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ABSTRACT 10 

Drained and cultivated fen peats represent some of the world’s most productive soils, 11 

however, they are susceptible to degradation and typically exhibit high rates of greenhouse 12 

gas (GHG) emission. We hypothesised that GHG losses from these soils could be reduced by 13 

manipulating water table depth, tillage regime, crop residue application or horticultural fleece 14 

cover. Using intact soil columns from a horticultural peatland, emissions of CO2, N2O and 15 

CH4 were monitored over a six-month period, using a closed-chamber method. Concurrent 16 

measurements of soil properties allowed identification of the key controls on GHG emissions. 17 

Raising the water table to the soil surface provided the strongest reduction in global warming 18 

potential (GWP100; 26 ± 6 kg CO2-e ha-1 d-1), compared to a free-draining control (81 ± 1 kg 19 

CO2-e ha-1 d-1), but this effect was partially negated by an emission pulse when the water 20 

table was subsequently lowered. The highest emissions occurred when the water table was 21 

maintained 15 cm below the surface (172 ± 12 kg CO2-e ha-1 d-1), as this stimulated N2O loss. 22 

Placement of horticultural fleece over the soil surface during spring had no significant effect 23 

on GWP100, but prolonged fleece application exacerbated GHG emissions. Leaving lettuce 24 

crop residues on the surface increased soil GWP100 (106 ± 4 kg CO2-e ha-1 d-1) in comparison 25 

to when residues were incorporated into the soil (85 ± 4 kg CO2-e ha-1 d-1), however, there 26 

was no evidence that this promoted positive priming of native soil organic matter (SOM). For 27 

maximum abatement potential, mitigation measures should be applied during the growing 28 

season, when GHG emissions are greatest. Our results also suggest that introduction of zero- 29 

or minimum-till practices may not reduce GHG emissions. Maintaining a high water table 30 

was the only option that reliably reduced GHG emissions, however, this option is impractical 31 

to implement within current horticultural systems. We conclude that alternative strategies or a 32 

major change in land use (e.g., conversion from horticulture/arable to wetland) should be 33 

explored as a means of preserving these soils for future generations.  34 
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 37 

1. Introduction 38 

Approximately 14-20% of peatlands globally are used for agriculture and when 39 

drained and cultivated they represent some of the world’s most productive agricultural soils 40 

(IPS, 2008). Their management is highly problematic, however, due to the potential for soil 41 

loss, either from wind or water erosion or from microbial mineralisation of the peat substrate 42 

(Dawson and Smith, 2007). Whilst microbial activity results in the release of nutrients 43 

previously locked up in soil organic matter (SOM), thereby enhancing crop productivity, it 44 

also progressively diminishes the resource base (Cannell et al., 1999). There is therefore a 45 

clear ecosystem services trade-off between (1) preserving (and enhancing) peat carbon (C) 46 

storage for climate change mitigation, maintaining high biodiversity habitats, and improving 47 

water quality, and (2) using this resource to promote food security. 48 

In many temperate and tropical countries, agricultural peatland emissions dominate 49 

national emissions of greenhouse gas (GHGs) from peat sources (IPS, 2008). For example, it 50 

has been estimated that 39% of English deep fen peats are currently under intensive 51 

cultivation and classed as being at risk from severe soil loss (Natural England, 2010). Within 52 

these sites, the depth of soil has been declining by 0.27-3.09 cm y-1 since the onset of 53 

drainage and cultivation in 1850 (Richardson and Smith, 1977; Hutchinson, 1980; Dawson et 54 

al., 2010). It has been estimated that 35-100% of drained Histosol loss may be attributable to 55 

microbially mediated CO2 production (Leifeld et al., 2011). The small net consumption of 56 

CH4 in these soils does little to offset CO2 loss, whilst N2O emissions can be substantial, 57 

forming approximately one third to one half of the total GHG budget (Taft et al., 2017). 58 

Mitigating GHG emissions from these soils is therefore a priority, especially as this could 59 
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substantially reduce the agricultural C footprint in some countries (UK Parliament, 2008; 60 

Kløve et al., 2017). 61 

Agricultural soil GHG emissions are influenced by a large number of interacting 62 

factors, including those associated with soil (e.g., porosity, labile C), climate (rainfall, 63 

temperature), and vegetation (growth rate, rooting depth), which in turn are driven by 64 

agricultural management strategy (Li, 2007). Modifying a single factor may simultaneously 65 

increase emissions of one GHG and result in the reduction of another (Smith et al., 2008). 66 

Therefore, mitigation studies should consider the overall effect of a measure on the total 67 

emissions of CO2, CH4 and N2O, rather than on a single GHG, as in some previous studies 68 

(Dalal et al., 2008; Henault et al., 2012; Musarika et al., 2017). This is particularly important 69 

where measures to reduce CO2 emission increase the release of the more radiatively powerful 70 

CH4 and N2O, causing a disproportionately large increase in the overall global warming 71 

potential (GWP) of the system. Given the relationship between GHG efflux and soil organic 72 

C (SOC) loss (Dawson and Smith, 2007), and the importance of SOC to long-term soil 73 

sustainability, it is also useful for mitigation studies to include an estimate of the effects of 74 

treatments on SOC retention.  75 

While many reviews on GHG mitigation in arable systems exist, few contain 76 

interventions specific to cultivated peatlands (e.g., Jauhiainen et al., 2016). Further, much of 77 

the evidence remains inconclusive. Our aim was to evaluate whether common management 78 

practices (i.e. tillage, manipulating water table depth, crop protection with fleece, and crop 79 

residue management) promoted or repressed GHG emissions and whether these could be used 80 

to promote SOC retention in cultivated peatlands. We hypothesised that tillage would 81 

promote soil aeration and net GHG loss, while conversely, raising the water table would 82 

reduce aeration and reduce net GHG loss. In addition, we hypothesized that fleece cover 83 

would increase soil temperature and moisture retention thereby promoting GHG emissions, 84 
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while addition of crop residues might reduce GHG emissions through negative priming of 85 

SOM.    86 

 87 

2. Methods and materials 88 

2.1. Study sites 89 

Soils (Sapric Histosols; FAO, 2006) utilised in this study originate from a 90 

horticultural lowland peatland in East Anglia, UK (52º32' N, 0º29' E). The site has a mean 91 

annual rainfall of < 700 mm, a mean annual temperature of 10.2 °C (ranging from mean 4.2 92 

°C in winter to 17.2 °C in summer), and mean annual sunshine hours of 1550 (UK MetOffice, 93 

2014). The study area comprises drained lowland fen typified by flat topography, which is 94 

under intensive commercial-scale horticultural and arable production, growing primarily 95 

vegetables (including lettuces [Lactuca sativa L.], potatoes [Solanum tuberosum L.], leeks 96 

[Allium porrum L.], onions [Allium cepa L.], red beet [Beta vulgaris L.], and celery [Apium 97 

graveolens L.]), sometimes in rotation with cereals (primarily wheat [Triticum aestivum L.]). 98 

Soil was collected from a representative field (~70% SOM content; Taft et al., 2017), which 99 

had been under a typical rotation for the previous growing season. Table 1 shows the physical 100 

and chemical characteristics of the soils used in the experiments.  101 

 102 

2.2. Field sampling 103 

Intact soil cores were taken from a visually representative area (10 m2) of a field to 104 

minimise any microsite variability caused by soil heterogeneity. A PVC pipe (dinternal = 103 105 

mm; h = 400 mm) with a chamfered base was slowly driven into the soil to give a final core 106 

depth of 300 mm with c. 100 mm remaining at the top of the core to act as chamber 107 

headspace when GHG sampling. After excavation, the cores were transported (10 °C) to the 108 

experimental site at Bangor University (53°13' N, 4°9' W), where they were laid out in a 109 
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randomised design with four blocks to allow for monitoring of background emissions of CO2, 110 

