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Abstract

Let P; be the (Neumann) diffusion semigroup P; generated by a weighted Laplacian
on a complete connected Riemannian manifold M without boundary or with a convex
boundary. It is well known that the Bakry-Emery curvature is bounded below by a
positive constant A > 0 if and only if

W1 Pr, paPr) < e MW, (1, p2), t>0,p>1

holds for all probability measures p1 and po on M, where W), is the LP Wasserstein
distance induced by the Riemannian distance. In this paper, we prove the exponential
contraction

Wy (1 Py, poPr) < ce MWy (pn, p2), p>1,6>0

for some constants ¢, A > 0 for a class of diffusion semigroups with negative curvature
where the constant c is essentially larger than 1. Similar results are derived for SDEs
with multiplicative noise by using explicit conditions on the coefficients, which are new
even for SDEs with additive noise.
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1 Introduction

Let M be a d-dimensional connected complete Riemannian manifold possibly with a convex
boundary OM. Let p be the Riemannian distance. Consider L = A + Z for the Laplace-
Beltrami operator A and some C'-vector field Z such that the (reflecting) diffusion process
generated by L is non-explosive. Then the associated Markov semigroup P, is the (Neumann
if M # () semigroup generated by L on M. In particular, it is the case when the curvature
of L is bounded below; that is,

(1.1) Ricz :=Ric—VZ > K

holds for some constant K € R. Here and throughout the paper, we write 7 > h for a (not
necessarily symmetric) 2-tensor .7 and a function h provided

T(X,X) > h(2)|X|?, XeT,M,xec M.

There exist many inequalities on P, which are equivalent to the curvature condition (1.1),
see [6, 20, 23, 42| for details. In particular, for any constant K € R, the Wasserstein distance
inequality

(1.2) Wo(p1 Py, o Py) < e S W (pa, p2), t>0,p > 1, g, e € P(M)

is equivalent to the curvature condition (1.1). Here, &2(M) is the class of all probability
measures on M; W, is the LP-Warsserstein distance induced by p, i.e.,

Wylp, pe) == inf lplleer), w1, p2 € P (M),
TEE (p1,12)
where € (1, pi2) is the class of all couplings of p; and pus; and for a Markov operator P on
PBy(M) (i.e. P is a positivity-preserving linear operator with P1 = 1),

(vP)(A) = v(P14), A€ B(M),ve PM),

where v(f) := [,, fdv for f € L'(v). In some references, vP is also denoted by P*v. In
the sequel we will use P;* to stand for the adjoint operator of P, in L?*(p) for the invariant
probability measure u, hence adopt the notation vP rather than P*r to avoid confusion.
When the curvature is positive (i.e. K > 0), (1.2) implies the W,-exponential contraction of
P, for p > 1.

In this paper, we aim to consider the case when (1.1) only holds for some negative
constant K, and to prove the exponential contraction

(13) Wp(:ulphﬂ’ZPt) S Ce_)\th(H’hH’Q)a t Z Oap Z 1,,“1;,”2 € Q(M)

for some constants ¢, A > 0. It is crucial that the exponential rate A is independent of p.
Due to the equivalence of (1.1) and (1.2), in the negative curvature case it is essential that
c>1.



According to [37], even when Ricy is unbounded below, i.e. Ricy goes to —oo when
po = plo,:) — oo for a fixed o € M, there may exist the log-Sobolev inequality which
implies the exponentially convergence of P, in entropy. This suggests that (1.3) may also
hold for a class of diffusion semigroups with negative curvature.

Recently, some efforts have been made in this direction for M = R9, see [11, 12, 18].
More precisely, let P, be the diffusion semigroup for the solution to the following SDE on
R

dX, = V2dB; + b(X,)dt,

where B, is the d-dimensional Brownian motion and b : R* — R? is continuous. If there
exist constants K1, Ko, 79 > 0 such that

(14) <b(l’) - b(g/),.fC - y> < 1|z—y\§7‘o(Kl + KZ)’Q: - 3/’2 - KQ‘x - y‘za T,y € Rda
then due to [11, 12] we have
(1.5) Wi (6P, 0,P) < ce ™Mz —y|, 2,y e RLt>0

for some constants ¢, \ > 0, where J, is the Dirac measure at point z. Indeed, [11, 12]
proved the Wj-exponential contraction with respect to a modified distance f(|x — y|) in
place of |z — y| as constructed in [8, 9] for estimates of the spectral gap using the coupling
by reflection. Under condition (1.4) the modified distance is comparable with the usual one
so that (1.5) follows. As mentioned in [12] that there is essential difficulty to prove (1.3) for
p > 1 even for this flat case.

In Luo and Wang [18] the estimate (1.5) was extended as

(1.6) W, (6,5, 6,P) < ce M|z —y| + |z —y|»), z,yeRLE>0,p>1
for some constants ¢, A > 0. Comparing with (1.3) which is equivalent to
Wy(8.P;,0,P) < ce ™z —y|, p>1,z,y cRLt>0

according to [17] (see Proposition 3.1 below), (1.6) is less sharp for small |z —y| and/or large
p. It is open whether (1.4), or in the Riemannian setting that Ricy is uniformly positive
outside a compact domain, implies (1.3) for some constants ¢, A > 0.

As in [16, 17], we will consider the Warsserstein distances induced by Young functions in
the class

N = {(b c Cl([O, 00);[0,00)) : @' is nonnegative and increasing,

o
O(0) = 0,0(r) > 0 for 1 > 0, lim ) — oo}.

r—oo T

For any ® € .4 and a measure v on M, consider the gauge norm in L®(v) :
I fllceq) := inf {r >0:v(@(r ' f]) < 1}, inf () := oo.
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In particular, we have || f[| e5(,) = || fllLr() for @,(r) := 1P, p € (1,00). This is the reason
why we do not take ®,(r) = %rp in the characterization of Legendre conjugates. We extend
the notion @, to p = 1,00 by letting ®1(r) = r, @0 = lim, o Y, and || f||zop ) = Il zr )
for all p € [1, 00]. Now, let

Wa(p1, p2) = inf )HPHL@(W), be N =N U{D), D).

