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Abstract  
This paper develops a novel off-policy Q-learning method to find the optimal observer gain and the 
optimal controller for achieving optimality of network-communication based linear discrete-time 
systems using only measured data. The primary advantage of this off-policy Q-learning method is 
that it can work for the linear discrete-time systems with inaccurate system model, unmeasurable 
system states and network-induced delays. To this end, an optimization problem for networked 
control systems composed of a plant, a state observer and a Smith predictor is formulated first. The 
Smith predictor is employed to not only compensate network-induced delays, but also make the 
separation principle hold, thus the observer and controller can be designed separately. Then, the off-
policy Q-learning is implemented for learning the optimal observer gain and the optimal controller 
combined with the Smith predictor, such that a novel off-policy Q-learning algorithm is derived 
using only input, output and delayed estimated state of systems, not the inaccurate system matrices. 
The convergences of the iterative observer gain and the iterative controller gain are rigorously 
proven. Finally, simulation results are given to verify the effectiveness of the proposed method. 
Key words: Data-driven optimal control, Networked control, Q-learning, State observation 

1. Introduction 
It is well known that networked control systems have attracted much attention by researchers and 

have been applied into wide variety of practical applications, such as industries, unmanned vehicles, 
medical treatment, etc., over the past couples of decades [1-4]. This is because the basic 
characteristics that information and control signals are transmitted via wire or wireless networks 
among sensors, controllers and actuators brings the advantages to control systems, such as low cost, 
reduced weight, easy installation and maintenance. While, the negative impact brought by network-
induced delays and packet losses on performance of control systems inherently exist in networked 
control systems [1-6]. 

For alleviating the above-mentioned negative impact and optimizing the control performance of 
systems, rich achievements have been reported in the fields of control and communication, such as 
handling network-induced delay, packet losses, bandwidth, coding and decoding [1-9], etc. It can 
be noticed that all the above-mentioned approaches have something in common, that is they all 
require the system dynamics to be accurately known a prior. 

Consider the following networked control system 

      1k k k

k k

x Ax Bu

y Cx
  


                               (1)  

and the networked controller  
- kk k du Kx                                      (2) 

where   n
kx x k R  ，   m

ku u k R   and   p
ky y k R   are state, control input and output, 

respectively. k  ( 0,1,2 )k    is the sampling time instant. A , B  and C   are matrices with 
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appropriate dimensions.  kd d k  denote the bounded network-induced delays including the 

transmission delays from the sensor to the controller and the computing time occurred in the 
controller. Without loss of generality, kd  is a nonnegative integer with max0 kd   , and m ax  

is some positive integer [1, 2, 6, 7].         
 For the case that the system matrices A , B  and C  cannot be modelled accurately even they 
are completely unknown, the reinforcement learning (RL) has been widely used to learn the optimal 
controller k ku Kx  for stabilizing and optimizing the control performance of system (1) [10-14]. 

However, network-induced delays and unmeasurable state were not taken into account in these 
results [10-14]. Since the states kx  might be unmeasurable or the cost used for measuring them is 

very high in most of practical control system applications [15-18], such as unmanned vehicles and 
smart grid, etc., and network-induced delays inevitably occur when sending information from the 
sensor to the controller via a network in the above-mentioned practical industries [2, 3, 19, 20], then 
these two problems have to be considered even though it would pose challenge on designing 
controller for system (1) subject to inaccurate system model. 

The most relevant results to our focus are [16, 21-23]. [16] utilized the past inputs and outputs to 
estimate the states and developed a RL algorithm to find the optimal tracking controller for system 
(1) with unknown dynamics. Notice that the algorithms presented in [16] cannot work when the 
network-induced delays occur during sending data from the sensors to the controllers. For systems 
with network-induced delays and unknown system matrices, [21-23] developed RL methods to find 
the optimal controller while assuming all states of systems to be measured, such that performance 
of systems was optimized. 

To our best knowledge, simultaneously handling inaccurate system matrices, unmeasured state 
and network-induced delays for system (1) have rarely been reported up to now. To address these 
challenging problems, this paper will present a novel off-policy Q-learning algorithm to make 
networked control system (1) be optimum by introducing a Smith predictor, designing an observer 
state based optimal controller and doing some appropriate mathematical manipulation. The 
proposed algorithm is implemented using only measured data and independent of the inaccurate 
system matrices A , B  and C . 

The main contributions of this paper are highlighted below: 
1. Usage of Smith predictor for observer-based networked control makes the Separation Principal 

tenable, such that it is feasible to separately solve the optimal controller and the optimal 
observer for networked control systems.  

2. Compared with [16], there are two differences. One is that the states of observer other than the 
past inputs and outputs are used to estimate the states of systems in this paper, thus the 
computation complexity can be reduced to some extent. The other is that network-induced delay 
is compensated in this paper, while [16] neglected the existence of network-induced delay for 
control systems. Notice that [21-23] assumed that states of systems can be measurable. Since 
network-induced delay, unmeasurable states of systems and inaccurate model parameters are 
simultaneously taken into account in this paper, then the proposed optimal control method is 
more general and practical. 

3. A novel off-policy Q-learning algorithm is, for the first time, developed in this paper for 
networked control systems subject to unmeasured states of systems, such that the optimal 
observer and the predicted observer state-based optimal controller can be designed without 
requiring accurate system matrices. 

4. Rigorous proofs are presented to show convergence of algorithms and optimality of the 
proposed state observer and the predicted observer state based controller.  

  The paper is organized as follows. Section 2 formulates an optimal control problem for networked 
control systems with a state observer and a Smith predictor. Section 3 devotes to the optimal 
observer design using the off-policy Q-learning approach. Section 4 presents a novel off-policy Q-
learning algorithm to find the optimal controller. The results of simulations are given in Section 5. 
Section 6 states the conclusions. 
2. Problem Formulation 
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In this section, an optimal control problem of networked control system with the compensation of 

network-induced delays and the state observer is formulated.  

  As shown in Fig. 1, a state observer is put in system (1) to estimate the unmeasured state of the plant. 

Since there exist network-induced delays from the sensor of the plant to the controller, then the estimated 

states will be delayed when they arrive at the controller via the network. A Smith predictor similar to that 

in [21] is presented for compensating the network-induced delays and thus the control input is computed 

using the predicted observer state to enable the closed-loop plant stable and high performance. 