CH4 and N2O prior to experimentation (no significant differences among cores were 111 

apparent; data not presented).  112 

 113 

2.3. Preliminary soil and residue analysis 114 

Five additional cores were taken from the field and a number of chemical and 115 

physical analyses performed before commencement of the experiment; the same analyses 116 

were conducted at the end of the experiment on all cores (Table 1). The cores were split into 117 

three layers (0-10, 10-20 and 20-30 cm depth) and analyses were performed on each layer. A 118 

Rhizon® suction sampler was inserted to 10 cm depth and a soil water sample obtained then 119 

stored at c. -20 °C to await analysis. Next, a soil sample was taken using a bulk density ring 120 

(htotal = 10 cm, Vtotal = 200 cm3) for calculation of soil gravimetric moisture content and bulk 121 

density after oven drying (105 °C, 24 h). The remaining soil was homogenised and stored at 122 

4°C prior to chemical analysis within 48 h. Soil samples extracts were performed in triplicate 123 

for each soil layer for the determination of available NO3
- and NH4

+ (5 g soil in 25 ml 0.5 M 124 

KCl), available P (5 g soil in 25 ml 0.5 M acetic acid), and available K (5 g soil in 25 ml 1 M 125 

NH4Cl). Extracts were obtained by shaking (200 rev min-1, 30 min), centrifugation (3,250 × 126 

g, 10 min), filtering through a Whatman 42 filter paper and storage at -20 °C to await 127 

analysis. Available soil NO3
-, NH4

+ and P were determined colorimetrically on a PowerWave 128 

XS microplate spectrophotometer (BioTek UK, Bedfordshire, UK) using the methods of 129 

Mulvaney (1996), Miranda et al. (2001), and Murphy and Riley (1962) respectively. 130 

Available K in the acetic acid extracts was determined with a Model 410 flame photometer 131 

(Sherwood Scientific Ltd., Cambridge, UK). The moisture content of residue samples was 132 

determined by oven drying (80 °C, 72 h), while total C and N was determined with a 133 

CHN2000 analyser (Leco Corp., St Joseph, MI, USA). 134 
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 135 

2.4. Experimental treatments 136 

The cores were randomly assigned to six treatments as follows: (1) Control, (2) Water 137 

table maintained at 15 cm below the surface (WT15), (3) Water table maintained at the soil 138 

surface (WT0), (4) Soil surface covered with horticultural fleece (Cfleece), (5) Simulated tillage 139 

(Still ), (6) Crop residues applied to the soil surface (CRsurf), and (7) Soil tilled and crop 140 

residues incorporated into the soil (CRincorp) (Table 2). Each core had mesh covering the base 141 

and was placed in larger plastic container to allow accurate water table control 142 

(Supplementary information Appendix A, Fig. A.1). Sand surrounded the outside of the core 143 

to minimise thermal gradients and holes drilled in the side of the containers to allow drainage, 144 

or maintenance of the water table in the WT0 and WT15 treatments. The mesocosms were laid 145 

out in a randomised block design with five replicates of each treatment, with blocks aligned 146 

to the prevailing wind direction (SW-NE) to account for differences in sheltering and 147 

evapotranspiration. Water tables were established by filling the containers with artificial 148 

rainwater solution (containing 96 µmol L-1 NaCl, 10 µmol L-1 K2SO4, 5 µmol L-1 149 

CaCl2.2H2O, 6 µmol L-1 MgCl2.6H2O, 15 µmol L-1 NH4NO3, and 0.1 µmol L-1 KH2PO4, 150 

reflecting average Welsh rainwater composition; Stevens et al., 1997) until the excess ran out 151 

of the lateral drainage holes. Subsequently, water table height was maintained with natural or 152 

artificial rain water. For the Cfleece treatment, white horticultural, unwoven polypropylene 153 

fleece was secured over the top of the core headspace using plastic-coated wire. Horticultural 154 

fleece can be used for a variety of purposes including crop protection from frosts or pests and 155 

diseases, and soil warming and protection from wind or water erosion (e.g., Olle and Bender, 156 

2010). At our study site, it is used primarily for soil warming and crop protection against 157 

frosts, to facilitate the production of early crops. Cultivation treatments were based on the 158 

typical ploughing depth at the field site (c. 30-35 cm), and were implemented by removing 159 
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the whole volume of soil from the core, mixing in crop residues where appropriate, and 160 

packing loosely back into the core. Soil residue treatments involved the addition of Iceberg 161 

lettuce (Lactuca sativa L.) residues (c. 5 × 5 cm pieces) to the soil based on rates measured in 162 

the field post-harvest (52% of the total crop; 0.9 t C ha-1). The residues were pressed into the 163 

soil surface to simulate post-harvest tractor traffic.  164 

Mesocosm measurements were made for seven consecutive days following treatment 165 

application (May and Aug. 2013), then twice per week for two weeks, then weekly until the 166 

end of each experimental period (Aug. and Nov 2013). The experiment had two phases for 167 

the water table treatments (WT0 and WT15): Phase I involved maintaining the water table at 168 

the target depth for 3 months (i.e. 0 or -15 cm), while in Phase II the water table was lowered 169 

(by drilling holes in the base of the container) to match the control treatment (i.e. -30 cm). 170 

After 6 months, observable differences in GHG emissions among the water table treatments 171 

were largely negligible. Consequently, the cores were dismantled, split into 10 cm depth 172 

fractions and analysed as outlined in Section 2.3. 173 

 174 

2.5. Greenhouse gas monitoring  175 

Closed, non-vented static chambers were used to measure emissions of CH4 and N2O.  176 

These consisted of white opaque polypropylene cylindrical chambers (headspace 0.66 dm3) 177 

with a rubber septum sampling port in the lid (Supplementary information Appendix A, Fig. 178 

A.1). Each chamber was attached immediately before taking the first gas sample (t = t0), 179 

giving a final average enclosed headspace of 1.72 dm3. Subsequent samples were taken at 180 

approximately 10 min intervals (t = t10, t20 and t30). Gas sampling and storage procedures and 181 

materials followed those described in Taft et al. (2017). Sample analysis was undertaken with 182 

a gas chromatograph (Varian 450-GC, Bruker UK Ltd., Coventry, UK), equipped with a 183 

flame ionisation detector (FID, operated at 120-125 °C) and electron capture detector (ECD, 184 
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operated at 300 °C), and attached to a QUMA QHSS1-40 Headspace Autosampler (QUMA 185 

Electronik & Analytik GmbH, Wuppertal, Germany), which injected 2 ml of sample into the 186 

GC. We measured CO2 emissions from the cores with an EGM-4 infra-red gas analyser (PP 187 

Systems, Hitchin, UK) equipped with an SRC-1 soil respiration chamber. 188 

 189 

2.6. Soil water, climate and redox measurements 190 

Soil temperature was measured with a Checktemp1® probe (±0.3 °C; Hanna 191 

Instruments Ltd, Leighton Buzzard, UK) over a 0-10 cm depth. Soil solutions were recovered 192 

non-destructively throughout the experiment using Rhizon® soil water samplers (Rhizosphere 193 

Research Products, Wageningen, The Netherlands) inserted into the topsoil (0-10 cm depth). 194 

