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CLASSIFICATION OF THE MAXIMAL SUBALGEBRAS OF EXCEPTIONAL

LIE ALGEBRAS OVER FIELDS OF GOOD CHARACTERISTIC

ALEXANDER PREMET AND DAVID I. STEWART

Abstract. Let G be an exceptional simple algebraic group over an algebraically closed field k
and suppose that p = char(k) is a good prime for G. In this paper we classify the maximal Lie
subalgebras m of the Lie algebra g = Lie(G). Specifically, we show that either m = Lie(M) for some
maximal connected subgroup M of G or m is a maximal Witt subalgebra of g or m is a maximal
exotic semidirect product. The conjugacy classes of maximal connected subgroups of G are known
thanks to the work of Seitz, Testerman and Liebeck–Seitz. All maximal Witt subalgebras of g are
G-conjugate and they occur when G is not of type E6 and p− 1 coincides with the Coxeter number
of G. We show that there are two conjugacy classes of maximal exotic semidirect products in g,
one in characteristic 5 and one in characteristic 7, and both occur when G is a group of type E7.

1. Introduction

Unless otherwise specified, G will denote a simple algebraic group of exceptional type defined over
an algebraically closed field k of characteristic p > 0. We always assume that p a good prime for
G, that is p > 5 if G is of type E8 and p > 3 in the other cases. Under this hypothesis, the Lie
algebra g = Lie(G) is simple. Being the Lie algebra of an algebraic group, it carries a natural [p]th

power map g 3 x 7→ x[p] ∈ g equivariant under the adjoint action of G. The goal of this paper is
to classify the maximal Lie subalgebras m of g up to conjugacy under the adjoint action of G. The
maximality of m implies that it is a restricted subalgebra of g, i.e. has the property that m[p] ⊆ m.
The main result of [Pre17] states that if rad(m) 6= 0 then m = Lie(P ) for some maximal parabolic
subgroup of G. Therefore, in this paper we are concerned with the case where m is a semisimple
Lie algebra. In prime characteristic this does not necessarily mean that m is a direct sum of its
simple ideals.

We write O(1; 1) for the truncated polynomial ring k[X]/(Xp). The derivation algebra of O(1; 1),
denoted W (1; 1), is known as the Witt algebra. This restricted Lie algebra is a free O(1; 1)-module
of rank 1 generated by the derivative ∂ with respect to the image of X in O(1; 1). A restricted
Lie subalgebra D of W (1; 1) is called transitive if it does not preserve any proper nonzero ideals of
O(1; 1).

Let h be any semisimple restricted Lie subalgebra of g and let Soc(h) denote the socle of the
adjoint h-module h. This is, of course, the sum of all minimal ideals of h. As one of the main
steps in our classification, we show that if Soc(h) is indecomposable and not semisimple, then
Soc(h) ∼= sl2 ⊗ O(1; 1) and there exists a transitive Lie subalgebra D of the Witt algebra W (1; 1)
such that

(1) h ∼= (sl2 ⊗O(1; 1)) o (Id⊗D)
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as Lie algebras. We call the semisimple restricted Lie subalgebras of this type exotic semidirect
products, esdp’s for short, and we show that under our assumptions on G the Lie algebra g contains
an esdp if and only if either G is of type E7 and p ∈ {5, 7} or G is of type E8 and p = 7. (Although
esdp’s do exist in Lie algebras Lie(G) of type E8 over fields of characteristic 5 we ignore them in
the present paper as p = 5 is a bad prime for G.) It turned out that for p > 5 any esdp in type E8

is contained in a proper regular subalgebra of g and hence is not maximal in g. We prove that in
type E7 maximal esdp’s of g do exist and form a single conjugacy class under the adjoint action of
G. Furthermore, if h as in (1) is maximal in g then D ∼= sl2 when p = 5 and D = W (1; 1) when
p = 7.

As our next step we use the smoothness of centralisers CG(V ), where V is a subspace of g, to show
that if Soc(m) is semisimple and contains more than one minimal ideal of m, then there exists a
semisimple (and non-simple) maximal connected subgroup M of G such that m = Lie(M); see
§ 4.1. We mention that Proposition 4.1 applies to simple algebraic groups of classical types as well.

Having obtained the above results we are left with the case where Soc(m) is a simple Lie algebra.
In this situation, we prove that if the derivation algebra Der(m) is isomorphic to the Lie algebra
of a reductive k-group, then m = Lie(M) for some maximal connected subgroup of G. If Der(m)
is not of that type, we show that p− 1 equals the Coxeter number of G and m is a maximal Witt
subalgebra of g, which is unique up to (Ad G)-conjugacy by the main result of [HS15].

We let N (g) denote the nilpotent cone of the restricted Lie algebra g and write O(D) for the
adjoint G-orbit in N (g) with Dynkin label D. A Lie subalgebra of g is called regular if it contains
a maximal toral subalgebra of g. Our results on semisimple restricted Lie subalgebras h of g
containing a non-simple minimal ideal do not require the maximality hypothesis.

Theorem 1.1. Let h be a semisimple restricted Lie subalgebra of g containing a minimal ideal
which is not simple. Then p ∈ {5, 7}, the group G is of type E7 or E8, and the following hold:

(i) If G is of type E8 then h is contained in a regular subalgebra of type E7A1 and hence is not
maximal in g.

(ii) If G is of type E7 then Soc(h) ∼= sl2 ⊗O(1; 1) and h ∼= (sl2 ⊗O(1; 1)) o (Id⊗D) for some
transitive restricted Lie subalgebra D of W (1; 1). In particular, h is an esdp.

(iii) Suppose G is an adjoint group of type E7 and let N := NG(Soc(h)). Then N is a closed
connected subgroup of G acting transitively of the set of all nonzero sl2-triples of g contained
in Soc(h). All nilpotent elements of such sl2-triples lie in O(A3A2A1) when p = 5 and in
O(A2A1

3) when p = 7.

(iv) Suppose G is as in part (iii) and let h̃ := ng(Soc(h)). Then h̃ = h + Lie(N) is a semisimple

maximal Lie subalgebra of g and Lie(N) has codimension 1 in h̃.

(v) Suppose h is a maximal Lie subalgebra of g. Then D ∼= sl2 when p = 5 and D = W (1; 1)
when p = 7. Any two maximal esdp’s of g are (Ad G)-conjugate.

Thus if G is of type E7 and h satisfies the conditions of Theorem 1.1 then h̃ = ng(Soc(h)) is a
semisimple maximal Lie subalgebra of g, unique up to G-conjugacy, and its socle coincides with
Soc(h) ∼= sl2 ⊗O(1; 1). A more precise description of the group N is given in § 3.6.

Let T be a maximal torus G and denote by Φ = Φ(G,T ) the root system of G with respect to T .
Let Π be a basis of simple roots in Φ and α̃ the highest root in the positive system Φ+(Π). For any
γ ∈ Φ we fix a nonzero element eγ in the root space gγ . A Zariski closed connected subgroup M
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of G is said to be a maximal connected subgroup of G if it is maximal among Zariski closed proper
connected subgroups of G.

Theorem 1.2. Let m be a maximal Lie subalgebra of g and suppose that m is semisimple and all
its minimal ideals are simple Lie algebras. Then one of the following two cases occurs:

(i) There exists a semisimple maximal connected subgroup M of G such that m = Lie(M).

