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Kinematic edges of cascade decays of new particles produced in high-energy collisions may provide 
important constraints on the involved particles’ masses. For the exemplary case of gluino decay g̃ → qq̄χ̃
into a pair of quarks and a neutralino through a squark resonance, we study the hadronic invariant 
mass distribution in the vicinity of the kinematic edge. We perform a next-to-leading order calculation 
in the strong coupling αs and the ratio of squark width and squark mass �q̃/mq̃ , based on a systematic 
expansion in �q̃/mq̃ . The separation into hard, collinear and soft contributions elucidates the process-
dependent and universal features of distributions in the edge region, represented by on-shell decay 
matrix elements, universal jet functions and a soft function that depends on the resonance propagator 
and soft Wilson lines.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The kinematics of particle decay leads to sharp edges in cer-
tain distributions, whenever the decay proceeds through another 
intermediate resonance. Well-known examples are the invariant 
mass of the lepton pair in squark decay q̃ → q�+�−χ̃ through a 
neutralino and a slepton resonance [1,2], and the hadronic invari-
ant mass distribution d�/dM2

h in gluino decay g̃ → qq̄χ̃ through 
a squark resonance (see diagrams in Fig. 1). The latter displays an 
edge at

M2
edge =

(m2
g̃ − m2

q̃)(m2
q̃ − m2

χ̃
)

m2
q̃

. (1)

The sharp feature provides a constraint on the supersymmetric 
particle masses involved in the decay. In practice, the edge will 
be smeared out by detector effects, the extent of which depends 
on the experimental set-up. However, even on purely theoretical 
grounds, the sharp edge is expected to be smoothed by radiative 
corrections and by the width of the intermediate resonance.

In order to predict the spectra locally near the kinematic edge 
the narrow-width approximation for the intermediate resonance 
cannot be applied. This is evident from the fact that the leading 
radiative correction contains a logarithmic singularity

* Corresponding author.
E-mail address: mueck@physik.rwth-aachen.de (A. Mück).
http://dx.doi.org/10.1016/j.physletb.2017.04.018
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
Fig. 1. Tree diagrams representing the gluino decay g̃ → qq̄χ̃ through an intermedi-
ate squark or antisquark resonance.

αs

π
ln2

|M2
h − M2

edge|
M2

edge

. (2)

In the edge region, the distribution is sensitive to the resonance 
width �q̃ even when �q̃/mq̃ � 1 and contains potentially large log-
arithms ln mq̃/�q̃ .1 A reliable theoretical framework must account 
for the presence of the scale �q̃ . Radiation and interference effects 
lead to a distortion of the distribution near the kinematic edge.

In this work we quantify this distortion. We define the edge 
region and study the factorization property of the hadronic invari-
ant mass distribution at leading order in the expansion in the ratio 
�q̃/mq̃ . The distribution is then computed at next-to-leading order 
(NLO) in the strong coupling αs and leading order (LO) in �q̃/mq̃ , 

1 The width of the resonance determines the extent of the edge region, see the 
following section, which decreases when the resonance is longer-lived. Incidentally, 
the singular logarithms were not observed in the next-to-leading order QCD calcu-
lation of the process q̃ → q�+�−χ̃ in the narrow-width approximation [3], since the 
distribution was binned in bin sizes larger than the width.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 2. Tree-level phase space in the squark momentum squared q2 and the hadronic 
invariant mass squared M2

h . For the case mχ̃ < m2
q̃/mg̃ we show the bulk, edge and 

tail regions and the lines (in thick gray) where the (anti)squark is on-shell. The 
intersection of these lines with the phase-space boundary (dots) defines the edge 
invariant mass, which is shown also for the case mχ̃ > m2

q̃/mg̃ . The non-horizontal 
gray line corresponds (for the case mχ̃ < m2

q̃/mg̃ only) to the resonant value of the 
second diagram in Fig. 1.

and at NLO in �q̃/mq̃ but LO in αs . The resummation of logarithms 
of �q̃/mq̃ is left to future work. Our result therefore applies when 
�q̃/mq̃ is small, but not extremely small. We plan to present fur-
ther details and results in a longer technical write-up [9].

