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ABSTRACT 

Cell division, the purpose of which is to enable cell replication, and in particular to distribute 
complete, accurate copies of genetic material to daughter cells, is essential for the propagation of 
life. At a morphological level, division not only necessitates duplication of cellular structures, but it 
also relies on polar segregation of this material followed by physical scission of the parent cell. For 
these fundamental changes in cell shape and positioning to be achieved, mechanisms are required 
to link the cell cycle to the modulation of cytoarchitecture. Outside of mitosis, the three main 
cytoskeletal networks not only endow cells with a physical cytoplasmic skeleton, but they also 
provide a mechanism for spatiotemporal sensing via integrin-associated adhesion complexes and 
site-directed delivery of cargoes. During mitosis, some interphase functions are retained, but the 
architecture of the cytoskeleton changes dramatically, and there is a need to generate a mitotic 
spindle for chromosome segregation. An economical solution is to re-use existing cytoskeletal 
molecules: transcellular actin stress fibres remodel to create a rigid cortex and a cytokinetic furrow, 
while unipolar radial microtubules become the primary components of the bipolar spindle. This 
remodelling implies the existence of specific mechanisms that link the cell cycle machinery to the 
control of adhesion and the cytoskeleton. In this article, we review the intimate three-way 
connection between microenvironmental sensing, adhesion signalling and cell proliferation, 
particularly in the contexts of normal growth control and aberrant tumour progression. As the 
morphological changes that occur during mitosis are ancient, the mechanisms linking the cell cycle 
to the cytoskeleton/adhesion signalling network are likely to be primordial in nature and we discuss 
recent advances that have elucidated elements of this link. A particular focus is the connection 
between CDK1 and cell adhesion. 

INTRODUCTION 

Stromal rigidity and tumour progression 

A defining characteristic of malignancy is the loss of adhesion dependence of proliferation, which 
implies that the mechanisms normally controlling the coordination between adhesion and cell 
division are subverted. In this context, many tumours develop in a highly rigid tissue context, which 
has the potential to interfere with the normally carefully controlled morphological changes that take 
place during mitosis. In particular, the stromal microenvironment of many carcinomas is 
characterised by a dense desmoplastic response and evidence is accumulating for a correlation 
between stromal density and poor clinical outcome [1-3]. This connection is best established in the 
breast, where intermediate and high mammographic density have been linked to a significantly 
elevated risk of local recurrence [4]. A high stromal index in pancreatic and colorectal 
adenocarcinoma also inversely correlates with survival [5-8]. Stratification of human breast, 
pancreatic and colorectal carcinomas according to the gene expression and protein profile of their 



constituent stromal cells is predictive of treatment outcome [9-14]. Mammographic density 
correlates with extracellular matrix (ECM) rigidity [15], and changes in breast tumour- and stroma-
derived ECM components contribute causally to metastatic spread [16].  
 
Stromal rigidity is controlled by a combination of paracrine stimulation of ECM deposition and 
covalent cross-linking [17-21]. A number of the most abundant ECM molecules and ECM cross-
linking enzymes are elevated in tumour stroma and correlate with poor patient prognosis [22-24]. 
Conversely, inhibition or reversal of these changes reduces tumour growth and increases survival in 
animal models, e.g. enzymatic destruction of hyaluronan [25], genetic deletion of the collagen-
binding integrin α11β1 [26], pharmacological inhibition of lysyl oxidase (LOX) [26-31], knockdown of 
tissue transglutaminase [22, 32] and induction of stromal quiescence using the vitamin D receptor 
ligand calcipotriol [33]. Treatment with gemcitabine in combination with hyaluronidase treatment, 
vitamin D receptor agonism or LOX inhibition results in increased overall survival in mouse models 
[30, 34]. Recent studies imply a direct role for the ECM in resistance to small molecule therapeutics 
through effects on stromal fibroblasts [35]. Thus, while it is established that anti-adhesive agents are 
efficacious in conjunction with other treatment regimens [36-42], stromal normalisation offers an 
additional route to therapy. 
 
Transduction of tissue rigidity into intracellular signals by adhesion receptors 
 
At a cellular level, early studies demonstrated that cell shape is directly coupled to cell division and 
fate for fibroblasts, epithelial and endothelial cells [43-49], and gene expression patterns and cell 
phenotype can be altered by choice of adhesive substrate [29, 50, 51]. The mechanical properties of 
the ECM also alter differentiation and morphogenesis in mammary and endothelial cell models [52-
54]. Mesenchymal stem cells are tuned to differentiate in response to the mechanical properties of 
their environment, with flattened cells undergoing osteogenesis and round cells favouring 
adipogenesis [55], and direct presentation of synthetic matrices of increasing rigidity stimulates first 
neuronal, then myogenic and finally osteogenic differentiation [56-60]. Application of external force 
or shear stress also modulates both mesenchymal stem cell [55, 61] and human embryonic stem cell 
fate [62].  
 