TEL (1,12

In particular, Wg, = W), for p € [1,00]. We aim to prove the exponential decay

(1.7) Wo (6, P, 6,P,) < cI)_fu)e”p(rﬂ,y), z,y € Mt >0,0 €N

when (1.1) only holds for a negative constant K, where ®~! is the inverse of ®(# ®.,) and
we set ®1(1) = 1 by convention.
To extend condition (1.4) to the Riemannian setting, consider the index

p(zy) 41
=1

where p is the Riemannian distance, % is the curvature tensor; v : [0, p(x,y)] — M is the
minimal geodesic from z to y with unit speed; {J;}¢=} are Jacobi fields along + such that

Jiy) = Py Ji(z), i=1,...,d—1

holds for the parallel transform P, , : T, M — T, M along the geodesic v, and {§(s), Ji(s) :
1<i<d—1} (s=0,p(z,y)) is an orthonormal basis of the tangent space (at points x and
y, respectively).

Note that when (z,y) € Cut(M), i.e. z is in the cut-locus of y, the minimal geodesic
may be not unique. As a convention in the literature, all conditions on the index I are given
outside Cut(M). We now extend condition (1.4) to the non-flat case as follows: for some
constants Ky, Ky > 0,

Iz(%,y) = 1(z,y) +(Z,Vp(-,y))(x) + (Z,Vp(z,-,))(y)
<K+ Eo)payy<roy — Kafple,y), z,y € M.

In the flat case we have I(x,y) = 0 and p(z,y) = |z — y|, so that this condition reduces back
to (1.4). Moreover, the curvature condition (1.1) is equivalent to

IZ(xvy) S _Kp<$7y)v T,y € Ma
so that (1.8) implies Ricy > — (K + K3).

(1.8)

In the next section, we state our main results and present examples. With condition
(1.8) we first extend the main results of [11, 18] to the present Riemannian setting and
give the exponential convergence of P, in W5. Under the ultracontractivity and condition
(1.1) for some K < 0, our the second result ensures the desired inequality (1.7). Finally,
we extend these results to SDEs with multiplicative noise by using explicit conditions on
the coefficients. To prove these results, we make some preparations in Section 3. Complete
proofs of the main results are addressed in Sections 4-6 respectively.
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2 Main Results and examples

We first consider the Riemannian setting, then extend to SDEs with multiplicative noise by
using explicit conditions on the coefficients instead of the less explicit curvature condition.

2.1 The Riemannian setting

We start with condition (1.8). Besides the extension of (1.6), this condition also implies
the hypercontractivity and the exponential convergence in W5 for the semigroup F;. For
a measure £ and constants p,q > 1, let || - ||Lr(u)—ra(u) stand for the operator norm form
LP(p) to L (). Recall that P is called hypercontractive if it has a unique invariant prob-
ability measure p and || || r2(u)—r4(u) = 1 holds for large ¢ > 0. By interpolation theorem,
| Pl 2(u)—r4(s) = 1 can be replaced by || P rr(u)—raqm = 1 for some oo > ¢ > p > 1. Let
po = (0,-) for a fixed point 0 € M.

Theorem 2.1. Let (1.8) hold for some constants Ky, Ko and ro > 0. Then:

(1) There exist two constants ¢, X > 0 such that for any ® € A and x,y € M,

(2.1) Woe(6,F,0,F;) < inf {T >0: sup <
s€(0,14ro+p(z,y)] S Cp(:L‘, Z/)

In particular, there exist constants ¢, A\ > 0 such that

W, (0.P,, 6,P,) < {ce V5 (p(z,y) + pla,y)7), p>1,t> 0,2,y € M.

(2) If P, has an invariant probability measure p with u(eapg) < o0 for some constant € > 0,
then the log-Sobolev inequality

(2.2) u(f?log f2) < Cu(IVf1?) + u(f*) log u(f?), f € Cy(M)

holds for some constant C' > 0. Consequently, P; is hypercontractive. If moreover
OM =), then exist constants ¢, A\ > 0 such that

(2.3) Wao(v P, 1) < ce ™ Wy(v, p), t>0,v€ P(M).

To illustrate this result, we present below a consequence with explicit conditions on Ric
and VZ for which Ricz may be negative everywhere.

Corollary 2.2. If there exist constants 61,02 > 0 such that Ric > 01 and
(2.4) VZ < —§, outside a compact set,

then Theorem 2.1(1) holds, and P, has a unique invariant probability measure p such that
(3.4) and (2.3) hold for some constants C,c, A > 0.



Next, we introduce sufficient conditions for (1.7) to hold, these conditions also allow
Ricz to be negative. Due to technical reason, we will need the ultracontractivity of P,
which is essentially stronger than the hypercontractivity. We call P, ultracontractive if
| Pl 21 (uy—ro0(ny < 0o for all t+ > 0. The ultracontractivity implies that P, has a density
pe(z,y) with respect to pu (called heat kernel) and

[Pell ooy = 1Pl 22y Loe uy < 00, ¢ > 0.

In references (see e.g. [10]), the ultracontractivity is also defined by || Py 12(u)—poe(n) < 00
for t > 0. When P, is symmetric in L?(u) we have

(2.5) 1Pl 22y ooy < N1Prjoll T2y qys £ >0

so that these two definitions are equivalent. However, when P, is non-symmetric, the former
might be stronger than the latter. The appearance of the ultracontractivity in our study is
very nature: by Theorem 2.3(1) we already have (1.7) for & = ®; (the weakest case), and
by the ultracontractivity we are able to deduce the inequality from ®; to ®., (the strongest
case). On the other hand, the result also indicates that (1.7) implies the hypercontractivity
of P.

Theorem 2.3. Assume that Ricy is bounded below.