2. The edge region

2.1. Kinematics

We consider the gluino decay chain g̃ → q̃ (→ q + χ̃ ) + q̄
through an intermediate squark resonance into a neutralino. At 
tree level, the neutralino is accompanied by a quark–antiquark pair 
with invariant mass Mh . The edge value (1) is the maximal value 
the hadronic invariant mass can take for tree kinematics, when 
the squark momentum q is on-shell, q2 = m2

q̃ . The tree-level phase 
space is shown in Fig. 2. The edge value naturally divides the 
hadronic invariant mass into three regions. The “edge region” is the 
strip of width O(�q̃), in which the squark propagator can remain 
resonant, but the distribution is sensitive to the precise virtuality 
of the propagator. Values Mh > Medge up to mg̃ − mχ̃ are accessi-
ble only when the squark propagator is off-shell. We refer to this 
as the “tail region”. The tree-level distribution falls off rapidly in 
this region. Finally, the region of hadronic invariant mass below 
the edge region is called the “bulk region”. In this region the shape 
of the bulk of the invariant mass distribution is determined by the 
cascade of two decay processes through an intermediate on-shell 
squark.

The edge region is the only region that requires a special treat-
ment, because it is intrinsically sensitive to the scale of the res-
onance width, which enters the resonance propagator. While in 
the bulk region the resonance is also on-shell, the propagator can 
still be expanded in the distribution sense, treating �q̃ as small. At 
leading order in �q̃/mq̃ , this amounts to the narrow-width approx-
imation. In the tail region, on the other hand, the distribution is 
power-suppressed.

At tree level, invariant masses in the edge region can be pro-
duced in two ways. For resonant squarks the edge value is attained 
if the quark and antiquark are back-to-back, since the invariant 
mass increases with the angle θ between the quark and antiquark 
momenta. Alternatively, Medge can also be achieved by q2 > m2
q̃ or 

q2 < m2
q̃ , in which case cos θ does not need to be −1. However, 

this contribution is power-suppressed due to the off-shell squark 
propagator. Whether q2 must be larger or smaller than m2

q̃ de-
pends on whether the neutralino mass is larger or smaller than 
m2

q̃/mg̃ . The value of the neutralino mass also determines the res-

onant decay kinematics in the edge region. For small mχ̃ < m2
q̃/mg̃ , 

the neutralino momentum is aligned with the antiquark momen-
tum, otherwise with the quark momentum.

Since the gluino and neutralino are Majorana fermions, there 
is another decay chain, g̃ → ¯̃q (→ q̄ + χ̃ ) + q, where the quark 
and antiquark momenta are interchanged and the resonance is an 
antisquark (see second diagram in Fig. 1), which interferes with 
the squark resonance chain. At LO in �q̃/mq̃ , however, the two 
processes can be treated as independent and contribute the same 
amount. The reason for this is that the interference of the two am-
plitudes necessarily requires one of the squark propagators to be 
off-shell, and hence is �q̃/mq̃ suppressed. We therefore focus on 
the first decay chain.

2.2. Factorization and leading regions

When the squark width is set to zero the invariant mass dis-
tribution drops to zero discontinuously at the edge value, which 
is unphysical. Our aim is to describe the shape of this distribution 
correctly at leading order in �q̃/mq̃ , including radiative corrections.

We already noted that the quark and antiquark must be nearly 
back-to-back at tree level. It is evident that tree-level kinemat-
ics is not changed, if a) the gluino and squark decay vertices are 
modified by hard-virtual corrections, b) the quark and antiquark 
develop into jets by collinear emissions, and c) soft gluons con-
nect all strongly interacting particles in the squared amplitude. 
We therefore introduce the hard (1, 1, 1), collinear (1, λ, 

√
λ), anti-

collinear (λ, 1, 
√

λ) and soft (λ, λ, λ) regions, where λ = �q̃/mq̃ .2

Here, following soft-collinear effective theory (SCET) notation [4,5], 
we introduced two light-like vectors, n2± = 0, and decomposed a 
four-vector into components (n+ p, n− p, p⊥). The hard, soft, and 
jet functions and the interactions of these modes are familiar ob-
jects in SCET. In addition, the effective theory after integrating out 
hard modes includes a resonant mode that describes squarks with 
off-shellness of order λ, a situation that is described by unstable-
particle effective theory [6]. The soft-collinear physics is reminis-
cent of event shapes in e+e− annihilation in the phase-space re-
gion of two-jet final states. However, in the edge region of the 
cascade decay the two jets do not emanate from a point-like ver-
tex, but from two points, the production and the decay vertices 
of the long-lived resonance. As a consequence the soft physics is 
much more complicated.