(ii) The group G is not of type E6, the Coxeter number of G equals p − 1, and m is (Ad G)-
conjugate to the Witt subalgebra of g generated by the highest root vector eα̃ and the regular
nilpotent element

∑
α∈Π e−α.

Since all conjugacy classes of maximal connected subgroups of G are known thanks to earlier work
of Dynkin [Dyn52], Seitz [Sei91], Testerman [Tes88] and Liebeck–Seitz [LS04], Theorems 1.1 and
1.2 give a complete answer to the problem of determining the maximal subalgebras of g up to
conjugacy.

Let G be a reductive k-group and g = Lie(G). Recall that G is said to satisfy the standard
hypotheses if p is a good prime for G, the derived subgroup DG is simply connected, and g admits
a non-degenerate G-invariant symmetric bilinear form. Given a Lie subalgebra h of g we denote by
nil(h) the largest ideal of h consisting of nilpotent elements of g. We are able to prove the following
corollary of our classification, a Lie algebra analogue of the well known Borel–Tits theorem for
algebraic groups.

Corollary 1.3. If G is reductive k-group satisfying the standard hypotheses, then for any Lie
subalgebra h of g with nil(h) 6= 0 there exists a parabolic subgroup P of G such that h ⊆ Lie(P ) and
nil(h) ⊆ Lie(Ru(P )).

We stress that Corollary 1.3 breaks down very badly if we drop some of our assumptions on G.
Indeed, if G = PGL(V ), where dimV = p, then there exists a 2-dimensional abelian Lie subalgebra
h of g = pgl(V ) with h ⊂ N (g) whose inverse image in gl(V ) acts irreducibly on V . This means
that h cannot be included into a proper parabolic subalgebra of g. In this example G = DG is a
simple algebraic k-group of adjoint type. On the other hand, if G is a simply connected k-group
of type A, B, C or D and p is good for G, then g is isomorphic to one of sl(V ), so(V ) or sp(V )
as a restricted Lie algebra. For such Lie algebras, Corollary 1.3 is a straightforward consequence
of the fact that nil(m) annihilates a nonzero proper subspace of V . This indicates that proving
Corollary 1.3 reduces quickly to the case where G is a simple algebraic group of type G2, F4, E6,
E7 or E8; see § 5.2. Since there are no good substitutes of V for exceptional groups, our proof of
Corollary 1.3 relies very heavily on Theorems 1.1 and 1.2.

As an immediate consequence of Corollary 1.3 we obtain the following generalisation of one of the
classical results of Lie theory first proved by Morozov in the characteristic zero case; see [Bou75,
Ch. VIII, §10, Th. 2]:

Corollary 1.4. Suppose G satisfies the standard hypotheses and let q be a Lie subalgebra of g =
Lie(G) such that nil(q) 6= 0 and q = ng(nil(q)). Then there exists a proper parabolic subgroup P of
G such that q = Lie(P ) and nil(q) = Lie(Ru(P )).

Indeed, by Corollary 1.3, there is a proper parabolic subgroup P of G such that q ⊆ Lie(P ) and
nil(q) ⊆ Lie(Ru(P )). Let u = Lie(Ru(P )) and denote by n the normaliser of nil(q) in u. Since
q ⊆ Lie(P ) normalises both u and nil(q), it is easy to see that n ⊆ ng(nil(q)) = q is an ideal of q
consisting of nilpotent elements of g. Suppose for a contradiction that nil(q) 6= u. Then it follows
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from Engel’s theorem that nil(q) annihilates a nonzero vector of the factor space u/nil(q) forcing
nil(q) to be a proper ideal of n. On the other hand, since n consists of nilpotent elements of g it
must be that n ⊆ nil(q). This contradiction shows that nil(q) = u. But then q = ng(u) contains
Lie(P ). Since q ⊆ Lie(P ), we now deduce that q = Lie(P ) and nil(q) = Lie(Ru(P )), as wanted.

Corollary 1.4 answers a question posed to one of the authors by Donna Testerman. We finish
the introduction by mentioning some interesting open problems related to classifying the maximal
subalgebras of Lie algebras of simple algebraic groups.

It is immediate from our classification that if G is an exceptional group and p is good for G, then the
set of all maximal Lie subalgebras of g splits into finitely many orbits under the adjoint action of G.
We do not know whether the number of (Ad G)-orbits of maximal Lie subalgebras of g = Lie(G)
is finite in the case where G is a group of type B, C, D or G = SL(V ) and p - dimV . The problem
is closely related with the fact that in dimension d = pn − s, where n ≥ 4 and s ∈ {1, 2}, there
exist infinitely many isomorphism classes of d-dimensional simple Lie algebras over k (this was first
observed by Kac in the early 1970s). When p > 3, it follows from the Block–Wilson–Strade–Premet
classification theorem that almost all of them (excepting finitely many isomorphism classes) belong
to infinite families of filtered Lie algebras of Cartan type H. In order to clarify the situation one
would need to describe all irreducible restricted representations ρ : Lp → gl(V ) of the p-envelope Lp
of every filtered Hamiltonian algebra L ∼= adL in Der(L) and then determine the Lie subalgebras
of gl(V ) containing ρ(Lp).

When p |dimV the main result of [Pre17] is no longer valid for sl(V ) which contains maximal subal-
gebras that are neither semisimple nor parabolic. In fact, every maximal subalgebra of sl(V ) acting
irreducibly on V is neither semisimple nor parabolic as it must contain the scalar endomorphisms
of V . This leads to intriguing representation-theoretic problems. As a very special example, it is
not known at present whether the non-split central extension of the Witt algebra W (1; 1) given
by the Block–Gelfand–Fuchs cocycle can appear as a maximal subalgebra of sl(V ) for some vector
space V with p | dimV .

If H is a simple algebraic k-group and h = Lie(H), then to every linear function χ ∈ h∗ one
can attach at least one irreducible h-module E with p-character χ. Let ρ : h → gl(E) denote
the corresponding representation of h. It is known that under mild assumptions of p and h the
dimension of E is divisible by pd(χ) where 2d(χ) is the dimension of the coadjoint H-orbit of χ.
Another challenging open problem which arises naturally in this setting is to determine all pairs
(χ, ρ) for which χ 6= 0 and k IdE + ρ(h) is a maximal Lie subalgebra of sl(E). It can be shown by
using finiteness of the number of unstable coadjoint H-orbits and earlier results of Block, Kac and
Friedlander–Parshall that the number of such pairs (up to a natural equivalence relation) is finite.

Very little is known about maximal Lie subalgebras of exceptional Lie algebras g over fields of
bad characteristic. Recent work of Thomas Purslow [Pur16] shows that some strange simple Lie
algebras which have no analogues in characteristic p > 3 do appear as maximal subalgebras of g. It
seems that a detailed investigation of the above-mentioned problems could lead to interesting new
results in modular representation theory and structure theory of simple Lie algebras.

2. Preliminaries

2.1. Basic properties of restricted Lie algebras. Let L be a Lie algebra over an algebraically
closed field of characteristic p > 0. We say that L is restrictable if (adX)p is an inner derivation
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for every X ∈ L. Any restrictable Lie algebra L can be endowed with a pth power map (or a

p-operation) X 7−→ X [p] such that

(i) (λX)[p] = λpX [p] for all λ ∈ k and X ∈ L;

(ii) ad(X [p]) = (adX)p for all X ∈ L;

(iii) (X+Y )[p] = X [p] +Y [p] +
∑p−1

i=1 si(X,Y ) for all X,Y ∈ L, where isi(X,Y ) is the coefficient
of ti−1 in ad(tX + Y )p−1(X) expressed as a sum of Lie monomials in X and Y .