Stromal rigidity is primarily sensed by integrin-associated cell-ECM adhesion complexes in vitro and 
in vivo that are distributed focally rather than diffusely [63, 64]. These adhesion nexi transmit short-
range tensile and elastic force across the plasma membrane, and interpret long-range alterations in 
tissue flow [65]. The adhesion nexus functions as a mechanosensitive molecular clutch in 2D and 3D 
ECMs [66, 67]. Data from both literature curation [68-70] and mass spectrometric analysis of the 
adhesion nexus [71-76] demonstrate that a small number of proteins (tens) establish its framework 
and a larger cohort of more transient proteins (hundreds) tune its function to intra- and extracellular 
stimuli [77]. Analysis of the protein-protein interaction network of the adhesion nexus identifies four 
interconnected axes that relay force to the cytoskeleton [73, 75-79]. Candidate sensors of 
mechanical force include LIM domain-containing proteins that bind strain sites in actin [80-83], 
integrins themselves as they form force-stabilised catch bonds that undergo cyclic mechanical 
reinforcement [84, 85], and cytoskeletal adaptors, such as vinculin, talin and p130Cas, which 
undergo force-dependent activation [86-93]. Therefore the composition and physical characteristics 
of the ECM can have profound effects on cellular signalling and behaviour via changes in adhesion 
complex signalling.  
 
Regulation of cell cycle progression by adhesion signalling 
 
For most cells in multicellular organisms, the ECM anchorage dependence of normal cell growth and 
the propensity of tumour cells to evade this requirement have been established for many decades 



(Fig. 1) [94, 95]. During the commitment phase of the cell cycle, sustained adhesion signalling is 
required to initiate DNA synthesis [96, 97] and suppress apoptosis [95, 98]. Integrin-dependent 
signalling is required for cell cycle progression during the G1 phase, in particular the induction of 
cyclin D1 and the down-regulation of cyclin-dependent kinase (CDK) inhibitors [46, 99-101]. There is 
accumulating evidence that extracellular force can feed into cell cycle checkpoints, e.g. a focal 
adhesion kinase (FAK)/Rac signalling module relays force-dependent signals to the G1/S checkpoint 
[100], increased ECM rigidity affects cell cycle progression by activating the Hippo pathway [102, 
103], FAK is required to reorientate the mitotic spindle in response to mechanical compression 
[104], and mechanical stretching drives the ATR kinase to the nuclear envelope where it prevents 
replication errors [105]. 
 
During the replication and division phases of the cell cycle, major changes in cell shape, adhesiveness 
and cytoskeletal architecture are obligatory for chromosome segregation and cytokinesis [106-109]. 
These changes are highly conserved, implying the existence of a primordial regulatory mechanism. 
Across all metazoa, the remodelling events can be so extensive that cells become round and virtually 
lose their adhesion. Despite the risks to tissue integrity, the optimally symmetrical geometry of a 
sphere appears to enable the high degree of precision required for chromosome capture and 
division plane orientation [110-112]. Persistent adhesion and frustrated rounding prolong division 
and increase aneuploidy [113-116]. Aneuploidy is a common feature of human cancer [117, 118], 
suggesting that its origin may be not only genetic, but also due to an aberrant physical 
microenvironment and the ability of cells to interpret this environment via integrin-dependent 
adhesion signalling. 
 
 
LINKS BETWEEN THE CELL CYCLE MACHINERY AND ADHESION 
 
Cell adhesion changes in a cell cycle-dependent manner 
 
Aside from the identification of anchorage-dependent growth in normal cells and the influence of 
adhesion on mitosis, very little is known about how adhesion complexes are regulated during cell 
cycle progression or how adhesion signalling influences the transition between cell cycle phases (Fig. 
1). We have recently demonstrated that, as cells progress through S phase, adhesion complex area 
increases alongside the formation of robust actin stress fibres. Subsequently adhesion complex area 
decreases and stress fibres disassemble when cells enter G2 [119]. These changes in adhesion 
complexes and the cytoskeleton correlate with changes in traction forces observed in cells 
progressing through the cell cycle [120] and with the observation that in epithelial monolayers 
cellular tension is decreased in G2 several hours prior to mitosis [121].  
 