We can therefore write down a factorization formula for the 
hadronic mass distribution of the form

d�

dM2
h

= |C |2 · |D|2 · J ⊗ J̄ ⊗ [
R ⊗ R̄ ⊗ S

] + H R , (3)

which is valid in the vicinity of M2
edge, at leading power in �q̃/mq̃ , 

and graphically presented in Fig. 3. The first two factors on the 
right-hand side of this equation consist of the square of two hard 
functions, one (C ) containing the hard virtual correction to the on-
shell gluino decay g̃ → q̃ + q̄, the other (D) to the on-shell squark 
decay q̃ → q + χ̃ . The hard functions multiply the (anti)quark jet 
functions J , J̄ , which contain the collinear ( J ) and anti-collinear 

2 We do not distinguish mg̃ and mq̃ for the purpose of power counting.
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Fig. 3. Graphical representation of the factorization formula for the hadronic invari-
ant mass distribution in the edge region.

( J̄ ) modes. These are convoluted with a soft function that consists 
of the resonant squark propagators R , R̄ in unstable-particle effec-
tive theory, and a vacuum matrix element S of soft Wilson lines 
factored off the jets, the gluino, and the resonances. Due to the 
spatial separation of the two hard decay vertices, the soft func-
tion is a highly non-local object in position space, which accounts 
for the distribution of soft momentum between the various factors 
and for the distortion of the shape of the resonance.

The first term in (3) would be all there is, if requiring M2
h ≈

M2
edge always forced the hadronic final state to consist of two back-

to-back jets. However, hard (i.e. non-collinear) real emission is also 
possible. While the interference of hard emission amplitudes be-
tween the two decay stages is power-suppressed, since at least 
one squark propagator is then thrown off resonance, interference 
within the two decay stages separately can leave the squarks on-
shell. In terms of Feynman diagrams the hard parton final state 
can therefore be described as a cluster of partons with invari-
ant mass p2

J emerging from the gluino decay vertex and another 
cluster with mass p2

J̄
from the squark decay vertex, replacing the 

antiquark and quark in the tree diagram, respectively, such that 
the total invariant mass is near M2

edge. Note that p2
J and p2

J̄
are 

now generically of O(1) while only the phase-space region when 
both are O(λ) is included in the first term on the right-hand side 
of (3). The additional hard-real contribution is denoted by H R in 
this equation and must be added by explicit matching. In prac-
tice, this amounts to the calculation of hard real radiation to the 
separate decay stages in dimensional regularization, setting the ex-
ternal squark line on-shell and M2

h to M2
edge. These simplifications 

automatically avoid double counting with the first term of (3) and 
correspond to the direct computation of the hard region according 
to the method-of-regions strategy [7].

An intuitive understanding of hard real radiation is obtained 
from looking at the maximal value of M2

h for on-shell squarks in 
the presence of hard radiation. If this value is larger than M2

edge, 
the previous edge value lies in the bulk region of the hard radia-
tive process.3 The latter therefore becomes insensitive to the width 
of the squark and can be treated like the bulk distribution at tree 
level. The H R term is therefore simply a constant contribution to 
d�/dM2

h in the edge region. The structure of (3) is similar to reso-
nant and non-resonant production in the factorization formula for 
the line-shape of a resonance or pair production near threshold in 
previous applications of unstable-particle effective theory (see the 
review [8]). However, here both terms appear at leading power due 
to the presence of a resonant bulk region at tree-level rather than 
a single resonant invariant mass or threshold energy. Hence the 

3 This criterion also implies that at the level of one-gluon emission the hard gluon 
must be emitted from squark decay for light neutralinos mχ̃ < m2

q̃/mg̃ , and from 
gluino decay for mχ̃ > m2

˜ /mg̃ .
q
non-resonant contribution is replaced by the resonant, but width-
insensitive and unsuppressed hard-real contribution.

We shall provide a formal discussion of the factorization for-
mula together with technical details in a separate paper [9].

