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Powering the Hydrogen Economy from Waste Heat: A Review of 

Heat to Hydrogen Concepts 

Rafiq Mulla and Charles W. Dunnill* 

Energy Safety Research Institute, Swansea University, Bay Campus, Fabian Way, SA1 8EN, UK.  

Abstract 

Ever increasing energy demand and environmental concerns requires new and clean energy 

supplies, many of which are intermittent and non-correlating with demand. In order to 

balance supply with demand a universal energy vector can be employed such that intermittent 

renewable energy can be stored and transported and then used when needed. Hydrogen is the 

perfect universal energy vector and one of the possible solutions that ensures environmental 

cleanness and maximum utilisation of renewable energy sources and high efficiency where 

the combustion of this fuel yields only water. One abundant and freely available energy 

source both anthropogenic and natural is heat. Heat can be obtained from industrial processes 

and is indeed often seen as a waste product with a premium to remove but is notoriously 

difficult to capture store and indeed transport. Capturing and storing low grade heat is 

therefore a significant opportunity and can be achieved via the coupling of thermoelectric 

generators and water electrolysers. A thermoelectric generator is placed within a thermal 

energy gradient and produces a flow of current which is fed to the electrolysis unit with 

which it produces hydrogen and oxygen as the final products. The hydrogen can be stored for 

long periods and transported for “On demand” use in fuel cells for electricity of hydrogen 

burners for a return to thermal energy. This review summarizes the current state-of-the-art 

from researchers to implement thermoelectric generators and utilize heat as a primary energy 

source to produce hydrogen which could replace the need for extra electric power to run 

hydrogen production units. Further, discussion is made on suitable requirements, 

modifications and other related aspects associated with such a new and novel method of 



hydrogen generation. Hydrogen produced from otherwise wasted energy sources can be 

considered to be green. 

Keywords: Heat to hydrogen; H2 production; thermoelectric; renewable energy; pollution; 

industrial waste. 
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1. Introduction 

The energy trilemma is one of the biggest concerns facing the future of mankind. How do we 

supply consistent, yet affordable and environmentally friendly energy to all? The rapidly 

increasing energy demand with rising cost of energy and global warming issues are well-

known and a critical problems for the modern world. A rapidly increasing population, energy 

intensive modern lifestyle and industrialization of vast populations are all contributing to the 

problems associated with the energy crisis and development pathways of many nations. 

Fossil fuels (coal, oil, and natural gas) are the major source of energy for the entire world 

which leads to inevitable carbon dioxide pollution and anthropogenic global warming. Large-

scale uptake of renewable energy is hampered by the correlation between supply and demand, 

and our ability to store and transport the clean energy over large distances and timescales.  

The use of hydrogen as an energy vector allows us to store pretty much any form of 

renewable energy as well as decoupling supply from demand. In addition the ability to 

compile energy sources together such that large quantities of otherwise useless energy can be 

combined together into one useful mass. This review aims to highlight efforts in the 

conversion of industrial waste heat or solar thermal energy into hydrogen.   

2. Heat 

2.1. Industrial heat 

Every year, about 474 EJ (1 EJ = 1018 J) of energy is generated for various purposes, of 

which about 340 EJ is just rejected as waste heat, which reveals that about 70% of the global 

energy is lost to the environment without being utilized.[1] The loss of heat happens in many 

different ways in different sectors with a wide range of temperatures from 100 to 1000 ºC.[2] 

There are several waste heat sources which emit low grade to medium to high temperature 

heat. For example, the industrial steam/water boilers, food, paper, textile industries generate 

low grade waste heat of temperature ~100-200 ºC, chemical and other related industries 



usually produce a waste heat up to ~500 ºC, while most of the metal and glass industries 

generate a waste heat in the high temperature range of ~500-1000 ºC.[2] 

2.2. Solar heat  

In the quest for green energy supplies to drive the hydrogen economy many researchers turn 

to the concept of photovoltaics in the desert. Indeed the Sahara desert receives enough solar 

radiation every day to power the entire globe for a year should it be possible to capture all of 

this energy. Photovoltaics currently operate at about 12 to 17% efficiency, but struggle to 

maintain efficiency when the panels themselves are hot, covered in sand or in need of 

complex maintenance. Solar heat however can be upwards of 80% efficient with very 

simplistic technology consisting of black painted pipes transporting a loop of water. 