A number of proteins that regulate adhesion complexes and the actin cytoskeleton make key 
contributions to cell division (Fig. 2); for example, the activation of RhoA and the promotion of 
myosin-dependent contractility are required for both mitotic cell rounding and cytokinesis to occur 
[122-125]. Furthermore, formin activity is required to maintain cortical actin in mitotic cells [126]. 
Therefore it is logical for the actomyosin machinery that regulates adhesion complexes to be 
redistributed and recycled for use during mitosis, where generation of a round morphology is critical 
for spindle positioning and chromosome capture [110, 127, 128]. Preventing the reduction in 
adhesion complexes observed in G2 leads to fewer cells entering mitosis and aberrant cell division 
[113, 119, 129], highlighting that these changes in adhesion and the cytoskeleton are key events that 
occur in G2 in preparation for entry into mitosis.  
 
CDK1 regulates cell adhesion 



These observations demonstrate a reciprocal link between the cell cycle machinery and adhesion 
complexes/cytoskeleton. This link from the cell cycle machinery to adhesion complexes is primarily 
mediated by cyclin-dependent kinase 1 (CDK1) [74, 119]. CDK1 is a promiscuous serine/threonine 
kinase that has been shown to phosphorylate a wide range of substrates during mitosis [130, 131] 
and ultimately drive the major changes in cell morphology associated with mitosis. A number of 
known adhesion complex proteins and regulators of the cytoskeleton are phosphorylated by CDK1 
[132-136] and a recent phosphoproteomic study suggested that a high proportion of protein 
phosphorylation sites identified within adhesion complexes may be attributed to CDK1 (185 sites out 
of 1109 detected phosphorylation sites; 16.7%) [74]. These observations are consistent with an 
additional non-mitotic role for CDK1 in regulating adhesion and the cytoskeleton. Consistent with 
this dual function of CDK1 is the identification of the formin FMNL2 as a novel CDK1 substrate that is 
phosphorylated during both interphase and mitosis [119]. Regulation of CDK1 activity and 
association with other proteins such as cyclins therefore represents an elegant solution to the 
question of how changes in adhesion complexes are coordinated with cell cycle progression. The 
ability of CDK1 to maintain adhesion complexes requires cyclin A2 [119, 137], whereas the induction 
of cyclin B1 in G2 led to increased levels of Wee1-dependent inactive cyclin-CDK1 complexes [119, 
138, 139]. CDK1 activity is therefore reduced in G2 and coordinated with induction of cyclin B1 
expression. Upon activation of cyclin B1-CDK1, the first event that occurs in mitotic entry is mitotic 
cell rounding [140], therefore it is tempting to suggest CDK1 has cyclin-dependent effects on 
adhesion complexes. When associated with cyclin B1, CDK1 drives adhesion complex disassembly 
during mitotic entry, but during interphase when associated with cyclin A2-CDK1 promotes adhesion 
complex formation. This hypothesis goes hand in hand with the idea that it is the cyclin that CDKs 
associate with that confers substrate specificity [141-144] and also suggests that the role for CDK1 in 
regulating all stages of cell cycle progression in yeast [145-147] has in part been conserved in 
mammalian cells; in particular, the role for CDK1 in regulating the yeast cytoskeleton [148-153] 
along with entry into mitosis. 
 
Cell adhesion during mitosis  
 
Upon activation of cyclin B1-CDK1 and translocation of this active complex into the nucleus, cells 
disassemble adhesion complexes, round up and enter mitosis. It is established that adhesion 
geometry prior to mitosis can inform the positioning of the mitotic spindle [111] and spatial memory 
between cell generations [154]. Furthermore, integrin-mediated adhesion is important in cytokinesis 
and the respreading and repulsive migration of daughter cells [155-159]. These observations are 
consistent with the presence of a mitotic anchor that stabilises mitotic cells and also provides a 
footprint upon which dividing cells can form new adhesion complexes that facilitate cytokinesis and 
daughter cell respreading.  
 
Much of the previous work on mitotic adhesion has focused on cells dividing on fibronectin and the 
role of b1 integrins that localise to the detached cell cortex [160] and to the cleavage furrow during 
cytokinesis [155, 157-159, 161]. Whilst b1 integrin influences cytokinesis, it is not observed 
interacting with the ECM during earlier stages of mitosis other than in cell ‘tails’ that have not fully 
retracted into the cell body [162]. However, in cells attached to vitronectin or in cell culture dishes 
the integrin aVb5 is preferentially used by cells to mediate cell-ECM attachment [163]. aVb5 is 
found in two distinct structures: classical focal adhesions that are positive for consensus adhesome 
components [77] and associated with actin fibres and novel structures termed reticular adhesions 
[163]. These reticular adhesions form and mediate cell adhesion in the absence of actin fibres and 
talin, and therefore represent a unique mechanism by which adhesion may be maintained during 
mitosis. Indeed, aVb5-positive structures remain associated with ECM during mitotic cell rounding 
where they localise at the tips of retraction fibres and beneath the cell body. These complexes 
subsequently provide a footprint over which daughter cells respread following cytokinesis and 



perturbation of reticular adhesions leads to aberrant cell division due to defects in mitotic axis 
orientation, cytokinesis and respreading [163]. Therefore, aVb5-postive reticular adhesion 
complexes are essential for the normal progression of mitosis in cultured cells. 
 