(1) If P, is ultracontractive, then there exist constants ¢, X > 0 such that for any ® € A,

c _ .
(2.6) Wa (6P, 0,F;) < <I>—1(1)e A min {p(:c,y), G(p(t)}, t>0,z,y e M
holds for
(2.7) Go(t) ;= inf {r >0: (puxp) (@(r—lp)> < ||Pt/2|‘zl2(y)—>[/°°(u)}'

Consequently, for any p € [1,00],t > 0 and py, pg € P (M),

2
(28)  WyimPopP) < ce™ min {Wy (s, w2), Noliuenl P2l -

(2) On the other hand, if there exist constants ¢, A > 0 such that
(2.9) Weo (0. P, 6,P;) < ce™p(x,y), x,y € M,t >0,
then the log-Sobolev inequality (3.4) holds for ¢ = %, so that P, is hypercontractive.
We note that in Theorem 2.3(1) we have ||p||Lr(uxp) < 00 for p € [1,00). Indeed, since
Ricz is bounded below, by [25, Theorem 2.1] the ultracontractivity implies the super log-

Sobolev inequality (3.3) below, so that due to Herbst we have (yux 1) (e"") < oo for all r > 0
(see e.g. [1, 2]). Therefore, Go(t) < oo for t > 0 and ¢ € A satisfying

log ®(r) o

lim sup 3

r—00 r
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In the symmetric case (i.e. Z = VV for some V € C?(M)), explicit sufficient conditions
for the ultracontractivity have been introduced in [37] by using the dimension-free Harnack
inequality in the sense of [33]. Together with a suitable exponential estimate on the diffusion
process, this inequality implies || P;|| 12(,)—zo(u) < 00 for ¢ > 0 and thus, P, is ultracontractive
due to (2.5). The conditions can be formulated as

(2.10) —VZ >V, 0p, and Ric > =V, 0 p, hold outside a compact subset of M,

where Uy, Wy : (0,00) — (0,00) are increasing functions such that

o ds _ _ (fy Wi(s)ds)? e
e g <t {00, g e

and for some constants 6 € (0,1/(1 ++/2)) and C > 0,

r t/2
(2.12) VUs(r +1)(d—1) < 9/ Uy (s)ds + %/ Uy (s)ds +C, r,t>0.
0 0

When Ric is bounded below, (2.12) as well as the second inequality in (2 10) hold for ¥,

being a large enough constant. In general, since [; ¥1(s)ds > 2fr/2 (s)ds, (2.12) with
0 = i < follows from

1
1+v2

1 % (r—t)/2
Uy(r)(d—1) < = inf / Uy (s)ds —|—/ Uy (s)ds g + C
(2 13) 2 tE[O,’r‘] 0 0

r/4
= / Uy(s)ds+C, r>0.
0

Since (2.5) fails for non-symmetric semigroups, we apply the inequality

1Pl 1y zoo ) < [1Pey2ll Lt y— 2200 | Pevell 2 ) — 2o )

due to the semigroup property. So, to ensure the ultracontractivity, we need an additional
condition implying || || 11 (u)—r2(u) < 00 (see Corollary 2.4(2) below).
To estimate Go(t) in (2.6) using ¥y, we introduce

vr ° s
(2.14) As(r) ;:%/0 Uy (s)ds,  Ao(r) ;:/ fffd\p e

Obviously, the inverse function A; ' exists on (0, 00), and since A, is increasing with A, (c0) =
o0, we have

A;l(T) = inf{s >0: A1(5> > 7"} <oo, 1> 0.

Corollary 2.4. Assume that (2.11) and (2.12) hold for some constants @ € (0,1/(1 +v/2))
and C > 0.



(1) If P, is symmetric, i.e. Z = NV for some V € C*(M), then there exist constants
¢, A > 0 such that (2.6) and (2.8) hold for

Go(t) := inf {7” >0: (uxp) ((I)(Tilp)) < efcfctfl{lJrAfl(Ct*l)*A;l(Cflt)}}, t> 0.

(2) If P, is non-symmetric but there exists continuous h € C([0,1];[0,00)) with h(r) > 0
for r > 0 such that fol @dr < 00 and

HO) = /O %{1 FAT(0/h(r)) + A5 (1) /6) br < 00, 050

then there exist constants ¢, A > 0 such that (2.6) holds for

G@(t) — inf {)\ ~0: (ﬂ’ > ﬂ) ((I)()\_lp)) < e—c—ct*1{1+A;1(ct*l)—/\gl(c*lt)}—CH(ctfl)}‘
To conclude this part, we present a simple example to illustrate Corollary 2.4.

Example 2.1. Let M have non-positive sectional curvatures and a pole o € M. Let

Z = Zy — 0V p** outside a compact domain, where d,& > 0 are constants and Z; is a C!

vector field with

Z
(2.15) lim sup |V50| <d(1+¢e)(2+¢).
Po—00 Po

Let Uy : (0,00) — (0, 00) be increasing such that

\IJQ(T)

r2(1+e)

(2.16) Ric > —Wsy(p,), lim = 0.
r—00

By (2.15), (2.16) and the Hessian comparison theorem, we see that (2.10), (2.11) and (2.13)
hold with Wy (r) = ¢, for some constant ¢; > 0. By (2.14), there exists a constant C' > 0
such that

ATHO/R(r)) + A (h(r)/0) < CO=h(r)~+".

Taking, for instance, h(r) = ri in Corollary 2.4(2), we may find out constants ¢, A > 0 such
that for any p > 1,

VI c
Wy (g1 Py, poPy) < ce At mlH{Wp(Nth); 1ol 2y ) €XP [F} }, t>0,p1, 12 € P(M).

2.2 SDEs with multiplicative noise
Consider the following SDE on R¢:

(2.17) dX; = b(X,)dt + V20(X,)dB;,
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where B; is the m-dimensional Brownian motion, b : R — R? and o : R? — R? @ R™ (the
space of d X m-matrices) are locally Lipshitz such that

ol s(2) + (b(x),2) < C(L+ [2f*), = €R

holds for some constant C' > 0, where and in the following, || - ||zs and || - || denote the
Hilbert-Schmidt and the operator norms respectively. Then the SDE has a unique solution
{X:(z)}s>0 for every initial point z € R%. Let P, be the associated Markov semigroup:

Pf(z) = E[f(Xu(2))], t> 0,2 € RY, f € B (RY).

We intend to investigate the W,-exponential contraction for p € [1,00). As mentioned in
Introduction that existing results only apply to p = 1 and ¢ = I, and as mentioned in [12, 18]
that there is essential difficulty to prove (1.3) for p > 1 even for o = I. So, the present study
is non-trivial.

Corresponding to that (1.1) implies (1.2) in the Riemannian setting, we have the following
assertion.

Theorem 2.5. Let p € [1,00). If

(r = 2)l(o(z) — o(y)* (= —y)I?
(2.18) |z —y|?
S _Kp|x - y|2a x 7é Yy € Rd

+llo(z) — o(y)lEs + (b(x) = b(y), = — y)

holds for some constant K, € R, then
Wy (1 Pry 1o Pr) < e 5P W, (py, pa), >0, g, s € P(RY).