Significant gains can be made in the overall energy efficiency of solar energy to an electrical 

output by utilising a solar heat array rather than a solar photovoltaic array. 

3. Thermoelectric Generators 

Thermoelectric generators are solid state devices which are used to convert heat into 

electricity.[3] The basic components of a thermoelectric generator are thermoelectric materials 

which have an ability to convert thermal gradients into electric voltage. Thermoelectric 

materials work according to the principle of “Seebeck effect” which was discovered by T. J. 

Seebeck, a German Physicist. An applied temperature gradient (ΔT) to an electrical 

conductor generates an electric voltage (ΔV) due to the charge flow from hot side to cold side 

of the conductor. The ratio between the ‘generated voltage’ to the ‘applied temperature 

gradient’ is known as Seebeck coefficient (S), a key parameter which shows the ability of 

material to produce electric voltage under given temperature gradient. Figure 1 is an 

illustration of this mechanism. 

 

 



 

Figure 1. A schematic illustration of Seebeck effect. 

In a thermoelectric generator, two dissimilar thermoelectric materials are joined 

at their ends to form junctions and multiples of such junctions are arranged in series. 

Usually n and p-type conductors are coupled together in this way to form a device. 

Figure 2 (a) shows one such junction made up of one n-type and one p-type material. 

In order to gain more electric power output, more couples are connected to each other 

that is illustrated in Figure 2 (b). 

 



Figure 2. Showing (a) a thermoelectric couple made up of one n-type and one p-type 

leg, and (b) multiple thermoelectric legs connecting in series to form a thermoelectric 

generator. 

The conversion efficiency of heat into electricity is an important factor which 

decides how generators perform in practical applications. Basically, the efficiency of 

a thermoelectric generator mainly depends on the efficiency of thermoelectric 

materials to convert heat to electricity. The thermoelectric efficiency of a material is 

also known as “figure of merit” denoted as ZT, is a dimensionless number, and is 

defined as follows,[4] 

𝑍𝑇 =
𝑆2𝜎𝑇

𝜅
                                       ………….(1) 

where S is the Seebeck coefficient, σ and κ are the electrical and thermal conductivities, and T 

is the temperature. Better value of ZT means better thermoelectric material. 

The thermoelectric generator efficiency (η) is mainly decided by this ZT value of the 

materials used in the fabrication of the generator. This is defined as[5] 

𝜂 = 𝜂𝑐 [
√1+𝑍𝑇−1

√1+𝑍𝑇+
𝑇𝑐
𝑇ℎ

]                                  ………….(2) 

The term ηc is the standard Carnot’s efficiency, which is given by 

𝜂𝑐 =
𝑇ℎ−𝑇𝑐

𝑇ℎ
                                    ………….(3) 

where Th and Tc are the hot and cold temperatures under which the generator works. So, by 

looking at equation (2), it is clear that the ZT value has very important role. Further, the large 

operating temperature difference has also its own contribution but ultimately it is all about the 

material’s ability to drag heat and make it useful electric power. 



Initially, thermoelectric generators were meant for niche applications.[6] They were preferred 

for such applications even though the conversion efficiency was very low due to their ability 

to generate power in remote areas with reliability and without any need of complex 

technology. It is during 21st century, the development of better thermoelectric materials able 

to expand its applications.[6] Earlier, there were only a few well known thermoelectric 

materials which were being used for the making of thermoelectric generators, which limited 

its use. Recently, many new class of materials such as metal sulphides,[7] selenides,[8] half-

Heusler compounds,[9] filled skutterudites,[10] clathrates,[11] oxides,[12] organic/polymer 

materials,[13] Zintl compounds,[14] carbon based compounds,[15] etc. have been introduced 

with promising properties giving new hopes to the future of thermoelectric technology. 