Soil solutions were stored at -20 °C to await analysis. During experimental Phase II, soil 195 

surface (1-2 cm depth) redox potential (Eh) was measured using an Eijkelkamp BNC glass 196 

Platinum electrode with an Ag/AgCl reference electrode and 3 M KCl electrolyte 197 

(Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) following Eijkelkamp 198 

(2009). Sampling ports in the side of the core (at 10, 20 and 30 cm below the soil surface) 199 

allowed additional temperature and Eh measurements to be made. Rainwater samples were 200 

collected periodically through the experiment and analysed for soluble N. Meteorological 201 

data (rainfall, air temperature) were obtained from the local Met. Office monitoring station. 202 

 203 

2.7. Statistical analysis 204 

Statistical analyses were performed using SPSS v. 20 (IBM Corp., Armonk, NY), 205 

with significance being accepted at p ≤ 0.05 unless otherwise stated. GHG flux calculation 206 

and data cleaning procedures were identical to those of Taft et al. (2017). Cumulative flux 207 

estimates were converted to 100-year global warming potential (GWP100) CO2 equivalents 208 

(CO2-e) according to IPCC (2006). Cumulative fluxes of CO2, N2O, CH4 and total GWP100 209 
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for each treatment were compared using ANOVA, independent t-test, Kruskal-Wallis or 210 

Kolmogorov-Smirnov Z tests as appropriate. Post-Hoc tests were conducted to determine 211 

significantly different treatments using Tukey’s HSD, Gambrell-Howell, or Kolmogorov-212 

Smirnov Z statistics (with Bonferroni correction for multiple comparisons) as appropriate. 213 

Relationships among individual GHGs, temperature, rainfall, and soil N concentrations were 214 

explored using Kendall’s tau statistic (τ).  215 

All statistical analyses were performed separately on the water table group of 216 

treatments (Control vs. WT0 vs. WT15), the fleece treatment (Control vs. Cfleece), and the 217 

cultivation and residue group of treatments (Control vs. Still  vs. CRsurf vs. CRincorp). Normality 218 

was tested using the Shapiro-Wilk test (Field, 2005), and non-normal data were log10-219 

transformed or square-root transformed; where transformation was ineffective, or where 220 

heterogeneity of variances was observed (Levene’s or Welch’s test statistic), appropriate non-221 

parametric tests were used to compare medians of those data groups. Soil physical and 222 

chemical characteristics for each soil depth layer were compared using ANOVA or the 223 

independent t-test, or Kruskall-Wallis or Kolmogorov-Smirnov Z tests for data deviating 224 

greatly from normality or homogeneity of variances. Significant effects of treatment and time 225 

(each treatment including the control, compared to the baseline) were tested. 226 

 227 

3. Results  228 

3.1. Climate and changes in soil quality  229 

Analysis of the soil at the end of the experiment showed that some properties had 230 

changed slightly over the 6-month period (Table 1). In most cases, however, the effect of 231 

treatment was small. The mean air temperature for Phase I and II of the experiment were 15.4 232 

and 13.2 °C, respectively (Fig. 1a-b). During the same period, the cumulative rainfall was 233 

191 and 229 mm, respectively.  234 
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 235 

3.2. Effect of water table manipulation on GHG emissions and soil chemistry 236 

Soil respiration responded rapidly to raising of the water table, falling close to zero 237 

within 5 d of water table raising in the WT0 treatment, and remaining lower (11 ± 1.4 mg 238 

CO2-C m-2 h-1) than mean fluxes from the control and WT15 treatments (76 ± 3.6 mg CO2-C 239 

m-2 h-1 and 78 ± 3.9 mg CO2-C m-2 h-1 respectively) for the remainder of the wetted period 240 

(Fig. 1c-d). Immediately after draining, there was a peak in CO2 emissions from both the 241 

WT0 and WT15 treatments, however, these returned to values close to the control after a 242 

further 44 d.  243 

During the wetted period, mean N2O emissions ranged from 5.0 ± 6.0 to 4453 ± 577 244 

µg N2O-N m-2 h-1 across all treatments (Fig. 1e-f). A substantial peak (4453 ± 577 µg N2O-N 245 

m-2 h-1) was observed from the WT15 treatment after 14 d and emissions in this treatment 246 

remained consistently higher than the WT0 and control treatments during the first six weeks. 247 

Over this period, N2O emissions were very similar in the control and WT0 treatments. 248 

Drainage resulted in a short-lived rise (c. 14 d) in N2O flux which was most pronounced in 249 

the WT15 treatment immediately following draining (1506 ± 499 µg N2O-N m-2 h-1). 250 

Emissions in the WT0 treatment exhibited a similar but smaller response 3 d after draining 251 

(699 ± 277 µg N2O-N m-2 h-1). Fluxes of CH4 remained low throughout the experiment (Fig. 252 

1g-h).  253 

Cumulative GHG emissions were significantly influenced by water table depth (Table 254 

3). In the initial wetted phase (Phase I), a significant decline in CO2 emissions was apparent 255 

as the water table was raised closer to the soil surface. However, a significant difference was 256 

only observed between the control and WT0 treatments (p < 0.01), although the difference 257 

between the WT15 and WT0 treatments was almost significant (p = 0.08). Cumulative N2O 258 

emission was significantly influenced by water table depth (p < 0.001), with the mean WT15 259 
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cumulative flux being significantly higher than both the control and WT0 treatments (both p < 260 

0.001). No significant treatment effects were observed for cumulative CH4 emissions. 261 

Cumulative GWP100 for water table treatments was significantly different among groups (p < 262 

0.001); with a highly significant increase in the order WT0 < control < WT15 (all p < 0.001). 263 

In the drained period (Phase II), significant differences were recorded for median CO2 264 

emissions among water table groups (p < 0.05; Table 3). However, no significant differences 265 

were found among the three water table treatments for cumulative N2O, cumulative CH4, or 266 

GWP100. 267 

  Over the entire experiment (Phase I and Phase II), CO2 and N2O emissions were 268 

highly influenced by water table depth (both p < 0.001; Table 3). There was a highly 269 

significant decline in soil respiration between WT15 and WT0 treatments (p < 0.001), while 270 

no difference was noted between the control and WT15 treatments. Mean N2O emissions were 271 

significantly higher from the WT15 treatment compared to the control and WT0 treatments 272 

(both p < 0.001). There was no effect of water table depth on cumulative CH4 emissions. 273 

Water table treatment had a highly significant effect on GWP100 (p < 0.001; Table 3), and all 274 

treatments were significantly different to each other: WT0 was lower than both the control 275 

and WT15 treatments (p < 0.05 and p < 0.001 respectively), and the control was lower than 276 

WT15 (p < 0.001).  277 

Mean NO3
- concentrations were substantially lower in the WT0 than in the control and 278 

WT15 treatments, both of which were similar to each other (Fig. 1i-j). Dissolved NH4
+ 279 

remained consistently low at all measurement times (Fig. 1k-l).  280 

Redox (Eh) values in the upper soil layer was similar across all treatments remaining 281 

> 400 mV for most of the monitoring period (Fig. 2a). On the day on which the cores were 282 

drained, the Eh was notably lower in the 10 cm soil layer WT0 treatment (369 ± 36 mV) than 283 

in the WT15 and control treatments (480 ± 11 and 487 ± 10 mV, respectively; Fig. 2b). Upon 284 
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draining, an immediate and marked drop in Eh was observed in the 20 cm soil layer in both 285 

the WT0 (315 ± 46 mV) and WT15 (422 ± 42 mV) cores, compared with the control (490 ± 8 286 

mV, Fig. 2c). Four days after draining, however, there were no observable differences among 287 

treatments. Redox potentials in the 30 cm soil layer were the most responsive to water table 288 

treatments (Fig. 2d). Both WT0 and WT15 treatments showed substantially lower mean Eh 289 

values (218 ± 17 mV and 227 ± 19 mV, respectively) compared with the control cores (341 ± 290 

