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We study the time evolution after a quantum quench in a family of models whose degrees of freedom are
fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in
the initial state. Focusing on the behavior of entanglement, both spatial and between subsystems, we show
that the model supports a state exhibiting combined area and volume-law entanglement, being character-
istic of the quantum disentangled liquid. This behavior appears for one set of variables, which is related via
a duality mapping to another set, where this structure is absent. Upon adding density interactions between
the fermions, we identify an exact mapping to an XXZ spin chain in a random binary magnetic field,
thereby establishing the existence of many-body localization with its logarithmic entanglement growth in a
fully disorder-free system.
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The intriguing problem of the interplay between inter-
actions and disorder in a quantum system has been fueling
research in this field since Anderson’s original work [1].
Recent progress in understanding physical phenomena
associated with this interplay [2–4] has firmly placed
many-body localization (MBL) ideas among the central
paradigms of many-body physics [5,6]. These exciting
developments moved disordered interacting systems into
the focus of attention, not least because MBL offers new
important insights into the fundamental questions of ergo-
dicity and its breaking, such as concepts of the eigenstate
thermalization hypothesis [7–9], beyond the realm of
integrable models. Because the presence or absence of
ergodicity defines the way a generic system relaxes towards
an equilibrium state, there are many interesting connections
between the physics of MBL, and nonequilibrium quantum
physics, e.g., quantum quenches.
One of such connections, recently proposed theoretically

[10–12], suggests a new nonergodic state of matter—the
quantum disentangled liquid (QDL)—which complements
the established phenomenology of relaxation in isolated
many-body quantum systems. The defining feature of these
quantum liquids is that they are unable to fully thermalize
because of interactions, thus making unnecessary the usual
requirements for ergodicity breaking, such as integrability
or quenched disorder. The idea of QDLs can be traced back
to the early works of Kagan and Maksimov on interaction-
induced localization, discussed in the context of solid
helium [13]. One QDL scenario is that of heavy particles
which thermalize, while light particles evade thermalization
by localizing on the heavy particles. More recent studies
of heavy-light particle models suggest that this physical

picture of subdiffusive dynamics, while present, is only
transient, and gives way to ergodic behavior at long times.
Hence, these systems have been dubbed quasi-MBL
[14–16]. Similar phenomenology has been observed in
the corresponding quantum dynamics of classical glassy
models [17,18]. Intriguingly, some evidence for QDL-like
behavior, showing different time scales for equilibration of
two subsystems, has been observed in cold-atom experi-
ments [19].
In a recent Letter [20] we proposed a disorder-free spin-

fermion model, which exhibits complete localization of the
fermion subsystem. Its remarkable feature is that disorder, a
prerequisite for localization, only emerges dynamically.
This is highlighted via an exact duality mapping between
spin or fermion degrees of freedom. This nonlinear trans-
formation reveals the presence of an extensive number of
conserved quantities playing the role of the disorder
potential. In the dual representation, the model becomes
that of free fermions, and there is an important question as
to what extent the physics that we found is robust to adding
perturbations to our model. Here we propose and study
such an interacting extension, showing that it can be
mapped exactly onto a random field XXZ spin chain—
the drosophila of MBL [21–26].
A standard diagnostic for MBL and QDL behavior is the

bipartite entanglement entropy.Many-body localization can
be distinguished from its noninteracting counterpart—
Anderson localization [1]—via the post-quench logarithmic
growth of entanglement compared with the area-law satu-
ration of entanglement correspondingly [21,22]. QDLs on
the other hand can be identified using projective measures
of entanglement entropy of separate species [10]. One of
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these obeys an area-law scaling, while the other together
with the full system show the volume law. The original
proposal of Ref. [10] provides explicit examples of many-
body wave functions showing QDL phenomenology.
However, the search for a microscopic Hamiltonian sup-
porting quantum disentangled liquid has so far proved to be
inconclusive. In this Letter we demonstrate two central
results obtained within our model: the many-body locali-
zation without quenched disorder, and a microscopic
Hamiltonian showing QDL behavior. Here we focus on
the results for the time evolution of entanglement entropy
after a quantum quench, which are obtained using a
combination of duality mappings, exact diagonalization
(ED), and matrix-product state (MPS) based time evolution.
Our work comes at a time when exceptional progress has

been made in experimental realization of controlled iso-
lated quantum systems [24,27,28] and in simulating lattice
gauge theories coupled to fermionic matter [29]—of which
our system is an example. This is driven in part by MBL
and general questions about thermalization, or lack thereof,
in such systems. The Hamiltonian we present is simple
enough that it should be implementable in similar setups,
and being able to tune the localization length should
minimize the effect of system size limitations. We have
a system that violates the eigenstate thermalization hypoth-
esis in the two ways that we present in this Letter, and with
a novel disorder-free mechanism.
Model and its mapping to the XXZ chain in a random

field.—In our previous work [20] we introduced a model of
spinless fermions, f̂j, hopping between sites of a 1D lattice,
that are coupled to spins-1=2, σ̂j;jþ1, living on the bonds.
Here we extend this model by adding nearest-neighbour
interactions between the fermions