Further, several strategies such as doping,[16] nanostructuring,[17] alloying,[18] resonant level 

filling,[19] band engineering,[20] etc. were also successful in improving the ZT value of the 

materials. For example, many studies have shown clear improvements in the ZT values of 

bulk materials by just bringing them to nanostructured dimensions.[21] This approach is able 

to decouple the electronic and thermal conductivity of the materials to a certain extent when 

they are brought into nano-dimensions which significantly improves ZT value. To best of our 

knowledge, Hicks and Dresselhaus were the first to show very fascinating results from a 

material when it undergoes into nano-regime with the help of their theoretical 

investigations.[22] Another interesting way that has been widely used to make better materials 

is creating complex crystal structures where the thermoelectric properties can be significantly 

improved.[23] This aspect of having complex crystal structures is usually referred as phonon 

glass - electron crystal (PGEC) concept, elucidated by Glen Slack.[24] This concept proposes 

that a good thermoelectric material should act like a glass for phonons where the thermal 

conductivity can be very low and it also be a perfect crystalline material for electrons where 

the electrical conductivity can be high. Such concepts and theories are very much useful for 



the researchers which guide in building new materials with more effective and better 

properties. Efforts are going on to make new cost effective thermoelectric materials to 

implement them into commercial thermoelectric generators for practical applications. 

 

4. Hydrogen Production  

Hydrogen can be produced in many different ways such as electrolysis, thermolysis, 

photocatalysis, steam methane reforming or indeed photocatalytic water splitting.[25] The 

simplest way of producing green hydrogen from renewable energy sources is to use water 

splitting by the application of electric current. For this, a DC electric supply is passed through 

a catalytic solution splitting water into its components of both hydrogen and oxygen and is 

usually referred as “electrolysis of water”.[26] High-purity hydrogen can be produced but, the 

supply of extra electric power demands up to two-thirds of total hydrogen production 

costs.[27] Thermal energy can be used in 2 ways to support hydrogen production via 

electrolysis. Some water splitting units can operate at higher temperature with heat supplied 

from the surroundings,[28] allowing for a higher efficiency process with some of the water 

splitting over potential being covered by the thermal energy. Alternatively electrolyser units 

can be coupled to thermoelectric technology or heat engines such that a heat gradient can 

generate the current which can be used to split the water.  

In this way otherwise wasted thermal energy can be captured as hydrogen, a storable, 

transportable and readily useable form. Thermoelectric generators convert heat into 

electricity and which can be directly supplied to the water electrolysis unit. A Schematic 

illustration of the “heat to hydrogen” concept is illustrated in Figure 3. 



 

Figure 3. A Schematic illustration of the “heat to hydrogen” concept 

4.1.  Electrolysers 

The splitting of water is performed using “electrolysers”, which are the devices with two 

electrodes that use an electric current to splits a water molecule.[29] Typically, a DC power 

with a voltage in excess of 1.24 V is applied between the two electrodes which are immersed 

in water bath having aqueous electrolyte. As a result, hydrogen evolution occurs at the 

cathode and oxygen at the anode (Figure 4). The decomposition of water (H2O) into 

hydrogen (H2) and oxygen (O2) happens because the ions are forced to undergo either 

oxidation or reduction at the electrodes due to the application of electric voltage, which can 

be expressed as, 

2𝐻2𝑂(𝑙) + 𝐸𝑛𝑒𝑟𝑔𝑦 =  2𝐻2(𝑔)
+ 𝑂2(𝑔)

              …………..(4) 



 

Figure 4. Showing a schematic electrolyser, a DC power is applied between the two 

electrodes which are immersed in water. 

Depending on the nature of electrolyte used, electrolysis process can be carried out either in 

neutral, basic or acidic conditions. The reactions at the electrodes will be different for 

different pH conditions. 

If the media is basic, 

at Anode:  4𝑂𝐻− →  𝑂2 + 2𝐻2𝑂 + 4𝑒−  

at Cathode:  2𝐻2𝑂 + 2𝑒− →  𝐻2 +  2𝑂𝐻− 

For the acidic media, 

at Anode:  2𝐻2𝑂 → 4𝐻+  + 𝑂2 + 4𝑒− 

at Cathode:  2𝐻+  + 2𝑒− → 𝐻2 

The electrochemical decomposition of water was first observed in the 18th century and later 

by Michael Faraday who described the relationship between the electric current and the 

amount of hydrogen and oxygen evolve at the electrodes which is as follows, 

𝐼 = 𝑧𝑛𝐹                                   …………..(5) 



where I is the current applied between the electrodes, z is the number of electrons involved in 

the reaction, n is the number of moles of hydrogen or oxygen produced, and F is the Faraday 

constant (F = 96485 C mol-1). Expression (5) shows that there is direct relation between the 

applied current and the amount of hydrogen generated. The efficiency of an electrolyser can 

be defined as,[30] 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑈𝑠𝑒𝑓𝑢𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑝𝑢𝑡
                  …………..(6) 

 ‘Useful energy output’ is referring to calorific value of the hydrogen produced and 

‘total energy input’ is the energy consumed in the production of the hydrogen.  