 
FUTURE DIRECTIONS 
 
Regulation of cell cycle-dependent adhesion transitions 
 
Having established a novel fundamental link between cell cycle progression and cell-ECM adhesion, a 
number of questions are outstanding. For example, how is adhesion complex growth in S phase 
promoted and what is its functional significance? This adhesion complex growth requires cyclin A2, 
so it is logical that it is coordinated with the induction of cyclin A2 expression during S phase [164-
167]. Association of cyclin A2 with CDK1 requires phosphorylation of CDK1 by the CDK-activating 
kinase (CAK) [168], a complex of CDK7 with cyclin H [169], so it is possible that CAK plays a role in 
regulating adhesion complexes. Furthermore, identification of S phase-specific CDK1 
phosphorylation substrates would provide potential mechanisms by which the growth of adhesion 
complexes and induction of actin stress fibres is achieved. One potential candidate for this is the Rho 
GEF GEF-H1, which plays a role in facilitating force transduction through adhesion complexes [170] 
and is also phosphorylated by CDK1 during cytokinesis [171], although given the promiscuity of CDK1 
there are likely to be a host of target proteins that are able to influence this process.  
 
The induction of adhesion complexes and actin stress fibres may subsequently influence progression 
through S phase and into G2 by promoting downstream signalling events that regulate this process. 
For example, the transcription factors YAP/TAZ and SRF/MAL are activated by cellular tension and an 
increase in the F/G actin ratio, respectively [103, 172]. These pathways may therefore be activated in 
S phase to facilitate expression of downstream target genes involved in cell cycle progression. 
Alternatively, these changes in adhesion complexes and actin may influence gene transcription by 
exerting force on the nucleus and altering nuclear mechanics.  Inhibition of FAK kinase activity leads 
to a reduction in cell proliferation [173] and FAK phosphorylation and activation increase as cells 
enter S phase (Jones, M.C., unpublished data); however, how FAK subsequently influences cell cycle 
progression has yet to be determined. It is possible therefore that signalling events activated 
downstream of adhesion complex formation are able to directly influence factors that mediate the 
transition from S into G2. 
 
How cyclin B1-CDK1 drives the disassembly of residual adhesion complexes upon mitotic entry 
remains poorly understood, although a number of adhesion components have been shown to be 
phosphorylated during mitosis [133-136] and, in the case of a-parvin, FAK, paxillin and p130Cas, this 
phosphorylation is reversed following cytokinesis to allow daughter cell spreading [133, 134, 136]. 
This suggests that active cyclin B1-CDK1 undertakes a program of adhesion complex protein 
phosphorylation that drives rapid disassembly. Alternatively, the high activation of cortical RhoA 
downstream of CDK1-dependent Ect2 phosphorylation [125] that drives mitotic cell rounding may 
result in the rapid loss of adhesion complexes. In this regard, it would be interesting to determine 
whether adhesion complex disassembly is still observed in compressed mitotic cells that are unable 
to round up.  Entry into mitosis does not lead to the disassembly of reticular adhesions, so these 
adhesion complexes would appear to be regulated in a different way to focal adhesions; however, 
whether they are altered in a cell cycle-dependent manner has yet to be determined. The balance of 
focal to reticular adhesions may therefore be an important consideration when determining the 
influence of individual adhesion proteins and signalling events to cell cycle progression and the 
accuracy of cell division.  
 