K
ku ky

ˆkyˆkx

ˆ
kk dx 

ˆkx

 
 

Figure 1: The Architecture of networked control system with observer and predictor 

 

The dynamics of the added state observer is given below:  

 
 1

=
k k k k k

k k

ˆ ˆ ˆx Ax Bu L y y

ˆ ˆy Cx
    

                          (3) 

where ˆ kx  and ˆ ky  are states and outputs of the observer, respectively. L  is a gain matrix of the 

observer. Assume that the pair ( , )A B  is controllable and the pair ( , )A C  is observable. The 

controllability and observability of systems can generally be identified in practical applications even 

though system matrices A , B  and C  are inaccurate, such as some industrial control processes, 

unmanned aerial vehicles, etc. [2, 3, 17-20, 24]. This class of systems are what we focused on in this 

paper. 

   Let ˆk k ke x x  , combing (1) and (3) yields the following dynamics of observer error: 

1 ( )k ke A LC e                                     (4) 

Remark 1. From (4), one can find that the error of observer is only dominated by the observer gain L . 

Compared with [16], the observer states instead of the past inputs and outputs are used to approximate 

the states of system (1).  

From Fig. 1, one can see that the observer state ˆ kx  is unavailable at the time instant k  due to the 

network-induced delays, while ˆ
kk dx 

 is available. By (3), one has  
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                               (5) 

Thus ˆ kx  can be predicted according to the most recent observer states by using the novel Smith 

predictor (5). 

  A static feedback controller [25] based on the predicted observer state is chosen as 

               ˆk ku Kx                                    (6)                                  

The target of this paper is to find the controller (6) to stabilize system (1) and minimize the following 

prescribed performance index without use of system matrices A , B  and C . 

0

1

2
T T
k p k k p k

k

J y Q y u R u




                             (7) 

where 
pQ  and 

pR  are respectively positive semi-definite matrix and positive definite matrix. Thus, we 

express the concerned optimization problem in this paper as: 

Problem 1: 

0

1
min

2k

T T
k p k k p k

u
k

y Q y u R u




                                 (8) 

s.t. (1), (4), (5) and (6).   

Since the observer state ˆ kx  can be available at the time instant k  due to the usage of Smith predictor 

(5), the closed-loop system composed by (1), (4) and (6) can be written as an augmented form  

1 0k k

A BK BK

A LC
 

  
   

                                (9) 

where k
k

k

x

e


 
  
 

. 

Obviously, the eigenvalues of the closed-loop (9) are those of A BK  and those of A LC . Thus the 

stability of the observer (3) and the stability and cost (8) of the system (1) are independent, which is the 

Separation Principal. Thus, when solving Problem 1, L  and K  can be separately designed by 

decomposing Problem 1 into two subproblems below: 

Subproblem 1: 

0

1
min

2k

T T
k p k k p k

u
k

y Q y u R u




  

s.t.  

    1k k k

k k

x Ax Bu

y Cx
  


                                     (10) 

k ku Kx  

and  

Subproblem 2: find the observer gain L  for (4) to make lim 0kk
e


 . 

Remark 2. All of the pairs ( , )K L  that can ensure lim 0kk
x


  and lim 0kk

e


  compose the feasible 

solutions to the focused optimization problem (8). Since k ky Cx , then the performance index in (10) 

can be transformed as 
0

1
min

2k

T T
k p k k p k

u
k

x Q x u R u




  , where T
p pQ C Q C . In this sense, Subproblem 1 
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becomes a standard linear quadratic regulation problem, then there exists unique one solution ku  to 

Problem 1 since it is decomposed into separately finding optimal controller ku  and observer.  

Note that Subproblem 1 and Subproblem 2 can be easily solved if system parameters A , B  and C  

are accurately known. But if these system parameters cannot be accurately identified, then the traditional 

model-based observer and controller design method as well as the Smith predictor proposed in this paper 

cannot work. What we are interested in here is to find a data-driven method to solve the above two 

subproblems and implement the proposed Smith predictor using only measured data.  

Before solving Subproblem 1, designing the observer gain L  is going to be the first thing to do. 

3. Optimal Observer Design  

This section is devoted to finding the optimal observer gain L   which minimizes the 

accumulated observer error. The idea of off-policy Q-Learning is used here to present a learning 

algorithm with no deed of accurate system matrices A , B  and C , so that the optimal observer 

gain L  can be found using only measured data.  

   Define an observer policy  

 k k k
ˆw L y y                                  (11) 

then the dynamics of observer error (4) can be rewritten as 
                      1k k ke Ae w                                    (12) 

To obtain the optimal observer, Subproblem 2 is changed into the optimization problem below: 

Problem 2: 

    o o
0

1
ˆ ˆmin

2k

T T
k k k k k k

w
k

y y Q y y w R w




                    (13) 

 s.t. (11) and (12). 

where oQ  and oR  are respectively positive semi-definite matrix and positive definite matrix. If we 

try to find the optimal observer gain L  for Problem 2, then unique one solution can be found since it is 

a standard linear quadratic regulation problem if ˆk ky y  is replaced by kC e . 

 The model-based Q-learning algorithm is first given, then an off-policy Q-learning algorithm is derived 

to find the optimal observer gain using only measured data. 
3.1. Model-based optimal observer design  

Let  k k k
ˆw L y y   be an admissible policy, a value function and an action-dependent Q-function can 

be respectively defined as [2, 26, 27] 

      1
)

2
( T T

i o i i o i
i k

o k e Q eV e w R w




                         (14) 

and  

T T
1

1
( , ) ( ) ( )

2ob k k k o k k o k o kQ e w e Q e w R w V e  
                (15) 

where T
o oQ C Q C . Thus, the following relationship holds 

*

* 1
) min

2

min ( , )

( , )

(
k

k

T T
k i o i i o i

w
i k

ob k kw

ob k k

e e Q e w R w

Q e w

Q e w

V




 





 

                       (16) 
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According to the dynamic programming theory, the Q-function based algebraic Riccati equation 

(ARE) can be derived below 

     

* *
1

* * *
1 1

1
( , ) min ( ) ( )

2

1
( ( ) ) ( , )

2

k

T T
ob k k k o k k o k o kw

T T
k o k k o k ob k k

Q e w e Q e w R w V e

e Q e w R w Q e w



 

    
 

  




             (17) 

From (16), it follows that a unique optimal observer policy should be with the form of 

                         * arg min ( , )
k

k ob k k
w

w Q e w                             (18) 

The following lemma is useful to find the optimal observer policy. 