Several factors effect this aspect such as cell design, electrode material, electrode 

surface, electrolyte nature, etc.[26, 30-31] The efficiency of the system however also needs to 

consider the economic/value efficiency in that if the value of your hydrogen is higher than the 

value of the energy input then the process is profitable. Using otherwise wasted heat as a 

resource shows significant financial benefits irrespective of the energetic efficiency of the 

process, as the energy input is effectively free. Your capital costs are therefore split across the 

years of operation leading to an economic model whereby reduced capital costs are in many 

cases more important than small deficiencies in efficiency.  

The major water electrolysis technologies are alkaline electrolysis cells (AEC), proton 

exchange membrane electrolysis cells (PEMEC) and solid oxide electrolysis cells (SOEC).[32] 

AECs are the one of the simple water electrolysis technologies widely used for applications. 

These AECs can be easily designed in a relatively low capital cost and are durable which 

have been in use in different industries.[33] AECs offering the advantage of simplicity and so 

the present research is mainly focussed on increasing current density and efficiency of the 

cells.[32] PEMECs are built with solid polymer electrolyte and are useful in small-scale 

applications as the cell design is complex and requires expensive catalyst and fluorinated 

membranes but, these cells provide high power density and efficiency.[34] Many novel 



improvements have been achieved in the designs of PEM electrolysers.[35] SOECs are 

designed using solid ion-conducting ceramics as the electrolyte. This makes them to use only 

at higher temperatures but these cells can provide high efficiency with low material cost.[32] 

Presently, the SOEC cells are only demonstrated on a laboratory scale and making them 

widely useful for commercial applications is under progress.[28, 36] 

In general, the electrolysers have three common components: electrodes, separators, 

and electrolyte. In the basic design, the two electrode plates are separated by a liquid 

electrolyte which usually faces difficulty in easy charge flow and always observes the low 

current densities. Recently, researchers are working on the improvements in electrolyser cell 

designs and a new concept is attracted the scientific community which is based on “zero gap 

cell”.[30] Figure 5 shows the clear differences between these two cell designs. A “zero gap 

cell” is the direct compression of two porous electrodes having a hydroxide ion conducting 

membrane on them.[30-31] This design helps to significantly minimize the Ohmic resistance 

that occurs as a result of traditional design. This provides an alkali electrolyser with 

efficiencies close to that of the PEM system however significantly reduced capital costs due 

to the available material choice and the lack of platinum. 



 

Figure 5. Showing the principal differences in (a) Standard setup, (b) zero gap setup 

designs. Reproduced from Ref. 30. 

5. Efforts on Heat to Hydrogen Concept 

An effort to implement thermoelectric technology into hydrogen production was 

implemented during 1976 by Ohta et al. from Yokohama National University, Japan.[37] They 

proposed a hybrid thermochemical water splitting unit which primarily uses solar radiation. 

The proposed model consists of three subsystems, the schematic diagram of which is shown 



in Figure 6. The first subsystem is a flat transparent cell which work as a photochemical 

reactor. This cell is placed directly under sunlight to achieve photochemical reaction. Below 

this photochemical cell, a Fresnel lens is fixed which works for the second subsystem that 

consists of a thermoelectric generator, a solar radiation collector and a cooling plate. So, 

using such arrangements, a temperature gradient is achieved in the thermoelectric generator 

which then produces electric power. Finally, in the third subsystem, there are two 

electrolysers that add the contributions from photochemical reactor and thermoelectric 

generator. The system is successfully demonstrated for the hydrogen production and a 

production rate of 1 litre hydrogen per hour was observed. The efficiency of this hybrid 

system was estimated as 15-25%. After this report, only recently we can see a few works on 

this aspect. 

 

Figure 6. A proposed model of hybrid thermochemical water splitting unit, consists of three 

subsystems such as (i) photochemical reactor (ii) thermoelectric generator and (iii) 

electrolysers. Reproduced from Ref. 37. 