3. NLO invariant mass distribution

At leading order, the factorization formula (3) becomes triv-
ial. Without any additional gluon, there is no hard radiation. 
The soft and jet functions are unity. Defining the product of 
spin-averaged/spin-summed tree-level squared matrix elements 
M2(q̂2) = |M(g̃ → q̃ + q̄)|2|M(q̃ → q + χ̃ )|2, the hard functions are 
given by M2(0), i.e. for vanishing off-shellness q̂2 = q2 − m2

q̃ = 0
of the squark. Since the on-shell kinematics is completely fixed at 
tree level, M2(0) is constant in phase space. The resonance fac-
tor R is the propagator with a constant width �q̃ , so that R and R̄
combine to a Breit–Wigner distribution. The integration of this dis-
tribution with respect to the off-shellness q̂2 of the squark is the 
only non-trivial phase-space integral. The measurement function 
for the hadronic mass introduces 	-functions 	 

(
q̂2

max − q̂2
)

and 
	 

(
q̂2 − q̂2

min

)
, which determine the integration range. Depending 

on the sign of χ = (m4
q̃ − m2

g̃m2
χ̃
)/m4

q̃ , either q̂2
min or q̂2

max is O(1), 
and the small off-shellness q̂2 can be neglected. Hence, the corre-
sponding 	-function is always equal to one and can be omitted. 
The integration boundary in the other 	-function can be expanded 
to leading order in λ. Hence, the general result (3) simplifies to

d�LO

dM2
h

= M2(0)

256π3m3
g̃

∞∫
−∞

dq̂2 	
(−
 − q̂2χ

)
q̂4 + m2

q̃�2
q̃

, (4)

where 
 is the O(λ) distance to the edge, i.e. M2
h = M2

edge + 
. 
The 	-function results in a universal tree-level shape of the edge 
distribution, since the dependence on the specific decay process 
appears only in the constant overall factor M2(0).

We remark that at leading power in �q̃/mq̃ , the 	-function 
in (4) is absent in the bulk region, since the second integration 
boundary is also O(1). Therefore, the differential width is constant 
in the bulk. In the tail region, on the other hand, the 	-functions 
make the differential width vanish.

3.1. Next-to-leading power at tree level

Before turning to the calculation of the radiative corrections, we 
briefly discuss how the next term in the expansion in �q̃/mq̃ of the 
tree-level distribution is computed in the edge region. At O(λ), the 
numerator M2(q̂2) in (4) is not only needed for on-shell decays 
(q̂2 = 0) but one needs the next order in the Taylor-expansion of 
the off-shell matrix elements with respect to q̂2. Hence, one part 
of the resonant contribution is given by

d�res
NLO

dM2
h

= dM2(q̂2)/dq̂2|q̂2=0

256π3m3
g̃

×
∞∫

−∞
dq̂2

(
q̂2

μ2

)ε

	
(
−
 − q̂2χ

) q̂2

q̂4 + m2
q̃�2

q̃

, (5)

where we have introduced the factor q̂2ε in order to make the 
integral well-defined. For χ > 0, the previous expression evaluates 
to
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Fig. 4. Tree-level invariant mass spectrum for the SUSY benchmark point A with width �q̃ = mq̃/10 discussed below. We normalize the differential width to the constant LO 
result in the bulk region. The blue solid line refers to the edge distribution, the black dashed line to the tail and bulk distribution, and the red dot-dashed line to the exact 
tree-level result in the fixed-width scheme. The interference contribution is not included. From left to right to bottom the leading power (left), next-to-leading power (right), 
and next-to-next-to-leading power (bottom) terms are successively included. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)
d�res
NLO

dM2
h

= dM2(q̂2)/dq̂2|q̂2=0

256π3m3
g̃

×
[

1

ε
+ iπ + 1

2
ln

(
m2

q̃�
2
q̃ + 
2/χ2

μ4

)]
, (6)

where the 1/ε pole and the spurious imaginary part are a conse-
quence of factorizing the NLO contribution into a resonant and a 
non-resonant part, and of the choice of the regulating factor. Fur-
ther, also the relevant integration boundary q̂2

max or q̂2
min discussed 

in the context of (4) receives an O(λ) correction, which can be 
taken into account by appropriately expanding the 	-function. In 
addition, non-resonant contributions (with |q̂2| 
 mq̃�q̃) start to 
contribute at NLO. Here, the Breit–Wigner propagator can be ex-
panded in the small width, and the 	-function with respect to the 
small integration boundary. On the other hand, the second inte-
gration boundary can no longer be taken to infinity, and one also 
needs the full q̂2-dependence of the matrix elements. Hence, for 
χ > 0 one finds

d�non-res
NLO

dM2
h

= 1

256π3m3
g̃

0∫
q̂2

min

dq̂2
(

q̂2

μ2

)ε
M2(q̂2)

q̂4
, (7)

where we consistently applied the same regulating factor q̂2ε as 
above to render the integral well-defined, and q̂2

min is calculated 
for M2

h = M2
edge. Since M2(q̂2) is polynomial in q̂2 in our case, the 

integral can be easily computed. Combining the resonant and the 
non-resonant contribution, the 1/ε poles and spurious imaginary 
parts contained in (5) and (7) cancel and the regulator can be set 
to zero.