24 mV) for the first 38 d. By day 62, WT15 redox values had returned to that of the control 291 

values, whereas the WT0 Eh took 85 d to recover to levels seen in the control. 292 

 293 

3.3. Effect of fleece application on GHG emissions and soil chemistry 294 

Soil respiration from the Cfleece and control cores followed a similar pattern 295 

throughout the experiment although the fluxes were generally higher in the Cfleece treatment 296 

(Fig. 3b). The peak flux in the Cfleece treatment (232 ± 61 mg CO2-C m-2 h-1) occurred on day 297 

52, and was almost double that of the control emission (132 ± 6.6 mg CO2-C m-2 h-1).  Mean 298 

N2O emissions were similar from the Cfleece and control treatments throughout most of the 299 

experimental period (Fig. 3c). Maximum N2O emission from the Cfleece treatment (542 ± 182 300 

µg N2O-N m-2 h-1) occurred 7 d after fleece application, returning to control levels after 14 d. 301 

Emissions of CH4 were higher than in the control treatment, however, these fluxes were still 302 

very low (Fig. 3d). Mean Cfleece NO3-N and NH4-N concentrations were very similar to the 303 

control treatment on all sampling dates (Figs. 3e-f). 304 

Overall, cores with fleece had significantly higher mean cumulative CO2 emissions (p 305 

< 0.05; Table 3) while total N2O emission was also higher than the control (p = 0.06). The 306 

fleece treatment had a significantly greater cumulative GWP100 emission than the control (p < 307 

0.01).  308 

 309 
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3.4. Effect of cultivation tillage on GHG emissions and soil chemistry 310 

Mean CO2 fluxes in the tilled soil were very similar to the control on most sampling 311 

dates, ranging from 26 ± 4.7 to 135 ± 5.2 mg CO2-C m-2 h-1 (Fig. 4d). A marked peak in CO2 312 

release was observed immediately after simulated ploughing, however, this was of short 313 

duration. For a few days during the experiment, Still  CO2 emissions were lower than in the 314 

control cores. Overall, mean fluxes of N2O and CH4 were similar to the control (Figs. 4g and 315 

4j). Ploughing had no significant effect when compared to undisturbed soil on cumulative 316 

individual GHG emissions or overall GWP100 (Table 3). We observed no consistent effect of 317 

tillage on soluble N concentrations relative to the control throughout the experiment. 318 

 319 

3.5. Effect of residue incorporation on GHG emissions and soil chemistry 320 

Both residue treatments showed a marked increase in soil respiration immediately 321 

following surface application or incorporation into the soil, with elevated levels persisting for 322 

three weeks after application (Fig. 4e-f). The response was generally lower when residues 323 

were incorporated into the soil. Emissions of N2O responded positively to residue application, 324 

but with a slower response (5-6 d), and over a longer period (37 d), compared to the control 325 

treatment (Fig. 4h-i). In the CRincorp treatment, both soil respiration and N2O emissions were 326 

lower than from the control towards the end of the experimental period. No marked effect of 327 

residue treatment was observed for CH4 emissions or soil solution N relative to the control 328 

throughout the experiment (Figs. 4k-l, 4n-o and 4q-p).  329 

The surface-applied residue treatment yielded a significantly higher mean cumulative 330 

soil respiration (p < 0.01), mean cumulative N2O emission (p < 0.05), and median cumulative 331 

GWP100 (p < 0.01) than the control treatment (Table 3). In contrast, no significant differences 332 

were apparent in any of the individual cumulative GHG emissions or overall GWP100 333 

between the control and residue incorporation treatment (Table 3). Compared to the surface-334 
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residue application treatment, cumulative emissions from the incorporated residue treatment 335 

were only significantly lower for CO2 (p < 0.05). 336 

 337 

3.6. Effect of soil and weather conditions on GHG emissions 338 

Redox potential at depth was significantly correlated with CO2 (p < 0.05) and N2O (p 339 

< 0.05) emissions, but not CH4 release (p > 0.05) (Table 4). At 20 cm below the soil surface, 340 

Eh was positively associated with CO2 emission in the control and WT15 treatments, 341 

explaining 3% of the variability in soil respiration (τ = -0.176 to -0.179). At 30 cm depth, Eh 342 

was negatively associated with CO2 emission in the WT0 treatment, and N2O emission in the 343 

WT0 and WT15 treatments, explaining 3% of CO2 emission variability and 3-6% of N2O 344 

emission variability (τ = -0.174 to -0.254).  345 

Soil temperature, mean daily air temperature, and measured air temperature were 346 

positive, highly significant predictors of soil respiration within most treatments, accounting 347 

for between 12-31%, 3-38%, and 5-18% of fluxes respectively (τ = 0.341 to 0.559, p < 0.05 348 

to < 0.01; Table 4). Temperature variables were less suitable for predicting N2O emissions, 349 

although some highly significant correlations were still apparent. Soil temperature, mean 350 

daily air temperature, and measured air temperature at the time of sampling predicted 2-10%, 351 

3-7%, and 3-12% of N2O emissions respectively (τ = 0.147 to 0.313, p < 0.05 to < 0.001).  352 

Daily and 5-day rainfall (cumulative rainfall from the day of measurement and the 353 

four preceding days) were negative highly significant predictors of CO2 emissions for most of 354 

the treatments (τ = -0.112 to -0.460; p < 0.05 to < 0.001), while daily rainfall was positively 355 

significantly correlated with surface-applied residue CO2 efflux (τ = 0.180, p < 0.05; Table 4). 356 

Daily rainfall explained 1-8% and 5-day rainfall explained 2-21% of soil respiration. 357 

Emissions of N2O and daily rainfall were highly significantly negatively correlated in all but 358 

the drained control treatment, accounting for 2-34% of emissions (τ = -0.136 to -0.579, p < 359 
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0.05 to < 0.001). Cumulative 5-day rainfall was a significant predictor of N2O emission in the 360 

WT15 treatment only, explaining 4-7% of N2O flux (τ = -0.199 to -0.260; p < 0.001).  361 

Dissolved N was a significant predictor of soil respiration in most treatments. 362 

Emissions of N2O and NO3
- concentration were significantly positively correlated in the 363 

control (Phase I) and WT15 (Phase II, Phase I + II) treatments, with NO3
- accounting for 3-364 

13% of variability in N2O emission (τ = 0.185 to 0.358, p < 0.05 to < 0.001). Concentrations 365 

of NH4
+ were positively associated with soil respiration in the control (Phase I), WT15 (Phase 366 

I, Phase I + II), and Still  treatments (2-7% of variability, τ = 0.135 to 0.255, p < 0.05 to < 367 

0.01), but negatively associated with soil respiration in the control (Phase II) treatment (3% 368 

of variability, τ = -0.187, p < 0.05). A significant correlation between dissolved NH4
+ 369 

concentration and N2O emission was found in only the surface-applied residue treatment (9% 370 

of variability, τ = -0.292, p < 0.01), and with CH4 emissions in the fleece treatment (6% of 371 

variability, τ = -0.239, p < 0.01; Table 4).  372 

 373 

4. Discussion 374 

4.1. Effect of water table manipulation on GHG emissions  375 

In agreement with previous studies of fen and blanket peats under a range of land 376 

uses, raising the water table in this study reduced CO2 emissions, moreover, the magnitude of 377 

the reduction proved highly sensitive to water table depth (Dinsmore et al., 2009; Freeman et 378 

al., 1993; Lloyd, 2006; Kechavarzi et al., 2007). Maintaining the water table at the surface 379 

also reduced N2O emissions. We ascribe this to a reduction in the nitrification rate and NO3
- 380 

production and the complete denitrification of any NO3
- present to N2 (Velthof and Oenema, 381 