More recently, Zhang et al. have used commercial thermoelectric generators for 

the application of water splitting.[38] They have modified the thermoelectric generator 

surfaces by coating carbon nanoparticles via a simple candle flame. These are then 

used as solar thermoelectric generators in which solar light is used as source of heat. 



This coating helped in the efficient capturing of solar radiation and eventually in 

creating sufficient temperature gradient in the generators and hence more electric 

power output for the purpose. It is found that there was a 34 times better efficiency 

from the thermoelectric generators after coating. Figure 7 (a-c) shows the schematic 

water splitting system along with its real images, and figure 7 (d) gives the hydrogen 

and oxygen production data at different day time sunlight. Figure 7 (e) is the V-I 

characteristics of designed series of thermoelectric generators under different work 

states. Overall, a simple technique to lift the performance of the commercial 

thermoelectric generator is done by simply coating carbon using candle flame. 

 

Figure 7. (a) An illustrative and (b) real picture of water splitting unit, (c) home-made 

electrolytic cell, (d) production quantity of H2 and O2 at different times, (e) I-V 

characteristics of thermoelectric generator in different work conditions. Reproduced 

from Ref. 38. 



A similar effort of coating particles on thermoelectric generator has been 

reported by Zhao et al.[39] Here, an earth-abundant element, Ni has been deposited in 

the form of nanosheets layer grown on the hot side of the generator which act as a 

multifunctional agent. The schematic representation of Ni nanosheets array growth on 

thermoelectric device is shown in Figure 8. The as grown layer works as 

electrocatalysts as well as heat absorption layer for thermoelectric device and hence 

supports in the improvement of overall water splitting. The voltage generated from 

the thermoelectric device was given to water splitting unit. Ni nanosheets layer not 

only helps in achieving a good temperature difference in the thermoelectric device, 

but also works as an electrocatalysts for hydrogen evolution reaction. The hybrid 

system proposed has shown a good hydrogen production rate of 1.818 mmol/h. This 

method could be helpful in practical applications which can efficiently work by 

utilizing solar and waste heat. 

 

Figure 8. Schematic representation of Ni nanosheets array growth on thermoelectric 

device. Reproduced from Ref. 39. 

Chen et al. have demonstrated hydrogen production in a microbial electrolysis 

cell coupled with thermoelectric generator.[40] The microbial electrolysis cells are one 

of the methods to produce hydrogen, and here also an extra voltage is required to 

achieve the release of hydrogen. Figure 9 (a) shows the illustrative scheme of the 

microbial cell with thermoelectric generator. It was observed that even at low 

temperature difference of just 5 K, there was generation of energy. Figure 9 (b) gives 



the details of current density and hydrogen production rate at different hot side 

temperature in the thermoelectric generator. They also showed that at high 

temperatures, the yield of hydrogen generation increased from 1.05 to 2.7 mol/mol 

acetate leading to a coulombic efficiency of about 83%, indicating a promising way to 

make hydrogen from microbial reactions. The implementation of thermoelectric 

generators for the water splitting was also trialled by Zhou et al.[41] Figure 10 (a) 

shows the real time values of current densities under different temperature gradients 

applied to the generator, and figure 10 (b) illustrates the real-time stability of the 

current and voltage generation for a fixed temperature gradient. 

 



Figure 9. (a) An illustrative scheme of the microbial cell with thermoelectric generator, (b) 

hydrogen production rate and current density at different hot side temperature. Reproduced 

from Ref. 40. 

 

Figure 10. (a) Real time values of current densities under different temperature gradients 

applied to the generator, (b) real-time stability of the current and voltage generation for a 

fixed temperature gradient. Reproduced from Ref. 41. 

 

 



Figure 11. A schematic illustration of thermovoltage-driven solar water splitting hybrid 

system. Reproduced from Ref. 42. 