The ‘adhesion checkpoint’ 
 
Ultimately, we hypothesise that cell cycle-dependent changes in adhesion complexes and the 
cytoskeleton are essential for cell cycle progression and division. Disruption of the actin cytoskeleton 
leads to arrest of cells in S phase [174, 175] and increased cell adhesion in G2 leads to fewer cells 
entering mitosis and perturbed cell division [119, 129]. This demonstrates that adhesion signalling is 
able to feed into cell cycle checkpoints and in instances of aberrant adhesion signalling cells are able 
to alter cell cycle dynamics. This is consistent with a recent study identifying cellular tension in 
epithelial layers as being the key determinant of cell cycle phase length [121]. The primary G1/S 
phase checkpoint is characterised by hyperphosphorylation of Rb by cyclin D-CDK4/6 and cyclin E-
CDK2 and activation of E2F-dependent transcription, with members of the INK4 and CIP/KIP CDK 
inhibitor families being able to exert checkpoint control. Non-adherent cells are unable to activate 
cyclin D and cyclin E complexes due to increased levels of p21 Cip1 and p27 Kip1 [176] and 
decreased levels of C-Myc [177] and consequently are unable to progress through S phase. Similarly, 
knockdown of talin-1 leads to reduced proliferation as a consequence of increased p21 expression 
[178] and disruption of the actin cytoskeleton results in retinoblastoma protein (Rb) 
hypophosphorylation. Furthermore, S-phase progression can also be enhanced by increasing actin 
stress fibres as a consequence of disrupting microtubules with nocodazole [179]. Specifically 
perturbing the growth of adhesion complexes seen in S phase may therefore lead to G1/S phase 
checkpoint activation and alter cell cycle progression into G2.  
 
The maintenance of adhesion complexes in G2 perturbs activation of cyclin B1-CDK1 [129] and 
results in fewer cells entering mitosis, suggesting that adhesion signalling is also able to impact upon 
the G2/M checkpoint. Given that increased cell adhesion and perturbation of aVb5-positive mitotic 
adhesion complexes also leads to defects in division orientation and cytokinesis [119, 163], this 
suggests that changes in adhesion signalling may also impact upon the spindle assembly checkpoint 
(SAC) during mitosis. Understanding the cell cycle checkpoint signalling events that are influenced by 
adhesion complex signalling during G2 and mitosis is therefore a key avenue of future investigation.  
Likewise, how other cell cycle regulators are able to influence adhesion complexes and the 
cytoskeleton remains to be determined. Greatwall kinase/MASTL has been identified as a negative 
regulator of b1-integrin function [180]  and p27 Kip1 influences adhesion complexes and cell 
migration via modulation of RhoA activity [181]. Therefore it is likely that the coordination of cell 
cycle control with that of adhesion complexes and the cytoskeleton is complex and multi-layered, 
with a number of proteins being able to influence these processes.  
 
Taken together, these observations suggest that normal cells are able to sense their surrounding 
ECM environment through integrin-associated adhesion complexes and determine whether to 
proceed through S phase or enter mitosis. In this regard, two distinct ‘adhesion checkpoints’ that 
contribute to cell cycle progression are present. In proliferative disorders such as cancer these 
checkpoints are likely to be dysregulated. Changes in ECM composition and stiffness that alter 
adhesion signalling could impact upon the ability of cells to progress through S phase and accurately 
divide, leading to increased aneuploidy and contributing to tumour progression. Reciprocally, 
changes in cell cycle signalling will also alter how cells perceive their ECM environment and could 
therefore impact upon a number of processes linked to tumour progression such as survival, 
invasion and colonisation of metastatic niches. Developing a deeper understanding of this reciprocal 
relationship between cell cycle and adhesion signalling will therefore contribute to our 
understanding of how tumour progression occurs and could also lead to novel therapeutic strategies 
targeting tumour matrix signalling alongside the use of anti-proliferative drugs. 
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FIGURE LEGENDS 
 
Figure 1. Cross-talk between adhesion complexes and the cell cycle machinery 

Progress through S phase is associated with a CDK1-cyclin A2-dependent increase in adhesion 
complex area. Increased expression of cyclin B1 and inhibition of CDK1-cyclin B1 by Wee1/Myt1 
results in a reduction in adhesion complexes in G2 prior to complete loss following mitotic cell 
rounding. Integrin-mediated attachment is required for the G1-S transition via the induction of cyclin 
D1 and cyclin E expression through the signals shown, but it remains unclear how adhesion signalling 
influences the S-G2 and G2-M transitions, and how adhesion complex turnover feeds into the cell 
cycle regulation machinery. 

Figure 2. Examples of adhesion-associated proteins that are reused during mitotic cell rounding 
and cytokinesis 

A number of proteins that regulate the actin cytoskeleton and adhesion complexes also play key 
roles in regulating mitotic cell rounding and cytokinesis. Four groups of proteins are highlighted and 
representative examples are presented in the table above together with key publications [124, 126, 
134, 156, 170, 171, 182-205]. The background colour of the references matches the role of the 
protein in adhesion complex formation, mitotic cell rounding or cytokinesis regulation. The re-use of 
these regulators highlights the fundamental role of crosstalk between the cell cycle machinery and 
adhesion complex signalling. 
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