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Abstract  14 

Recent studies have highlighted the need to improve our understanding of the relationship between glacial-15 

front bathymetry and oceanography in order to better predict the behaviour of tidewater glaciers. The 16 

glaciomarine fjords of western Svalbard are strongly influenced by temperate Atlantic Water advected from the 17 

West Spitsbergen Current. Marine terminating (tidewater) glaciers locally influence many Svalbard fjords 18 

through fluxes of sediments, nutrients and freshwater, however their response to ocean warming and the 19 

imprint left by their recent retreat on the seabed remains unresolved. Here we present glacial front data 20 

collected by an autonomous underwater vehicle (AUV) from four tidewater glaciers; Fjortende Julibreen 21 

(Krossfjorden), Conwaybreen, Kongsbreen and Kronebreen (Kongsfjorden). The seabed adjacent to the glacial 22 
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terminus has been mapped providing high-resolution bathymetry (0.5m-1.0m grid cell size), side-scan and 23 

photographs with additional simultaneous oceanographic observations. The aim being to survey  the glacial 24 

front submarine landforms, to identify the water mass structure and to observe any melt water plume activity. 25 

The bathymetry data displays a diverse assemblage of glacial landforms including numerous retreat moraines, 26 

glacial lineations, crevasse-squeeze ridges and sediment debris flows reflecting the dynamic depositional 27 

environment of the glacial front. The age of the features and the annual rate of retreat have been estimated 28 

using satellite remote sensing imagery to digitise the glacial front positions over time. The glacial landforms 29 

have been produced by the last few years of retreat as these glaciers gradually become land-terminating. The 30 

AUV also observed in-situ subglacial meltwater plumes at the two most active glaciers (Kongsbreen and 31 

Kronebreen) and an associated signature of warm Atlantic Water occurring at the glacier face. The presence of 32 

relatively warm, oceanic waters enhances subsurface melting, accelerating the ablation rate, while fresh (melt) 33 

water injection at depth influences local water mass structure and the wider fjord circulation. At the glacial 34 

fronts of Kongsbreen and Kronebreen sedimentation from subglacial meltwater plumes dominate the ice-35 

proximal zone and settling from suspension is more prevalent away from the glacier. This study shows how 36 

sensitive dynamic glaciomarine systems are to change in the local marine environment and how the use of 37 

autonomous vehicles can greatly aid in the monitoring of glacial change by collecting simultaneous high-38 

resolution in-situ datasets where vessel based observations are lacking.      39 

 40 

Keywords: Autonomous underwater vehicle, tidewater glacier, meltwater plume, retreat moraines, 41 

Atlantic Water advection. 42 

 43 

Introduction 44 

The Arctic region has undergone significant environmental change over the past decade and will 45 

probably experience the most severe climatic changes on Earth with unprecedented warming leading 46 

to reduced sea ice cover and retreating glaciers (e.g. Boé et al., 2009). Studies from Arctic fjords have 47 

shown how marine-terminating (tidewater) glaciers are influenced by external factors such as 48 
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atmospheric and oceanic warming in addition to glaciological factors and the topography and 49 

bathymetry of the surrounding areas (e.g. Stokes et al., 2014; Jakobsson et al., 2018). Jakobsson et al. 50 

(2018) also highlighted the urgent need to understand seabed bathymetry and processes directly 51 

adjacent to the glacial front in order to improve modelling of glacier dynamics. Fluctuations of glacier 52 

dynamics may not only affect the physical environment, they may also affect the marine ecosystem 53 

including seabirds and marine mammals (e.g. Wlodarska-Kowalczuk et al., 2005; Lydersen et al., 54 

2014). Hence, there is a pressing need to establish a baseline on which to build observations of 55 

further natural environmental fluctuations, such as monitoring changes in tidewater glaciers. In this 56 

study we focus on the tidewater glaciers of the Krossfjorden-Kongsfjorden region (Figure 1). The 57 

distribution and movement of some glacier fronts in the region have previously been mapped using 58 

surface vessels, yet the innermost part of these fjords and the glacier front environments have not 59 

been subject to detailed bathymetric and oceanographic surveys. Given the highly dynamic and 60 

potentially hazardous nature of the calving front of many glaciers, most direct observations have 61 

been made from surface vessels, which for obvious reasons of safety; maintain a safe recommended 62 

distance (typically >200m) (Kohler 2016). The use of an autonomous underwater vehicle (AUV) can 63 

both mitigate this risk and collect high quality data almost directly from the active glacial front 64 

(Dowdeswell et al., 2008b). Luckman et al., (2015) and recently Schild et al., (2018) demonstrate that 65 

the rate of glacial ablation is strongly controlled by ocean temperatures, via the process of submarine 66 

melting and collapse. The investigated tidewater glacier front environments of this study were 67 

chosen to demonstrate a continuum of glacier-ocean scenarios from fully marine to almost land-68 

terminating to represent the present and future of Arctic fjordic glaciers (Figure 1). All four observed 69 

glaciers terminate in the marine environment and some are surge-type, experiencing long periods 70 

(decades) of inactivity followed by shorter periods of rapid flow (Mansell et al., 2012). The surge-type 71 

glacier, Fjortende Julibreen has a grounded shallow, (<50m) water glacier front. Conwaybreen has 72 

now almost retreated entirely onto land whereas Kongsbreen and Kronebreen are both dynamic, 73 

active tidewater glaciers (NSIDC, 2018; WGMS 1989; Figure 1). Very little previous work is available 74 
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on the glacier front environments of Fjortende Julibreen and Conwaybreen (Mansell et al., 2012). In 75 

contrast an extensive literature documents on the behaviour and fjordic environments surrounding 76 

the glaciers in Kongsfjorden (Howe et al., 2003; Svendsen et al., 2002; Machlachlan et al., 2010; 77 

Trusel et al., 2010; Kehrl et al., 2011; Forwick et al., 2015; Luckman et al., 2015; Streuff et al., 2015; 78 

Burton et al., 2016b; Sundfjord et al., 2017; Schild et al., 2018). Previous studies using AUVs to 79 

investigate glacier front environments, including investigating sub-glacial meltwater, have been 80 

carried out in East Greenland (Dowdeswell et al., 2010) and Western Antarctica (Jenkins et al., 2010). 81 

Here we present in-situ AUV observations providing simultaneous bathymetric and oceanographic 82 

data from the inner, previously unsurveyed glacial front environment, including the very recent 83 

glacial terminus. The sea floor in these locations had been a sub-glacial environment as recently as 84 

five years ago (e.g. Schellenberger et al., 2015).  The aim of this study is to determine the 85 

bathymetric setting of the ice proximal environment and where possible, the glacial grounded front, 86 

and to collect simultaneous oceanographic observations in order to better understand the processes 87 

driving retreat.    88 

 89 

Regional and oceanographic setting 90 

The Kongsfjorden-Krossfjorden system is situated on the western coast of Spitsbergen, Svalbard 91 

(Figure 1). The large icefields of Isachsenfonna and Holtedalfonna drain the adjacent landmass 92 

(3074km2) feeding into the fjords through large glacier complexes (Svendsen et al., 2002). Many of 93 

the major terminating glaciers in the region are tidewater glaciers (WGMS, 1989) including 94 

Kronebreen, Kongsbreen, and Conwaybreen. The southern arm of the system, Kongsfjorden, is 95 

~20km long, and varies in width between 4 and 10km and trends east west. The bathymetry of the 96 

fjord is complex, with sills, basins and glacially streamlined exposed rock basement (Howe et al., 97 

2003;  MacLachlan et al., 2010). The investigated tidewater glaciers, Conwaybreen, Kongsbreen and 98 

Kronebreen are situated at the head of Kongsfjorden. The inner part of Kongsfjorden has previously 99 
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been surveyed by Streuff et al., (2015) using a surface vessel thereby restricting any investigations of 100 

the glacier front environments. Of particular note are the bathymetric shallows of the Løvenøyane 101 

islands and the submarine bedrock sill extending both northward and southward from these islands 102 