 

Jung and Lee have successfully designed a thermovoltage-driven solar water 

splitting device.[42] It is a hybrid water-splitting setup, having photoelectrochemical 

and thermoelectric devices. The proposed setup can efficiently runs water-splitting 

reaction to produce storable hydrogen. The system harnesses solar radiation from 

photoelectrochemical device and waste heat from thermoelectric device. A schematic 

illustration of this hybrid system is shown in Figure 11. The power scale in the figure 

indicates the significantly higher energy generation in case of this hybrid structure 

than in photoelectrochemical alone. Such a hybrid design concept was previously 

reported by Lee and co-workers,[43] the clear schematic structure and its equivalent 

block diagram can be seen in Figure 12. Recently, Yang et al. have fabricated a 

hybrid energy cell for water splitting that is composed with a triboelectric, a 

thermoelectric, and a solar cell.[44] These three individual energy production cells can 

be used to simultaneously or individually by harvesting mechanical, thermal, and/or 

solar energies. The hydrogen production speed from this hybrid device is found to be 

4 x 10-4 mL/s. 

 



Figure 12. (a) Schematic structure and (b) its equivalent block diagram of 

thermovoltage-driven solar water splitting hybrid system. Reproduced from Ref. 43. 

Habibollahzade et al. have done optimization of an integrated energy system which is 

composed of a thermoelectric generator, a parabolic solar collector and an electrolyser.[45] 

Similarly, Khanmohammadi et al. have shown a clear enhancement in the performance of an 

integrated system for hydrogen production using waste heat recovery with the help of 

thermoelectric generators.[46] To make it realize they have studied the hydrogen generation 

rate from the proposed system with and without thermoelectric generator and found a clear 

change between them, and it can be clearly observed in Figure 13 which gives hydrogen 

generation rate in these two systems. 

 

Figure 13. Hydrogen generation rate in the systems with and without thermoelectric 

generator. Reproduced from Ref. 46. 

A slightly different approach of coupling thermoelectrics and electrocatalysis to 

produce hydrogen has been reported by Liu and co-workers.[47] Here, there is no 

actual use of thermoelectric generator but the thermoelectric phenomenon play its role 

in the process. PbTe-PbS/TiO2 electrodes are prepared for the splitting of water into 



hydrogen. PbTe nanolayer was deposited on TiO2 nanotubes and then conversion of 

PbTe to PbSe was done by linear sweep voltammetry, finally forming PbTe-PbS/TiO2 

structure. This kind of electrodes possess gradient p-n-n band configuration. In the 

system, PbTe-PbS/TiO2 was used as anode, Pt as cathode. The electrolyte act as hot 

side and the electrochemical reaction being endothermic act as cold side with the 

hydrogen production. Inside the electrode, there is heat-excitation of electrons from n-

type PbTe and holes from p-type PbS. This type of heat-excited charge carriers in the 

PbTe-PbS/TiO2 electrodes stimulate the hydrogen evolution from the surface of the 

cathode electrode. The proposed system produced hydrogen at a rate of 6.1 mL cm-2 

h-1. This is also a useful idea to make use of low quality waste heat of the system by 

the help of thermoelectric phenomenon to produce clean energy in the form of 

hydrogen. 

When it comes to the conversion of heat to hydrogen or other useful form of energy, in 

general, electricity, there are many options. But among all, thermoelectric heat conversion is 

the one which converts without any need of mechanical work during the conversion. It is just 

a direct conversion. Therefore it can work better when it is with solar heat or waste heat. To 

show this aspect practically, Liu et al. have designed a thermoelectric generator of output 

power 500 W, which they call it as “direct heat to electricity (DHE) technology”.[48] For this, 

96 thermoelectric modules were assembled to get an output power of 500 W at a temperature 

difference of 200 K. By detailed study, they found that, in terms of equivalent energy 

generation, the cost of DHE power generator is lower than that of photovoltaics. The cost 

comparison has also been made with other generation technologies which is shown in Figure 

14, clearly showing that it is not costlier than others.  



 

Figure 14. The cost comparison between different power generation technologies. 

Reproduced from Ref. 48. 

 

Figure 15. The efficiency of the thermoelectric generators with respect to the ZT 

values. Reproduced from Ref. 21. 