Such a p-operation is unique up to a p-linear map ϕ : L → z(L) where z(L) is the centre of L.

Indeed, if ϕ is such a map then the operation X 7−→ X [p] + ϕ(X) also satisfies the properties (i),
(ii) and (iii). A pair (L, [p]), where L is a restrictable Lie algebra and [p] is a pth power map on
L, is called a restricted Lie algebra (or a p-Lie algebra). If L is restrictable and centreless then it
admits a unique restricted Lie algebra structure. For any k-algebra A (not necessarily associative or
Lie) the Lie algebra Der(A) of all derivations of A carries a natural restricted Lie algebra structure
which assigns to any D ∈ Der(A) the pth power of the endomorphism D in End(A).

Now suppose that L is a finite dimensional restricted Lie algebra over k. A Lie subalgebraM of L is
called restricted if x[p] ∈M for all x ∈M. For any x ∈ L the centraliser Lx := {y ∈ L | [x, y] = 0}
is a restricted Lie subalgebra of L. Indeed, [y[p], x] = (ad y)p(x) = −(ad y)p−1([x, y]) = 0 for all

y ∈ Lx. IfM is spanned over k by elements x1, . . . , xr such that x
[p]
i ∈M for all 1 ≤ i ≤ r, thenM

is a restricted Lie subalgebra of L. Indeed, it follows from (iii) that (
∑r

i=1 λixi)
[p] −

∑r
i=1 λ

p
i x

[p]
i ∈

[M,M] for all λi ∈ k.

If L = Lie(S), where S is a linear algebraic k-group, then the Lie algebra L identifies with the Lie
algebra of all left invariant derivations of the coordinate algebra k[S]. Since in characteristic p > 0
the associative pth power of any left invariant derivation of k[S] is again a left invariant derivation,

L carries a canonical restricted Lie algebra structure which has the property that ((Ad g)(x))[p] =

(Ad g)(x[p]) for all g ∈ S and x ∈ L. Moreover, if H is a closed subgroup of S then it follows
from [Bor91, Proposition 3.11] that Lie(H) (regarded with its own canonical pth power map)
identifies with a restricted Lie subalgebra of L.

An element x of a restricted Lie algebra L is called semisimple if it lies in the the k-span of all

x[p]i with i ≥ 1. If x is semismple then adx is a diagonalisable endomorphism of L. A semsimple
element x of L is called toral if x[p] = x. If x is toral then all eigenvalues of adx lie in Fp. A
restricted Lie subalgebra of L is called toral if it consists of semisimple elements of L. Since k
is algebraically closed, any toral subalgebra t of L is abelian and contains a k-basis consisting of
toral elements of L. More precisely, the set ttor of all toral elements of t is an Fp-form of t, so that
t ∼= ttor ⊗Fp k as k-vector spaces. From this it is immediate that t can be generated under the pth

power map by a single element x, that is t = span{x[p]i | i ∈ Z≥0}. The maximal dimension of
toral Lie subalgebras of L is often referred to as the toral rank of L. If L = Lie(S) and H is a
torus of S then our remark in the previous paragraph implies that Lie(H) is a toral subalgebra of
L. Conversely, it follows from [Bor91, Proposition 11.8] and the preceding remark that any toral
subalgebra of L is contained in Lie(T ) for some maximal torus T of S. So the toral rank of Lie(S)
coincides with the rank of the group S.

Given a finite dimensional semisimple Lie algebra L over k we denote by Lp the p-envelope of
L ∼= adL in Der(L), that is, the smallest restricted Lie subalgebra of Der(L) containing L. The
restricted Lie algebra Lp is semisimple and any finite dimensional semisimple p-envelope of L
is isomorphic to Lp in the category of restricted Lie algebras. This is immediate from [Str04,
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Definition 1.1.2 and Corollary 1.1.8]. The derived subalgebra of Lp coincides with [L,L] and we
have that L = Lp if and only if L is restrictable. If L is simple and non-restrictable then the derived
subalgebra of the restricted Lie algebra Lp does not admit a restricted Lie algebra structure.

Now suppose that G is a connected reductive algebraic group over k and let g = Lie(G). In contrast
with the preceding remark we have the following:

Lemma 2.1. If x is a semisimple element of g then [gx, gx] is a restricted Lie subalgebra of g.

Proof. Let T be a maximal torus of G and let Φ be the root system of G with respect to T . By
the above discussion we may assume without loss that x ∈ Lie(T ). Given α ∈ Φ we denote by Uα
the unipotent root subgroup of G associated with α and write Sα for the subgroup of G generated
by Uα and U−α. Each Sα is a simple algebraic subgroup of type A1 in G. Since Lie(Uα) = keα is a

restricted Lie subalgebra of g it must be that e
[p]
α = 0. Since Lie(Sα) is a restricted Lie subalgebra

of g isomorphic to sl2(k) or pgl2(k), we have that [eα, e−α][p] ∈ k[eα, e−α] (if k has characteristic 2
and the derived subgroup of G is not simply connected then it may happen that [eα, e−α] = 0 for
some α ∈ Φ).

Let Φx = {α ∈ Φ | (d1α)(x) = 0}. The Lie algebra gx is spanned over k by Lie(T ) and by all eα
with α ∈ Φx. It follows that the derived subalgebra [gx, gx] is spanned over k by all eα with d1α 6= 0

and all [eα, eβ] with α, β ∈ Φx. Each element v in this spanning set has the property that v[p] ∈ kv.
Our earlier remarks in this subsection now show that [gx, gx] is a restricted Lie subalgebra of g. �

2.2. Transitive Lie subalgebras of the Witt algebra. We denote by O(m; 1) the truncated
polynomial ring k[X1, . . . , Xm]/(Xp

1 , . . . , X
p
m) in m variables and write xi for the image of Xi in

O(m; 1). The local k-algebra O(m; 1) inherits a standard degree function from the polynomial ring
k[X1, . . . , Xm]. Given i ∈ Z≥0 we denote by O(m; 1)(i) the subspace of all truncated polynomials
in O(m; 1) whose initial term has standard degree ≥ i. Each O(m; 1)(i) is an ideal of O(m; 1) and
O(m; 1)(i) = 0 for i > m(p− 1). The maximal ideal of O(m; 1) is O(m; 1)(1).

The derivation algebra of O(m; 1), denoted W (m; 1), is called the mth Witt–Jacobson Lie algebra.
This restricted Lie algebra is a free O(m; 1)-module of rank m generated by the partial derivatives
∂1, . . . , ∂m with respect to x1, . . . , xm. The subspaces W (m; 1)(i) :=

∑m
i=1 O(m; 1)(i+1)∂i with

−1 ≤ i ≤ m(p− 1)− 1 induce a decreasing Lie algebra filtration

W (m; 1) = W (m; 1)(−1) ⊃W (m; 1)(0) ⊃ · · · ⊃W (m; 1)(m(p−1)−1) ⊃ 0

of W (m; 1) which is called standard. The Lie subalgebra W (m; 1)(0) is often referred to as the
standard maximal subalgebra of W (m; 1). This is due to the fact that for p > 3 it can be charac-
terised as the unique subalgebra of minimal codimension in W (m; 1). Because of that all members
of the standard filtration of W (m; 1) are invariant under the action of the automorphism group of
W (m; 1).