Ĥf ¼ −J
X

hiji
σ̂zi;jf̂

†
i f̂j − h

X

j

σ̂xj−1;jσ̂
x
j;jþ1

þ Δ
X

j

ð2n̂j − 1Þð2n̂jþ1 − 1Þ; ð1Þ

where n̂j ¼ f̂†j f̂j is the fermion density operator. Without
loss of generality we assume that all parameters of the
Hamiltonian are non-negative. The model possesses an
extensive number of conserved quantities (charges), iden-
tified by a duality mapping which we outline here for
completeness, see details in Ref. [20]. We define τ spins on
the sites of the lattice through the duality transformation
[30,31]

τ̂zj ¼ σ̂xj−1;jσ̂
x
j;jþ1; τ̂xj τ̂

x
jþ1 ¼ σ̂zj;jþ1: ð2Þ

The charges q̂j ≡ τ̂zjð−1Þn̂j , commute with the Hamiltonian
also in the presence of fermion interactions Δ ≠ 0. Finally,
in terms of new fermion operators ĉj ¼ τ̂xj f̂j the
Hamiltonian can be recast in the following form:

Ĥq ¼ −J
X

hiji
ĉ†i ĉj þ h

X

j

q̂jð2n̂j − 1Þ

þ Δ
X

j

ð2n̂j − 1Þð2n̂jþ1 − 1Þ; ð3Þ

where n̂j ¼ ĉ†j ĉj ¼ f̂†j f̂j, and q̂j have eigenvalues �1. The
Hamiltonian Eq. (3) is equivalent to an XXZ chain in a
magnetic field via Jordan-Wigner transformation [32],
where the value of the magnetic field on each lattice site
is given by �2h, and the signs are fixed for any given
configuration of qj ’s. In the following we investigate the
emergence of QDL and MBL behavior using the time
evolution of the entanglement entropy after a global
quantum quench with the Hamiltonian Eq. (1), and initial
states being tensor products of spin and fermion degrees of
freedom.
For simplicity we assume that at t ¼ 0 the σ spins are

polarized along the z axis, and the f fermions are described
by the Slater determinant corresponding to a charge density
wave (CDW). Thus, initial states j0i ¼ j↑↑…iσ ⊗ jψif
transform into an equal-weight superposition of charge
configurations j0i¼½1=ð

ffiffiffiffiffiffi
2N

p
Þ�Pfqjg¼�1jq1q2…qNi⊗jψic,

with jψif equivalent to jψic [20]. Note that the choice of a
spin-polarized initial state is dictated purely by its sim-
plicity, while the physics remains the same for any typical
spin state. Exceptions are a zero-measure subset of special
states; e.g., there is a simple product state of spin each (anti)
aligned with the x axis and fermions in a tensor product of
local occupations (such as a CDW) which maps to fermions
in a single uniform charge sector.
In this setup the problem maps to a paradigmatic MBL

system—the XXZ spin chain in a random magnetic field
[21]. In our case the field has a binary nature, in other
words it takes only two values �2h, as in Refs. [25,26]
where MBL behavior is also observed. Note, that here
disorder is determined by the conserved charges q̂j which
are themselves related to the physical degrees of freedom of
Eq. (1). Our choice of the initial state results in averaging
over all charge configurations, thereby generating emergent
random binary magnetic fields.
Quantum disentangled liquid.—A fresh perspective

using entanglement measures [10] was recently proposed
in the context of localization in a disorder-free system given
by a mixture of heavy and light particles [13]. These
developments brought forward the notion of a quantum
disentangled liquid—a state of matter which is defined by
different behavior of the entanglement entropy of its
subspecies. However, to our knowledge, no microscopic
Hamiltonian conclusively exhibiting this behavior has been
identified so far. Here we show that the model we suggested
in Ref. [20], even in the noninteracting case of Δ ¼ 0, does
realize the phenomenology of QDLs.
The quantum disentangled liquid was defined in

Ref. [10] via projective bipartite entanglement entropy
(PBEE). Here we briefly review the definition of PBEE for
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the case of a system with two components in a pure state
jψi. Let α and β label the components, and P̂γ