Further, the efficiency of the thermoelectric generators with respect to their ZT 

values is shown in Figure 15. Under different temperature gradients the generators 

work with efficiency as shown in the figure.[21] At present, the highest achieved ZT 

value is around 2-3 and the available waste heat particularly from high temperature 



industries could easily provide temperature gradients of 100 to 300 K. For example, a 

thermoelectric generator designed with materials of ZT = 3 can work with an 

efficiency of 15% under a temperature gradient of 200 K and it can further reach 20% 

for 300 K. There are various proposed designs on how effectively the waste heat can 

be utilized by thermoelectric generators. One of the designs could be having a hollow 

cylindrical shaped or closed rectangular shaped generator that can be fixed to the high 

temperature exhaust pipes of the industries. Further, the use of thermoelectric 

generators not only limited to the conversion of waste heat but also used in the 

utilization of solar radiation.[49] Concentrating solar thermoelectric generators (STEG) 

where the sunlight is focused on thermoelectric elements by using concentrating 

lenses, are successfully demonstrated with a conversion efficiency of 7.4%.[49] So, 

looking at these aspects, it is proposed that the concept of ‘heat to hydrogen’ can be 

successfully implemented in the water splitting units which can make the technology 

as a clean way of hydrogen production. 

6. Summary and Outlook 

The hydrogen production by water electrolysis is very simple and straightforward method. 

Further, the use of waste heat or industrial heat by means of thermoelectric materials would 

have made it popular but, it is not. In reality, the technology has some difficulties and 

therefore there is a less progress and not much increase in the utilization of this very 

interesting method of producing a clean energy. The main reason could be the need of 

continuous external power supply for the water splitting which makes it economically 

inefficient. Further, alkaline based electrolysis technology is the most common and simple 

method for generating hydrogen but also least efficient than recent technologies such as 

proton exchange membrane electrolysis and solid oxide electrolysis cells. However, cost wise 

this is far better than these recent methods. If the water splitting model is hybrid in nature, 



like having thermoelectric generator coupled with it, then the difficulty in extra power supply 

can be resolved. The next question is whether the heat into electricity generation happens 

efficiently in thermoelectric generators? We find that there are some associated problems. As, 

it is mentioned earlier, the generator efficiency mainly rely on the efficiency of 

thermoelectric materials that is the ZT value. The equation (1) which defines ZT, the 

parameters in the numerator are Seebeck coefficient and electrical conductivity and at the 

bottom, we have thermal conductivity. So, clearly, a material with high Seebeck coefficient 

and good electrical conductivity is needed whilst low thermal conductivity. However, all 

these three electronic parameters are so strongly coupled to each other that the enhancement 

in the ZT value cannot easily be achieved. For instance, a good electrical conductor, such as a 

metal, will have very high electrical conductivity but the Seebeck coefficient will be 

negligible, so the S2σ will not be high. The thermal conductivity is also very high which leads 

to a very low ZT value, which means less efficient conversion of heat into electricity. Figure 

16 shows how the Seebeck coefficient and electrical conductivity are coupled in materials.[5]  

 

Figure 16. Variation in the Seebeck coefficient and electrical conductivity with respect to 

charge carrier concentration in thermoelectric materials. Reproduced from Ref. 5. 

This figure shows the variation of Seebeck coefficient and electrical conductivity with carrier 

concentration. If the material is less conducting then Seebeck coefficient is very high and as 



number of carriers increase, there is a fall in the value. Ultimately a high power factor occurs 

for moderately conducting materials, such as some semiconductors or doped semiconductors. 

There therefore must be a trade-off for the application and material choice. The continuous 

scientific efforts have been successful in improving the ZT value by different approaches like 

alloying, doping, nanostructuring, etc. These efforts have helped in reaching a decent value 

that is ZT = 2 to 3, which has been observed in some materials. But, in order to make it 

commercially successful, there is a need of further enhancement of the ZT value. Another 

issue which has received concern is that many of the best thermoelectric materials are not 

cost effective and are toxic in nature.[50] The present commercial thermoelectric generators 

are mainly based on Bi2Te3 and PbTe like materials. This is potentially the main drawback to 

implement technology on a large scale. For example, the element which is a key ingredient in 

successful thermoelectric materials is tellurium (Te). This element is very scarce, toxic and 

even its abundance is less than gold (Au). Nevertheless, new designs to capture heat 

efficiently is also an important need to make the technology more efficient. So, more research 

on finding better materials is a must to make the technology useful. 

 In conclusion, Hydrogen is a green fuel as it only produces water as a by-product 

when combusted. Thermoelectric materials are very essential to make this “heat to hydrogen” 

concept useful, recycling low grade waste heat. However, finding better and less-toxic and 

cost effective thermoelectric materials is very important. There are some difficulties and 

concerns regarding the efficiency and toxicity but, it cannot be just ignored.  
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