(see Figure 1 of Streuff et al., 2015). This extended sill system presents a partial restriction to water 103 

exchange between the outer fjord, and inner fjord regions on which this study is focussed. To the 104 

north of Kongsfjorden, Krossfjorden is approximately 30km long and varies between 3 and 6km wide 105 

and trends north east to south west.  Krossfjorden displays a much less variable seabed morphology 106 

than Kongsfjorden, with a large, predominantly flat basin reaching a maximum depth of 375m 107 

(Sexton et al., 1992; Howe et al., 2003). The bay northwest of Fjortende Julibreen on the eastern side 108 

of Krossfjorden had, up to this point, been unsurveyed. 109 

The two main water masses originating outside the study areas are the Atlantic Water (AW) element 110 

of the West Spitsbergen Current (WSC) and Arctic Water (ArW) of the coastal current (Table 1 111 

summarises the water mass definitions). Both these currents flow northwards along the west 112 

Spitsbergen margin, steered by the shelf edge topography (Figure 1). The west-facing Spitsbergen 113 

fjords are adjacent to the WSC, therefore experience a strong influence of warm saline AW, much 114 

more so than any other Arctic fjord (Saloranta and Svendsen, 2001; Cottier et al., 2007). Recent years 115 

have been characterised by an increase in the temperature and frequency of warm AW incursions 116 

into west Spitsbergen fjords, alongside an increase in the temperature of the WSC (Pavlov et al., 117 

2013; Cottier et al., 2007; Nilsen et al., 2016). Due to the dynamic nature of cross-shelf transport, 118 

there is an annual cycle where water of Arctic origin dominates through winter and Atlantic water 119 

dominates through summer (Svendsen et al., 2002; Cottier et al., 2005). Tides are weak in 120 

Kongsfjorden, generally less than 1 cms-1, as are the residual mean currents (Tverberg et al., 2019). 121 

Observational (Inall et al., 2015) and modelling studies (Nilsen et al., 2016; Sundfjord et al., 2017) 122 

show that the most energetic motions in Kongsfjoren are episodic in nature, manifested  in wind-123 

driven exchanges (Sundfjord et al., 2017) or two to four-day period oscillations driven by wind events 124 

outside the fjord (Inall et al., 2015). Though only by a few cms-1 (Tverberg et al., 2019) mean 125 
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circulation of water masses within Kongsfjorden has a larger impact on the fjord circulation than the 126 

meltwater driven estuarine circulation. Even in winter, heat is transported as a heavily modified 127 

water mass into the inner part of the fjord. However, models do suggest that more heat is 128 

transported into the inner fjord during summer, resulting in a larger potential for glacier front melt 129 

(Sundfjord et al., 2017). A recent study of the Kronebreen-Kongsvegen glacier (Meslard et al., 2018) 130 

suggests that the high concentration of suspended sediment discharged in a surface water plume, is 131 

the result of a sub-glacial river. The presence of these focussed, concentrated discharges of 132 

sediment-rich meltwater can strongly influence the ecosystem of the fjord, with subsequent 133 

consequences for the benthos and biogeochemistry of the system.    134 

 135 

Methods 136 

The surveys were conducted between the 27th - 30th of July, 2016 (Fjortende Julibreen) and from 8th – 137 

14th August, 2017 (Conwaybreen, Kongsbreen (north to distinguish this from the glacier’s other 138 

southern branch) and Kronebreen) all from the Norwegian Polar Institute vessel MV Teisten. The 139 

AUV is a Teledyne Gavia Offshore Surveyor ‘Freya’. The vehicle is equipped with a Kongsberg 140 

GeoAcoustics 500 kHz GeoSwath+ interferometric sonar, with a grasshopper benthic camera and 141 

strobe. The 500 kHz sonar was operated at altitudes of 2-10 m above the seafloor, with a 30m range, 142 

providing an approximate object resolution of 0.1m. The AUV has a maximum operational depth of 143 

500m and uses a Kearfott T24 inertial navigation system (INS) providing a navigational accuracy of +/- 144 

0.1% distance travelled (e.g. accuracy of 0.1m per 1km of survey).  In addition to the bathymetry and 145 

side-scan sonar the AUV-mounted camera enabled photographs of the seabed to be obtained in 146 

order to determine the nature of the seabed sediments. At the glacier fronts of Conwaybreen, 147 

Kongsbreen and Kronebreen an Idronaut Ocean Seven 304 Conductivity Temperature and Depth 148 

(CTD) instrument mounted on the bow of the AUV was utilized to collect underway oceanographic 149 

data. Underwater survey progress was monitored using an Ultra-Short Base Line pinger to 150 
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communicate whilst the vehicle was up to 2km away from the surface vessel. Endurance with a single 151 

lithium-ion battery module was 4 hours per survey.  152 

In addition, vessel-based CTD water-column profiles were collected using a YSI CastAway mini-CTD 153 

(Table 2). Measurements of the speed of sound in water were calculated from both the AUV inboard 154 

velocity probe and the full water column measurements of the CTD.   155 

Bathymetric and side-scan sonar data was tidally corrected using a synthetic ‘zero-tide’ application to 156 

reduce surveyed depths to a common datum as no real-time tidal observations were made during 157 

the duration of the surveys. The soundings were corrected using in-situ sound velocity 158 

measurements to correct for water column salinity and temperature artefacts such as refraction. The 159 

data were filtered and cleaned using the learning algorithm in GeoAcoustics GS4 software and 160 

imported into Caris HIPS and SIPS v.9 as a flagged .rdf file. The data were then further cleaned and a 161 

Combined Uncertainty Bathymetric Estimator (CUBE) surface producedwhich had a resolution of  0.5-162 

2m (bathymetry) 0.1m (side-scan), dependent on data density and quality. These surfaces were 163 

exported as geo-corrected rasters into ArcMap v.10. The total combined survey area was 3.18km2 164 

and total survey (bathymetry, photographic and oceanography) duration was ~30hrs over 11 days.  165 

Satellite imagery of the glacier front was obtained from the US Geological Survey Landsat dataset. 166 

Using these images the chronological position of the glacier fronts of the glaciers were digitized from 167 

1976-2017 providing an up to forty-year record of glacier activity with which to inform 168 

interpretations of the bathymetric data. Ice fronts were manually digitized.  169 

Seabed geomorphology was digitized using the editor tools in ArcMap 10.2. Seabed features were 170 

analysed using the bathymetric surface in ArcMap combined with the interactive CUBE surface in 171 

Caris to reduce any azimuth bias and to interrogate seabed features in higher-resolution.  172 

CTD data were processed using Matlab software to generate temperature and salinity plots.   173 

 174 
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Results 175 

Oceanography 176 

The water mass fractions described in Svendsen et al., (2002) and adapted by Cottier et al., (2005) 177 

are used to investigate the origins of fjord water found within the proximal zone of each surveyed 178 

glacier (Table 1). The water masses found within the fjord during this investigation, and defined in 179 

Table 1, are: Atlantic Water (AW), originating from the WSC; Surface Water (SW), fjord water with a 180 

significant freshwater influence; Intermediate Water (IW) formed from the mixing of AW and SW; 181 

and Transformed Atlantic Water (TAW) formed from mixing AW with cold, deep, winter water 182 

(though no winter water was detected in these surveys).  183 

The inner fjord region close to Kronebreen is described first, since that is where both a CTD profile 184 

transect and the AUV-based CTD data is available. To illustrate the layered nature of the along-fjord 185 

water mass structure, the profile transect and AUV CTD data were combined into a single section of 186 

temperature and salinity plotted against depth and range from glacier front (Figure 2). Range is 187 

defined as the perpendicular distance of each data point from a straight line drawn to best-represent 188 

the glacier frontal position at the time of the survey (Figure 3a). Since in reality the glacier front is not 189 

a straight line, there are some negative ranges when the AUV was flown particularly close to the 190 

glacier into regions of ice-front indentation. 191 

This viewing method collapses all the data onto a single x-z plane, which is appropriate (and 192 

standard) for the profile CTD data, but less so for the AUV-based CTD data, which span the along-193 

glacier direction. Nevertheless, by combining these data sources close to Kronebreen the 194 

observations show that the lateral circulation follows a two-layer structure near the glacier face 195 

comprising warmer Atlantic-origin IW flowing towards the glacier, lying beneath outflowing cooler 196 

fresher SW. In the case of Kronebreen, this two-layer circulation structure sits on top of an isolated 197 

pool of TAW, a water mass not observed in the AUV CTD data collected in the vicinity of the other 198 

glaciers.  199 
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There are two processes by which the inflowing IW can be transformed into the cooler, fresher 200 

outflowing SW. 1) Buoyancy injections of turbulent, cold, fresh water at depth (sub-glacial discharge) 201 

lead to entrainment of ambient IW into a rising meltwater plume. 2) Direct contact between IW and 202 

the glacier face both cools the IW and adds fresh water through subsequent melting. The fraction of 203 