Lemma 1[27, 28]: For Problem 2, under the admissible policy (11), the value function and the Q-

function have the quadratic forms of  

   1

2
T

o k k o kV e e P e                           (19) 

and 

             1

1

2

T

k k
ob k k

k k

e e
Q e ,w H

w w

   
    

   
                      (20) 

where  

 

1 1
1

1

0 0

0

,ee ,ew

,ww

T T
o

o

H H
H

* H

Q A P A A P

* R P

 
  
 
  

  
 

                       (21) 

1

T

o

I I
P H

LC LC

   
    
   

                           (22) 

where the matrix I  denotes an identity matrix with approximate dimensions. Substituting (20) into 

ARE (17), one has 

   

1 1* *
1 1* * * *

1 1

* *

1* ** *

( )

( )

T T

k k k kT T
k o k k o k

k k k k

T T
k o k k o k

TT

k k

k k

e e e e
H e Q e w R w H

w w w w

e Q e w R w

e eI I
A I H A I

w wL C L C

 

 

       
         

       

 

         
           

         



              (23) 

Based on the necessary condition of optimality [12, 14, 24, 29], implementing 
( , )

0ob k k

k

Q e w

w




  yields   

 
* 1

1, 1,( )T
k ww ew kw H H e                           (24) 

Compared with (11) and (24), one has 

                                 * 1
1, 1,( )T

ww ewL C H H                           (25) 

It means that the optimal observer policy *
kw  can be obtained if the Q-function matrix 1H  is solved 

from (23). To learn 1H , Algorithm 1 is provided. 
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Algorithm 1: Model-based policy iteration algorithm 
1. Initialization: Given an admissible observer gain 0L , and let 0j  , where j  denotes the iteration 

index; 

2. Policy evaluation: Calculate 1
1
jH   with  

   

1
1

1
1

0

0
j o

o

T

j
j j

Q
H

R

I I
A I H A I

L C L C





 
  
 

      
        

      



              (26) 

Iterative ARE equation (26) can be derived from (23) by deleting *[ ( ) ]T T
k ke w  and its transpose from 

the both sides of (23). 

  3. Policy update: 

                        
1 1 1 1

1, 1,( ) ( )j j j T
k ww we kw H H e                                 (27) 

or       

1 1 1 1 1
1, 1,( ) ( ) ( )j j j T T T

ww weL H H C CC                           (28) 

where TCC  is invertible. 

4. Stop when 1
1 1
j jH H    with a small constant   ( 0)  ; Otherwise, let 1j j   and go 

back to Step 2. 

Remark 3. [27, 28] have proven that 1
1 1lim j

j
H H


  and 1 *lim j

k k
j

w w


 . One can find that calculating 

1
1
jH   requires the system matrices A  and C  to be accurately known when implementing Algorithm 

1, while it is natural not to accurately model the system matrices A , B  and C  in real applications 

[13-20, 24].   

  Next subsection will focus on investigating an off-policy Q-learning algorithm to get optimal observer 

for system (1) with inaccurate system matrices A , B  and C . 

3.2. Data-driven off-policy Q-learning for the optimal observer  

Here, we shall introduce two manipulations for reaching the goal of getting the optimal observer policy 

*
kw  using the data-driven off-policy learning approach. One manipulation is to define a virtual Q-

function matrix 1H  satisfied with. 

1 1

0 0

0 0

T
C C

H H
I I

   
    
   

                            (29) 

The other manipulation is to introduce an auxiliary variable 1 T
1, 1,( ) ( )j j j

k ww we kw H H e   into system 

(4), which yields 
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1

j j
k k k k k

j j
k k k k

e Ae w w w

Ae w w w

    

   
                          (30) 

where kw  is called the behavior policy to generate data and j
kw  is viewed as the target policy needed 

to be learned.  

  By Lemma 1 and (29), one has  

                              

0 0
1

0

1

0 0

0 0

T T
o

o

T

Q A P A A P
H

* R P

C C
H

I I

  
  

 

   
    
   



 

   

111 112

1 22

111 112

1 22

0 0

0 0

T

, ,

,

T T
, ,

,

C CH H

I I* H

C H C C H

* H

    
     
    
 

  
 

                     (31) 

Along the trajectory of (30) and refer to (26), one has  

   

  

  

1
1

1
1 1 1 1 1

1
1

1
1

1
1

+

+

T

k kj
j j

k k

T
T j

k k k kj j

T
T

k kj j j
k k k kj j

k k

T

j j j
k k k kj j

T

k k kj
j j j

k k k

e e
H

w w

I I
ˆ ˆy y H y y

L L

e e
H Ae w w w

w w

C C
H Ae w w w

L C L C

e e e
H

w w w




   







   
   
   

   
     

   

   
      
   

   
    

   

     
     
     



 

 

   

   

   

 

1
1

1
1

1
1

1
1

2

( )

2

TT

j

kj
jj

k

T

j j j
k k k kj j

T
Tj j j

k k k kj j

T j T j
k k o k k k o k

T

j j
k k j j

I
A I

L C

eI
H A I

wL C

C C
Ae w H w w

L C L C

C C
w w H w w

L C L C

ˆ ˆy y Q y y w R w

C C
Ae w H

L C L C









  
   

  

    
    

    

   
     

   

   
     

   

   

   
    

  



 

   1
1

j
k k

T
Tj j j

k k k kj j

w w

C C
w w H w w

L C L C





   
     

   

                      (32) 

 Due to (22), (29) and (31), (32) becomes 
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1
1

1
1 1 1 1 1

1 1

1

( )

2 2

( )