Note that this result does apply to p = oo when o is non-constant. Next, as in the
Riemannian case, we intend to prove the exponential contraction in W, when (2.18) only
holds for some negative constant K. To this end, we need the SDE to be non-degenerate.
The following result contains analogous assertions in Theorems 2.1 and 2.3, where the first
assertion extends (1.5) to the multiplicative noise setting.

Theorem 2.6. Assume that \y>1 > oo* > N2I for some constant \o € (0,1).

(1) If there exist constants Ky, Ko, 19 > 0 such that Z and og := \/oo* — N3I satisfy

— T (3)52( =9 4 (ba) — biy),o - )

< {(Kl + K2)1{|z—y|§m} - K2}|.I' - y|27 xr,y € Rda

org o) = o)l -

then there exist constants ¢, \ > 0 such that

Wl(,ulphﬂ’ZPt) S Ce_)\tW1([L1, NQ); t Z 07#17#2 € @(Rd)



(2) Let P, have a unique invariant probability measure p such that the log-Sobolev inequality
(2.20) p(f*log f2) < Cu(IVFI?), f e CyRY), u(f*) =1
holds for some constant C' > 0. If there exists a constant K > 0 such that
(2.21) lo(x) = o(W)lIEs + (b(x) = bly),z —y) < K|z —yf*, =,y R,
then (2.3) holds for some constants ¢, A > 0 and M = R?,

(3) Let P, be ultracontractive and let (2.21) hold for some constant K > 0. Then there
exist a constant A > 0 such that for any p € [1,00), condition (2.18) implies

Wy (p1 By, o Pr) < ce MWy (i, p2), ¢ >0, i, pp € P(RY)
for some constant ¢ = ¢(p) > 0.

According to [22, Lemma 3.3], we have

1 * *
(2.22) loo(z) — oo(y)* < I Mee) (@) = (o0 YWzs, =y e R
Combining this with || - ||%¢ < d|| - ||, we see that (2.19) follows from the following more
explicit condition:
E||(UU*)(I) — (00") (W) IFrs + (b(z) = b(y),z — y)
< {1+ Ko)amyizrgy — Koo —yf?, =,y €RY

3 Preparations

This section includes some propositions which will be used to prove the results introduced
in Section 2. We first recall a link between the Wasserstein distance and gradient estimates
due to [17], then deduce the hyperboundedness and the exponential convergence in entropy
from the log-Sobolev inequality for non-symmetric diffusion semigroups, and finally prove the
exponential contraction in gradient for ultracontractive semigroups in a general framework
including both diffusion and jump Markov semigroups.

3.1 Wasserstein distance and gradient inequalities

Let (E,p) be a geodesic Polish space, i.e. it is a Polish space and for any two different
points x,y € E, there exists a continuous curve ~ : [0,1] — FE such that vy = z,7 =y
and p(7s,v:) = |s — t|p(z,y) for s,t € [0,1]. Then for any f € Lip,(F), the class of bounded
Lipschitz functions on F, the length of gradient

1V £|(2) = lim sup L&) =W

, vEFE
p(z,y)10 p($, y)
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is measurable. Moreover, let P(x,dy) be a Markov transition kernel and define the Markov
operator

Pfx) = /Ef(y)P(x,dy), v € B, fcBE).

For any ® € .4\ {®.}, consider the Young norm induced by ® with respect to P

(1) [flluse () = sup { P(fg)(x) : g € B(E). Pa(lgl)(a) <1}, w € B, ] € By(B)

and set || f{| e (py(z) = P[f|(z). Then [|-|| 2, = ||| p#s for p € [1,00], ¢ = ;25 The following
result follows from [17, Theorem 2.2, Remark 2 and Remark 3].

Proposition 3.1 ([17]). For any constant C >0 and ® € A, the following statements are
equivalent to each other:

(1) [VPfI < ClV [fllpep) for f € Lip,(E).
(2) Wa(0,P,0,P) < Cp(z,y), z,y€E.

When ® = @, for p € [1,00], they are also equivalent to
(3) Wy(ua P, paP) < CWy(pa, pi2), i, 2 € P (E).

3.2 Hyperboundedness and exponential convergence in entropy

When P, is symmetric, it is well known that the hyperbounddeness, exponential convergence
in entropy and the log-Sobolev inequality are equivalent each other, see [6, 36] and refer-
ences within. In the non-symmetric case, the log-Sobolev inequality implies the former two
properties if the generator L and the symmetric part of the Dirichlet form & satisfy

— (1 +log f)LF) > co&(\/f,/f) and

3.2 ol — o
. —ury) = 2t ), po1se

for some constant ¢y > 0 and a reasonable class & of non-negative bounded functions, which
is stable under P, and dense in L% (u) := {f € LP(n) : f > 0} for any p > 1, see e.g. [14].
In applications, it may be not easy to figure out the class & such that (3.2) holds. But in
general this condition can be replaced by the following approximation formula Lemma 3.2
in the spirit of [26].

Now, consider the (Neumann) semigroup P, generated by L := A + Z for a locally
bounded vector field Z such that P, has a unique invariant probability measure p. Let

Do ={f € CF(M): f satisfies the Neumann condition if M # 0}.

Then (L, %) is dissipative (thus, closable) in L!(x) with closure (L, 2,(L)) generating P; in
L'(u), see e.g. [29] and references therein. Let

I ={fe n(L)NL*(u): f=0}.
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Lemma 3.2. Let f € & and 1 € Cy°([ess,, inf f,00)). There exists a sequence { f}n>1 C %
with inf f,, = ess, inf f such that f, — f in L"™(n) for any m > 1, Lf, — Lf in L*(u), and

u(O()LF) = = lim p( ()Y £,

Proof. Since f € 9 C 2,(L)NL>®(u), there exists a uniformly bounded sequence { f,, }n>1 C
9, such that inf f,, = ess,inf f and f, — f,Lf, — Lf in L'(n). By the uniform bounded-
ness, f, — f in L™ (u) for any m > 1. Since ¢ € C;°([inf f,,, 00)),
In
Gn = (s)ds € D.:={g+c: ceR,g€ D} C Z:(L).
inf fp,

This implies p(Lg,) = 0 since p is P-invariant. So, by the dominated convergence theorem,
p((FILF) = lim p((fa) Lfn) = Hm p(Lg, = ¢'(f2)|Vfal?) = = lim u(@'(f2)[Vful?).
]

Proposition 3.3. Let Z be a locally bounded vector field such that the (Neumann) semigroup
P, generated by L := A + Z has a unique invariant probability measure f.