A restricted Lie subalgebra D of W (m; 1) is called transitive if it does not preserve any proper
nonzero ideals of O(m; 1). Given a finite dimensional simple Lie algebra S over k and a restricted
transitive Lie subalgebra D of W (m; 1) we can form a natural semidirect product

S(m,D) := (S ⊗O(m; 1)) o (IdS ⊗D).

It is known (and easy to see) that S(m,D) is a semisimple Lie algebra over k and its semisimple
p-envelope S(m,D)p is isomorphic to (Sp ⊗O(m; 1)) o (IdS ⊗D) as restricted Lie algebras, where
Sp is the p-envelope of adS in Der(S).
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The case m = 1 will play a special role in what follows and we spell out the above in more detail.
The Witt algebra W (1; 1) = Der(O(1; 1)) has k-basis {xi∂ | 0 ≤ i ≤ p− 1}, and the Lie bracket in
W (1; 1) is given by [xi∂, xj∂] = (j − i)xi+j−1∂ for all i, j ≤ p − 1 (here xn = 0 for all n ≥ p). It
is well known that Dp ∈ kD for all D ∈ W (1; 1); see [Pre92], for example. In conjunction with
Jacobson’s formula for [p]th powers this shows that any Lie subalgebra of W (1; 1) is restricted. It
is routine to check that a subalgebra D of W (1; 1) is transitive if and only if it is not contained in
the standard maximal subalgebra W (1; 1)(0).

Note that if p = 2 then the Witt algebra is solvable and if p = 3 then W (1; 1) ∼= sl2(k). But things
settle for p > 3 and an old result of Jacobson says that any automorphism of the Witt algebra
W (1; 1) is induced by a unique automorphism of O(1; 1); see [Jac43, Theorems 9 and 10]. Using
this fact it is straightforward to describe the conjugacy classes of transitive Lie subalgebras of the
Witt algebra under the action of its automorphism group.

Lemma 2.2. If p > 3 then any transitive Lie subalgebra of W (1; 1) is conjugate under the action
of Aut(W (1; 1)) to one of the following:

(1) k∂; (2) k(1 + x)∂; (3) k∂ ⊕ k(x∂); (4) k∂ ⊕ k(x∂)⊕ k(x2∂) ∼= sl2(k); (5) W (1; 1).

Proof. Let G = Aut(W (1; 1)) and let D be a transitive Lie subalgebra of W (1; 1). Then there exists
D ∈ D such that D 6∈ W (1; 1)(0). Since Dp ∈ kD we may assume that either Dp = 0 or Dp = D.
If Dp = 0 (resp. Dp = D) then there is g ∈ G such that g(D) = ∂ (resp. g(D) = (1 + x)∂);
see [Pre92, Lemma 4] and [Str04, § 7]. This proves the lemma in the case where dimD = 1.

From now on we may assume that D has dimension ≥ 2 and intersects non-trivially with the set
{∂, (1 + x)∂}. We first suppose that (1 + x)∂ ∈ D. The subspace k(1 + x)∂ is a self-centralising
torus of W (1; 1) and the group G contains a cyclic subgroup Σ of order p − 1 which permutes
transitively the set F×p (1 + x)∂ of all nonzero toral elements of k(1 + x)∂; see [Pre92, § 1], for

example. As dimD ≥ 2 and ad(1 + x)∂ is diagonalisable, it must be that (1 + x)i∂ ∈ D for
some i ∈ {0, 2, . . . , p − 1}. Since Σ permutes transitively the set of all eigenspaces for ad(1 + x)∂
corresponding to eigenvalues in F×p , there is σ ∈ Σ such that σ(D) contains both (1 + x)∂ and ∂.
So we may assume without loss that ∂ ∈ D.

Since dimD ≥ 2 there is f(x)∂ ∈ D such that f(x) = arx
r + · · · a1x, where ai ∈ k and ar 6= 0

for some 1 ≤ r ≤ p − 1. Then (ad ∂)r−1(f(x)∂) ∈ D yielding x∂ ∈ D. If dimD = 2 we arrive at
case (3). If dimD ≥ 3 then D ∩W (1; 1)(1) contains an eigenvector for ad(x∂). Hence xr∂ ∈ D for

some r ∈ {2, . . . , p − 1}. As ∂ ∈ D, this yields that xi∂ ∈ D for 0 ≤ i ≤ r. If dimD = 3 then
r = 2 and we are in case (4). If dimD ≥ 4 then the above shows that D contains x3∂. Since the
Lie algebra W (1; 1) is generated by ∂ and x3∂, we get D = W (1; 1) completing the proof. �

2.3. A property of restricted sl2-modules. Let L be a Lie algebra over k and let V be a finite
dimensional L-module. Given x ∈ L we set Vx := {v ∈ V | x.v = 0}.

In what follows we shall require very detailed information on certain sl2-triples {e, h, f} of g such

that e[p] = f [p] = 0 and h[p] = h. In particular, it will be very useful for us to know that
dim gh ≤ dim ge. Since the k-span of {e, h, f} is a restricted Lie subalgebra of g isomorphic to
sl2(k), we may regard g as a restricted sl2(k)-module.

Lemma 2.3. Suppose char(k) > 2 and let V be a finite dimensional restricted module over the
restricted Lie algebra s = sl2(k). If x is a nonzero semisimple element of s then dimVx ≤ dimVy
for any y ∈ s.
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Proof. Let S = SL2(k) and let V (m) be the Weyl module for S of highest weight m ∈ Z≥0. The
Lie algebra s = Lie(S) acts on V (m) via the differential at identity of the rational representation
S → GL(V (m)). It is well known that any irreducible restricted s-module is isomorphic to one of
the V (m)’s with m ∈ {0, 1, . . . , p− 1}.

In proving this lemma we may assume that V is an indecomposable s-module. Let ψ : s → gl(V )
denote the corresponding representation of s. All such representations are classified in [Pre91]. To
be more precise, it is known that either there is a rational representation ρ : S → GL(V ) such that
ψ = deρ or V is maximal s-submodule of V (lp + r) for some l ∈ Z≥1 and r ∈ {0, 1, . . . , p − 2}.
In the latter case dimV = lp and V has two composition factors, V (r) and V (p − 2 − r), both of
which appear l times in any composition series of V . If ψ = deρ then either V is isomorphic to one
of V (m) or V (m)∗ with p - (m+ 1) or V is a projective indecomposable module over the restricted
enveloping algebra of s.

Let d = mins∈s dimVs. Looking at the minors of matrices of the endomorphisms ψ(s) with s ∈ s
one observes that the set

U := {s ∈ s | dimVs = d}

is nonempty, Zariski open in s, and has the property that k×U = U . If ψ = deρ then U is also
(AdS)-stable. If {e, h, f} is a standard basis of s then any nonzero semisimple element of s is
(AdS)-conjugate to a nonzero multiple of h. So if ψ = deρ then U contains all nonzero semisimple
elements of s. This proves the lemma in the present case.

Now suppose V is a maximal submodule of V (m), where m = lp + r and 0 ≤ r ≤ p − 2. If r is
even and x is (Ad S)-conjugate to a nonzero multiple of H then dimV (r)x = 1 and if r is odd then

dimV (r)x = 0. Since x[p] = λx for some λ ∈ k×, the endomorphism ψ(x) is diagonalisable. In view
of our remarks earlier in the proof this yields that dimVx = l for any nonzero semisimple element
x ∈ s. Consequently, d = l completing the proof. �

Remark 2.4. Let s, V and ψ be as above. It follows from the above-mentioned description of finite
dimensional indecomposable restricted s-modules that V has a reducible indecomposable direct
summand only if ψ(e)p−1 6= 0 or ψ(f)p−1 6= 0.