SW water created by these two processes may be called Glacially Modified Water (GWM). Surface 204 

run-off is less able to mix directly with IW, since run-off is generally isolated from IW by the GMW 205 

layer. These water masses and processes are illustrated in cartoon form (see Figure 10). Clearly for 206 

this two-layer circulation to occur, the grounding line of the glacier must be deep enough to expose 207 

the glacier front to IW.  Furthermore, if the grounding line is equal to the maximum basin depth, for 208 

example at Kongsbreen, then any deep pool of remnant isolated TAW from the previous winter will 209 

be absent in later summer due to processes 1) and 2) above. Carrol (2017) models the effects of this 210 

fjord-glacier geometry on water mass renewal, concluding that a subsurface buoyancy injection (sub-211 

glacial discharge) is independent of external shelf forcing and leads to deep basin renewal (i.e. 212 

eradication of TAW).  213 

For Kongsbreen and Conwaybreen only AUV-based data are available (no profile data), so 214 

reconstruction of x z-plane sections of T and S in the vicinity of these glaciers were not attempted. 215 

However, the standard method of plotting CTD data in TS space, coloured by range is a more 216 

powerful, if less intuitive way to diagnose both layered circulation patterns, and to discriminate 217 

between melt and discharge transformation of IW. 218 

By plotting the salinity against temperature, with contours of density, it is possible to analyse mixing 219 

lines and determine the origins of each water mass fraction (Figure 3). Applying this methodology to 220 

the AUV CTD data collected near the glacier fronts, two likely mixing lines can be drawn – a blue one 221 

for subglacial discharge, effectively ice cold freshwater (0°C, 0 g/kg), and red one for submarine 222 

meltwater (the so-called “Gade line”) (Gade, 1979), using a theoretical temperature taking into 223 

account the enthalpy of fusion of ice for a polythermal glacier (-83.9°C, and 0 g/kg) (Bartholomaus et 224 
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al., 2013). The cartoons illustrate the influence that grounding line depth and adjacent basin 225 

bathymetry can exert on the local hydrography (see Figure 10), though noting that only the 226 

Kronebreen model is substantiated with full depth CTD profile data. During the 2016 surveys of 227 

Fjortende Julibreen the AUV was not equipped with a CTD, therefore, the  hydrography of that 228 

system is not discussed. 229 

 230 

Kronebreen 231 

Of the four glaciers surveyed, Kronebreen (Figure 3a and d) is the most exposed to Atlantic-origin 232 

water due to the cyclonic nature of the mean circulation in Kongsfjorden (Tverberg et al., 2019). 233 

Perhaps unsurprisingly, therefore, this was the only glacier where AW was observed within the 234 

proximal zone (Figure 3d). A core of warm IW and AW was observed penetrating towards the glacier 235 

front, with fresh, cool SW above and cool TAW below. The origins of the TAW are unknown, but as 236 

the highest density water observed it cannot be a local product of AW/Glacier interaction. Rather, it 237 

is likely the product of AW mixing with a pool of deep winter water at the onset of the seasonal AW 238 

intrusion earlier in the year. TAW remains present because the grounding line depth of the glacier is 239 

shallower than the full basin depth. Any water that is resident below the grounding line depth will 240 

not be subject to entrainment in a meltwater or a sub-glacial discharge plume, thus the TAW remains 241 

unmodified by the glacier and isolated. IW with a maximum temperature of 5.6°C and underlying AW 242 

at ~5°C was found within 100m of the ice face, accompanied by a strong submarine melt signature 243 

(Figure 3d) 244 

At the closest approach of the AUV to the glacier front (20m) a parcel of water at 30-40 m with 245 

T=3°C, S=33 g/kg) is seen (Figure 3d, yellow star). The origin of this water mass could be attributed to 246 

a very large volume of glacial meltwater as it falls along the proposed Gade (red) mixing line. 247 

However, due to the position in space and proximity to the observed active meltwater plume, a fresh 248 

water mixing line (black dashed) can be used to trace this parcel (in TS-space) to the TS properties of 249 
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water present at a depth of 60-70m. This is interpreted as indicating the existence of a submarine 250 

channel at 60-70m depth from which fresh water is discharging. Surrounding waters, including 251 

submarine melt, are entrained into the rising subglacial discharge, and the AUV encountered this 252 

rising plume at 30-40m depth. The presence of shelf water at the face of the glacier indicates a 253 

relatively unrestricted pathway from the shelf to the glacier and further suggests that the restrictive 254 

bathymetry at the Løvenøyane islands is insufficient to prevent inflowing AW.  However, this 255 

restrictive bathymetry could theoretically be buffering the influx of warm ocean waters through 256 

increased mixing between the inflowing AW and the outflowing SW, essentially providing a short-257 

circuit for AW heat to mix into SW without coming into direct contact with the glacier. 258 

 259 

Kongsbreen (north) 260 

Kongsbreen (north) (Figures 3b and e) differs from Kronebreen due to the deep (160m) basin found 261 

at the glacier face. The AUV CTD data reveal a homogenous fraction of IW at depth (highest density 262 

water mass) with no AW or cooler deep water (TAW) present, in contrast to Kronebreen. This 263 

provides further evidence to suggest that buoyancy injection at the base of the glacier are 264 

contributing towards overturning, driving fjord water renewal by entraining and exporting the 265 

ambient fjord waters (IW in the case of Kongsbreen) in a buoyant plume of subglacial discharge and 266 

submarine meltwater. Kongsbreen data also suggest that submarine melt plays the dominant role in 267 

water mass transformation, greater than subglacial discharge. This is evidenced in Figure 3e where 268 

the mixing signature follows the meltwater trend line (the Gade Line), and no direct evidence of sub-269 

glacial discharge is seen in the AUV CTD data. However, the Kongsbreen data also presents evidence 270 

for a plume of submarine meltwater, reaching neutral buoyancy at depth (60m) and being exported 271 

from the glacier face (Figure 3e), suggesting that direct surface runoff has minimal direct interaction 272 

with IW.  The AUV measurements reveal a complex and dynamic structure composed of interleaving 273 

layers of IW and glacially modified IW.  A maximum temperature of 5.5°C was observed in the 274 
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Kongsbreen basin at a depth of 33m. The maximum temperature is lower than that of Kronebreen, 275 

probably indicating that the longer pathway over restrictive bathymetry, associated with northern 276 

limb of the Løvenøyane sill system, is playing a role in reducing IW heat transport to the glacier face 277 

(Figure 10a). 278 

 279 

Conwaybreen 280 

Conwaybreen (Figures 3c and f) is a glacier which has almost completely retreated from the fjord, 281 

though still has some subsurface presence to approximately 10 m water depth. Conwaybreen is 282 

down-stream of the cyclonic path of export waters from Kronebreen and Kongsbreen. Conwaybreen 283 

data show similar signatures to the surface waters of both Kongsbreen and Kronebreen, suggesting 284 

that the accessibility of shelf waters to the three Kongsfjorden glaciers follows a directional hierarchy 285 

of Kronebreen, Kongsbreen and finally Conwaybreen. There is reduced modification from submarine 286 

meltwater compared to the two previous glaciers, consistent with the reduced submarine portion of 287 

the glacier. Figure 3f shows that in TS space; the shape of Conwaybreen data in TS-space trends 288 

toward the fresh water mixing line than either Kronebreen or Kongsbreen, indicating the dominance 289 

of glacial run-off in modifying the water masses. Conwaybreen has a maximum temperature of 5°C at 290 

a depth of 41m. This is an example of a fjord in which runoff water does mix directly with IW (Figure 291 