(1) If the super log-Sobolev inequality

(3.3) u(f2log f2) < rp(IVfI?) + B(r), r>0, feCy(M),u(f*) =1

holds for some 5 € C((0,00);(0,00)), then for any constants ¢ > p > 1 and v €
C((p,q); (0,00)) such that t := qu @dr < 00, there holds

B4y (r)(1—rt
H]Dt||Lp(u)~>Lq(M) < exp |:/ ( ’}/( )( )) drl.
p

r2

(2) If the log-Sobolev inequality

(3.4) u(f?log f2) < Cu(IVfIP) + pu(f*) log u(f?), f € Cp(M)

holds for some constant C > 0, then
u((Pg)log Prg) < e */“u(glogg), g€ B(M),g>0,pu(g) = 1.

Proof. (1) According to Lemma 3.2, for any f € 2 and p > 1, there exists {f,}n>1 C %
2
such that f7 — fin L™(u) for all m > 1, and
4p—1) .
)= %hmsup,uﬂanF).

n—oo

(3.5) —u(fr L
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Applying (3.3) to f,, and using (3.5), we obtain

pu(fPlog f) = lim p(fylog ) < rliminf u(|Vfal*) + B(r)

2 4 —1
< i (— i+ B, o
Set c(p) = %, we have

46(r)(p—1)  Bl4cp)(1 —p))
rp?

so that the above inequality becomes

u(f"10g ) < ) (= w7 LN +9®), p>1.fET

for y(p) := %lpf)p_l)). Noting that 2 is P-invariant (i.e. P2 C 2) and dense in L% (1)

for any p > 1, the desired assertion follows from the proof of [14, Corollary 3.13].
(2) It suffices to prove for g € 2 with inf g > 0. Applying Lemma 3.2 to f = P,¢g and
¥(s) =1+ logs, and using (3.4), we obtain

d
T H(Pig)log Pig) = (1 +log Pug) LP.g) = —4 lim w([VVE, )

4 4
< —= liminf u(fylog fo) = —=u((Pg)log Fg), t=0.
C nsoo C

This implies the desired exponential estimate. [

3.3 Exponential contraction in gradient

In this part, we consider a general framework including both diffusion and jump processes.
Let (E,.%, 1) be a separable complete probability space, and let P, be a Markov semigroup
on L*(u) with p as invariant probability measure. Let (L, Z(L)) be the generator of P; in
L?(u). We assume that there exists an algebra &/ C 2(L) such that

(i) 1 € o, o is dense in L*(;1) and the algebra induced by
9 :={Pf:s>0,fed}
is contained in Z(L).

(ii) T(f,9) == 5(L(fg)— fLg—gLf) gives rise to a non-degenerate positive definite bilinear
form on 2 x Z; i.e., for any f € 2, I'(f, f) > 0 and it equals to 0 if and only if f is
constant.

13



In particular, when P, is the (Neumann) semigroup generated by L := A + Z on M with
Ricz bounded below, the assumption holds for

o ={f+c:[feCF(M) satisfying the Neumann condition if M # 0, c € R}.
Under the above conditions,

E(f,9) =nI(f9), f.gc

is closable and the closure (&, Z(&)) is a conservative symmetric Dirichlet form. Although
P, is not associated to (&, Z(&’)) when it is non-symmetric, we have

(3.6) C (PP = 26(BLBS). 120,59,

If || Pl 11 () Loy < 00, then P, has a heat kernel p,(x,y) with respect to u, i.e.

P f= /Ept(ny)f(y)u(dy% feL*(w),

and

€SS, xpu SUP Pr = ||‘PtHL1(,LL)4)L°°(‘u) < 00.
We consider the “gradient” length |V f| = /I'(f, f) induced by I'. Note that for jump
processes the length is non-local and thus essentially different from the usual gradient length.

As shown below that estimates of |V F;| have a close link to functional inequalities of the
associated Dirichlet form.

Proposition 3.4. Assume that there exist t; > 0 and n € C([0,00); (0,00)) such that
(3.7) 1Pl 2ty s nooy < 00, [VePfI? <n(t)P|Vef?, t>0,f € 2.

Then there exist constants ¢, \,ty > 0 such that for any ¢ > 1 and n, € C([0,00); (0, 0)),
the gradient estimate

2

(3.8) Ve B fI? < ng(t)(P|Vrf|)a, t>0,f €2

implies

39 IVePS iy < (esupm o Ve nf(RIVES7)T, ¢ 6] € 2.
0,t2

Proof. (a) We first prove
(3.10) E(Pif, Pf) < Ce™™E(f,f), fe€2,t>0

for some constants C, A\ > 0. By the second inequality in (3.7), for any ¢t > 0 and f € Z we

have d
&Ps(Pt—sf)2 = 2P| VrP_s f|? < 2n(t — s)P|Vr f?, s €[0,1].
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Integrating both sides over [0, ¢] leads to

t
P2 < (Pf)+ COPIVLfR C(t) = 2/ n(s)ds, ¢ > 0.
0
Taking ¢ = t; and noting that p is the invariant probability measure of P;, we obtain

(3.11) p(f?) < C)ES, )+ 1Pl aenlIf))?, f 2.

Since Z(&) is the closure of Z under the & -norm, this inequality also holds for f € 2(&).
By condition (ii), the symmetric Dirichlet form is irreducible. So, according to [41, Corollary
1.2] the defective Poincaré inequality (3.11) implies the Poincaré inequality

(3.12) n(f?) <

for some constant A > 0. By (3.6) and that Z is dense in L?(u1), the Poincaré inequality is
equivalent to

(3.13) 1Pf = u(F)lla < e f = ulH)ll2, 20, f € L2(n).
On the other hand, by the second inequality in (3.7), for any ¢ > 0 and f € 2 we have
d 2

&Ps(Ptfsf)Z = 2PS‘VFPtfsf‘2 Z ’vFPtfPa ERS [Oat]

n(s)

So,
P.f?*— (P.f)?