2.4. Standard sl2-triples. In this subsection we review some results on sl2-triples in exceptional
Lie algebras over algebraically closed fields of good characteristics. More information on such
sl2-triples can be found in [HS15] and [ST16] where the notation is slightly different.

It is well known that the nilpotent cone N (g) coincides with the set of all (Ad G)-unstable vectors
of g. Therefore, any nonzero e ∈ N (g) admits a cocharacter τ ∈ X∗(G) optimal in the sense of
the Kempf–Rousseau theory. The adjoint action of the 1-dimensional torus τ(k×) gives rise to a Z-
grading g =

⊕
i∈Z g(τ, i) where the subspace g(τ, i) consists of all x ∈ g such that (Ad τ(λ))(x) =

λix for all λ ∈ k×. The optimal parabolic subgroup P (e) ⊂ G of e is independent of the choice
of τ and Lie(P (e)) =

⊕
i≥0 g(τ, i). Since the Killing form κ of g is non-degenerate, we can

choose an optimal cocharacter τ in such a way that e ∈ g(τ, 2) and ge ⊆ Lie(P (e)); see [Pre03,
Theorem A]. Such optimal cocharacters of e form a single conjugacy class under the adjoint action
of the centraliser Ge ⊂ P (e). Furthermore, it follows from [Pre03, Proposition 2.5] that they
coincide with the so-called associated cocharacters introduced by Jantzen in [Jan04, 5.3]. The Lie
algebra Lie(τ(k×)) is a 1-dimensional torus of g spanned by the element hτ := (deτ)(1) which
has the property that [hτ , e] = 2e. The centraliser CG(τ) of τ(k×) is a Levi subalgebra of G and
Lie(CG(τ)) = g(τ, 0).
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Put ge(i) = ge ∩ g(τ, i). By [Pre03, Theorem A], the group Ce := Ge ∩ ZG(τ) is reductive and
ce := Lie(Ce) = ge(0). Furthermore, Ge = Ce · Ru(Ge). The adjoint G-orbit O(e) of e is uniquely
determined by its weighted Dynkin diagram ∆ = ∆(e) which depicts the weights of τ(k×) on a
carefully selected set of simple root vectors of g. These diagrams are the same as in the characteristic
zero case and they can be found in [Car93, pp. 401–407] along with the Dynkin labels of the
corresponding nilpotent G-orbits.

Let Te be a maximal torus of Ce and L = CG(Te), a Levi subgroup of G. The Lie algebra
l′ = Lie(DLe) is τ(k×)-stable and contains hτ . Moreover, e is distinguished in l′, that is e ∈
l′(τ, 2) and dim l′(τ, 0) = dim l′(τ, 2); see [Pre03, 2.3–2.7] for detail. Since ge ⊆ Lie(P (e)), and
dim l′(τ,−2) = dim l′(τ, 2), the map ad e : l′(τ,−2)→ l′(τ, 0) is bijective. As hτ ∈ l′(τ, 0), there is
a unique element f ∈ l′(τ,−2) such that [e, f ] = hτ . By construction, {e, hτ , f} is an sl2-triple in

g. Since f [p] commutes with e for p > 2, it lies in ge(τ,−2p). Since τ has nonnegative weights on

ge, this yields f [p] = 0.

Definition 2.5. An sl2-triple {e′, h′, f ′} of g is called standard if it is (Ad G)-conjugate to one of
the sl2-triples {e, hτ , f} described above.

If {e, h, f} is a standard sl2-triple, then necessarily e ∈ N (g) and f [p] = 0. However, it may happen

in some small characteristics that e[p] 6= 0. In particular, if e[p] 6= 0 then e and f belong to different
nilpotent G-orbits. On the other hand, if e[p] = 0 then there exists a connected subgroup S of type
A1 in G such that Lie(S) = ke⊕ kh⊕ kf ; see [McN05]. In that case e and f are (Ad G)-conjugate.

Our earlier remarks in this subsection show that any nilpotent element of g can be included into
a standard sl2-triple. Now suppose {e, h, f} is an arbitrary sl2-triple in g with e ∈ N (g) and h
semisimple. Let τ be an optimal cocharacter for e such that e ∈ g(τ, 2). All eigenvalues of the
toral element hτ belong to Fp and we write g(hτ , ī) for the eigenspace of ad hτ corresponding to
eigenvalue ī ∈ Fp. It is straightforward to see that

(2) g(hτ , ī) =
⊕

j∈Z g(τ, i+ jp).

Since e and h−hτ commute, h is a semisimple element element of the restricted Lie algebra khτ⊕ge.
Since ge = Lie(Ge) the latter coincides with the Lie algebra of the normaliser NG(ke) = τ(k×) ·Ge.
As τ(k×) · Te is a maximal torus of NG(ke) contained in τ(k×) · Ce, it follows from [Bor91, 11.8]
that h is conjugate under the adjoint action of NG(ke) to an element of khτ ⊕ ge(0).

So assume from now that h ∈ khτ + ge(0). Then h− hτ ∈ ge(0) ∩ [e, g]. If h 6= hτ then the linear
map (ad h)2 : g(τ,−2) → g(τ, 2) is not injective. The computations in [Pre95] then imply that
the orbit O(e) has Dynkin label Ap−1Ar for some r ≥ 0. In other words, e is a regular nilpotent
element of Lie(L) where L is a Levi subgroup of type Ap−1Ar in G.

Remark 2.6. The preceding remark implies that if g contains a non-standard sl2-triple {e, h, f}
with e ∈ N (g) and h semisimple, then e ∈ O(Ap−1Ar) for some r ≥ 0. As a consequence, G is a
group of type E and p ∈ {5, 7}.

2.5. A remark on exponentiation. Let K be an algebraically closed field of characteristic 0. In
this subsection we assume that G is a simple, simply connected algebraic group over an algebraically
closed field k of good characteristic p > 0 and we write GK for the simple, simply connected
algebraic group over K of the same type as G. Both groups are obtained by base change from a
Chevalley group scheme GZ. The Lie algebra g of G is obtained by base change from a minimal
admissible lattice gZ in the simple Lie algebra gK := Lie(GK). For any p-power q ∈ Z the field k
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contains a unique copy of the finite field Fq and the finite Lie algebra gFq := gZ⊗Z Fq is an Fq-form
of g closed under taking [p]th powers in g. The restricted nullcone Np(g) consists of all x ∈ g with

x[p] = 0. This is a Zariski closed, conical subset of the nilpotent variety N (g) and it arises naturally
when one studies exponentiation. Indeed, if U is a one-parameter unipotent subgroup of G then
Lie(U) is a 1-dimensional [p]-nilpotent restricted subalgebra of g and hence lies in Np(g).