In the tail and in the bulk regions, the non-resonant contribu-
tion is integrated from q̂2 to q̂2

max, where q̂2 is determined 
min max/min
as a function of M2
h . In the bulk, there is also a resonant contri-

bution given by (5) without the 	-function. In all three regions, 
higher-order contributions in �q̃/mq̃ are obtained in a straightfor-
ward way by expanding the relevant quantities (matrix elements, 
	-functions, Breit–Wigner propagators) to the appropriate order.

For the specific SUSY process under consideration the interfer-
ence between the diagrams in Fig. 1 starts to contribute at NLO 
in �q̃/mq̃ . There are two resonant contributions, where either the 
squark or the antisquark propagator is resonant and the other is 
off-shell, and quantities of O(λ) can be neglected in the remaining 
matrix element. There is also a non-resonant contribution, where 
q̂2 is considered to be large and the width can be neglected in 
both propagators.

In Fig. 4, we show numerical results for the tree-level hadronic 
invariant mass distribution at leading, next-to-leading, and next-
to-next-to-leading power in �q̃/mq̃ for the SUSY benchmark 
point A discussed below, and compare them to the exact tree-level 
result. Rapid convergence upon including higher powers in �q̃/mq̃
can be observed.

3.2. Radiative correction

At next-to-leading order in the strong coupling αs , an addi-
tional gluon line is attached in all possible ways to the square 
of the tree diagrams shown in Fig. 1. Hard virtual contributions 
amount to the evaluation of virtual corrections to each of the 
two two-body decays with an on-shell squark. They are also part 
of a standard narrow-width calculation [10] and we do not dis-
cuss them further here. In (3) they give the NLO corrections to 
the hard functions C and D , or equivalently the squared matrix 
elements M2(0) in (4). In addition, there are soft, collinear and 
hard-real corrections which correspond to the expansion of the 
soft function and the jet functions, and to the evaluation of the 



M. Beneke et al. / Physics Letters B 770 (2017) 539–545 543
hard real contribution in (3), respectively. They are discussed be-
low.

All the individual pieces are in general separately divergent. 
When a soft gluon momentum r flows through a squark propa-
gator with momentum k it is convenient to separate the UV di-
vergent piece by adding and subtracting a term, such that the UV 
divergent term does not depend on the width and on q̂2 = k2 −m2

q̃ :

1

(k + r)2 − m2
q̃ + im2

q̃�2
q̃

O(λ)= 1

q̂2 + 2k̂ · r + im2
q̃�2

q̃

= 1

2k̂ · r︸ ︷︷ ︸
soft UV

+ 1

q̂2 + 2k̂ · r + im2
q̃�2

q̃

− 1

2k̂ · r︸ ︷︷ ︸
soft remainder

, (8)

where in the first step only terms of O(λ) are kept in the de-
nominator. Hence, one can neglect the gluon momentum in the 
off-shellness q̂2, and set the squark momentum to its value k̂ in 
the on-shell 1 → 2 gluino decay. In the following we separate the 
soft contributions into a term denoted “soft UV”, which is simple 
and contains the UV divergence, and a finite “soft remainder” ac-
cording to the above equation. If no soft gluon momentum flows 
through a squark propagator, the complete diagram is included in 
the soft UV contribution.

For collinear gluon exchange the complete matrix elements in 
the collinear approximation factor into the tree-level result and the 
appropriate splitting function. After integration, the collinear con-
tributions correspond to the convolution of the jet function in (3)
with the resonant squark propagator.

For soft and collinear gluon exchange the q̂2-integral in (4) has 
to be supplemented by a convolution with the gluon momentum. 
The virtual soft UV and collinear contributions are scaleless. For 
the real-emission soft UV and collinear contributions, the convolu-
tion can be cast into the standard form

B(
,n, c) =
(

μ

�q̃

)nε
∞∫

0

dy y−1−nε

×
∞∫

−∞
dq̂2 	(−
 − c y �q̃mq̃ χ − q̂2χ)

q̂4 + m2
q̃�2

q̃

, (9)

where μ is the scale from dimensional regularization and y is 
related to the small components of the soft or collinear gluon 
momenta. Since y enters the 	-function at NLO for real gluon 
emission, the integral is not scaleless. In the bulk and in the tail 
regions, the argument of the 	-function is O(1) and y must be 
neglected at leading power. Hence, in these regions there are no 
soft and no collinear contributions, as expected. The integral is 
given by