2

T

k k k kj

k k

T
T j

k k k kj j

T j T j
k k o k k k o k

T T j j j j j
k o k k k o k k

Tj j j
k k o k k

T j T j
k k o k k k o k

TT T
k k

ˆ ˆy y y y
H

w w

I I
ˆ ˆy y H y y

L L

ˆ ˆy y Q y y w R w

e A P w w w P w w

w w P w w

ˆ ˆy y Q y y w R w

ˆy y




   

 



    
   
   

   
     

   

   

   

  

   

   
  
  

1
1 12

1
1 22

1
1 22

j j
, k k

j j j
k , o k k

T j j
k , o k k

H w w

w H R w w

w H R w w









  

  

              (33) 

Due to (31), one has  

1 1
1, 1,22
j j
wwH H   and 1 1

1, 1,12
j T j
weH C H                      (34) 

Thus, iterative observer policy (27) can be rewritten as 

                1 1 1 1
1,22 1,12 ˆ( ) ( ) ( )j j j T

k k kw H H y y                           (35) 

which indicates  

 1 1 1 1
1 22 1 12= ( ) ( )j j j T

, ,L H H                                 (36) 

Theorem 1 is developed to prove iterative observer policy 1j
kw   (35) is going to converge to the optimal 

observer policy *
kw , i.e. 1 *lim j

k kj
w w


 . 

Theorem 1: If the matrix TCC  is invertible, then there exists unique matrix 1
1
jH  , which satisfied with 

1 1
1 1

0 0

0 0

T

j jC C
H H

I I
    
    
   

                        (37) 

and (33), such that (35) converge to the optimal observer policy, i.e. 1 *lim j
k kj

w w


 . 

Proof: First, we shall prove that if 1
1
jH   is the solution of (33), then the matrix 1

1
jH   derived by 

(37) is the solution of (26). We know k k kˆy y Ce   and the dynamics of ke  is (30). If 1
1
jH   is the 

solution of (33), then 1
1
jH   will satisfy with the form below 
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1
1

1
1

+ -

+ -

T
T

k k k kj j j
k k k k

k k

T

j j j
k k k kj j

ˆ ˆy y y y
H Ae w w w

w w

C C
H Ae w w w

L C L C





    
    

   

   
   

   


 

  

   
   

   

1 1

1

( )

2 2

T j T j
k k o k k k o k

T T j j j j j
k o k k k o k k

Tj j j
k k o k k

ˆ ˆy y Q y y w R w

e A P w w w P w w

w w P w w

 



   

   

  

            (38) 

By (22) of Lemma 1 and from (38), 1
1
jH   defined in (37)makes (26) hold. And then, we shall prove 

that there is only one solution 1
1
jH   satisfied with (33). If there are two different solutions 1

1
jH   and 

1
1

jW   both of which make (33) hold, then we get 1
1
jH   computed by (37) and 1

1
jW   computed by  

1 1
1 1

0 0

0 0

T

j jC C
W W

I I
    
    
   

                      (39) 

Since the matrix TCC is invertible, we have  

1 1
1 1

1 1

0( ) 0 0 ( ) 0

00 0 0

T T T
j jCCC C CC

W W
II I I

 
       

      
      

           (40) 

and 

1 1
1 1

1 1

0( ) 0 0 ( ) 0

00 0 0

T T T
j jCCC C CC

H H
II I I

 
       

      
      

           (41) 

If 1
1
jH   and 1

1
jW   are the same, then 1

1
jH   and 1

1
jW   are equal. So the distinct 1

1
jH   and 1

1
jW   

satisfy (26). However, there is only one solution of (26) for Problem 2. By contradiction, there is only 

one solution of (33). Due to (34), one has 

1 1 1 1 T
1,22 1,12

1 1 1
1, 1,

ˆ( ) ( ) ( )

( ) ( )

j j j
k k k

j j T
ww we k

w H H y y

H H e

   

  

  

 
                      (42) 

Since 1 1 1 1 *
1, 1,lim lim{ ( ) ( ) }j j j T

k ww we k k
j j

w H H e w   

 
   ,  then iterative observer policy 1j

kw   (35) 

converges to the optimal observer policy *
kw . This completes the proof.                       ■ 

Remark 4. Theorem 1 shows that learning *
kw  by solving 1

1
jH   from (33) requires the reversibility 

of TCC . If the matrix C  is full row rank then TCC  is invertible. Here, we require the matrix C  

can be identified is invertible or not based on the practical application, even it is inaccurate. 

Let 
ky k k

ˆe y y  , (33) can be further rewritten as 
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  1( ) jj j
o kk h                                 (43) 

where  

k k

T T
y o y k o k

j
k e Q e w R w  , 

T1 1 1 1
1,11 1,11 1,22( ( )) ( ( )) ( ( ))j j T j T j T

oh vec H vec H vec H       , 

                   1 2 3( )j j j jk       ,
 

  
   

   
   

1 1

1 1

1 1

1

2

3

4 2 2

2

k k k k

k k k k k

k k

k k

T T T T
y y y y

T TT T j T j
y k y y y y

T TT T j j
k k y y

T Tj j
y y

j

j

j

e e e e

e w e L e e L e

w w L e L e

L e L e







 

 

 

  

    

 

 

 




                 (44)

 

 Algorithm 2 is presented to learn 1
1
jH   . 

Algorithm 2: Off-policy Q-learning algorithm 

1. Data collection: Choose an arbitrary admissible observer policy as a behavior policy kw , system 

data 
kye  are collected and stored in the sample sets ( )j k  and j

k ; 

2. Initiation: Choose an initial gain 0L , such that 0 0
kk yw L e  makes (4) stable. Let 0j  ; 

3. Implementing off-policy Q-learning: By using least squares methods for (43), 1
1
jH   can be 

estimated using the collected data in Step 1, and then 1jL   can be updated in terms of (36); 

  4. If 1j jL L   
 

(   is some small positive numbers), then stop the iteration and the optimal 

control policy has been obtained; Otherwise, let 1j j   and go back to Step 3. 

Remark 5. Different from [16] where the past inputs and outputs are used to estimate the states of 

systems, a state observer is employed in this paper, such that the unmeasured states can be approximated 

by the observer states. Introducing of the matrix 1H  makes it possible to learn the optimal observer 

gain using only measured data. It is worth pointing out that it is the first time to design optimal observer 

by using a way that is independent of the system matrices A , B  and C , except for requiring TCC

to be invertible.  