It is well known that each nilpotent (Ad G)-orbit O has a representative e ∈ gFp such that e = ẽ⊗Z1
for some nilpotent element ẽ of gK contained in gZ. By [Pre03, 2.6], one can choose ẽ in such a way
that the unstable vectors e ∈ g and ẽ ∈ gK admit optimal cocharacters obtained by base-changing
a cocharacter τ ∈ X∗(GZ). Moreover, τ(Gm,Z) is contained in a split maximal torus TZ of GZ and
dimkO = dimK (Ad GK) ẽ. Various properties of the cocharacters τ have already been discussed in
§ 2.4 and we are going to use the notation introduced there for both e and ẽ. In particular, we write
gẽ,K for the centraliser of ẽ in gK and gẽ,K(i) for the intersection of gẽ,K with the i-weight space
gK(τ, i) of Ad τ(K×). More generally, given a commutative ring A with 1, we set gA := gZ ⊗Z A.
If A ⊆ k, we put ge,A := ge ∩ gA and ge,A(i) := g(τ, i) ∩ ge,A. If A ⊆ K, we define gẽ,A and gẽ,A(i)
in a similar fashion.

Our next result shows that by modifying the exponentiation techniques of [Tes95, § 1] one can
construct one-parameter unipotent subgroups of Ge whose Lie algebras are spanned by prescribed
elements of Np(g) contained in the nilradical of ge. These subgroups respect filtrations associated
with optimal cocharacters of e.

Proposition 2.7. Let e be a nonzero nilpotent element of g and let τ be an optimal cocharacter
for e such that e ∈ g(τ, 2). If d is a positive integer, then for any nonzero x ∈

⊕
i≥d ge(i) with

x[p] = 0 there exists a collection of endomorphisms {X(i) | 0 ≤ i ≤ p2−1} of g and a one-parameter

unipotent subgroup Ux = {x(t) | t ∈ k} of Ge with Lie algebra kx such that X(i) = 1
i!(adx)i for

0 ≤ i ≤ p− 1 and (
Ad x(t)

)
(v) =

∑p2−1
i=0 tiX(i)(v)

(
∀ v ∈ g

)
.

Furthermore, each endomorphism X(i) can be expressed as a sum of weight vectors of weight ≥ di
with respect to the natural action of the torus τ(k×) on End(g).

Proof. First assume the root system of G is classical. This case is more elementary. The group G
admits a rational representation ρ : G→ GL(V ) defined over Fp whose kernel is central and whose
image is either SL(V ) or the stabiliser in SL(V ) of a non-degenerate bilinear form Ψ on V . Let

X̄ = (deρ)(x) and X̄(i) = 1
i!X̄

i, where 0 ≤ i ≤ p−1. Since x[p] = 0 and deρ : g→ gl(V ) is a faithful

restricted representation of g, the exponentials x̄(t) := exp(tX̄) =
∑p−1

i=0 tiX̄i with t ∈ k form a
one-parameter unipotent subgroup of SL(V ). Moreover, each X̄j with 0 ≤ j ≤ p − 1 is a sum of
weight vectors of weight ≥ d · j with respect to the conjugation action of ρ(τ(k×)) on End(V ). If
ρ(G) fixes Ψ then X̄ is skew-adjoint with respect to Ψ and hence

{
x̄(t) | t ∈ k

}
is a one-parameter

unipotent subgroup of ρ(G). Also,

(3)
(

Ad x̄(t)
)
(Y ) = exp(tX̄) · Y · exp(−tX̄) =

∑2p−2
r=0 tr

(∑r
i=0 (−1)iX̄(r−i) · Y · X̄(i)

)
for all Y ∈ sl(V ). It should be mentioned here that 2p− 2 ≤ p2 − 1 for any prime number p.

Restricting Ad x̄(t) to (deρ)(g) and identifying the latter with g gives rise to a one-parameter
unipotent subgroup of Aut(g)◦ which we call Ux. As x = X̄ commutes with e, it follows from
(3) that Ux fixes e. Taking the identity component of the inverse image of Ux under a central
isogeny G � Aut(g)◦ we then obtain a one-parameter unipotent subgroup of Ge that satisfies all
our requirements.
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Now suppose G is exceptional. By the remarks immediately preceding the proposition, we may

assume that e = ẽ ⊗Z 1 and τ ∈ X∗(GZ). Let X be the set of all tuples
(
x,X(p), . . . , X(p2−1)

)
in(

Np(g)
⋂⊕

i≥d ge(i)
)
× End(g)p

2−p such that each X(i) ∈
⊕

j≥di
(
End(g)

)
(τ, j) annihilates e and

the set { p−1∑
i=0

ti

i!
(adx)i +

p2−1∑
i=p

tiX(i) | t ∈ k
}

forms a one-parameter subgroup of Aut(g). If we choose k-bases of g and End(g) contained in gFp

and End(gFp), respectively, then the above conditions can be rewritten in the form of polynomial

equations with coefficients in Fp on the coordinates of x and the X(i)’s. In other words, X is

a Zariski closed subset of
(
Np(g)

⋂⊕
i≥d ge(i)

)
× End(g)p

2−p defined over Fp. The projection

π : X −→ Np(g)
⋂⊕

i≥d ge(i) sending
(
x,X(p), . . . , X(p2−1)

)
to x is a morphism of affine varieties

defined over Fp. Evidently, we wish to show this map is surjective.

Let k0 denote the algebraic closure of Fp in k. We claim that

(*) π : X (k0) −→ Np(gk0)
⋂⊕

i≥d ge,k0(i) is surjective.

Given the claim, since k0 is an algebraically closed subfield of k, it follows from general results
of algebraic geometry that the morphism π : X (k) −→ Np(g)

⋂⊕
i≥d ge(i) is surjective as well;

see [GW01, Exercise 10.6], for example. This means that a one-parameter unipotent group Ux with
the required properties exists for any x ∈ Np(g)

⋂⊕
i≥d ge(i). Since G is simply connected and p

is good for G, there exists a central isogeny ι : G � Aut(g)◦. So we can take for Ux the identity
component of ι−1(Ux).

The claim will follow if we can show that πFq : X (Fq) −→ Np(gFq)
⋂⊕

i≥d ge,Fq(i) is surjective,
since k0 is the union of its finite subfields. Thus we assume that x ∈ gFq for some q = pn. As usual,
we denote by Qp and Zp the field of p-adic numbers and the ring of p-adic integers, respectively.
Let K be an algebraic closure of Qp and let L/Qp be an unramified Galois extension of degree n
(we can take for L the field Qp(ζn) where ζn is a primitive (pn − 1)st root of unity in K). Let A
be the ring of integers of L. Since the extension L/Qp is unramified, the field A/pA has degree n
over its subfield Zp/pZp ∼= Fp Therefore, A/pA ∼= Fq.

By construction, A is a local ring with maximal ideal pA and any bad prime for G is invertible in
A. Since the torus TZ is split over Z and τ(Gm) ⊂ TZ we have that gZ =

⊕
i∈Z gZ(τ, i). Since

τ(K×) is optimal for ẽ, arguing as in [Spa84, p. 285] one observes that each A-module
[
ẽ, gA(τ, i)

]
is a direct summand of gA(τ, i+ 2) and [ẽ, gA(τ, i)] = gA(i+ 2) for all i ≥ 0. From this it is follows
that each gẽ,A(i) is a direct summand of the free A-module gA(τ, i). Since A/pA ∼= Fq the natural
map gA � gA⊗AFq ∼= gFq sends ẽ onto e and gẽ,A onto ge,Fq . It follows that there exists an element
x̃ ∈

⊕
i≥d gẽ,A(i) such that x = x̃⊗A 1.