10c). 292 

 293 

Bathymetry 294 

Fjortende Julibreen 295 

The 1.03km2 AUV survey of the glacially influenced bay in front of Fjortende Julibreen revealed a 296 

seabed composed of a diversity of glacial landforms and sedimentary depositional features (Figure 297 

4). The glacier has presently retreated almost entirely on-shore and is now only partially marine 298 
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terminating. The survey extended from water depths of <3m to 55m deep and came within 200m of 299 

the grounded glacial front. In general, the bay possesses a shallow, presumably depositional, 300 

platform in the north with water depths of <15m. AUV obtained seabed photographs reveal this 301 

region to be composed of mixed sediment dominated by sand and muds (see Figure 8e) with 302 

bathymetry data showing the presence of large (>1m) boulders (see Figure 4c). In the southern and 303 

central regions of the bay, water depths increase to over 50m and the seabed here is much 304 

smoother, being composed of fine-grained sediments. Notable in this area is a <400m wide, arcuate, 305 

linear basin that extends from adjacent to the glacier front and across the bay towards the west. The 306 

entire survey area is dominated by ~30 transverse ridges, which are  more subtle or entirely absent 307 

from the floor of the deeper-water areas.  308 

 309 

Conwaybreen 310 

The Conwaybreen survey, similar to Fjortende Julibreen, reflects the current glacier position, with the 311 

glacier retreated partially onshore onto the land and is therefore no-longer wholly marine 312 

terminating. The seafloor displays a complex of glacial landforms. Most notable are the numerous 313 

(~13 large (>5m high and >100m long) and ~43 smaller (<5m high and <100m long)) transverse ridges 314 

orientated NW-SE, in contrast to the presently N-S orientation of the glacier front (Figure 5). The 315 

smaller transverse ridges are more well-defined and numerous to the north-east of the survey, closer 316 

to the grounded glacier. Bathymetry was collected from an area of 0.48km2 and up to 26m from the 317 

grounded glacier front. Shallowest depths recorded were 5m in the east and the deepest surveyed 318 

point was 54m water depth in the south of the bay (Figure 5). 319 

 320 

Kongsbreen (north) 321 
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Kongsbreen presents an active (i.e. calving), marine-terminating glacial front, when compared to 322 

Fjortende Julibreen and Conwaybreen. In contrast to the complex glacial landforms displayed by the 323 

bathymetric surveys of Fjortende Julibreen and Conwaybreen, the seabed adjacent to Kongsbreen is 324 

dominated by a smooth seabed composed of fine-grained sediments, as photographed by the AUV 325 

(Figure 8g). Bathymetry was collected from an area of 0.39km2. The shallowest surveyed depth was 326 

24m and the deepest 160m. The surveys were obtained to within 15m of the grounded glacial-front. 327 

The region of subglacial discharge, highlighted by Schild et al., (2018) was surveyed by the AUV 328 

(Figure 6).   329 

 330 

Kronebreen 331 

Luckman et al., (2015) report that Kronebreen has the highest glacial flux rate in Svalbard. The 332 

present phase of retreat (~350m per year, Luckman et al., 2015) of the northern Kronebreen front 333 

presents an opportunity to observe the recent seabed exposed from beneath the ice. This annual 334 

retreat rate contrasts with the terminus speed of up to 3-4m per day during the summer (Luckman et 335 

al., 2015). As a consequence of the well-documented dynamism of this glacier the glacial-front 336 

environment of Kronebreen received the most survey time with the AUV-mounted CTD in order to 337 

document and spatially map any sub-glacial meltwaters and advecting AW which could influence the 338 

behaviour of the glacier terminus. Seabed geomorphology adjacent to the glacier is complex and can 339 

broadly be divided into two regions. Northern Kronebreen is an area where an active sub-glacial 340 

meltwater plume is dominant. The meltwater plume was active during the 2017 surveys and has 341 

been reported by Meslard et al., (2018). The seabed in northern Kronebreen here is characterised by 342 

transverse ridges and irregular or hummocky terrain, in water depths of between 40 and 90m. In 343 

contrast, central Kronebreen is characterised by a flatter, smoother seabed in slightly shallower 344 

water depths of between 50 and 60m deep. Bathymetry was collected from an area of 1.31km2 and 345 

up to 20m from the grounded glacier front (Figure 7). 346 
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 347 

Submarine Landforms 348 

Streamlined ridges: ice flow direction 349 

Elongate streamlined ridges, oriented parallel to the fjord axis and perpendicular to the glacial front, 350 

have been mapped principally adjacent to Fjortende Julibreen and Kongsbreen, usually in the central 351 

and deeper part of the bathymetry data, in water depths from 10 to 160m. The ridges are irregularly 352 

distributed, up to 750m long and 10-30m wide, with a tapering shape and a gently declining lee 353 

slope. Subtle streamlined ridges occur in front of Kronebreen associated with the deeper water 354 

region of northern Kronebreen. Most ridges occur on what appears to be soft sediment on the 355 

bathymetry data, although at times they are associated with rough, possibly rocky, knolls at their 356 

glacier-proximal end. Side-scan sonar examples of these streamlined features are shown from 357 

Kongsbreen and Kronebreen in Figure 8. Notably the best preserved streamlined features occur close 358 

(<30m) to the grounded ice margin (e.g. Figure 4 Fjortende Julibreen and 6 Kongsbreen). A region of 359 

well-developed streamlines in front of the ground ice front of Kronebreen coincides with a region of 360 

active ice calving, and is the area identified by Meslard et al., (2018) as being the point of emergence 361 

of  a turbid plume of subglacial meltwater  providing high concentrations of suspended sediments 362 

(Figure 7 and 8).   363 

Elongated streamlined ridges are interpreted to be subglacial lineations, produced by soft-sediment 364 

deformation at the glacier-bed interface (Stokes and Clark, 2002; King et al., 2009; Maclean et al., 365 

2016; Dowdeswell et al., 2016b). During periods of tidewater glacier advance, the upper surface of 366 

the till is molded into a linear shape. Similar lineations are observed on the seabed in many other 367 

fjords in Svalbard (Ottensen and Dowdeswell, 2006; Maclachlan et al., 2010; Flink et al., 2015). Here 368 

lineations are restricted to the deeper parts of the survey suggesting  that they can be either caused 369 

by the presence of a thicker deposit of deformable (presumably fine-grained) sediment or to an 370 

increased preservation potential.  371 



Marine Geology 
 

 372 

Transverse ridges: moraines  373 

Ridges that are transverse to the fjord axis and parallel or subparallel to the glacier margin are found 374 

in all the four study areas. In the bays of Fjortende Julibreen and Conwaybreen these features are the 375 

largest and most common landform and occupy a great portion of the sea floor (Figures 4, 5, 6 and 376 

7). They extend from the northern to southern limit of the bathymetry datasets, probably continuing 377 

over into the unmapped areas. They are sinuous, arcuate features, with asymmetrical profiles -378 

steeper ice-distal sides, that can be more rounded in some cases Figure 4 (profile a-b). The largest of 379 

these are 10m high and ~50m wide (e.g. Figure 4). The spacing between ridges is highly irregular, 380 

varying from 200m to less than 20m, in some examples ridges are superimposed on one another 381 

suggesting a complex depositional history reflecting a dynamic glacial front (Figure 4a). In between 382 

the larger transverse ridges, a series of smaller and shorter transverse ridges, still irregular but more 383 

consistently spaced between one another, occur. The best examples occur in front of Conwaybreen 384 

(Figure 5). These smaller transverse ridges are generally 1-3m high and 2-3m wide, with clearly sharp 385 

peaked, symmetrical crests. These features commonly display a highly pointed arcuate-style planar 386 

morphology with the ridge crest parallel to the glacial front (see Figure 4 and 5). In side-scan sonar 387 

data these features show as more subtle features of moderate backscatter (Figure 8). In front of 388 