Remark 6. If a proportional and integral observer is employed instead of proportional observer (3) for 

estimating the state of discrete-time linear system (1), then it is potential that the optimal observer policy 

with proportional gain and integral gain can be learned by using the proposed data-driven off-policy Q-

learning method since the separation principle still holds for the case of proportional and integral (PI) 

observer state-based feedback control for linear systems [30, 31]. 

4. Optimal Controller Design 

In this section, we shall solve Subproblem 1 to find the optimal control policy using only measured 

data. 
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4.1. On-policy Q-learning for the optimal controller  

Let k ku Kx  be an admissible control policy. For solving Subproblem 1, a value function and an 

action-dependent Q-function can be respectively defined as [2, 26, 27] 

  1
)

2
( T T

i p i i p i
i k

k y Q y uV u Rx




                    (45) 

and  

       1

1
( , ) ( ) ( )

2
T T

k k k p k k p k kQ x u y Q y u R u V x             (46) 
Thus, the following relation holds  

*

* 1
) min

2

min ( , )

( )

(

,

k

k

T T
k i p i i p i

u
i k

k ku

k k

x y Q y u R u

Q x u

Q x u

V




 







             (47) 

   According to the dynamic programming theory, the Q-function based ARE can be derived below 

     

* *
1

* * *
1 1

1
( , ) min ( ) ( )

2

1
( ( ) ) ( , )

2

k

T T
k k k p k k p k kw

T T
k p k k p k k k

Q x u y Q y u R u V x

y Q y u R u Q x u



 

   


 





          (48) 

From (47), it follows that the optimal control policy should be with the form of 

                         * arg min ( , )
k

k k k
u

u Q x u                            (49) 

The following lemma is useful to find the optimal control policy. 

Lemma 2 [27, 28]: For Subproblem 1, under the admissible policy k ku Kx , the value function and the 

Q-function have the quadratic forms of  

    2

1
)

2
( T

k x kV x P x k                            (50) 

and 

            2

1

2

T

k k
k k

k k

x x
Q x ,u H

u u

   
    

   
                         (51) 

where 

  

2, 2,
2

2,

2 2

2 2

*
xx xu

uu

T T
p

T T
p

H H
H

H

A P A Q A P B

B P A B P B R

 
  
 
 

  
  

                     (52)                      

                        2 2

T
I I

P H
K K

   
    
   

                               (53) 

where 2 2 0TP P   and T
p pQ C Q C . 

  Substituting (51) into ARE (48), one has 
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1 1
2 2

1 1

= ( ) +
T T

k k k kT * T *
k p k k p k* * * *

k k k k

x x x x
H y Q y u R u H

u u u u
 

 

       
       

       
               (54) 

Based on the necessary condition of optimality, implementing 
( , )

0k k

k

Q x u

u




  yields   

   1*
2, 2,k uu ux ku H H x


                          (55) 

Since k ku Kx , one has 

                                   1*
2, 2,uu uxK H H


                           (56) 

Theorem 2: If   1*
2, 2,uu uxK H H


   and 2H  makes ARE (54) hold, then * ˆ=k ku K x  is the optimal 

control policy for Problem 1. 

Proof: Note that   1*
2, 2,uu uxK H H


   is the optimal controller gain of Subproblem 1. From (9), the 

performance index (8) of system (1) is only affected by controller gain K  which is independent of 

the observer gain L  in terms of Separation Principle. And the performance index in Problem 1 is the 

same as that in Subproblem 1. Therefore * ˆ=k ku K x  can minimize the performance index in Problem 1. 

This completes the proof.                                                            ■ 

  The optimal controller gain *K  can be obtained if the Q-function matrix 2H  is solved from (54). 

To learn 2H , Algorithm 3 is provided by referring to [11, 12, 27, 28]. 
Algorithm 3: On-policy iteration algorithm 

1. Initialization: Given stabilizing controller gain 0K , and let 0j  , where j  denotes iteration 
index; 

2. Policy evaluation by solving Q-function matrix 1
2
jH  : 

1
2

1 11
2

1 1

= ( )

+

T

k kj T j T j
k p k k p kj j

k k

T

k kj
j j

k k

x x
H y Q y K x R K x

K x K x

x x
H

K x K x



 

 

   
   

   

   
   
   

            (57) 

where 1
j

k k kx Ax BK x   . 

  3. Policy update: 

                             11 1 1
2, 2,

j j j
uu uxK H H

                              (58) 

4. Stop when 1
2 2
j jH H     with a small constant   ( 0)  ; Otherwise, let 1j j   and go 

back to Step 2. 

Remark 7. [27, 28] have proven 1
2 2lim j

j
H H


 ( 2H  in (54)) and 1 *lim j

j
K K


 if online 

implementing algorithm 3. It is worth pointing out that Algorithm 3 does not need to know the system 

matrices A , B  and C , but the states kx  should be measurable when solving 1
2
jH   in (57). 
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However, the network-induced delay and indirectly measured state make state kx  unavailable. Even 

though state kx  is actually replaced by the predicted kx̂  at the time instant k , it is impossible to 

predict the observer states kx̂  in (5) without knowing the accurate system matrices A  and B . 

Therefore, Algorithm 3 cannot work for learning the optimal controller gain *K  at this situation.  

For overcoming these obstacles, we shall develop an off-policy Q-learning algorithm. First, let us 

analyze the controller in the networked control system in Fig. 1. 

According to the different cases of network-induced delays, a new variable  z k  is defined 

correspondingly using the similar way to [21].    

Case 1:  If =0kd , then 

 
maxmax

max

1

ˆ[ 0 ... 00 ... 0

0 ... 0 ]

T
k

T

z k x






 


                        (59) 

Case 2: If =1kd , then 

 
max max

max

1 1

1

1

ˆ[0 ... 0 ... 0

... 0]

T T
k k

T T
k

z k x u

Le

 



 








                      (60) 

... 

Case max 1  : If maxkd  , then 

  

 
max max

max max

max

max

1

1

1

ˆ[0 ...