2 fg n(s)~lds
Using P,f — p(f) to replace f and integrating with respect to p, we obtain
[1Pf — n()I3
2 fot n(s)~1ds

Combining this with (3.13) and (3.12) we arrive at

|VF-F)tf|2§ ) t>07f€@

E(Porf, Pouf) < , t>0,feP.

éa(Ptfvptf> S Cle_ktéa(faf)v tZ 17f € 9
for some constant ¢; > 0; that is, (3.10) holds for ¢ > 1. Finally, (3.7) implies (3.10) for

te0,1].
(b) Next, we intend to find out a constant ¢, > t; such that
1
(3.14) —<p <2, (X p)rae,t>t.

Indeed, by (3.13) and the first inequality in (3.7), we obtain

] [ 01 ) = D) = 1P Prsf = )
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< coit(|Peser f = 1)) < coe™ [P f = u(f)ll2 < cge™ (| f1), prace., t =0,

where ¢ := || Py, || 11 (4)— £ (- This implies the desired assertion for ¢y > 0 such that e <
1

5.
(c) Finally, combining (3.7), (3.14), (3.10) and (3.8), we obtain

IV Prgoto fll 7o) < 1ll Pl Ve Prato [P | ooy < 2616 (Pt f Pt f)
2
< e ME(Py f, Py f) < 0277q(t0)e_/\tﬂ((ﬂo|VFf|q)q)
. 2
< Csﬁq(tO)efAteSSu inf(Pyar, |V f]?)e

for some constants c;, cg, cg > 0. Then (3.9) holds for ¢ty = 2t. O

4 Proofs of Theorem 2.1 and Corollary 2.2

The first assertion is a generalization of the main result in [18] where M = R? is considered.
As in [18], the key point of the proof is to construct a coupling by parallel transform for long
distance but by reflection for short distance. The only difference is that we are working on
a non-flat Riemannian manifold for which the curvature term appears in calculations. Since
[t6’s formula of the distance process has been well developed for couplings by both parallel
displacement and reflection, the proof is also straightforward.

The proofs of the other two assertions are based on the log-Sobolev inequality and the
log-Harnack inequality derived in [25] and [39] respectively for bounded below Ricy.

Proof of Theorem 2.1. (a) For two different points x,y € M, let P,, : T,M — T, M be the
parallel displacement along the minimal geodesic v : [0, p(x,y)] — M from z to y, and let
My = Pry — 2(-,50) Vp(ary) : ToM — T, M be the mirror reflection. Both maps are smooth
in (z,y) outside the cut-locus Cut(M). According to [15] and [32], the appearance of the
cut-locus and/or a convex boundary helps for the success of coupling, i.e. it makes the
distance between two marginal processes smaller. So, for simplicity, we may and do assume
that both the cut-locus and the boundary are empty, see [3, Section 3] or [36, Chapter 2] for
details.
Now, let X; solve the SDE

d;X; = V2udB, + Z(X,)dt, X, =,

where d; denotes the It6 differential introduced in [13] on Riemannian manifolds, B; is the
d-dimensional Brownian motion, and u, is the horizontal lift of X; to the frame bundle O(M).
Then X, is a diffusion process generated by L. To construct the coupling by reflection for
short distance and parallel displacement for long distance, we introduce a cut-off function
h € C'([0,00)) which is decreasing such that h(r) = 1 for r < 7o, h(r) = 0 for r >
ro+ 1, and v/1 — h? is also in C, see e.g. [43, (3.1)] for a concrete example. To construct
the coupling in the above spirit, we split the noise into two parts, i.e. to replace dB; by
h(p(X, Y2))dB, + /1 — h(p(X;,Y;))2dBY for two independent Brownian motions Bj and
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B/, then make reflection for the B; part and parallel displacement for the B} part. More
precisely, let (X3,Y;) solve the following SDE on M x M for (X, Ys) = (z,y):

d; Xy = \/§<h(p(Xt7 Yt))Utng + \/1 - h(P(Xt, Yt))QUtdBO + Z(Xy)dt,

A1, = V3 (h(p(X0, V) Mo,y Bl + /T = B(p(X, V) P, i BY ) + Z(Yi)d.

Since the coefficients of the SDE are at least C'! outside the diagonal {(z, z) : z € M}, it has
a unique solution up to the coupling time

T:=inf{t >0: X, =Y}

We then let X; =Y, for t > T as usual. By the second variational formula and the index
lemma (see e.g. the proof of [37, Lemma 2.3] and [32, (2.4)]), the process p; := p(X;, V)
satisfies

dpr < 2V2h(py)db, + I7(X;, Yy)dt, t<T

for some one-dimensional Brownian motion ;. Thus, by condition (1.8),
(4.1) dpr < 2V2h(p,)db, + {(K1 + Ko)lip<r0) — Ko }pedt, t <T.
Since h(p;) = 0 for p; > ro + 1 while dp; < 0 when p; > ro + 1, this implies
(4.2) pr < (ro+ 1)V po < 14719+ p(z,y).
On the other hand, since h(p;) = 1 for p; < rg, as observed in [18] we have
(4.3) Ep, < ce Mp(x,y), t>0
for some constants ¢, A > 0. Indeed, let

p=ecpm+1—eNrr N = %(Kl + Ky),e = Ne Vo,

Then
4AN?

epe < pr < (N +¢)pr, eV + N)

> K|+ Ky forr e (0,7"0],
so that (4.1) and It6’s formula lead to
dp, < 2v2(e + Ne NP h(p,)db,

AN?
+ (5 + Neint>{(K1 + KQ)l{PtSTO} — K — )l{PtSTO}}ptdt

pi(eeNre + N
< 2V2(e + Ne ™M) h(p)dby — e1ppdt, t<T

for some constant ¢;. This implies Ep, < poe~**. Then (4.3) holds for some constants
¢, A > 0. Combining (4.2) with (4.3) we arrive at

) )
E®(p/r) < sup s/ T)Ept <ceMp(x,y)  sup (s/r),
s€(0,14ro+po] S s€(0,14ro+po] S
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So,
W (6.5, 6,F:) < ||pellpe@y = inf {r > 0: E®(p;/r) < 1}
P(s At
§inf{r>0: sup ) < - }7
s€(0,14+ro+p(zy)] S cp(z,y)

which proves (2.1). Therefore, the proof of (1) is finished since the second inequality therein
is a simple consequence of (2.1).