Kronebreen and Kongsbreen both styles of transverse ridge are less common when compared to 389 

Conwaybreen and Fjortende Julibreen, those that occur possess a more generally subtle seabed 390 

relief. For Kongsbreen only a few large, discontinuous, fragmentary transverse ridges have been 391 

mapped in the southern part of the bathymetry data (Figure 6). In front of Kongsbreen, low (<10m 392 

high) and thin (~5-30m wide) transverse ridges have been mapped in the central part of the fjord, 393 

and no major transverse features are observed at the south of the survey area (Figure 7). 394 

According to their shape, position and dimensions, the large transverse ridges are interpreted as 395 

retreat moraines (Dowdeswell et al., 2008; Dowdeswell et al., 2016b; Burton et al., 2018a).  These 396 
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could represent glacial still-stands or smaller re-advances during phases of grounded ice retreat. 397 

They result from frontal pushing and extrusion of soft deformable seabed during ice advance and 398 

subsequent settling during stagnation (Boulton et al., 1986). The subtler, smaller transverse ridges 399 

are interpreted as De Geer moraines. These could be the result of seasonal glacial readvances across 400 

the bay (Linden and Möller, 2005; Dowdeswell et al., 2016b). Similar De Geer moraines have been 401 

noted elsewhere from the Kongsfjord-Krossfjord (Howe et al., 2003; Streuff et al., 2015) and the 402 

Scotian shelf (Todd et al., 2007) and as relict features occurring inshore on the UK shelf (Van 403 

Landeghem et al., 2009; Dove et al., 2015; Bradwell and Stoker, 2018). The complex shape is here 404 

interpreted as being the product of a dynamic grounding line beneath the ice with possible 405 

modification by crevasse squeeze and meltwater discharge (Zilliacus, 1989). Flink et al., (2015) note a 406 

similar seabed signature from Tempelfjorden. They interpret such features as crevasse-squeeze 407 

ridges and ascribe them to seasonal glacial winter surging and summer retreat.   408 

 409 

Sediment lobes: debris flows 410 

A series of six overlapping sediment lobes are observed in the southern part of the survey in front of 411 

Fjortende Julibreen (Figure 4c). These deposits extend northwest up to 300m from a rocky outcrop in 412 

the south into the linear basin. They are over 200m wide decreasing to ~50m width away from their 413 

source. These lobes are probably made up of debris flows deposited from the previous (1976; see 414 

Figures 4c and 9)  glacial terminus (Flink et al., 2015; Kristensen et al., 2009; Ottesen et al., 2008). 415 

The curvilinear and overlapping shapes, forming an inverted fan, suggest repeated sediment 416 

deposition from multiple downslope gravity flows. 417 

A second extensive sediment lobe or plateau is observed in the central part of the Kronebreen survey 418 

area (Figure 7). The bathymetry shows a flat, regular seabed, interrupted by small transverse ridges. 419 

This is interpreted as an extensive region of sediment deposition dominated by downslope mass-420 

wasting, principally debris flows, and forming a grounding line fan (Figure 7a). Bjarnadóttir et al., 421 
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(2013) describe the complex of debris flows, smoother seabed and minor moraines as being 422 

indicative of a grounding line zone, the location of static or relatively slow moving submarine 423 

grounded ice.  424 

 425 

Linear furrows and depressions: iceberg plough marks and pits 426 

Numerous linear and narrow grooves are observed in the shallower (<20m) areas of the fjords. These 427 

features typically are <10m wide, 2-5m deep and in some cases, extend for over 0.8km (Figure 8a).  428 

They are only present in softer fine-grained sediment (determined from the AUV photographs) and 429 

are interpreted as iceberg plough marks (Dowdeswell and Hogan, 2016b). Occurring in conjunction 430 

with the linear iceberg plough marks are more irregular, sub-circular or elongate depressions. These 431 

are commonly 5-30m wide and up to 5m deep from the surrounding seafloor (Figure 8a). These 432 

landforms are interpreted as iceberg pits, produced by immobile, grounded icebergs rotating on the 433 

seafloor (Stewart et al., 2016; Dowdeswell and Forsberg, 1992; Streuff et al., 2015). Visible in side-434 

sonar, the linear plough marks are distinguished by having a low-amplitude signal, presenting a 435 

darker backscatter feature, presumably the result of sediments becoming mixed on the seafloor 436 

(Figure 8a).  437 

 438 

Isolated boulders: glacial erratics 439 

Common across the seafloor of the surveys are numerous isolated boulders, some are up to 5m high 440 

and 10m wide (Figure 4b). These are interpreted as erratics deposited on the seafloor either dropped 441 

subaerially from the calving margin, from melting icebergs or transported sub-glacially and left 442 

isolated after ice retreat. The largest mostly occur <0.3km from the ice-front. . 443 

 444 

Satellite observations of glacial movement 445 
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The availability of the satellite imagery (USGS Landsat) enables the digitised position of the glacier 446 

front to be located relative to the AUV bathymetry (Figure 9). This produces an understanding of 447 

both the age of the seabed morphology, a linear distance of glacial retreat and hence an annual rate 448 

of glacial movement to be calculated.  449 

 450 

Fjortende Julibreen 451 

The AUV bathymetric survey covers a portion of seabed which was exposed by the glacier from 452 

~1976 -2011, providing an estimate of the maximum age of the surveyed seabed of ~40 years old.  In 453 

total the glacier front has retreated a distance of 1.3km east southeast from 1976-2016 (Figure 9), No 454 

useable Landsat images were available from 1976 to 1985.  These observations indicate that the 455 

glacier experienced an average annual retreat glacial rate of 32m/yr. Since 2014 the glacial front has 456 

retreated a distance of ~0.6km, at a rate of 150m/yr. Between the years 2014 to 2015 the glacier 457 

experienced a phase of rapid retreat over a distance of ~763m, the furthest distance since 1976. 458 

However the glacier re-advanced ~240m between the years 2000-2002. This phase of active glacial 459 

surging was previously reported by Mansell et al., (2012), who describe the peak of advance as 460 

occurring in 2004. These authors report that this episode of surging ended after 2004, after which 461 

the rate of retreat increased as a function of increased calving rate. From 2002 to 2011, the glacier 462 

underwent a period of retreat, with only minor readvances (e.g. in 2006) including a phase of almost 463 

static activity from 2011-2014 (e.g. the year 2015-2016 shows a minor ~46m readvance) after which 464 

the glacier has been in retreat.  465 

 466 

Conwaybreen 467 

In contrast to the complex glacial dynamism and oldest exposed seabed displayed by the surging 468 

Fjortende Julibreen glacier, Conwaybreen presents a relatively simple recent history (Figure 9). The 469 
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AUV survey area covers a period of 17 years for the period 2000-2017 during which time the glacier 470 

front retreated a total distance of ~0.8km annual glacial rate (advance and retreat) of 47m/yr. The 471 

glacier readvanced ~170m during 2005-2006 followed by the furthest retreat of ~420m in 2006-2007. 472 

Since 2011 the southern region of the glacier has become pinned by a shallow (presently sub-aerial) 473 

rock outcrop and only now experiences retreat from its northern section, where the water is deeper 474 

(~40-50m). As a result the retreat of the glacier front has slowed and rotated in its direction. The 475 

glacial front has changed from retreating from west to east to its present confined north-west to 476 

south-east direction. During 2014-2015 the glacier front experienced a minor readvance of ~57m. 477 

Apart from this minor surge, and possibly as a result of being pinned by bedrock, the glacier has only 478 

retreated ~71m in the last year (2016-2017). 479 

 480 

Kongsbreen 481 

Of the four glaciers studied, the AUV bathymetry collected from Kongsbreen was the closest survey 482 

to the present-day grounded glacial front. However, it covers only the most recent period since 2013-483 

2017 (Figure 9). Kongsbreen has been experiencing retreat since 2011, the glacial front retreating a 484 

maximum distance of ~907m between the years 2011-2013. During the period from 2013-2014 the 485 

glacial front readvanced a distance of ~84m followed by a retreat of a total of ~575m distance 486 

between the years 2014-2017. In summary, the glacial front of Kongsbreen has retreated southeast 487 