B(
,n, c) = − sgn(χ)

mq̃�q̃
�(nε)�(−nε) Im

[
x−nε

]
= − sgn(χ)

mq̃�q̃
arg(x)

(
1

nε
− ln |x|

− nε

6

(
arg2(x) − π2 − 3 ln2 |x|

))
+O(ε2) , (10)

where x = �q̃
μ


/χ+imq̃�q̃
c mq̃�q̃

. The combined soft UV and collinear con-

tribution to the differential width reads
d�soft UV+coll

dM2
h

= M2(0)

256π3m3
g̃

αs

π
eγEε

×
[

B(
,2, ci)Asoft UV
i + B(
,2,−c f )Asoft UV

f

+ B(
,1, ci)Acoll
i + B(
,1,−c f )Acoll

f

]
, (11)

where ci = mq̃/mg̃ , c f = mg̃/mq̃ , αs = αs(μ), and

Asoft UV
i = C g̃q̄ �(ε) − C g̃ g̃ �(1 + ε)

− C g̃q̃ �(ε)
m2

g̃ + m2
q̃

m2
g̃ − m2

q̃

[
1 −

(
m2

g̃

m2
q̃

)ε ]

+ Cq̃q̄ �(ε)

(
m2

g̃

m2
q̃

)ε

− Cq̃q̃ �(1 + ε)

(
m2

g̃

m2
q̃

)ε

, (12)

Asoft UV
f = Cq̃q �(ε)

(
m2

q̃

m2
g̃

)ε

− Cq̃q̃ �(1 + ε)

(
m2

q̃

m2
g̃

)ε

, (13)

Acoll
i = C F

(
μ

mg̃

)ε
(

m2
g̃ − m2

q̃

m2
g̃

)−ε
�(2 − ε)

�(1 − ε)

×
(

�(−ε)

�(2 − 2ε)
+ �(2 − ε)

2�(3 − 2ε)

)
, (14)

Acoll
f = C F

(
μ

mg̃

)ε
(

m2
q̃ − mχ̃

m2
q̃

)−ε
�(2 − ε)

�(1 − ε)

×
(

�(−ε)

�(2 − 2ε)
+ �(2 − ε)

2�(3 − 2ε)

)
. (15)

Here the Cij correspond to the color factors of the diagram with 
the gluon attached to i and j. To be specific C g̃ g̃ = Nc , C g̃q̄ = C g̃q̃ =
C g̃q = Nc/2, Cq̄q̄ = Cqq = Cq̃q = Cq̃q̃ = C F , Cq̃q̄ = Cq̄q = C F − Nc/2
and in turn C F = 4/3, Nc = 3. The different factors for the individ-
ual soft UV pieces are due to the angular integrals over the soft 
UV propagators. In the collinear case the �-functions are due to 
the integral over the collinear momentum fraction of the emitted 
gluon.

The coefficients in (12)–(15) contain 1/ε poles which com-
bine with the pole in (10) to cancel the poles of the hard vir-
tual and hard real contributions. The above results are obtained 
with a (4 − 2ε)-dimensional phase space for the gluon but with a 
4-dimensional phase-space for the particles present at tree-level. 
We have verified that the final result, including the hard contribu-
tions calculated using the same convention, agrees with the result 
in conventional dimensional regularization.

The leading logarithmically enhanced corrections of the form 
lnn(mq̃/�q̃) (n ≤ 2) in the full result can be extracted from (11)
alone using the ε-expansion in (10). If μ is chosen O(mq̃), e.g. 
μ = mq̃ , all large logarithms are contained in the soft UV +
collinear part, since then the hard pieces depend only on O(1)

ratios of dimensionful parameters. The soft remainder discussed 
below also does not contain large logarithms since it is finite, 
μ-independent, and homogeneous in the soft scale.