... ]

T T T
k k k

T T T
k k

z k x u u

Le Le

 

 





  



 

 



                     (61) 

Referring to Smith predictor (5), the predicted observer state can be rewritten as 

 ˆk kx Mz                                    (62) 

where max
1 2 1[ ]M M A M M , max 1

1 [ ]M I A A   , max 1
2 [ ]M B AB A B   . Then, the predicted 

observer state-based feedback controller in Fig. 1 is in fact  

                    ˆk k ku Kx Kz                                (63) 

where K KM .  

Now, we are in the position of finding  *K  which satisfies * *K K M . Here, another new variable 

 ẑ k  is defined as: 

Case 1:  If =0kd , then 

 
maxmax 1

ˆ [ 0 ... 00 ... 0]T T
kz k x

 

                    (64) 

Case 2: If =1kd , then 

 
max max

1 1

1

ˆ [0 ... 0 ... 0]T T T
k kz k x u
 

 



                 (65) 

... 

Case max 1  : If maxkd  , then 
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max max

max max

1

1

ˆ [0 ... ]T T T T
k k kz k x u u 

 

  



 


                 (66)  

Similar to the derivation of (5), one has ˆ ˆk kx Mz , where max
1 2

ˆ [ ]M M A M . In terms of the 

definitions of M  and M̂ , one can find  

                  1 2
ˆ ˆ ˆ ˆ[ 0]M MI I M                              (67) 

where 1̂ [ 0 0]TI I  and 2̂ [0 0 0 ]I I . Let * *ˆ ˆK K M , then   

 * * * *
1 2

ˆ ˆ ˆ ˆ[ 0]K K M K I I K                         (68) 

So, if *K̂  can be learned even though the system matrices A , B  and C  are inaccurate or unknown, 

then *K  can be obtained for systems with the inaccurate system matrices A , B  and C . 
  Next, an off-policy Q-learning algorithm is present to learn *K̂  in subsection B. 

4.2. Off-policy Q-learning for the optimal controller  

  Introducing an auxiliary variable j
kBK x  into system (1) yields  

 
   

1

ˆ ˆˆ ˆ

j j
k k k k k

j j
k k k

x Ax BK x B u K x

A BK Mz B u K Mz

    

   
                     (69) 

where ku  is called as the behavior policy to generate data and ˆ ˆj j
k kK x K z  ( ˆ ˆj jK K M ) is viewed 

as the target policy needed to be learned.  

   Actually,  (57) is equivalent to the form below 

1
2

1
2

= ( )

+( ) ( )

T

j T j T j
p k pj j

T

j T j j
j j

I I
H C Q C K R K

K K

I I
A BK H A BK

K K





   
   

   

   
    

   

                (70) 

   Along the trajectory of (69), one has  

1
2

1
1 2 1

T

T j
k kj j

T

T j
k kj j

I I
x H x

K K

I I
x H x

K K




 

   
   
   

   
    

   

  

  

  

1
2

1
2

T

T j
k kj j

T
T

j j
k k k k j

j j j
k k k kj

I I
x H x

K K

I
Ax BK x B u K x

K

I
H Ax BK x B u K x

K





   
    

   

 
     

 
 

   
 



                 (71) 

  Due to (70) and ˆ ˆk kx Mz , (71) becomes 
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1 11 1

2 2+1 +1
+1 +1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

T T

k k k kj j

j j j j
k k k k

z z z z
H H

K z K z K z K z

         
       

       
           

        1
2

1
2

ˆ ˆ0
ˆ ˆ0ˆ ˆ

ˆ ˆ2 ( ) ( )

ˆ ˆˆ ˆ( ) ( )

T T
k kp

j j
pk k

T

T j T j j
k k kj j

T

j T T j j
k k k kj j

z zM Q M

RK z K z

I I
x A BK H B u K z

K K

I I
u K z B H B u K z

K K





    
     

     

   
     

   

   
     

   



             (72) 

where  

1 1
2 2

ˆ ˆ0 0

0 0

T

j jM M
H H

I I
    
    
   

                        (73) 

By Lemma 2, one has 

    

T 1 T 1
2 21

2 T 1 T 1
2 2

T 1 T 1
2 2

T 1
2

1 1
2, 2,

1
2,

ˆ ˆ0 0

0 0

ˆ ˆ ˆ( )

*

*

T j j
pj

j j
p

T j T j
p

j
p

j j
zz zu

j
uu

A P A Q A P BM M
H

B P A B P B RI I

M A P A Q M M A P B

B P B R

H H

H

 


 

 



 



    
          

 
  

  
 

  
  




          (74) 

and 

1
2

1

1 1
2, 2,

ˆ ˆ2 ( ) ( )

ˆ ˆ ˆˆ ˆ2 ( ) ( )

ˆ ˆˆ ˆ ˆ2 ( ) 2 ( )( )

T

T j T j j
k k kj j

T j T j j
k k k

T j j j j j
k zu k k k uu p k k

I I
x A BK H B u K z

K K

z AM BK M P B u K z

z H u K z u H R u K z





 

   
     

   

   

     

             (75) 

and 

1
2

1
2

1
2,

ˆ ˆˆ ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( )( )

T

j T T j j
k k k kj j

j T T j j
k k k k

j T j j
k k uu p k k

I I
u K z B H B u K z

K K

u K z B P B u K z

u K z H R u K z







   
     

   

   

    

                 (76) 

Thus, (72) becomes 

1 11 1
2 2+1 +1

+1 +1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

T T

k k k kj j

j j j j
k k k k

z z z z
H H

K z K z K z K z

         
       

       
                       

   1 1
2, 2,

1
2,

ˆ ˆˆ ˆ0
ˆ ˆ0ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ2 ( ) ( ) ( )

( )

T T
k kp

j j
pk k

T j j j T j j
k zu k k k uu p k

T j
k uu p k

z zM Q M

RK z K z

z H u K z K z H R K z

u H R u

 



    
     

     

   

 



           (77) 

Further, (77) can rewritten as 

1( ) jj j
c kk h                                  (78) 

where  

T T
k p k k

j
k p ky Q y u R u  , 
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T1 1 T 1 T 1 T
2, 2, 2,( ( )) ( ( )) ( ( ))j j j j

c zz zu uuh vec H vec H vec H       , 

1 2 3( ) ( ) ( ) ( )j j jj k k k k       ,                       (79)
 

   
 

   

1 1

1

1

2 +1

+3 1 +1

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ2

ˆˆ ˆ

( )

( )

( )

2

ˆ ˆˆ ˆ

T T T T
k k k k

T TT j T j
k k k k

TT j
k k k

T TT T j j
k k k k

j

j

j

z z z z

z K z z K z

z u K z

u u K z

k

zk K

k





 



  

    
 

  

  







 

Theorem 3: There exists a unique matrix 1
2
jH   which satisfied with (78), and ˆ jK  converges to *K̂  

as j  . 