1.5km since 2011 providing an annual glacial retreat rate of 250m/yr.  488 

 489 

Kronebreen 490 

The bathymetry collected by the AUV from Kronebreen spans a 6 year period during which the 491 

seabed has been exposed by the retreat of the glacier since 2011 and until the survey in 2017. 492 

Kronebreen is the only glacier examined that exhibited only retreat with no phase of readvance in 493 
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the studied period 2011-2017 (Figure 9). The maximum distance of retreat was during the most 494 

recent retreat between the years 2015-2017 when the glacier front retreated a distance of ~783m. In 495 

contrast, the previous year, 2014-2015 the glacier front retreated only ~64m. Based on these data, 496 

the glacial front of Kronebreen has experienced a total retreat of 1.8km over this period, the largest 497 

distance of consistent retreat of all the four glaciers examined in this study. This provides an annual 498 

rate of glacial retreat of 300m/yr.    499 

 500 

Discussion 501 

Submarine landform and glacier behaviour 502 

The glacial front surveys have shown the capability of an AUV to reveal the presence of very well-503 

preserved submarine landforms adjacent to an active tidewater glacier. In addition the ability to 504 

collect in-situ simultaneous oceanographic measurements from the seabed and water column 505 

provide insights into both the water mass origin and structure, and the behaviour of any subglacial 506 

meltwaters. This study also reveals that the seabed proximal to the grounded glacial front contains 507 

numerous diverse glacial landforms, which otherwise would be hazardous or difficult to survey using 508 

a surface vessel. The principal submarine landforms are;  1) large transverse ridges, which have been 509 

interpreted as moraines, indicating a period of time (‘stillstand’) of reduced glacial activity, producing 510 

focused proximal sedimentation in front of the glaciers. These features, a characteristic submarine 511 

landform in glaciomarine environments, suggest that in all the areas surveyed the ice was wholly 512 

grounded in order to produce the moraines.  2) Numerous smaller, transverse and arcuate ridges, 513 

interpreted as De Geer moraines, possibly modified by crevasse-squeeze ridges. These features 514 

provide an insight into the glacier front dynamism, the result of seasonal glacial movements and the 515 

subglacial deformation of sediment within the crevasses of the active calving margin (Ottesen and 516 

Dowdeswell, 2006; Streuff et al., 2015; Flink et al., 2017; Flink et al., 2015; Dowdeswell and Vásquez, 517 

2013). 3) Glacial lineations, produced by subglacial erosion and deformation of the bed, are notably 518 



Marine Geology 
 

well preserved in the larger, more active glaciers of Kongsbreen and Kronebreen. This suggests that 519 

modification of the subglacial bed is much more pronounced in the larger and in this case mobile 520 

glaciers. Both these glaciers also display the strongest subglacial meltwater signature (with both 521 

glaciers having active meltwater plumes, visible at the surface), suggesting that glacial dynamism is 522 

driven both externally (e.g. by water mass temperature (Luckman et al., 2015 and Schild et al., 2018) 523 

as well as internally, (e.g. such as by the behaviour of the glacier through processes such as surging).  524 

Such lineations form mainly during episodes of surging, (Streuff et al., 2015; Ottensen et al., 2017;). 525 

4) Whilst a minor feature of this study, the presence of mass flow deposits, especially the well 526 

preserved examples from Fjortende Julibreen, indicates unstable sediments becoming remobilized 527 

downslope, perhaps as a result of a high volume of sediment being supplied from the adjacent 528 

grounded ice. This scenario is a well-established feature of models of proximal glaciomarine 529 

deposition (e.g. Powell and Cooper, 2002; Ottensen et al., 2017). The overlapping debris flow lobes, 530 

especially those from Fjortende Julibreen (Figure 4c), are deposited in proximity to larger moraines 531 

suggesting rapid deposition associated with a grounded glacial front (these flows being adjacent to 532 

the 1976 glacial limit). . 5) An abundance of minor submarine features such as glacial erratics and 533 

iceberg plough marks. It is notable that most of these features are confined to the small glaciers, 534 

Conwaybreen and Fjortende Julibreen. Both Kongsbreen and Kronebreen although highly active, are 535 

modifying the proximal seabed by draping from sediment plume deposition (see Meslard et al., 2018) 536 

as well as the seabed being over-ridden and subsequently modified by surging. Iceberg plough marks, 537 

being the product of grounded bergs deforming the seabed they are in contact with, are more 538 

inclined to be preserved in shallower water (<50m), as is certainly the case with Svalbard tidewater 539 

glaciers which calve smaller icebergs in comparison with the substantial glacial front heights of 540 

Greenland or Antarctica (Dowdeswell and Bamber, (2007). The ability of Kronebreen to calve 541 

icebergs with a shallow pits depth was also previously noted by Dowdeswell and Forsberg, (1992).   542 

The complexity and diversity of submarine landforms observed in the zone proximal to the grounded 543 

glacier front suggests that although the depositional models for glaciomarine deposition proposed by 544 
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Ottesen and Dowdeswell, 2006; Ottesen et al., 2008; and Flink et al. 2015 are highly applicable to the 545 

glaciers in this study, there are a number of subtle landforms (e.g. crevasse-squeeze ridges and 546 

streamlines) that, with distance from the glacier, become draped by sediment and preserved. 547 

However many of features are over ridden by glaciers or eroded by currents and are not  preserved.   548 

 549 

Bathymetric controls on oceanographic setting 550 

Previous studies have considered the complex assemblage of submarine landforms in the context of 551 

Svalbard glacier dynamics, in particular the role of surging (Streuff et al., 2015, Flink et al., 2015, 552 

Ottensen and Dowdeswell, 2006; Ottensen et al., 2017). Here we utilizein situ AUV  oceanographic 553 

and bathymetric data in order to provide a comprehensive examination of glacial environment 554 

(bathymetry and water mass) and response. Three models are presented combining the 555 

oceanography with the bathymetric setting (Figure 10). These models, based on AUV observations, 556 

suggest that bathymetry provides a strong control on glacier behaviour, driving the water mass 557 

structure in the glacier front environment. The end-member models (1 and 3) represent a continuum 558 

from a deep grounding line scenario, with warm IW dominating throughout the water column and a 559 

high volume of submarine melting, to a near-surface grounded glacier with circulation driven by 560 

surface water and run-off. In all the models the controlling factor is the near-glacier (~0-10km) 561 

bathymetry of the fjord, which drives the local hydrography and hence circulation. Recent work has 562 

highlighted the significance of local hydrography on glacier calving and hence retreat. Luckman et al., 563 

(2015) present observations of ocean temperature (principally for Western Svalbard, advection of 564 

warm Atlantic Water into the fjord) as driving frontal ablation of glaciers. This process invokes 565 

melting of the ice (undercutting) leading to ice front collapse. Here the rate of frontal ablation 566 

exceeds the net advancing flow of ice and hence leads to glacial retreat. Recent studies, Schild et al., 567 

(2018), Holmes, (2018) reinforce this mechanism but in addition suggests both free convection 568 

(driven by surface water circulation) and meltwater (subglacial) as important contributions to calving 569 
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rate. Both these studies focused on Kongsbreen and Kronebreen and whilst both provide valuable 570 

insights into the driving processes of the local hydrography neither study possessed observations of 571 

the local bathymetry. Two recent studies have suggested similar processes on glacier retreat. It has 572 

been suggested that the bathymetry beneath the Petermann Glacier in Greenland controls the 573 

calving line driving glacial collapse by local subglacial deep water (Jakobsson et al., 2018) and again 574 

from the Pine Island Glacier in Antarctica where the position of the calving line is the product of the 575 

local bathymetry (Arndt et al., 2018). In this study we suggest that bathymetry is an important factor 576 

in helping drive the local hydrography, hence enhancing processes such as submarine melting, 577 

convection and mixing. Figure 10 illustrates cartoons of these processes and uses examples of 578 

glaciers examined in this study. The first model, based on observations from Kongsbreen illustrates a 579 

glacier grounded in the deepest part of a silled fjord. Based on our surveys, the AUV encountered 580 

water depths of 160m directly adjacent to the grounded Kongsbreen glacier. In this model AW is 581 

modified as it enters the fjord and mixes with outgoing SW, and IW is drawn into the basin by the 582 

convection of the meltwater plume. The signature of a fresh, buoyant plume was detected by the 583 

