase transition is between a uniform phase at higher energies and temperatures

to a localised phase at lower energies and temperatures. From the perspective of the

gauge theory, this phase transition represents spontaneous symmetry breaking of the U(1)

symmetry of the S1 [30, 35, 37].

These results can be compared with available lattice and perturbative results on

the gauge theory side [30–36] performed at large N , which we will now summarise.

At weak coupling, perturbative SYM indicates that the theory undergoes a second

order confinement/deconfinement phase transition (or center symmetry breaking) at

τ λ′ & 1.35 [30, 72–74]. As we have mentioned, at strong coupling, the gravity side con-

jectures a first order phase transition. Due to strong coupling, this phase transition is

nontrivial from the perspective of the gauge theory. Nevertheless, such a phase tran-

sition can be sought through lattice simulations. Fortunately, some lattice calculations

for SYM on R(t) × S1 are already available [35, 38, 39]13 and ongoing work is improving

these simulations [75]. References [30, 37] conjectured that the weak coupling confine-

ment/deconfinement and strong coupling uniform/localised phase transitions should be a

13See also the recent lattice study [36] on the bosonic SU(N) YM theory which upgrades to SYM when

fermions with anti-periodic boundary conditions on S1 are added.
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continuation of each other in a phase diagram that scans all the coupling values. Available

lattice computations are consistent with this picture. In lattice simulations, good observ-

ables for the confinement/deconfinement and uniform/localised phase transitions are the

expectation value of the trace of Polyakov or Wilson loops along the Euclidean time and

spatial circles, as well as the associated distribution of eigenvalues of the Polyakov/Wilson

loops on these circles [23–26, 30, 35–37, 76]. At strong coupling, this distribution of eigen-

values describes the positions of the collection of D0-branes in the type IIA system. For

example, the Wilson loop along the spatial circle yields a uniform distribution of eigen-

values, a nonuniform distribution without gap, or a localised distribution with a gap that

clearly distinguish the uniform, nonuniform and localised SYM phases [30, 35–37].

The available lattice computations [35, 36, 38, 39] are consistent with our critical values

for the phase transition but an accurate confirmation will require an improved code that

is, in particular, able to do the computations at higher N . In the near future, results

from improved lattice simulations can be more accurately compared with our gravitational

predictions of figure 4 and the critical values for the location of the phase transition (5.1)

and (5.2). In tandem, these results would comprise the first stringent tests of gauge/gravity

duality involving a first-order phase transition.
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A Equations of motion for type II supergravity

For completeness, in this appendix we give the equations of motion that are obeyed by

p-brane solutions of type II supergravity and their near-horizon geometries. This includes

(non-)uniform and localized solutions.

In the string frame, the equations of motion of type II action (1.2) are

Rab = −2∇a∇bφ+
1

4

1

(p+ 2)!
e2φ

[
2(p+ 2)F

c1···cp+1
a Fbc1···cp+1 − gab Fc1···cp+2F

c1···cp+2

]
,

∇cF ca1···ap+1 = 0 ,

∇c∇cφ− 2∂cφ∂
cφ+

1

4

p− 3

(p+ 2)!
e2φFc1···cp+2F

c1···cp+2 = 0 , (A.1)

where we have introduced the RR field strength F(p+2) = dA(p+1).

In the Einstein frame, type II action (1.2) reads

I
(E)
II =

1

16πG10

∫
d10x

√
−g̃
(
R̃− 1

2
∂µφ∂

µφ− 1

2(p+2)!
g

1
2

(p+1)
s e

1
2

(3−p)φ(dA(p+1))
2

)
, (A.2)
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where Newton’s constant is expressed in terms of the string length `s and string coupling

gs as 16πG10 ≡ (2π)7`8s g
2
s . From this action we obtain the equations of motion

R̃ab −
1

2
R̃ g̃ab =

1

2

(
∂aφ∂bφ−

1

2
g̃ab ∂cφ∂

cφ

)
+

1

2
g

1
2

(p+1)
s e

1
2

(3−p)φ
(

1

(p+1)!
F

c1···cp+1
a Fbc1···cp+1 −

1

2(p+2)!
g̃ab Fc1···cp+2F

c1···cp+2

)
,

∇̃c
(
e

1
2

(3−p)φF ca1···ap+1

)
= 0 ,

∇̃c∇̃cφ−
3− p

4(p+ 2)!
g

1
2

(p+1)
s e

1
2

(3−p)φFc1···cp+2F
c1···cp+2 = 0 , (A.3)

where ∇̃ is the Levi-Civita connection of g̃.

Finally, recall that the string and Einstein frame metrics are related by the transfor-

mations gab = g̃abe
1
2

(φ−φ∞), while the dilaton and gauge field are the same in both frames.

In the main text, we present the type II solutions (1.3), (1.8), (1.13), (1.19), (2.6) and (2.7)

in the string frame.

B Thermodynamics in vacuum Einstein gravity

Here we give the phase diagram of uniform, nonuniform, and localised solutions within

asymptotically R(1,8)× S̃1 vacuum Einstein gravity. These are the solutions we constructed

explicitly in section 3 and whose thermodynamic quantities were used to get the SYM

thermodynamics via the map (2.15)–(2.16). This is the first time that the thermodynamics

of the nonuniform and localised solutions associated with the GL instability are presented

in 10 dimensions. The results of this appendix thus complement the studies done for other

dimensions [20, 21, 40, 42–59].

The phase diagram in the microcanonical ensemble is in the left panel of figure 6.

We plot the dimensionless entropy difference G10∆S/L̃7, between a given solution and

the uniform black string as a function of energy G10M/L̃8. Thus, the horizontal dashed

line with ∆S = 0 describes the uniform black string family. This solution is unstable for

energies below the GL zero mode at M = MGL with MGL = 0.0110 L̃8/G10 (labeled by the

green diamond). The nonuniform black strings (orange curve) branch from the GL zero

mode towards M > MGL and have less entropy than the uniform black string. The localised

black hole (blue curve) dominate this ensemble for M < MPhT At M = MPhT with

MPhT = 0.0137
L̃8

G10
= 1.245MGL (B.1)

there is a first order phase transition with uniform strings being preferred for M > MPhT.

Consider now the canonical ensemble. The phase diagram in this ensemble is dis-

played in the right panel of figure 6 where we plot the dimensionless free energy difference

G10∆F/L̃8, between a given solution and the uniform black string, as a function of the

temperature T L̃. The plot and colour scheme are the same as that of the microcanonical
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Figure 6. Left panel: phase diagram of asymptotically R(1,8)× S̃1 vacuum Einstein solutions in the

microcanonical ensemble. ∆S gives the entropy difference between a given solution and the uniform

black string with the same energy E. Right panel: phase diagram of asymptotically R(1,8) × S̃1

vacuum Einstein solutions in the canonical ensemble. ∆F gives the free energy difference between

a given solution and the uniform black string with the same temperature T . In these diagrams the

horizontal (dashed red) line describes the uniform black string. The orange curve represents the

nonuniform black string family and the blue curve describes the localised black hole branch.

ensemble. The uniform black string (horizontal dashed line) is unstable for T > TGL with

TGL = 1.302/L̃. There is a first order phase transition at

TPhT =
1.266

L̃
= 0.972TGL (B.2)

where the uniform phase is preferred for lower temperatures and the localised phase is

preferred for higher T . The nonuniform phase is never preferred. Note that our estimate

for TPhT involves a very small extrapolation, since in figure 6 we can observe that the free

energy difference between the localised black hole phase and the uniform black string with

the same temperature T , which we coined ∆F , has not yet crossed zero.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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