Due to the appearance of the width and q̂2 in the squark prop-
agator, the virtual soft-remainder contributions are not scaleless. 
We evaluate the virtual diagrams by taking residues to convert 
them into phase-space diagrams. They then combine with the soft 
remainder from the real diagrams such that most infrared diver-
gences cancel. Some diagrams, however, show a purely imaginary 
pole in the remainder which vanishes after adding the complex 
conjugate diagram.
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The finite soft remainder contribution can be expressed in 
terms of a one-dimensional integral representation based on a sin-
gle standard integral, i.e.

d�soft remainder

dM2
h

= M2(0)

256π3m3
g̃

αs

4π
sgn(χ)

1∫
−1

dx

×
[(

C g̃q̃

α

m2
g̃ + m2

q̃

2m2
g̃

+ Cq̃q̄ − Cq̄q

(1 − x)α

)
F

(

,

(1 − x) ci mq̃

α mg̃

)

+
(

Cq̃q − Cq̄q

(1 + x)α

m2
q̃

m2
g̃

− C g̃q

1 + x
− Cq̃q̃

α2

m2
q̃

m2
g̃

)

× F

(

,

(1 + x) c f mq̃

α mg̃

)
+ c.c.

]
, (16)

where α = ((1 + x)m2
g̃ + (1 − x)m2

q̃)/(2m2
g̃) and

F (
, c) = I+(
, c − 2) − I+(
,−2) − I−(
, c) (17)

with

I±(
,β) = 1

imq̃�q̃

[
π2

6
− Li2

(
1 + β

i mq̃�q̃

−
/χ ± i mq̃�q̃

)]
. (18)

In particular, diagrams where the gluon connects the gluino or the 
antiquark to the quark from squark decay only consist of these 
finite contributions.

Taking residues to evaluate the virtual loop diagrams, there are 
so-called particle-pole contributions (poles not due to the gluon 
propagator) which need additional analytic regularization to render 
separate soft and Glauber regions well-defined. All particle pole 
contributions vanish when properly regularized.

The hard real gluon emission contributes to the second term 
in (3). For hard gluon momenta, there is no non-trivial convolu-
tion between the squark and the gluon momentum, since q̂2 can 
be neglected in the argument of the measurement function, which 
is O(1) for a hard real gluon. For the same reason 
 can be ne-
glected, and the resulting d�hard real/dM2

h is a constant in the edge 
region. To compute H R , one has to compute the phase-space inte-
gral over the real-emission matrix elements for on-shell squarks as 
in a standard narrow-width calculation. Only the gluino (large mχ̃ , 
χ < 0) or the squark decay (small mχ̃ , χ > 0) contribute depend-
ing on the sign of χ , since the measurement function restricts the 
possible values for the quark–gluon and antiquark–gluon invari-
ant masses for M2

h = M2
edge. It is convenient to use the following 

subtraction procedure. As usual the differential width is written as 
a phase-space integral over the squared matrix element involving 
the measurement function. We add and subtract the full squared 
matrix element divided by M2

edge without applying the measure-
ment function, i.e.

|M|2δ(M2
edge − M2

h) =
(
|M|2δ(M2

edge − M2
h) − |M|2/M2

edge

)
+ |M|2/M2

edge . (19)

We first perform the phase-space integral over the angle between 
the quark and the antiquark. While the subtraction term is inde-
pendent of this angle and can be trivially integrated, using the 
δ-function to perform the angle integral leads to non-trivial phase-
space boundaries and a phase-space dependent factor multiplying 
the matrix element. In the soft-collinear phase-space region, which 
is always contained in the integration range, this factor tends to 
1/M2

edge. Hence, the remaining phase-space integration over the 
subtracted piece in parenthesis in (19) is finite in four dimensions 
and can be easily computed (we use a one-dimensional integral 
representation for our numerical results). The remaining term in 
(19) is proportional to the real-emission contribution to the total 
width upon integration. It has to be calculated using dimensional 
regularization but it is known from inclusive narrow-width calcu-
lations.

The hard virtual, the hard real, and the soft UV and collinear 
contributions in (11) individually include poles in 1/ε . In contrast 
to an inclusive calculation, the poles in the hard virtual and hard 
real pieces do not cancel at the edge because of the non-trivial q̂2

integral (4), which multiplies the hard virtual correction. Together 
with the soft and collinear contributions in (11), the differential 
width is, of course, finite (diagram by diagram if the collinear con-
tributions are split accordingly). The sum of the hard virtual and 
hard real corrections for the inclusive calculation agrees with the 
results in [10].