AUV at depth (60m) and again in the surface waters. In this model, submarine melting was the 584 

dominant modifier, while subglacial discharge was also detected. In the model the stratified waters 585 

suggest that perhaps multiple freshwater plumes from glacial melt reach neutral density at different 586 

depths. Model 2 (using the example of Kronebreen), has AW becoming modified as it enters the fjord 587 

and mixing with outgoing SW. The bathymetry adjacent to Kronebreen provides evidence that it is 588 

grounded before a deepening basin and has therefore retreated towards a shallower grounding line. 589 

Due to the open nature of Kronebreen to the fjord, some AW can, within a core of IW, reach the 590 

glacier front. AW at the glacier front can enhance melting, particularly through entrainment in the 591 

subglacial discharge plume, promoting SW flow away from the ice. A pool of dense TAW sits both 592 

beneath the core of IW and beneath the grounding line of Kronebreen where it remains isolated 593 

from the draw of subglacial buoyancy injections. Strong submarine melting associated with the warm 594 

water core is observed and surface water aligns itself with the presence of a subglacial discharge 595 
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plume.  This model, invoking the complex bathymetry of Kronebreen, is referred to as a ‘mid-depth 596 

grounding line’ model. The scenario encountered at Conwaybreen and Fjortende Julibreen is 597 

illustrated by model 3. Here in a ‘shallow grounding line’ model, AW becomes modified by SW as it 598 

enters the fjord. Only a small portion of the glacier sits within the fjord waters and there is no deep 599 

buoyancy injection (c/f Kongsbreen and Kronebeen). The shallow basin holds only predominantly 600 

SW, with IW at depth. The majority of the IW appears to be exported from the glacier as it moves to 601 

exit the fjord. AUV observations of Conwaybreen suggest further modification of IW with fresh run-602 

off from subglacial discharge into the surface waters. Whilst the inferred hydrography and 603 

bathymetry of these models is supported by the near-glacier AUV data, in these scenarios, the 604 

position of the shallow sill is suggested to be the Løvenøyane islands or other inshore restrictions in 605 

the fjord (see Streuff et al., 2015).   606 

Finally, the modern tidewater glaciers of Svalbard, experience phases of retreat and readvance with 607 

subsequent inter-annual seasonal (winter-summer) movement. In addition some Svalbard tidewater 608 

glaciers can experience phases of active surging whereby the glacier front can advance several 609 

kilometres, the glacier becomes heavily crevassed and the rate of iceberg calving subsequently 610 

increases. Of the glaciers observed in this study, only Fjortende Julibreen has displayed this 611 

behaviour in the past. Fjortende Julibreen displays the longest and most complex history with phases 612 

of glacial retreat and readvance, possibly as a result of the longer time-period examined. 613 

Conwaybreen has recently become topographically pinned and displays a record of only very recent 614 

retreat with only minor readvances. Both Kongsbreen and Kronebreen both show the greatest 615 

distance retreated for their respective glacier front positions. 616 

 617 

Conclusions 618 

Autonomous underwater vehicle (AUV) surveys of recently exposed sea floor directly in front of 619 

retreating tidewater glaciers in Kongsfjord-Krossfjord, western Svalbard have revealed submarine 620 
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landforms from which glacial processes have been inferred. In addition underway oceanographic 621 

measurements were collected that has allowed both bathymetric  and hydrographic data to be 622 

collected simultaneously and continuously . The AUV detected active meltwater plumes at two 623 

glaciers; Kronebreen and Kongsbreen indicating that these glaciers, both presently displaying active 624 

retreats, are influenced by local hydrographic conditions. The presence of warm Intermediate Water 625 

of Atlantic origin was detected at both these glacier fronts, perhaps suggesting a mechanism for 626 

melting of the glacier face and hence driving active calving. Conwaybreen is grounded in shallow 627 

water and therefore dominated by glacial run-off, which drives a more estuarine circulation. The 628 

seafloor surveys displayed submarine landform assemblages that indicate the glacial retreat activity. 629 

The seafloor in front of the two most active glaciers, Kongsbreen and Kronebreen display abundant 630 

subglacial lineations, with few moraine ridges identified, reflecting the mobility of the glacial front. 631 

Sediment deposition is interpreted as being directly from settling by active meltwater plumes in 632 

addition to direct modification of the bed via subglacial erosion and mass-wasting. In contrast 633 

Fjortende Julibreen and Conwaybreen display a seafloor dominated by numerous De Geer moraines 634 

and crevasse-squeeze ridges the result of recently wholly grounded ice, now retreated. Utilising 635 

Landsat imagery estimates of glacial retreat were obtained and indicates that Fjortende Julibreen has 636 

a retreat rate of 32m/yr (with periods of surging); Conwaybreen has a glacial rate of 47m/yr, 637 

Kongsbreen 250m/yr and Kronebreen 300m/yr. Three models of proximal glacial environments 638 

based on the AUV observations are proposed, producing a continuum from deep grounding line, with 639 

subglacial melting as a result of direct Atlantic Water influence to a near-complete subaerial 640 

grounding line scenario dominated by run-off and subglacial meltwater.    641 

These observations demonstrate the inter-relationships between bathymetry and hydrography in the 642 

glacial front environment. Bathymetric setting can influence local hydrographic conditions and hence 643 

lead to glacial front melt. Sills within the fjord can promote mixing which although they can protect 644 

the glacier front from direct contact with warming waters, enhances local circulation. Circulation in 645 

front of shallow grounded glaciers can be driven by surface meltwater run-off and hence the glacial 646 
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front is not so vulnerable to oceanic waters. This study highlights the utility of AUVs in the potentially 647 

hazardous proximal glacial front zone of marine terminating glaciers.  Further work using small, 648 

readily deployable AUV’s in the glacier front environment is proposed to continue to monitor 649 

tidewater glaciers in the Polar Regions.  650 
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  Figures 871 

 872 

Figure 1: Location of the Krossfjorden-Kongsfjorden system, Western Svalbard. The AUV surveys are 873 

located at the glacier fronts of Fjortende Julibreen (Krossfjord) (Figure 4) and Conwaybreen (Figure 874 

5), Kongsbreen (Figure 6) and Kronebreen (Kongsfjord) (Figure 7) (insets). Also indicated is the 875 

approximate position of the West Spitsbergen Current (WSC) which strongly influences the marine 876 

environment of the fjords through the advection of warm Atlantic Water. Landsat image of 877 

Kongsfjord and Krossfjord from 2017. 878 

 879 

Figure 2: The Kongsfjord water mass structure, combining profile and AUV CTD data from 880 

Kronebreen into a single along-fjord section of temperature and salinity plotted against depth and 881 

range from glacier front. Range is defined as the perpendicular distance of each data point from a 882 

straight line drawn to best-represent the glacier frontal position at the time of the survey. 883 

 884 
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Figure 3: AUV tracks on Landsat images and Temperature-Salinity (TS) plots from all the AUV 885 

collected CTD measurements obtained in 2017: Kronebreen a) and d), Kongsbreen b) and e), and 886 

Conwaybreen c) and f). Ranging line approximations are coloured green. Contours of density are 887 

depicted with thin black lines and water mass fractions are labelled: Atlantic Water (AW), Surface 888 

Water (SW), Intermediate Water (IW), and Transformed Atlantic Water (TAW). Blue lines (and an 889 

alternate black dashed line) represent the mixing line for subglacial discharge and run-off (ending in 890 