1997). Lowering the water table to 15 cm, however, resulted in greatly elevated N2O 382 

emissions. This concurs with findings from Freeman et al. (1993) who also reported N2O 383 

emission to be inversely correlated with water table depth. Our highest rate of N2O emission 384 
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in the water table treatments (4.5 mg N2O-N m-2 h-1) was two orders of magnitude higher 385 

than emissions from semi-natural peatland mesocosms observed by Freeman et al. (1993) and 386 

Dinsmore et al. (2009), but similar to studies of arable peatlands (Flessa et al., 1998; Taft et 387 

al., 2017; Weslien et al., 2012). A large initial peak in N2O emissions was observed in the 388 

WT15 treatment after raising the water table, while only a small pulse was seen in the WT0 389 

treatment. Conversely, the WT0 treatment released most N2O after draining, while the N2O 390 

pulse from the WT15 treatment was smaller. These relatively rapid, short-lived, strong 391 

responses to wetting and draining events in peat soils are common, with their magnitude 392 

typically limited by soil moisture and soluble N (Li et al., 1992). Overall, there was no 393 

marked effect of water table treatment on CH4 production over the wetted or drained 394 

experimental periods, contrary to the general trend of water table raising increasing emissions 395 

(Bussell et al., 2010). Strictly anaerobic conditions required for substantial CH4 emissions, 396 

however, may take a long time to develop (>1 y; Oomes et al., 1997), and in infrequently 397 

flooded soils are typically found at lower profile depths than those sampled in this study 398 

(Mitsch and Gosselink, 2000). The low rates of CH4 release could also be due to a lack of 399 

methanogens, or the abundance of alternative electron acceptors and/or an efficient 400 

population of methanotrophs in the topsoil. This is supported by measured redox values 401 

which largely fell within the range associated with CO2 production and CH4 consumption 402 

(400 to 500 mV) and N2O production (200 to 500 mV), but not for CH4 production (-100 to -403 

200 mV; Le Mer and Roger, 2001; Li, 2007; Mitsch and Gosselink, 2000). 404 

 This study simulated raising the water table during late spring followed by draining in 405 

late summer, mimicking the water management regime commonly employed by farms in the 406 

study area to enable sub-surface irrigation and minimise peat loss via wind erosion (Dawson 407 

et al., 2010). In practice, raising the water table to within 15 cm of the soil surface would not 408 

be implemented while a crop was in place, as it would likely result in high crop mortality and 409 
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be unsuitable for field traffic. Instead, this intervention would probably be implemented 410 

between summer crops, possibly over quite short fallow periods. The relative efficacy of 411 

flooding as a GHG mitigation strategy may be enhanced by additional impacts such as weed 412 

growth even during relatively short fallow periods; which could further reduce net GWP100 413 

through elevated net primary productivity and plant removal of NO3
- (e.g., Kløve et al., 414 

2017). Conversely, both the presence of weeds and labile organic matter input from post-415 

harvest crop residues could result in substantial emissions of N2O and CH4 (Le Mer and 416 

Roger, 2001). The net effect of vegetation therefore merits further investigation.  417 

Maintaining the water table at the correct level and ensuring it drains freely post-418 

flooding could be challenging. Kechavarzi et al. (2007) suggest that close spacing of sub-419 

surface drainage pipes (≤10 m) would be required to maintain a consistent water table level in 420 

a sub-irrigated field. Some fields are not equipped with closely spaced drainage pipes, and 421 

not all peat soils are sub-irrigated. Fluctuation of the water level between 0-15 cm of the soil 422 

surface, either through poor water level maintenance or slow drainage post-flooding, is likely 423 

to result in large pulses of GHGs, as was observed in the WT15 treatment, entirely negating 424 

the beneficial effect of flooding. This effect may be minimised if draining is undertaken in 425 

cooler weather. Further, flooding poses a number of difficulties both agronomically and in 426 

the context of the wider landscape. Implementation would require careful timing so that after 427 

flooding, soil had time to dry sufficiently before subsequent in-field machinery operations. 428 

Yields of subsequent crops could be reduced after flooding, or the costs of mineral fertiliser 429 

increased: our results strongly imply that much of the soil nitrate was leached from the soil 430 

columns during draining. In terms of wider landscape effects, leaching of nitrate into 431 

watercourses poses a severe pollution risk, with associated costs for the grower. Further, if 432 

flooding were to be implemented on a widespread scale, regulation would be required to 433 
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ensure that it did not adversely impact on flood risk and response across the region, which 434 

would be challenging across areas of flat topography.  435 

 436 

4.2. Effect of fleece application on GHG emissions 437 

This study found that fleece application significantly increased GWP100, CO2 release 438 

and N2O emissions from soil. Fleece application is known to stabilise variations in soil 439 

temperature and to reduce soil moisture loss (Hamouz et al., 2006; 2005; Siwek et al., 2013; 440 

2012). In this study, temperature was the strongest predictor of soil respiration, showing a 441 

significant positive correlation in the fleece-enclosed cores. This is consistent with other 442 

studies on the effect of temperature on peat soil respiration (Estop-Aragonés and Blodau, 443 

2012; Maljanen et al., 2002). Soil temperature has also been shown to positively correlate 444 

with N2O emissions (Maljanen et al., 2002), although in this study the relationship was not 445 

strong. 446 

The greatest emissions from the fleece treatment were observed when the air 447 

temperature was highest. In practice, fleece would usually only be applied to early crops, to 448 

minimise the risk of frost damage and encourage early crop development (Hamouz et al., 449 

2006). However, the presence of fleece did increase net emissions under cooler as well as 450 

warmer temperatures, albeit at a reduced rate. It is important therefore, to restrict fleece 451 

application to as short a period as possible during cooler weather, as is common under current 452 

practice (G’s Fresh, pers. comm.; HDC, 2006).  453 

As with the water table treatments, the effect of prolonged fleece application in the 454 

presence of a crop should be investigated at the field scale, to compare crop growth and 455 

associated net ecosystem exchange between fleece and control treatments, as this may further 456 

reduce the difference in emissions. It would also be of interest to consider the effect on net 457 

emissions when fleece is applied over recently-fertilised peat, since the results suggest that 458 
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N2O emissions may substantially increase when fertilised soil is subjected to the warmer soil 459 

temperatures associated with fleece application.   460 

 461 

4.3. Effect of tillage on GHG emissions 462 

Simulated ploughing resulted in an immediate, small and short-lived peak in soil 463 

respiration but a negligible response of N2O. Ploughing-induced peaks in CO2 emission from 464 

cultivated Histosols have been noted by Elder and Lal (2008) and Reicosky et al. (2008), 465 

although the response found in our study was several-fold lower than that of Elder and Lal 466 

(2008) (625 mg CO2-C m-2 h-1). Mean emissions from a bare-tilled peat measured by 467 

Maljanen et al. (2002) (300 mg CO2-C m-2 h-1), were also higher than the peak emission of 468 