Suppose G is an exceptional group. Since p is a good prime for G, the tables in [Ste17] show that

(ad x̃)p
2−1 = 0 unless either G is of type E8, p = 7, and e is regular or G is of type E7, p = 5, and

e ∈ N (g) is regular or subregular. In view of [LT11, pp. 122, 185] this implies that if (ad x̃)p
2−1 6= 0

then ge(i) = 0 for i odd and ge(2) = ke. Since in all these cases e[p] 6= 0 and x ∈
⊕

i≥d ge(i) lies in

Np(g) by our assumption, we must have d ≥ 4. From this it is immediate that (ad x̃)p
2−1 = 0 in

all cases.
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We now put X̃(i) := 1
i!(ad x̃)i for 0 ≤ i ≤ p2 − 1. The set Ux̃ of all linear operators

exp(t ad x̃) =
∑p2−1

i=1 tiX̃(i)

with t ∈ K forms a one-parameter unipotent subgroup of Aut(gK)◦. Since (adx)p = 0 and
adx = ad(x̃⊗A 1) = (ad x̃)⊗A 1 as endomorphisms of gFp we have that (ad x̃)p(gA) ⊆ p · gA. But

then 1
p(ad x̃)p(gA) ⊆ gA. Since (p − 1)! is invertible in A, it follows that X̃(p) preserves gA. Any

positive integer n ≤ p2 − 1 can be uniquely presented as n = ap + b with 0 ≤ a, b ≤ p − 1. Since
n! = pa · rn for some rn ∈ Z coprime to p and (ad x̃)n =

(
(ad x̃)p

)a · (ad x̃)b, we have that

X̃(n) =
1

rn

(
X̃(p)

)a · (X̃(1)
)b
, rn ∈ A×.

This implies that each endomorphism X̃(i) preserves gA. As a consequence, the closed subgroup
Ux̃ of Aut(gK)◦ is defined over A. We now set X(i) := X̃(i) ⊗A 1. In view of our earlier remarks

it is straightforward to check that the collection of endomorphisms {X(i) | 0 ≤ i ≤ p2 − 1} of g
possesses all required properties. Since the unipotent group Ux̃ is defined over A, the set Ux :={∑p2−1

i=0 tiX(i) | t ∈ k
}

, obtained by base-changing Ux̃, forms a one-parameter unipotent subgroup
of Aut(g)◦.

The claim is proved. �

Remark 2.8. It seems plausible that one can always find a one-parameter subgroup Ux in Ge
satisfying the conditions of Proposition 2.7 and such that X(i) = 0 for i > 2p − 2. By [McN05],
for any nonzero x ∈ Np(g) the optimal parabolic P (x) contains a nice one-parameter subgroup Ux
with Lie(Ux) = kx. In fact, Ux lies in a connected subgroup of type A1 whose Lie algebra contains

x. By [Sei00], the number of nonzero X(i)’s with i > 0 associated with Ux is always bounded by
2p−2. Moreover, it follows from [Sob15, Lemma 4.2 and Corollary 4.3(i)] that if [x, e] = 0 for some
nonzero e ∈ N (g) then Ux ⊆ Ge. However, it is not clear from the constructions in loc. cit. that

the endomorphisms X(i) with i ≥ p coming from the distribution algebra of Ux have the desired
weight properties with respect to an optimal cocharacter for e.

3. Lie subalgebras with non-semisimple socles and exotic semidirect products

3.1. The general setup. In this section we always assume that G is an exceptional algebraic
group of rank ` defined over an algebraically closed field k of characteristic p > 0. We let h be
a semisimple restricted Lie subalgebra of g = Lie(G) whose socle is not semisimple. Since h is
restricted, it follows from Block’s theorem [Str04, Corollary 3.3.5] that h contains a minimal ideal
I such that I ∼= S ⊗O(m; 1) for some simple Lie algebra S and m ≥ 1 and h/ch(I) is sandwiched
between S⊗O(m; 1) and (Der(S)⊗O(m; 1))o(IdS⊗W (m; 1)). Moreover, the canonical projection
π : h→W (m; 1) maps h onto a transitive Lie subalgebra of W (m; 1). Recall the latter means that
π(h) ⊆W (m; 1) does not preserve any nonzero proper ideals of O(m; 1).

We identify I with S ⊗ O(m; 1) and let I and S denote the p-envelopes of I and S ⊗ 1 in g,
respectively. Since h is restricted, I is an ideal of h. Since h is semisimple and z(I) is an abelian
ideal of h, it must be that z(I) = 0. Since z(S) ⊆ z(I) due to the nature of Lie multiplication
in S ⊗ O(m; 1), we must have z(S) = 0. Our discussion in Section 2 then shows that S ∼= Sp as
restricted Lie algebras.

Since S ⊗ 1 is a simple Lie subalgebra, it follows from [HS15, Theorem 1.3] that either S ∼= Lie(H)
for some simple algebraic k-group H or S ∼= pslrp for r ≥ 1 or S ∼= W (1; 1). In any event, S is
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a restricted Lie algebra, so that S = Sp. Since pslrp = slrp/z(slrp) contains toral subalgebras of
dimension rp− 2 and rk(G) ≤ 8, the case S ∼= pslrp may occur only if r = 1.

We let t be a toral subalgebra of maximal dimension in the restricted Lie algebra S and denote by

treg the set of all t ∈ t with the property that t = span {t[p]i | i ≥ 1}. At ttor is an Fp-form of t, it is
a routine exercise to check that treg is nonempty and Zariski open in t.

The above discussion then shows that t ⊗ 1 is a toral subalgebra of g. We pick z ∈ treg. Since
ad (z ⊗ 1) is semisimple and [z ⊗ 1, h] ⊆ I we also have that h = hz⊗1 + I, where hz⊗1 denotes the
centraliser ch(z ⊗ 1) of z ⊗ 1 in h. The latter yields

(4) π(h) = π(hz⊗1)

showing that π(hz⊗1) is a transitive Lie subalgebra of W (m; 1). Since ch(I) ⊆ hz⊗1, the factor
algebra hz⊗1/ch(I) identifies with a Lie subalgebra of (Der(S)z ⊗O(m; 1)) o (IdS ⊗ π(hz⊗1)).

Since z ⊗ 1 is a semisimple element of g, Lemma 2.1 shows that [gz⊗1, gz⊗1] is a restricted Lie
subalgebra of g. On the other hand, our characterisation of S yields that t is a self-centralising
torus of S. Hence Iz⊗1 = t ⊗ O(m; 1). Let O(m; 1)(1) denote the maximal ideal of the local ring
O(m; 1). Since t ⊗ O(m; 1)(1) is stable under the action of Der(S)z ⊗ O(m; 1) and π(hz⊗1) is a
transitive Lie subalgebra of W (m; 1), there exist u ∈ hz⊗1 and v ∈ kz ⊗O(m; 1)(1) such that

[u, v] ≡ z ⊗ 1 mod t⊗O(m; 1)(1).

Since h ∼= hp is semisimple, the uniqueness of the restricted Lie algebra structure on h gives(
S ⊗ O(m; 1)(1)

)[p]
= 0. As t ⊗ O(m; 1) is abelian and [gz⊗1, gz⊗1] is restricted, we deduce that

[u, v][p] = z[p] ⊗ 1 lies in [gz⊗1, gz⊗1]. Since z ∈ treg and z(gz⊗1) is restricted, we obtain that

(5) t⊗ 1 ⊆ z(gz⊗1) ∩ [gz⊗1, gz⊗1].