(b) To prove the log-Sobolev inequality (3.4), we follow the line of [37] to establish the
dimension-free Harnack inequality using coupling by change of measures. Let (x,y;) be the
coupling constructed in [37] before Lemma 2.3 therein with Z replacing VV and

z?
(4.4) g -t 1Y)

T
for a constant C' > 0. We first prove that when C is large enough our condition implies
xp = yr as in [37, Lemma 2.3]. Indeed, by (1.8) and [37, (2.4)], we have

dplen, ) = {Tzlweu) = &}t < { (K + Ko)ro = C = p(?y) pat, ¢ <.

where 7 :=inf{t > 0: z; = y;} is the coupling time. Taking C' = (K; + K3)ro we obtain

dp(xh ?Jt) S -

p(?wdt, t<T,

so that 7 < T as desired.
Next, let R be given in the proof of [37 , Proposition 3.1] for the present &; in (4.4):

R:exp[ %/ "an, — i/&fdt],

where M, is a martingale with d(M); = Ef'tzdt. Then there exists a constant C' > 0 such
that for any a > 1,

]ERﬂﬁl:Eexp[ a—1f/ /gth )/ftdt}

< oxp | L (1 220 )].

By [37, (3.2)], this implies the Harnack inequality

(P < Prpe) e | S0 (14 A2 o< e pan) o M > 0

Combining this with 1(e%) < 0o, it is easy to see that || Pr|js—4 < oo for large T > 0. Since
(1.8) implies Ricy > —(K; + K3), by the hyperboundedness and [25, Theorem 2.1], we have
the defective log-Sobolev inequality

p(f*log f2) < Cuu(IVfP) + Co, f € Cy(M), pu(f?) =1
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for some constants C7,Cy > 0. Since the symmetric Dirichlet form &(f, g) := u((Vf,Vg))
with domain H'?(p) is irreducible, according to [41] (see also [19]), the log-Sobolev inequality
(3.4) holds for some constant C' > 0.

(¢) When OM = (), the log-Sobolev inequality implies the Talagrand inequality

(4.5 Walfpo ) < Su(Floa ), £ 0.u(f) =1,

see [5, 35, 21]. Next, let P’ be the adjoint of P in L?*(u). Since u is P-invariant, Py is
generated by L* := A+ Z* for the C'-vector field Z* = 2VV — Z, where V = log j—’;. So, by
Proposition 3.3 for P} in place of P, the log-Sobolev inequality implies

(4.6) p((PF)log P f) < e Cu(flog f), t>0,f>0,u(f)=1.

Moreover, according to [39, Theorem 1.1], the curvature condition Ricy > —(K;+K») = — K
is equivalent to the log-Harnack inequality

Kp(z,y)?

Pi(log f)(z) <log P f(y) + 2(1 — o 2K1)’

t>0,z,ye M,0< f e By(M).
By [42, Proposition 1.4.4(3)], this implies

@47 ul(Pf)logPLf) < Walfi i), >0, u(f) =1, > 0.

2(1 — e—2K1)

Combining (4.5), (4.6) and (4.7), we obtain

C
(48) Wa((f)Pras, M)2 = W2((Pf+tf)ﬂa M)2 < EM((Pl*—&-tf) log Pl f)
| < %e“/cu((Pl*f) log Py f) < cre™ W CWy(fu,p)?, t>0,f>0,u(f) =1

for some constant ¢; > 0. Noting that Ric; > —K implies |VP,f| < eX'P,|Vf] (see e.g.
[39]), by Proposition 3.1 we have

Wa((fr)Pes i) = Wo(f) iy pP) < caWa(fp ), t €[0,1], f >0, u(f) = 1.
Combining with (4.8) yields
Wal(fp) Py i) < ce™Wa(fu,p), t20,f >0, p(f) =1
for some constants ¢, A > 0. Therefore, the proof of (3) is finished. n

Proof of Corollary 2.2. By Theorem 2.1, it suffices to verify condition (1.8) and to prove
that P, has a unique invariant probability measure p with u(espg) < oo for some constant
e > 0.

Since Ric > =6y, [37, (2.5)] applies to K (z,y) = d;. So,

(4.9) I(z,y) < 2y/8:(d - 1).
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On the other hand, by VZ < —§, outside a compact set, there exist constants ¢, r > 0 such
that
\4 S —62 + Cl{pogr}'

Then, letting v : [0, p(x,y)] — M be the minimal geodesic from x to y with |4 = 1, we
obtain

rlzy) g
Z.Vol ) @) + 2ol ) = [ (200 40)ds

p(x,y)
- / (V2. Z (), 3o)ds < —dap(ir, y) + 201
0

Combining this with (4.9) we prove (1.8) for some constants K7, Ky > 0.
Next, by Ric > —4§; and VZ < —§, outside a compact set, there exist constants ¢, co > 0
such that
Lp} < ¢y — capp

for some constants ¢y, co > 0. So, when £ > 0 is small enough,
Les < cle) — v(e)espg

holds for some constants c¢(¢),d(¢) > 0. By a standard argument this implies that P, has
an invariant probability measure p with p(eapg) < 00. The uniqueness of p follows from the
irreducibility and strong Feller property which is well known for the present framework. [

5 Proof of Theorem 2.3 and Corollary 2.4

Proof of Theorem 2.3. (1) Since Ricy > —K for some constant K > 0, we have (see e.g.
[39])
VPf < MBIV, feC(M).

Combining this with Proposition 3.4 for ¢ = 1 and noting that P,|V f| is continuous, we
obtain
VP fl < coe™ PRIV, t>to, f € CH(M)

for some constants cg, A, tg > 0. Obviously, (3.1) implies

|- 22 p

Npipy < —=22 de N,
H ||L (P) = @_1(1) ) €

Then
Co

o=1(1)

According to Proposition 3.1, this is equivalent to

IVEf] < e MV llrewy, t20,8 €N, feCHM).