135 mg CO2-C m-2 h-1 recorded in this study. Production of N2O was not stimulated by a 469 

ploughing event. This contrasts with the findings of Elder and Lal (2008), however Maljanen 470 

et al. (2002) and Weslien et al. (2012) also reported negligible effects of ploughing on N2O 471 

emissions. It is probable that the considerably lower peak of N2O emissions observed here 472 

compared with those of Elder and Lal (2008) are a result of suboptimal soil moisture 473 

conditions inhibiting N2O production, owing to the comparatively good drainage and lower 474 

bulk density of our tilled cores (Dalal et al., 2003). Our results are in strong contrast to the 475 

assertion that cultivation results in a large efflux of both CO2 and N2O (Dawson and Smith, 476 

2007; Kasimir-Klemedtsson et al., 1997). This suggests that adoption of minimum or zero 477 

tillage practices may not help preserve soil C on sites with a long history of cultivation.  478 

 479 

4.4. Effect of residue application on GHG emissions 480 

The pattern and magnitude of CO2 and N2O fluxes observed after residue application 481 

may be attributed in part to the characteristics and amount of, and mechanism by which, the 482 

residues were added. In a study comparing emissions from soils amended with crop residues 483 
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with differing compositions, Velthof et al. (2002) observed a rapid response and pronounced 484 

peak in N2O and CO2 emissions from crops which, similarly to this study, had a low C/N 485 

ratio (c. 10-20) and high moisture content (>80%). Other studies support the theory that the 486 

application of crop residues with low C/N ratios tends to induce greater CO2 and N2O 487 

emissions (Loecke and Robertson, 2009), as well as biodegrading faster (Henderson et al., 488 

2010). The emissions observed in our study were lower than expected, and may be explained 489 

by the relatively low total quantity of residue C and N added to each core  (746 mg C core-1, 490 

73 mg N core-1) in comparison with other studies (e.g., Velthof et al., 2002). 491 

Residue application increased cumulative net emissions. This could be attributable to 492 

the positive priming of soil microbial activity and loss of native SOM (Kuzyakov et al., 2000; 493 

Kuzyakov, 2010). Although we cannot discount this mechanism, our data does not support it 494 

for the following reasons: (1) Compared to the control, the extra loss of CO2 was only 495 

equivalent to 0.32 t C ha-1  (CRsurf) and 0.01 t C ha-1 (CRincorp), i.e. considerably less than the 496 

quantity of residue-C added to the cores (0.90 t C ha-1). This suggests that negative priming 497 

may actually be occurring, particularly when residues are incorporated into the soil, although 498 

further work would be needed to confirm this; (2) The equivalent of 88 kg N was added to the 499 

residue cores, but only 2.1 and 0.7 kg N2O-N ha-1 more than the control was lost in the 500 

surface applied and incorporation treatments respectively. It should be noted, however, that 501 

we cannot account for denitrification losses of N2; (3) We had expected that if positive 502 

priming was occurring the effects would be greater when the residues were incorporated into 503 

the soil; and (4) Recent research suggests that much of the CO2 released from plant residues 504 

applied to soil originates from the residue itself (e.g., cell autolysis) rather than from a soil 505 

microbial-induced breakdown of the residues (Marella et al., 2017). 506 

While residue incorporation resulted in lower emissions relative to surface application 507 

in our study, our experiment was limited to a single crop (lettuce). Characteristics such as 508 
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crop dry matter content, C/N ratio, availability of labile C and N, and the total quantity of 509 

residue applied and its particle size distribution across or within the soil can significantly 510 

impact net emissions associated with residue application of different crops (Loecke and 511 

Robertson, 2009; Velthof et al., 2002; Webb et al., 2014). Further research might therefore 512 

focus on relative emissions from surface applied and incorporated residues of a range of 513 

crops at the field scale, and at a variety of points in the growing season (to account for the 514 

common practice of multiple cropping on these soils; Taft et al., 2017).  515 

    516 

5. Conclusions and implications 517 

The results of this study suggest that the relative efficacy of potential GHG mitigation 518 

options will be strongly influenced by the weather and soil conditions at the time of 519 

implementation, and hold the greatest potential efficacy if applied during the main growing 520 

season when GHG emissions are greatest. Net GHG emissions from the horticultural peat 521 

soils in this study proved sensitive to water table depth, with flooding to the soil surface 522 

being highly effective in reducing GHG emissions. However, avoiding a shallow water table 523 

is paramount in minimising emissions. Our study suggests that horticultural fleece should be 524 

used for the shortest possible period, and in cool weather only. Contrary to expectation, 525 

tillage did not significantly increase net GHG emissions. We recommend that tillage and 526 

harvesting operations should be conducted during cooler or damper weather to minimise the 527 

small peak in emissions. The impacts of lettuce residue treatment were somewhat 528 

inconclusive, with residue incorporation reducing net emissions compared to surface 529 

application, but only significantly for CO2 emissions and not for overall GWP100.  530 

The practical implications of implementation are dependent on synchronising 531 

measures with on-going management operations. Precise management of water table height is 532 

highly restricted from a practical perspective, and cannot be expected across large-scale 533 
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areas, as this type of mitigation risks creating within-field emission hotspots. Conducting 534 

tillage operations during cooler weather is likely to be somewhat impractical in relation to 535 

harvesting operations due to economic pressures. In contrast, restricting horticultural fleece 536 

use to the start of the season should pose few practical difficulties as the practice already 537 

aligns with current management. Our results suggest that no one single mitigation measure 538 

may be effective in reducing the rate of soil loss in cultivated peatlands. This has important 539 

implications for the practicalities of co-implementing individual mitigation strategies, or in 540 

considering more radical changes of land use and management in future. 541 
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Table 1. Major soil characteristics in the soil cores sampled at the start and end of the experimental period and for the control, water table at -15 cm below soil surface 
(WT15), water table at soil surface (WT0), fleece cover (Cfleece), simulated till (Still ), surface applied crop residue (CRsurf), and incorporated crop residue (CRincorp) treatments. 
Values are presented as mean ± SEM. Significant differences between initial core values and post-experiment values for each treatment (within each soil layer) are marked 
with * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and † for non-parametric (Kolmogorov-Smirnov Z statistic, Bonferroni corrected). 

Treatment  Depth 
(cm) 

Soil moisture  
(% DW) 

Bulk density 
(g cm-3) 

pH 
(H2O) a 

EC 
(µS cm-1) s 

Available K 
(g K kg-1) 

Available P 
(g P kg-1) 

Available NO3
- 

(g N kg-1) 
Available NH4

+ 
(g N kg-1) 