The choice of SUSY benchmark points for our numerical analy-
sis is based on the exclusion limits in terms of simplified models 
provided by ATLAS [11]. We analyzed two points which are not 
excluded, one for χ > 0 and one χ < 0, with parameters

• benchmark A: mg̃ = 2.2 TeV, mq̃ = 1.8 TeV, mχ̃ = 395 GeV, 
χ > 0

• benchmark B: mg̃ = 2.2 TeV, mq̃ = 1.0 TeV, mχ̃ = 695 GeV, 
χ < 0

Note that all results depend only on the ratios of the masses and 
the squark width. We use the squark width as a free parameter 
to investigate the edge behavior for different values of �q̃/mq̃ . For 
the renormalization scale we use μ = mg̃ with αs(μ) = 0.0799. In 
Fig. 5 we show the result for benchmark A. The scenario B exhibits 
similar features and is therefore not shown. The figures display 
the full LO result in αs (including all power corrections) for the 
hadronic invariant mass distribution d�LO/dM2

h (black dashed). To 
this we add the NLO QCD corrections at leading power �q̃/mq̃ in 
the edge region (red solid), which is our main result, and the NLO 
QCD corrections in the narrow-width approximation in the bulk 
and in the tail region, which diverge at the edge, for comparison 
(blue dot-dashed). The edge result gives a valid description where 
the narrow-width approximation at NLO in αs clearly fails. At the 
edge, power corrections O(�q̃/mq̃) are missing. Going away from 
the edge, further power corrections of O(
/m2

q̃) arise, eventually 
become dominant, and destroy the validity of the edge description. 
For large width (upper plot in Fig. 5), missing power corrections 
are sizeable, as can be expected, such that there is no overlap 
region where the bulk/tail and edge results properly match. For 
medium width (middle plots in Fig. 5), the results for the three re-
gions agree reasonably well if 
 is a few times mq̃�q̃ . This is where 
the different approximations should be matched, since power cor-
rections in the edge of the form 
/m2

q̃ and logarithmically en-
hanced terms in the bulk/tail (see (2)) are both subdominant. The 
matching of the bulk/tail and the edge results improves with de-
creasing width as can be seen by comparing the upper and the 
lower plots in Fig. 5. However, for decreasing width, the logarithms 
of mq̃/�q̃ in the edge result increase and resummation of these 
logarithms becomes mandatory for an extremely small width. The 
onset of the unphysical behavior of the unresummed edge result 
can be seen close to the edge in the lower plot of Fig. 5.
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Fig. 5. Differential width as a function of the distance to the edge for the bench-
mark scenario A: mg̃ = 2.2 TeV, mq̃ = 1.8 TeV, mχ̃ = 395 GeV, χ > 0. As in Fig. 4, 
we normalize the differential width to the constant LO bulk region result in the 
narrow-width approximation. Shown are (black dashed) the full LO result in αs (in-
cluding all power corrections in �q̃/mq̃ ), (red solid) the NLO QCD corrections added, 
which is our main result, and (blue dot-dashed) the full LO result plus the NLO 
QCD corrections in the narrow-width approximation in the bulk and in the tail re-
gion. From top to bottom the plots refer to three different choices of the width: 
�q̃/mq̃ = 0.1 (top), �q̃/mq̃ = 0.01 (middle), �q̃/mq̃ = 0.0005 (bottom). (For interpre-
tation of the references to color in this figure, the reader is referred to the web 
version of this article.)

4. Conclusion

Kinematic edges of cascade decays of new particles produced 
in high-energy collisions may provide important constraints on the 
particle masses. Depending on the experimental resolution an ac-
curate treatment of finite-width and higher-order radiative effects 
is required. In this work we performed a next-to-leading order cal-
culation in the two small quantities αs and �q̃/mq̃ for the hadronic 
invariant mass distribution in the vicinity of the kinematic edge of 
the gluino cascade decay g̃ → qq̄χ̃ through a squark resonance, 
based on a systematic expansion in �q̃/mq̃ .

At NLO it is of course technically possible to perform a stan-
dard one-loop computation in the complex mass scheme, as was 
done for the electromagnetic correction to the decay χ̃0

2 → ��̄χ̃0
1

through a slepton resonance [12]. The approach discussed here is 
nevertheless interesting, since the separation into hard, collinear 
and soft contributions does not only simplify the calculation, but 
also elucidates the process-dependent and universal features of 
distributions in the edge region. We then find that these are de-
scribed in terms of on-shell decay matrix elements, universal jet 
functions and a soft function that depends only on the resonance 
propagator and soft Wilson lines, one for each colored particle in-
volved.

For very narrow resonances the perturbative approximation 
breaks down due to large width logarithms, a situation that be-
comes relevant only for exquisite experimental resolution. The fac-
torization structure discussed here makes it clear that these log-
arithms can be summed with the help of renormalization group 
equations for the hard and jet functions. We hope to return to this 
in a future publication.
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