 Proof: Because there exists a unique solution 1
2
jH   to (70), there exists a matrix 1

2
jH   that makes 

(78) by the derivation of (78) from (70). Now, the uniqueness of solution to (78) is going to be proved. 

Assume there are two distinct solutions 1
2
jH   and 1

2
jW   to (78), from (73), one has two distinct 

matrices 1
2
jH   and 1

2
jW  . By contradiction, there is only one solution 1

2
jH   to (78).  

By (58) and (68), one has  

  11 1 1 1
2, 2,

ˆ ˆ ˆj j j j
uu uxK K M H H M

                              (80) 

By Lemma 2, one has 

1 1
2, 2,1

2 1
2,

T 1 T 1
2 2
T 1 T 1

2 2

*

j j
xx xuj

j
uu

j j
p

j j
p

H H
H

H

A P A Q A P B

B P A B P B R

 




 

 

 
  
  

 
  

  

                        (81) 

Compared (74) with (81), it is not difficult to find  

1 1
2, 2,

ˆj j
zu xuH MH   and 1 1

2, 2,
j j
uu uuH H                      (82) 

Then (80) becomes  

  11 1 1
2, 2,

ˆ j j j
uu uzK H H

                            (83) 

and  

 

  
  

11 1 1
2, 2,

11 1
2, 2,

* *

ˆlim lim

ˆlim

ˆ ˆ

j j j
uu uz

j j

j j
uu uxj

K H H

H H M

K M K

  

 

 



 

 

 

                      (84) 

This completes the proof.                                                            ■ 
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If *K̂  can be found by learning 2H , then * * *
1 2

ˆ ˆ ˆ ˆ[ 0]K K I I K   can be calculated. The 

approximate optimal control law * * * ˆ=k k ku K z K x  can be derived for Problem 1. To learn 1
2
jH  , 

Algorithm 4 is presented as follows: 

 Algorithm 4: Off-policy Q-learning algorithm for learning 1
2
jH   

1. Data collection: Choose a behavior policy ku  and a behavior observer policy kw  to act the plant 

and the observer in Fig. 1. When ˆ
kk dy   approaches the output 

kk dy   of the system as close as it 

can, 
kk dx   in ˆkz  is replaced by ˆ

kk dx   and store ˆkz  and ku  in the sample sets j  and j
k . 

The system data 
kye  are collected and stored in the sample sets ( )j k  and j

k ; 

2. Learning the optimal observer gain: Implementing step 2-step 4 in Algorithm 2 to find the 

approximately optimal observer gain;  

3. Learning *K̂ : 

3.1 Choose the initial stabilizing gain 
0K̂  and let 0j  ; 

3.2 By using the least squares method, 1
2
jH   in (78) can be estimated using the collected data in 

Step 1, and then 1ˆ jK   can be updated in terms of (83); 

3.3 If 1
2 2
j jH H   

 
( 0  ), then stop the iteration and *K̂  can be estimated by 1ˆ jK  , thus 

*K  can further be calculated (68); Otherwise, let 1j j   and go back to Step 3.2. 

Remark 8. As shown by the proof of Theorem 2 and the derivation of (78) and (83), Algorithm 4 used 

for learning *K̂  is proposed, such that *K  can be finally calculated just with the help of (57) and (58) 

in Algorithm 3.  

Remark 9. For system (1) subject to inaccurate system matrices, network-induced delays and 

unmeasured states, the optimal observer gain and the optimal controller gain can be found by 

implementing Algorithm 4 using only measured inputs, outputs and observer errors, not system matrices  

A , B  and C . This is different from [10-14, 22, 26-29] without consideration of network-induced 

delays and unmeasurable states, and [21, 23] where states of systems are assumed to be measurable. 

Moreover, it worth pointing out that until now it has not been reported about off-policy Q-learning 

algorithm used for solving optimal controller for networked control systems with accurate model 

parameters, network-induced delay and together with unavailable sates information. 

Remark 10. Notice that the number of unknown elements in the iterative matrix 1
2
jH   is 

max max( ( 1) ( 1) 1)m n       max max( ( 1) ( 1)) / 2m n     in (78). If no network-induced delay 

is considered, then it is ( 1) ( ) / 2m n m n    . While, the number of unknown elements of the iterative 

matrix 1jP  in [16] without network-induced delay is ( ) ( 1) / 2Nm Np Nm Np      

( , 1)Np n N  . So, the computational complexity is less than the method in [16].  
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5.  Simulation Results  

In this section, the proposed off-policy Q-learning algorithm for predicted observer state based 

feedback control of system (1) is verified respectively for systems with and without network-induced 

delays. Moreover, simulations show the efficiency of the designed observer and predictor for alleviating 

the negative influence of network-induced delays on the control performance of systems.   

   Consider the following discrete-time model of F-16 aircraft autopilot [27, 28]: 

1

0.906488 0.0816012 0.0005

0.074349 0.90121 0.000708383

0 0 0.132655

0.00150808

0.0096

0.867345

k k

k

x x

u



 
   
  

 
   
  

                 (85) 

1 0 0

2 1 1

1 0 3
k ky x

 
   
  

 

Choose 1 2 diag(10,10,10)Q Q  , 1 diag(1,1,1)R   and 2 1R  . 

5.1. Model-based the optimal observer and the optimal controller  

Using the command "dare" in Matlab yields the optimal Q-function matrix *
1H  and the optimal 

observer gain *L C  in terms of (21) and (24). Further, *
1H  can be calculated by (29). 