Initial  
 

  0-10 
10-20 
20-30 

152 ± 1 
156 ± 2 
163 ± 5 

0.68 ± 0.01 
0.76 ± 0.02 
0.75 ± 0.02 

6.2 ± 0.08 
6.2 ± 0.06 
6.3 ± 0.06 

598 ± 50 
552 ± 49 
401 ± 24 

0.96 ± 0.21 
0.63 ± 0.11 
0.56 ± 0.11 

0.39 ± 0.01 
0.38 ± 0.01 
0.35 ± 0.02 

0.15 ± 0.016 
0.15 ± 0.033 
0.13 ± 0.033 

0.05 ± 0.024 
0.04 ± 0.008 
0.03 ± 0.001 

Post-experiment         
Control 
 

  0-10 
10-20 
20-30 

164 ± 1† 
168 ± 2** 
180 ± 2 

  0.73 ± 0.01* 
0.77 ± 0.01 
0.75 ± 0.01 

6.7 ± 0.04† 
6.7 ± 0.06*** 
6.7 ± 0.04* 

161 ± 13 
166 ± 8 
220 ± 9*** 

0.54 ± 0.08 
0.51 ± 0.19 
0.58 ± 0.15 

0.27 ± 0.02† 
0.27 ± 0.01** 
0.21 ± 0.04 

0.01 ± 0.001† 
0.03 ± 0.004† 
0.06 ± 0.008 

<0.01 
<0.01 
<0.01 
 

WT15   0-10 
10-20 
20-30 

170 ± 1† 
171 ± 2*** 
175 ± 6 

    0.74 ± 0.01** 
0.78 ± 0.01 
0.75 ± 0.01 

6.7 ± 0.04† 
6.7 ± 0.03*** 
6.7 ± 0.03* 

136 ± 3 
160 ± 6 
223 ± 11*** 

0.63 ± 0.08 
0.50 ± 0.13 
0.44 ± 0.10 

0.29 ± 0.02† 
0.31 ± 0.02 
0.26 ± 0.04 

0.01 ± 0.001† 
0.02 ± 0.001† 
0.03 ± 0.006 

<0.01 
<0.01 
<0.01 
 

WT0    0-10 
10-20 
20-30 

172 ± 1† 
169 ± 3** 
174 ± 5 

    0.74 ± 0.01** 
0.78 ± 0.02 
0.77 ± 0.01 

6.7 ± 0.03† 
6.8 ± 0.07*** 
6.7 ± 0.06** 

159 ± 8 
176 ± 17 
196 ± 16*** 

0.61 ± 0.16 
0.62 ± 0.16 
0.49 ± 0.17 

0.27 ± 0.01† 
0.27 ± 0.01** 
0.33 ± 0.04 

0.01 ± 0.001† 
0.02 ± 0.001† 
0.02 ± 0.003† 

<0.01 
<0.01 
<0.01 
 

Cfleece    0-10 
10-20 
20-30 

161 ± 2† 
166 ± 3* 
175 ± 5 

0.73 ± 0.01 
0.76 ± 0.01 
0.76 ± 0.01 

6.6 ± 0.05† 
6.4 ± 0.05* 
6.4 ± 0.05 

154 ± 9† 
205 ± 20† 
321 ± 10** 

0.42 ± 0.07 
0.45 ± 0.12 
0.42 ± 0.11 

0.35 ± 0.03 
0.31 ± 0.01 
0.31 ± 0.02 

0.01 ± 0.001 
0.04 ± 0.006 
0.10 ± 0.003 

<0.01 
<0.01 
<0.01 
 

Still     0-10 
10-20 
20-30 

158 ± 2 
166 ± 2 
175 ± 2 

     0.62 ± 0.01*** 
     0.65 ± 0.02*** 

0.69 ± 0.02 

6.7 ± 0.08 
6.6 ± 0.07*** 
6.5 ± 0.08 

133 ± 13† 
140 ± 7† 
184 ± 13*** 

0.49 ± 0.08 
0.55 ± 0.09 
0.61 ± 0.14 

0.31 ± 0.01† 
0.30 ± 0.03 
0.33 ± 0.02 

0.01 ± 0.001† 
0.02 ± 0.002† 
0.04 ± 0.006 

<0.01 
<0.01 
<0.01 
 

CRsurf    0-10 
10-20 
20-30 

164 ± 2† 
164 ± 1 
165 ± 5 

     0.76 ± 0.02*** 
0.76 ± 0.01 
0.76 ± 0.01 

6.7 ± 0.03† 
6.7 ± 0.04*** 
6.5 ± 0.08 

139 ± 2† 
149 ± 6† 
178 ± 4*** 

0.59 ± 0.03 
0.49 ± 0.10 
0.42 ± 0.13 

0.30 ± 0.02 
0.32 ± 0.01 
0.29 ± 0.04 

0.01 ± 0.001† 
0.02 ± 0.001† 
0.03 ± 0.003 

<0.01 
<0.01 
<0.01 
 

CRincorp    0-10 
10-20 
20-30 

160 ± 2 
170 ± 2*** 
178 ± 2 

     0.59 ± 0.01*** 
     0.65 ± 0.01*** 

0.71 ± 0.01 

6.6 ± 0.12 
6.7 ± 0.08*** 
6.6 ± 0.13 

142 ± 12 
159 ± 3 
184 ± 10*** 

0.48 ± 0.11 
0.62 ± 0.16 
0.49 ± 0.17 

0.30 ± 0.02 
0.35 ± 0.02 
0.34 ± 0.03 

0.01 ± 0.002 
0.02 ± 0.001 
0.04 ± 0.008 

<0.01 
<0.01 
<0.01 

a 1:2.5 (w/v) field moist soil:distilled H2O.  
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Table 2. Summary of the control, water table, fleece, cultivation, and residue treatment characteristics used in the experiment. 

Treatment and code Water table depth 
(cm) 

Lettuce biomass 
(g FW cm-2 / t FW ha-1) a 

Cultivation 
(cm) 

Soil cover 

Control >30 cm (free-draining) None None None 
Low water table (WT15) 15 cm below soil surface None None None 
High water table (WT0) 0 cm (at soil surface) None None None 
Fleece (Cfleece) >30 cm (free-draining) None None Fleece 
Soil tillage (Still) >30 cm (free-draining) None To 30 cm depth None 
Crop residue, surface applied (CRsurf) >30 cm (free-draining) 35.5 g cm-2 / 29.7 t ha-1 None Crop residue 
Crop residue, incorporated (CRincorp) >30 cm (free-draining) 35.5 g cm-2 / 29.7 t ha-1 To 30 cm depth None 

a FW, fresh weight. 
 

 

 

 

 

Table 3. Cumulative fluxes of CO2, N2O and CH4, and total cumulative GHG emissions (GWP100) in t CO2-e ha-1 period-1 (± SEM), for control, water table at -15 cm below 
soil surface (WT15), water table at soil surface (WT0), fleece cover (Cfleece), cultivated (Still ), surface applied crop residue (CRsurf), and incorporated crop residue (CRincorp) 
treatments. For the water table treatments, totals are reported separately for the wetted (Phase I; months 0-3), drained (Phase II; months 4-6), and whole measurement period 
(Phase I + II; 0-6 months). Values are presented as mean ± SEM. Significant differences among values for each treatment (within each column) at the p < 0.05 level are 
marked with different letters, with separate comparisons made between (1) Control, WT15 and WT0 (denoted a-c), (2) Control and Cfleece (denoted d-e), (3) Control and Still  
(ns), (4) Control and CRsurf (denoted f-g), (5) Control and CRincorp (ns), and CRsurf and CRincorp (denoted h-i).    