ϕ be a
projector onto the state jϕi of the species γ ∈ fα; βg. This
projector is related to a measurement of the single compo-
nent. We also spatially partition our system into two
subsystems, A and B. The algorithm for calculating
PBEE for the component α is as follows: (i) project the
state jψi onto the state jϕi of species β, i.e., jψiϕ ¼ Pβ

ϕjψi;
(ii) define the reduced density matrix ρϕA ¼ TrBjψiϕhψ jϕ;
(iii) compute the von Neumann entanglement entropy
SϕA ¼ −TrA½ρϕA log ρϕA�; (iv) the PBEE for the species α is
then defined as

SαPBEE ¼
X

ϕ

jjψiϕj2SϕA; ð4Þ

where the sum for the entropies SϕA is weighted with the
probabilities of states jψiϕ. Crucially, a QDL has volume-
law scaling of the total bipartite von Neumann entropy S
and SαPBEE for one species, but the area law for the other
species SβPBEE.
In Fig. 1(a) we show bipartite entanglement entropy for

the full system for Δ ¼ 0, h=J ¼ 20 after a quench from a
charge density wave fermion state. The entropy exhibits
initial linear growth followed by an area-law plateau which
eventually gives way to the volume-law scaling (note the
dependence on the system size). The extent of the plateau
scales as ðh=JÞ2 for h=J ≫ 1, as shown in the inset; it is
absent for h=J < 1. This behavior can be attributed to a
separation of timescales, which is particularly crisp in our
case of binary disorder, where for h=J ≫ 1, a pair of
adjacent sites with opposite values of qj correspond to a
high energy barrier. Traversing such a barrier is a process
parametrically suppressed in h=J, while motion between
such barriers takes place on shorter timescales. The latter
can only produce area-law scaling of the entanglement
entropy, while the former can act on longer timescales,
resulting in equilibration of the spins and a concomitant
volume-law scaling for the entanglement entropy. Note that
the same two localization regimes also appear in the
disorder-averaged entanglement entropy of a simple
tight-binding model with binary disorder. It is directly
related to PBEE projected onto the charge sectors in our
model, ScPBEE shown in Fig. 2(a), because our choice of spin
polarized initial state leads to an equal weight superposition
of all disordered charge configurations.
The PBEEs for the original degrees of freedom, the f

fermions and σ spins, are shown in Fig. 1(b). The data are
scaled to highlight the fact that both PBEEs have the same
qualitative behavior, and match the entanglement entropy
of the composite system. In terms of the f and σ degrees of
freedom, the long time limit does not suggest the QDL
behavior since all three measures develop volume-law
scaling (see inset). However, in terms of new degrees of
freedom, after the mapping to c fermions and conserved
charges, we do find the phenomenology of the QDL. The

corresponding PBEEs obey area and volume-law scaling,
respectively, as shown in Fig. 2. Importantly, we find area-
law scaling of the PBEE for a macroscopic fraction of the
degrees of freedom. Furthermore, since the localization
behavior persists for all system sizes [20], and there is a
direct relation between the area-law scaling of ScPBEE and
the localization of fermions, this allows us to infer that this
behavior holds in the thermodynamic limit.
These contrasting results highlight the subtlety of defin-

ing a QDL, most crucially on an appropriate choice of the
measurement basis. While the dynamics of the f and c
fermions is closely related, e.g., all density correlators are
the same, they are connected via nonlinear and nonlocal
transformation with a string of spin operators.
Disorder-free MBL.—We now turn to our second main

result related to the interacting fermion case Δ ≠ 0. Here,
the system Eq. (3) can be mapped to an XXZ model with a
random magnetic field of binary nature qjh → �h via a

standard Jordan-Wigner transformation, Sþj ¼ ĉ†jð−1Þ
P

l<j
n̂l

and Szj ¼ n̂j − 1
2
, yielding

(a)

(b)

FIG. 1. Time evolution of entanglement entropy after a quench
from a charge density wave state. The results are obtained using
ED for h=J ¼ 20, Δ ¼ 0. (a) The von Neumann bipartite
entanglement entropy SðtÞ of a half-system for N ¼ 8, 10, 12.
(inset) The time Tarea for which the area-law plateau persists
(dashed line of main plot) as a function of h=J compared with
ðh=JÞ2. (b) Comparison between PBEEs SfPBEEðtÞ and SσPBEEðtÞ
and the entanglement of the full system SðtÞ for N ¼ 12. (inset)
The long time-limit Sðt → ∞Þ (computed at Jt ∼ 1012) as a
function of system size. PBEE results are scaled by factors of 4.3
and 1.9, respectively.
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ĤXXZ ¼ −J
X