(5.1) We (0, P, 6, P;) < e Mp(x,y), t>02,y€ M.

o=1(1)
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On the other hand, noting that
C0P 0, P3) 3 1= (0,P) X (3,P2) < Pl s o X 1)

we obtain
Wo (0., 0y F) < lpllze) < Ga(2t), t>0.

Combining this with (5.1) and the semigroup property, we arrive at

& C -
Wa(0:Po8,P) < Gygye " Wal0Py2, 8, Py) < gpge ™ *Call).

This together with (5.1) implies (2.6) for some constants ¢, A\ > 0. Moreover, (2.8) follows

from (2.6) according to Proposition 3.1.
(2) By Proposition 3.1, (2.9) implies

VP, f| <ce™P|Vf|, t>0,feCHM).

Then using the standard semigroup calculation of Bakry-Emery, this implies

t
d
Fi(f*log %) = (Fuf*) log Puf* = / T DA (Pesf?) log P f*}ds
0
t 212 t 2
VP, f?| 2/ —on—s) p (L= IV
= P ———— <4 P,
/o s( B f? >ds_ c 0e s( b2 )ds
t 2(1 _ A—2Xt
g402/ e‘”(t‘s)(Pt\Vﬂ?)ds:meﬂQ, t>0.
0

Since limy oo P,g = p(g) for g € B, (M) due to the ergodicity, by letting ¢ — oo we prove
the log-Sobolev inequality for (3.4) for C' = % Indeed, by the local Poincaré inequality and
[24, Theorem 3.1], the weak Poincaré inequality

p(f?) < a()u(IVP) +rlfl%, r>0,u(f) =0

holds for some « : (0,00) — (0,00). By [24, Theorem 2.1], this implies

lim sup u(|Pg — pu(g)]*) = 0.

20 |lglloo<1

]

Proof of Corollary 2.4. We first observe that the proof of [37, Theorem 4.2] works also for
the non-symmetric case with VZ in place of Hessy, so that for some constant ¢; > 0,

c _ _ 1, —
(5.2) 1P 22> () < €XD [cl n 71(1 AT (et +A21(c11t))}, t>0.

Since in the symmetric case we have || P||1()—ro(n) < ||Pt/2||%2(p,)—>L°°(,u,)7 the first assertion
follows immediately from Theorem 2.3.
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As for the non-symmetric case, since
1 Pell 1y ooy < 1Pey2llnrgo— 2260 | P2l 2wy~ Lo (),
by Theorem 2.3 and (5.2) it suffices to prove
(5.3) | Pl 22y 22y < €xp [c’ + c’H(c’t’l)], t>0

for some constant ¢’ > 0. According to [25, Theorem 2.1], (5.2) implies the super log-Sobolev
inequality (3.3) for

B(r) = e+ {1+ AT @) + A7 (e}, T >0

for some (possibly different) constant ¢ > 0. Then Proposition 3.3 with p = 1,¢ = 2 and

rh(r—1 . .
V(r) == (r—l)tfol(s*llz(s)ds implies (5.3).

]

6 Proofs of Theorems 2.5-2.6

Proof of Theorems 2.5. Let X;(x) solve (2.17) with initial point x. By It6’s formula and
condition (2.18) we obtain

d[Xi(7) — Xi(y)[”

(» = 2)[(e(Xi(2)) — o(Xi(y))* (Xi(@) — Xi(y))?
| Xi(z) — Xi(y)|?

< -+ pIX0) - Xl
+lo(Xe(@)) — o (Xe(y) s + (0(Xi(z) — b(Xe(y)), Xe(w) — Xt(y)>}dt
< dM,; — pK,| Xi(z) — Xi(y)|Pdt
for some martingale M;. This implies

E’Xt<x) - Xt(y)‘p < eiprt’a: - y|p7 > Oax>y € Rda

s B (L Xe(@) = [ W) [ Xalx) = Xi(y)|
(6.1) VA @) < llr;l%pE( | Xe(2) — Xe(y)] |z —y| )

<RIV I
Then the desired assertion follows from Proposition 3.1. O]

Proof of Theorem 2.6. (1) We reformulate (2.17) as

(6.2) dX; = b(X;)dt + v2(o0(X,)dB] + Nd BY),
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where B; and Bj' are independent d-dimensional Brownian motions. For any x # y, let X,
solve this SDE with X, = z, and let Y; solve the following coupled SDE with Yy = y:

(X = Y3, dBY) (X — Yt))
[ Xi = Y32 '

dY; = b(Y})dt + V2 00(Y1)d B, + AV/2 (dB;’ —2

That is, under the flat metric we have made coupling by reflection for B} and coupling by
parallel displacement for B;. Obviously, the coupled SDE has a unique solution up to the
coupling time

T,,:=inf{t >0: X, =Y}

We set Y, = X, for t > T, , as usual. Then by (2.19) and Itd’s formula, we obtain

(63) d|Xt — Y;5| < dM; + {(Kl + KQ)l{\Xt—YdSTo} — KQ}|Xt — Y;gldt, t < Ta;’y

for
dM, — \/§<2)\0ng/ + (UO<Xt) — O-O(Y;f))dBé, Xt _ Y;>
a | X =Y
being a martingale with
(6-4) (M), > 8)2dt.

By repeating the argument leading to (4.3), it is easy see that (6.3) and (6.4) imply
El X, - Y| <ce™Mz—vy|, t>0
for some constants ¢, A > 0 independent of x,y. Therefore,
VES| < e[V [l t20,f€CyRY),

so that the first assertion follows from Proposition 3.1.

(2) According to [40, Theorem 1.1], co* > A2I and (2.21) imply the log-Harnack inequal-
ity
cilz —yf?
1 —ect’

Py(log f)(z) < log P f(y) + t>0,z,yeR,0< feB(RY

for some constants ¢, co > 0. Next, condition (2.21) implies
VB[P < MBIV,

see e.g. [?7JRW10. Combining these with the log-Sobolev inequality, we prove the second
assertion as in (c) in the proof of Theorem 2.1.

(3) According to the proof of Theorem 2.5, the condition (2.18) implies the gradient
estimate (6.1). Next, by Proposition 3.4, the ultracontractivity and (6.1) imply

p—1

IVEf| < clp)e ™M(B|Vf]71)7, t>0,f € CHRY)

for some ¢(p) > 0 and A > 0 independent of p. Then the proof if finished by Proposition
3.1. [
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