0°C, 0 g/kg), and red lines represent the mixing line (the ‘Gade’ line) for submarine meltwater 891 

production (ending in -83.9°C, 0 g/kg). A yellow star identifies a parcel of heavily modified water in 892 

d), and it’s location in a). 893 

 894 

Figure 4: Fjortende Julibreen AUV-derived bathymetry showing the 1.03km2 survey area and Landsat 895 

image.  Vertical exaggeration is x2 to enhance the seabed morphology. Sun illumination of the 896 

bathymetry is from the north-west. Inset boxes are the location of insets 4abc and the location of 897 

side scan image in figure 8a. The white circle denotes the location of seabed photograph shown in 898 

Figure 8e. Below is the interpreted geomorphology map highlighting the principle submarine 899 

landforms and cross-section a-b. a) Inset of the superimposed transverse moraine ridges and location 900 

of cross-section a-b. b) Inset of the boulders between the moraine ridges and c) Inset of overlapping 901 

sediment debris flows (lobes).    902 

 903 

Figure 5: Conwaybreen AUV-derived bathymetry showing the 0.48km2 survey and Landsat image. 904 

Vertical exaggeration is x2 to enhance the seabed morphology. The zone of grounding on exposed, 905 

subaerial bedrock is also illustrated. Sun illumination of the bathymetry is from the south-west. Insert 906 

boxes are the location of 5ab and the side scan image shown in Figure 8b. Below is the interpreted 907 

geomorphology map highlighting the principle submarine landforms and cross-section c-d over the 908 
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transverse ridges and e-f across the minor transverse ridges. a) Transverse ridges and cross section c-909 

d. b) Minor transverse ridges and cross section e-f.  910 

 911 

Figure 6: Kongsbreen (north) AUV-derived bathymetry showing the 0.36km2 survey and Landsat 912 

image. Vertical exaggeration is x2 to enhance the seabed morphology. Sun illumination of the 913 

bathymetry is from the south-west. The arrow indicates the location of the subglacial meltwater 914 

discharge (after Schild et al., 2018). The insert boxes are the location of the inset 6a and the side scan 915 

image shown in Figure 8c. Below is the interpreted geomorphology map highlighting the principle 916 

submarine landforms and cross-section g-h over the glacial lineations. a) Glacial lineations and the 917 

location of cross section g-h.  918 

 919 

Figure 7: Kronebreen AUV-derived 1.31 km2 survey with Landsat imagery showing the two 920 

contrasting seabed regions, northern Kronebreen characterised by moraines and glacial lineations 921 

and central Kronebreen which is dominated by mass-flows, predominately debris flow lobes, 922 

contributing to the ground line fan. The approximate point of the meltwater discharge noted in 2017 923 

(after Meslard et al., 2018) and the zones of active glacial calving are illustrated. Vertical 924 

exaggeration is x2 to enhance the seabed morphology. Sun illumination of the bathymetry is from 925 

the south-west. Note the numerous linear data artefacts resulting from acoustic scattering of the 926 

sonar signal as the AUV travelled through the sediment-rich meltwater plume. Insert boxes are the 927 

location of insets 7ab and the side scan image shown in Figure 8d. Below is the interpreted 928 

geomorphology map highlighting the principle submarine landforms. a) Shows the detail of the 929 

relatively smooth depositional seafloor of central Kronebreen. b) From northern Kronebreen showing 930 

the meltwater discharge point with numerous transverse ridges, lineations and data artefacts.  931 

 932 
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Figure 8: Examples of side scan sonar imagery of the seabed at the glacier front. Location of the 933 

insets is shown on Figures 4-7. a) Ice-berg plough marks in ~20m water depth from Fjortende 934 

Julibreen. b) Crevasse-squeeze wedge and moraine with recent debris-rich glacial diamict in the 935 

shallow water (~20-50m) adjacent to the grounded glacier, Conwaybreen. c) Glacial lineations and 936 

push moraine ridges, in ~140m water depth, Kongsbreen. d) Numerous glacial lineations and 937 

moraines, in front of the grounding line of Kronebreen in ~80m water depth. The scale bar in all 938 

images is 100m. e) An example of an AUV seabed photograph from Fjortende Julibreen showing 939 

seabed composed of gravelly mud in ~45m water depth. The photograph location is shown as a white 940 

circle on Figure 4.  f) AUV seabed photograph from Conwaybreen showing fine-grained bioturbated 941 

muds in ~50m water depth. The photograph location is shown as a white circle on figure 5.  g) AUV 942 

seabed photograph adjacent to the glacial front of Kongsbreen showing common starfish (Asterias 943 

rubens) on a fine-grained muddy seabed in ~100m water depth. The photograph location is shown as 944 

a white circle on Figure 6.   945 

 946 

Figure 9: Landsat images 2016-2017 with bathymetry and digitised glacial front positions. Landsat 947 

courtesy of U.S. Geological Survey (https://landsat.usgs.gov/). a) Fjortende Julibreen 1976-2016. A 948 

selection of the digitised glacial front positions are shown (1976, 1985, 1986, 1989, 1994, 1999, 2011, 949 

2014 & 2016). b) Digitised glacial front positions for Conwaybreen (2000, 2002, 2005-2007, 2011, 950 

2013-2017). c) Digitised glacial front positions for Kongsbreen (2011, 2013-2017) and d) Digitised 951 

glacial front positions for Kronebreen (2011, 2013-2017).  952 

 953 

Figure 10: Model cartoons illustrating the influence of glacial grounding line depth and ice-proximal 954 

bathymetry has on driving fjordic circulation, based on the AUV observations from the western 955 

Svalbard tidewater glaciers. Water depth is shown on the left hand side of each model, and is based 956 

on data from Forwick et al., (2015).  957 
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Table 1: Definitions for water masses found in Kongsfjorden and on the adjacent shelf.  These 960 

domains are represented in the T-S diagram of Figure 3 961 

 962 
Water Mass  Characteristic 
  T (°C) Salinity (S) Density (σθ) 

External     
Atlantic water AW > 3.0 > 34.65 < 27.92 
Arctic water ArW –1.5 to 1.0 34.30 to 34.80  
Internal     
Winter-cooled water WCW < –0.5 34.40 to 35.00  
Local water LW –0.5 to 1.0 34.30 to 34.85  
Surface water SW > 1.0 < 34.00  
Mixed     
Transformed Atlantic water TAW 1.0 to 3.0 > 34.65 < 27.92 
Intermediate water IW > 1.0 34.00 to 34.65  
 963 
 964 
Table 2: Hand held CTD profile locations for each survey.  965 

Area 
 

Latitude Longitude  Cast 
Depth 

Fjortende Julibreen 79.119 11.898 16m 
79.118 11.903 12m 
79.117 11.906 12m 
79.119 11.906 13m 
79.118 11.906 11m 
79.114 11.890 19m 
79.115 11.882 16m 
79.114 11.905 26m 
79.113 11.894 28m 
79.115 11.889 20m 
79.118 11.907 9m 
79.115 11.939 26m 
79.115 11.939 38m 
79.113 11.936 53m 
79.111 11.934 45m 
79.109 11.932 46m 

Conwaybreen 78.992 12.498 25m 
78.992 12.498 27m 
78.991 12504 26m 
78.988 12.514 30m 

Kongsbreen 78.883 12.562 51m 
78.882 12.580 76m 
78.882 12.567 81m 
78.883 12.559 75m 
78.884 12.553 76m 
78.884 12.555 74m 
78.884 12.552 76m 
78.884 12.547 81m 
78.885 12.541 83m 
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78.885 12.567 27m 
78.870 12.574 73m 
78.870 12.568 27m 
78.988 12.526 37m 
78.966 12.579 132m 
78.970 12.600 86m 
78.959 12.594 87m 
78.964 12.605 134m 

Kronebreen (north) 
CTD transect 

78.883 12.562 51m 
78.882 12.580 76m 
78.882 12.567 81m 
78.883 12.559 75m 
78.884 12.553 76m 
78.884 12.555 74m 
78.884 12.552 76m 
78.884 12.547 81m 
78.885 12.541 83m 
78.885 12.567 27m 
78.870 12.574 73m 
78.870 12.568 27m 
78.886 12.571 56m 
78.888 12.573 40m 
78.885 12.570 70m 
78.885 12.582 24m 
78.884 12.581 70m 
78.884 12.576 58m 
78.886 12.579 53m 

 966 

 967 