j

ðŜþj Ŝ−jþ1 þ Ŝ−j Ŝ
þ
jþ1Þ

þ 4Δ
X

j

ŜzjŜ
z
jþ1 þ 2h

X

j

qjŜ
z
j: ð5Þ

Usually studied with continuously sampled disorder, but
also considered with binary disorder in Refs. [25,26], the
random field XXZmodel serves as an important example of
a model showing many-body localized behavior [21]. Here,
we find that MBL phenomenology extends to our model,
evenwithout quenched disorder.MBL is often distinguished
from Anderson localization by the logarithmic growth of
entanglement entropy after a quench whilst preserving area-
law scaling [22,33] with the system size. We use this
diagnostic for the initial charge density wave fermion state.
The time evolution under the Hamiltonian Eq. (1) is
computed using exact diagonalization for N ¼ 12 and by
a MPS algorithm for N ¼ 20 (with the help of the ITENSOR
library [34]), where we use second-order Trotter decom-
position with an error of compression at each step less than
3×10−7 up to a maximum bond dimension χ¼700.
In Fig. 3(a) we present the results for the time evolution

of entanglement entropy after a quench from a charge
density wave initial state. In the case of Δ ¼ 0 we observe
an area-law plateau at long times, as identified in Fig. 1(a).
Upon increasing Δ=J to 0.1 we find a change of behavior
with entanglement entropy growing without saturation,

which also obeys area-law scaling with respect to different
size partitions (not shown) and is evident from comparing
results for N ¼ 12 and N ¼ 20. The same data shown in a
semi-log plot (see inset) confirms that this is consistent with
the logarithmic growth of entanglement. The averaged
density imbalance between neighboring sites, ΔρðtÞ ∝P

jjh0jn̂jðtÞ − n̂jþ1ðtÞj0ij, along with the time-averaged
value ð1=tÞ R t

0 dτΔρðτÞ, is shown in Fig. 3(b). For both
Δ=J ¼ 0, 0.1, the density imbalance oscillates about the
long-time value Δρð∞Þ > 0, directly establishing non-
ergodicity on these very large timescales [20]. The electron
interactions (Δ ≠ 0) lead to additional damping of the
oscillations around this value. For a more detailed inves-
tigation of the XXZ spin chain with binary disorder we
point the reader to Refs. [25,26]
Discussion.—We presented an extension of our model of

disorder-free localization discussed previously in Ref. [20].
The model shows rich phenomenology, from quantum
disentangled liquids to many-body localization. Our results
explicitly demonstrate that the usual assumption that the
MBL phase requires quenched disorder is false.

(a)

(b)

FIG. 2. The time evolution of the PBEE starting from a charge
density wave state for h=J ¼ 20, Δ ¼ 0, and N ¼ 8, 10, 12,
obtained using ED. (a) ScPBEEðtÞ for c fermions. (b) SqPBEEðtÞ for
the conserved charges qi, see text.
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FIG. 3. Quantum quench from an initial charge density wave
state, h=J ¼ 20. (a) Von Neumann entanglement entropy com-
puted by ED for N ¼ 12 (thin, light line) and an MPS algorithm
for N ¼ 20 (thick, dark line) with Δ=J ¼ 0, 0.1. The spatial
bipartition is taken along the central bond. (inset) The same data
on a semi-log plot. (b) Density imbalance ΔρðtÞ ∝ P

jjh0jn̂jðtÞ −
n̂jþ1ðtÞj0ij and the time-averaged value ð1=tÞ R t

0 dτΔρðτÞ (dashed
lines) after the same quench.
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Using the time evolution of entanglement after a quan-
tum quench we demonstrated that our model also shows
quantum disentangled liquid behavior in this observable,
and we highlight the dependence of the definition of QDL
on the choice of the measurement basis. In spite of a close
relationship between the f and c fermions that we consider,
the projective entanglement involved in the definition of
QDLs reveals a stark difference between the two measure-
ments. We have also identified a family of models that
realize QDLs, namely, extensions to our model, which
commute with the conserved charges, as well as the models
with noninteracting auxiliary spins of Ref. [35].
The model can be extended by adding to the Hamiltonian

a number of other terms commuting with conserved
charges. A particularly interesting example is a simple
longitudinal field ∼

P
iσ

x
i . This term confines excitations of

the spin sector and corresponds to a nonlocal interaction
after the mapping to c fermions. Another possible exten-
sion is to give dynamics to the conserved charges which
could help to establish how robust the physics of disorder-
free MBL is to perturbations.
The model we discussed in this Letter marks an

intersection of many-body localization and quantum dis-
entangled liquids. Recent experimental progress on con-
trolled isolated quantum systems, and in particular the
simulation of lattice gauge theories, makes it accessible
with current capabilities [24,27–29]. It provides a new
setting for studying old and general open questions about
the relaxation of isolated many-body quantum systems.
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