Treatment Phase I 
t CO2-e ha-1 80 d-1 

 Phase II 
t CO2-e ha-1 69 d-1 

 Phase I + II 
t CO2-e ha-1 153 d-1 

 CO2 N2O CH4 GWP100  CO2 N2O CH4 GWP100  CO2 N2O CH4 GWP100 
Control 5.87 ± 0.06 a,d,f 0.55 ± 0.10 a,f  0.00 ± 0.01 6.43 ± 0.11 a,d,f  4.09 ± 0.29 a 0.71 ± 0.25 0.01 ± 0.01 4.81 ± 0.31  10.29 ± 0.35 a 1.36 ± 0.37 a 0.01 ± 0.01 11.66 ± 0.42 a 
WT15 5.72 ± 0.22 ab  7.70 ± 0.92 b -0.00 ± 0.01 13.41 ± 0.90 b  4.58 ± 0.11 ab 0.74 ± 0.12 0.00 ± 0.02 5.32 ± 0.20  10.61 ± 0.30 a 8.82 ± 1.11 b 0.00 ± 0.02 19.42 ± 1.14 b 
WT0 0.85 ± 0.12 b 1.16 ± 0.37 a -0.00 ± 0.01 2.01 ± 0.45 c  5.30 ± 0.23 b 0.44 ± 0.21 0.01 ± 0.01 5.75 ± 0.37  6.47 ± 0.20 b 1.71 ± 0.43 a 0.01 ± 0.01 8.19 ± 0.58 c 
Still  5.63 ± 0.22 0.50 ± 0.10  0.01 ± 0.00 6.14 ± 0.27           
Cfleece 7.83 ± 0.58 e 1.20 ± 0.25  0.03 ± 0.04 9.07 ± 0.58 e           
CRsurf 7.07 ± 0.26 g,h 1.42 ± 0.29 g -0.05 ± 0.02 8.44 ± 0.30 g           
CRincorp 5.99 ± 0.18 i 0.78 ± 0.22  0.01 ± 0.01 6.79 ± 0.34           
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Table 4. Significant linear correlations between measured environmental variables and emissions of CO2, N2O and CH4 for control, water table at -15 cm below soil surface 
(WT15), water table at soil surface (WT0), fleece cover (Cfleece), cultivated (Still ), surface applied crop residue (CRsurf), and incorporated crop residue (CRincorp) treatments. The 
values are reported separately for comparison against the water table treatments for the wetted (Phase I; months 0-3), drained (Phase II; months 4-6), and whole measurement 
period (Phase I + II; 0-6 months). Values are presented as Kendall’s tau statistic (τ), with significance levels presented as * (p < 0.05), ** (p < 0.01), or *** (p < 0.001). 

Treatment Soil redox potential, Eh (mV)   Temperature  Rainfall  Nitrogen availability 

  Soil depth (cm)  Soil temp. a Mean air temp. b Air temp. c  Daily rain d 5 d rain e  NO3-N NH4-N N 

  0 cm 10 cm 20 cm 30 cm  (°C) (°C) (°C)  (mm) (mm)  (mg l-1) (mg l-1) (mg l-1) 
CO2 Control, wetted      0.539*** 0.617*** 0.322***   -0.174*   0.254**  
 WT15, wetted      0.559*** 0.538*** 0.420***  -0.238** -0.360***  -0.152* 0.254** -0.199* 
 WT0, wetted          -0.169*      
 Control, drained   0.176*   0.345*** 0.384*** 0.231**   -0.219**  0.182* -0.187*  
 WT15, drained   0.179*   0.443*** 0.442*** 0.357***  -0.279*** -0.460***  0.445***   
 WT0, drained    -0.174*  0.474*** 0.481*** 0.395***  -0.289*** -0.404***     
 Control, whole period      0.381*** 0.528*** 0.279***   -0.212***     
 WT15, whole period      0.353*** 0.523*** 0.359***  -0.236*** -0.407***  -0.111* 0.135*  
 WT0, whole period       0.162**   -0.236*** -0.130***  -0.298***  -0.191** 
 Cfleece      0.539*** 0.595*** 0.365***   -0.153*     
 Still       0.341*** 0.392*** 0.365***     0.243** 0.255**  
 CRsurf       0.230**   0.180*     0.216** 
 CRincorp       0.166*   -0.112*   0.219*   
N2O Control, wetted          -0.212**   0.185*   
 WT15, wetted      0.180*    -0.579*** -0.260***     
 WT0, wetted          -0.357***     0.207* 
 Control, drained                
 WT15, drained    -0.174*  0.283*** 0.258** 0.345***  -0.271**   0.358***  0.254** 
 WT0, drained    -0.254*  0.285** 0.160* 0.302**  -0.216*      
 Control, whole period          -0.136*      
 WT15, whole period      0.313***  0.204***  -0.440*** -0.199***  0.347***  0.241*** 
 WT0, whole period      0.153**  0.168**  -0.291***      
 Cfleece      0.147*    -0.237**      
 Still           -0.240**      
 CRsurf       -0.185* -0.171*  -0.186*    -0.292**  
 CRincorp       -0.171*   -0.407***      
CH4 Control, wetted                
 WT15, wetted                
 WT0, wetted                
 Control, drained      -0.170* -0.164* -0.179*        
 WT15, drained                
 WT0, drained                
 Control, whole period                
 W15, whole period                
 WT0, whole period                
 Cfleece             0.179* -0.239**  
 Still                 
 CRsurf      -0.461*  -0.199**        
 CRincorp                

a Soil temp., soil temperature at the time of GHG measurement; b Mean air temp., mean daily air temperature on the day of the GHG measurement; c Air temp., temperature at 
the time the GHG measurement was made; d Daily rain, rainfall on the day of GHG measurement; e 5 d rain, cumulative rainfall in the 5 d preceding the GHG measurement. 
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Fig. 1. Daily rainfall, air temperature and soil temperature (a-b); fluxes of CO2 (c-d), N2O (e-
f), and CH4 (g-h); and soil water NO3

- (i-j) and NH4
+ (k-l); 28th May to 16th Aug. (Phase I, 

wetted) and 21st Aug. to 13th Nov. 2013 (Phase II, drained). In panels (a)-(b), mean daily air 
temperature (°C) is denoted by a solid black line, rainfall (mm) by grey bars, and mean soil 
temperature by solid black circles (free-draining control), grey circles (water table at 15 cm 
below the soil surface, WT15), and white circles (water table at the soil surface, WT0). In 
panels (c)-(l), the control treatment is denoted by black circles with a solid line, WT15 by grey 
circles with a dashed line, and WT0 by white circles with a dotted line. Error bars represent ± 
SEM. 
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Fig. 2. Redox potentials (Eh) at soil depths of 0 cm (a), 10 cm (b), 20 cm (c), and 30 cm (d); 
21st Aug. to 13th Nov. 2013 (Phase II, drained). The free-draining control treatment is denoted 
by black circles with a solid line, WT15 (water table at 15 cm below the soil surface) by grey 
circles with a dashed line, and WT0 (water table at the soil surface) by white circles with a 
dotted line. Error bars represent ± SEM. 
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Fig. 3. Soil temperature (a); fluxes of CO2 (b), N2O (c), and CH4 (d); and soil water NO3
- (e) 

and NH4
+ (f); 28th May to 16th Aug. 2013. In panel (a), mean soil temperature is denoted by 

solid black circles (uncovered control), and grey circles (fleece applied, Cfleece). In panels (b)-
(f), the control treatment is denoted by black circles with a solid line, and Cfleece by grey 
circles with a dashed line. Error bars represent ± SEM. 
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Fig. 4. Soil temperature (a-c); fluxes of CO2 (d-f), N2O (g-i), and CH4 (j-l); and soil water 
NO3

- (m-o) and NH4
+ (p-r); 28th May to 16th Aug. In panels (a)-(c), mean soil temperature is 

denoted by solid black circles (control without cultivation or residue), solid grey circles 
(surface applied residue, CRsurf, or incorporated residue, CRincorp), and white circles 
(simulated tillage, Still ). In panels (d)-(r), the control treatment is denoted by black circles 
with a solid line, CRsurf and CRincorp by grey circles with a dashed line, and Still  by white 
circles with a dotted line. Error bars represent ± SEM. 
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RESEARCH HIGHLIGHTS 

 

• Greenhouse gas (GHG) emissions were measured in a horticultural fen peat soil. 

• CO2 and N2O emissions were highly sensitive to water table depth changes. 

• Tillage and horticultural fleece had no appreciable impact on GHG emissions. 

• Crop residue addition did not appear to induce positive SOM priming.  

• Alternative land uses are likely required to preserve these soils in the long-term. 

 