*
1

21.4051 1.2230 0.4671 15.8013

1.2230 22.0225 3.4352 23.1629

0.4671 3.4352 11.1489 5.5249

15.8013 23.1629 5.5249 61.7846

0.0737 11.2431 3.3115 20.1982

19.8418 13.0895 0.0488 50.0020

0.0737 19.8418

11.2

H


  
 

  
 

  


 431 13.0895

3.3115 0.0488

20.1982 50.0020

11.6467 9.9968

9.9968 101.0173


 







                 (86) 

 and the optimal observer gain 

     *

0.8539 0.1610 0.0025

0.1426 0.7030 0.0038

0.0193 0.0197 0.1301

L C

 
   
  

                         (87) 

 For Subproblem 1, using the command "dare" in Matlab yields the optimal Q-function matrix *
2H  

and the gain *K .  
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*
2

761.9176 630.3343 55.3593 33.2776

630.3343 569.9991 11.0594 5.2257

55.3593 11.0594 101.7525 11.4653

33.2776 5.2257 11.4653 76.0158

H

 
 
 
 
 
 

                 (88) 

 * 0.4378 0.0687 0.1508K                              (89) 

5.2. Learning the optimal observer and the optimal controller  

We assume that the system matrices A , B  and C  of system (85) are not accurately known. First, 

the network-induced delay is not taken into account. In this case, the maximum delay upper bound 

max 0   ,  ˆk kz x  and M I . Here kx  will be replaced by ˆkx  when ke  is very close to zero. By 

Algorithm 4 (similar to the algorithms in [11, 12, 27]). Fig. 2 plots the results of convergence of 1
jH  

and jL  when implementing the off-policy Q-learning after 6 iterations, and we get 

  6

0.8294 0.0755 0.0005

0.0689 0.8246 0.0006

0 0 0.1206

L

 
   
  

                     (90) 

and  

6

*

0.8294 0.0755 0.0005

* 0.0689 0.8246 0.0006

0 0 0.1206

L C

L C

 
   
  


                     (91) 

which means that the optimal observer gain *L  has been learned using Algorithm 4 using only available 

data. 

 

Figure 2: Convergence of matrices 1
jH  and 

jL  

Moreover, implementing Algorithm 4 also yields 

11
2

761.9176 630.3343 55.3593 33.2776

630.3343 569.9991 11.0594 5.2257

55.3593 11.0594 101.7525 11.4653

33.2776 5.2257 11.4653 76.0158

H

 
 
 
 
 
 

            (92) 

and  
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 11 0.4378 0.0687ˆ 0.1508K                          (93) 

When no network-induced delay occurred, one can notice that 11
2H  and  11K̂  respectively converge 

to *
2H  and *K .  

  Second, if the maximum network-induced delay bound max 1  , then ˆ [ ]M I A B  and

[ ]M I A B I . Implementing Algorithm 4 yields 




10        0.1508   ˆ 0.4378 0.0687 0.4019 

   0.0197   0.12950.0977

K     

  
            (94) 

and 6 *L L . One can find that 10K̂  is equal to * ˆK M . Further, we can calculate 

             



10 10
1 2

10

0.4378 0.0687 0.4019 0.0977

ˆ ˆ ˆ ˆ[ 0]

[    0.1508   

  0.0197 0.1295 0.4378   0.1500.06 7 88

K IK I K


    

    
             (95) 

where 

                    
3 3

1̂ 0

0

I

I
 

   
  

,  2 3 3
ˆ 0 0 0I I  , 3 3

1 0 0

0 1 0

0 0 1

I 

 
   
  

 

which shows 10 * *K K K M  . Then * *=k ku K z  can be obtained. Fig. 3 presents the detailed the 

convergence results. 

 

Figure 3: Convergence of matrices 2
jH and ˆ jK  
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5.3. Simulations and comparisons  

Choose the initial states of the system and its observer  0 1 2 1
T

x    and  0ˆ 0 1 1
T

x   . For 

the case of absence of network-induced delays, Fig. 4 is given to show the system sate trajectories and 

estimated system state trajectories, as well as the estimated errors using the optimal controller gain (93) 

and the optimal observer gain (90) (see Fig. 5). 
  For the case there exist network-induced delays plotted in Fig. 6, we choose the initial states of the 

system and its observer  0 1 2 1
T

x   ,  0ˆ 0 1 1
T

x   ,  1 1.5 0 1
T

x   and

 1ˆ 1 1 0
T

x    , and initial control input 0 1u  . Fig. 7 shows the system sate trajectories and 

estimated system state trajectories, as well as the estimated errors under the approximate optimal control 

policy (95) and using the approximate optimal observer (90) (see Fig. 8). Compared Fig. 7 with Fig. 4, 

even though there exist network-induced delays, the good control performance (the same convergence 

speed and overshoot as those under the case of absence of network-induced delays) can be obtained by 

using the proposed data-drive learning algorithm by combining prediction control and state observer 

estimation. 

 

Figure 4: Trajectories of states, estimated states and estimation errors of control system without network-induced delay 

 

Figure 5. Curves of the optimal control policy and the optimal observer policy 
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Figure 6: Network-induced delays 

6.  Conclusions  

In this paper, a novel off-policy Q-learning algorithm is developed for handling both network-induced 

delays and unmeasured state information for discrete-time linear systems with inaccurate system matrices. 

An optimal control problem is formulated first, wherein a Smith predictor using the delayed estimated 

states is employed for compensating network-induced delay and satisfying the Separation Principal. Off-

policy Q-learning is utilized to respectively find the optimal observer gain and the optimal control policy. 

Further, a novel off-policy Q-learning algorithm is developed for deriving the predicted observer state 

based feedback controller by using dynamic programming, RL and appropriate mathematical 

manipulation, so that the prescribed performance index can be minimized. The proposed algorithm does 

not require system matrices to be known accurately, and it is implemented using only measured data. 

Moreover, the good control performance can be ensured by using the predicted observer state-based 

controller learned by the proposed data-driven off-policy Q-learning algorithm, even though there exist 

network-induced delays in linear systems subject to unmeasured system states.  

 

Figure 7: Trajectories of states, estimated states and estimation errors of networked control system 
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Figure 8: Curves of the optimal control policy and the optimal observer policy under time-varying network-induced delays 
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