3.2. Describing the socle of h. In this subsection we are going to give a more precise description
of the socle of h. A Lie algebra L is said to be decomposable if it can be presented as a direct sum
of two commuting nonzero ideals of L.

Lemma 3.1. Let h, I, z and m be as in § 3.1. Then G is of type E and the following hold:

(i) gz⊗1 is a Levi subalgebra of type Ap−1A`−p in g and z(gz⊗1) = k(z ⊗ 1).

(ii) S is either sl2 or W (1; 1) and m = 1.

(iii) h has no minimal ideals isomorphic to pslrp.

(iv) I is the unique non-simple minimal ideal of h and Soc(h) = I ⊕ ch(I). Any minimal ideal
of ch(I) = Soc(ch(I)) is isomorphic to the Lie algebra of a simple algebraic k-group.

(v) If ch(I) 6= 0 then h is decomposable. More precisely, h ∼= (h/ch(I)) ⊕ ch(I) as Lie algebras
and h/ch(I) ∼= (S ⊗O(1; 1)) o (IdS ⊗D) for some transitive Lie subalgebra D of W (1; 1).

Proof. Replacing z⊗1 by an (AdG)-conjugate we may assume that gz⊗1 = Lie(Gz⊗1) is a standard
Levi subalgebra of g. Let a = dim

(
[gz⊗1, gz⊗1]∩z(gz⊗1)

)
. By [PSt16, 2.1], the restricted Lie algebra

gz⊗1 decomposes into a direct sum of its restricted ideals each of which either has form glrp for
some r ≥ 0 or is isomorphic to Lie(H) for some simple algebraic k-group H. Since dim z(glrp) =
dim z(slrp) = 1 for all r ≥ 1 and each Lie(H) is simple, a coincides with the number of irreducible
components of type Arp−1 with r ≥ 1 of the standard Levi subgroup Gz⊗1.

13



In view of (5) we have that a ≥ dim t. In particular, a ≥ 1. Since p is a good prime for G, examining
the subdiagrams of the Dynkin diagram of G yields that G is of type E and r = 1. Since t is a
torus of maximal dimension in S and 1 = d ≥ dim t, we now deduce that S is either sl2 or W (1; 1).
Since z ⊗ 1 lies in the Lie algebra of the Ap−1-component of Gz⊗1, it also follows that Gz⊗1 has
type Ap−1A`−p proving (i).

Suppose I ′ is a simple ideal of h isomorphic to pslrp for some r ≥ 1. Then [I, I ′] ⊆ I ∩ I ′ = 0
showing that I ′ ⊆ gz⊗1. The restriction of the Killing form κ of g to the Levi subalgebra gz⊗1

is non-degenerate. Since dim I ′ ≥ p2 − 2 > (dim gz⊗1)/2 by part (i), it follows that the Lie
algebra pslrp admits a faithful representation with a nonzero trace form. This, however, contradicts
[Bl62], proving (iii). In view of [BGP09, Lemma 2.7] and our earlier remarks this entails that any
minimal ideal I ′ = S′ ⊗ O(m′; 1) of h has the property that Der(S′) = adS′. Applying [Str04,

Corollary 3.6.6] then yields that h is sandwiched between Soc(h) =
⊕d

i=1(Si ⊗ O(mi; 1)) and⊕d
i=1 (Si ⊗O(mi; 1)) o (IdSi ⊗W (mi; 1)). For 1 ≤ i ≤ d we denote by πi the projection from h to

W (mi; 1). Each πi(h) acts transitively on O(mi; 1).

To keep the notation introduced earlier we assume that I1 = I so that m1 = m, S1 = S and π1 = π.
For 2 ≤ i ≤ d let Ii be the minimal ideal Si ⊗ O(mi; 1). Since [I, Ii] = 0 and πi(h) = πi(hz⊗1) by
(4), each Ii is a minimal ideal of hz⊗1. Since gz⊗1

∼= glp × sll−p acts faithfully on a vector space
of dimension ` + 1 = p + (` − p + 1) and Ii = [Ii, Ii], the Lie algebra hz⊗1 affords an irreducible
restricted representation ρi of dimension ≤ `+1 such that ρ(Ii) 6= 0. We let Vi be the corresponding
hz⊗1-module.

Suppose mi ≥ 1 for some i ∈ {2, . . . ,m}. Then it follows from Block’s theorem on differentiably
simple modules that there is a faithful Si-module V ′i such that Vi ∼= V ′i ⊗O(mi; 1) as vector spaces
and ρi(hz⊗1) embeds into the Lie subalgebra

(gl(V ′i )⊗O(mi; 1)) o (Idgl(V ′i ) ⊗W (mi; 1))

of gl(Vi); see [Str04, Theorem 3.3.10 and Corllary 3.3.11]. Since the Si-module V ′i is faithful,
it is of dimension at least 2 and so it must be that dimVi = pmi dimV ′i ≥ 2pmi . But then
`+ 1 ≥ dimV ≥ 2p which is impossible as p is a good prime for G. We thus deduce that mi = 0 for
all i ≥ 2. It follows that h contains a restricted ideal h′ isomorphic to (S⊗W (m; 1))o (IdS⊗D) for
some transitive Lie subalgebra D of W (m; 1) and such that h = h′⊕ ch(h

′). Moreover, any minimal
ideal of ch(h

′) = ch(I) (if any) is isomorphic to the Lie algebra of a simple algebraic k-group. This
proves (iv).

In order to finish the proof of the lemma it remains to show that m = 1. Suppose m > 1. If m ≥ 3
then dim I ≥ 3p3 > dim g which is false. Hence m = 2 and dim I ≥ 3p2 > (dim g)/2. It follows that
the restriction of the Killing form κ to I is nonzero. Write κ̄ for the restriction of κ to h′. Since I
is a minimal ideal of h′ and κ̄(I, I) 6= 0 it must be that I ∩ Rad κ̄ = 0.

Let x1, x2 be generators of the local ring O(2; 1) contained in O(2; 1)(1) and put xp−1 := xp−1
1 xp−1

2 .

Pick any nonzero element e ∈ S. Then e⊗ xp−1 ∈ I and the above yields that κ(e⊗ xp−1, y) 6= 0
for some y ∈ h′. Let V be any composition factor of the (ad h′)-module g and write ψ for the
corresponding (restricted) representation of h′. If ψ(I) = 0 then, of course, ψ(e⊗xp−1) ◦ψ(y) = 0.
If ψ(I) 6= 0 then it follows from Block’s theorem on differentiably simple modules that there is
a k-vector space V0 and a linear isomorphism V ∼= V0 ⊗ O(2; 1) such that ψ(h′) embeds into
(gl(V0) ⊗ O(2; 1)) o (Idgl(V0) ⊗ W (2; 1)) and ψ

(
S ⊗ O(2; 1)(1)

)
embeds into gl(V0) ⊗ O(2; 1)(1);

see [Str04, 3.3].
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Given a Lie algebra L we write Ld for the dth member of the lower central series of L. As
S is simple, e ∈ S 2p−2. From this it is immediate that e ⊗ xp−1 ∈ S ⊗ O(2; 1

)
(2p−2)

. But then

ψ(e⊗xp−1) = E⊗xp−1 for some E ∈ gl(V0). As ψ(y) ∈ (gl(V0)⊗O(2; 1))o(Idgl(V0)⊗W (2; 1)), this

implies that ψ(e⊗ xp−1) ◦ψ(y) is a square-zero endomorphism. It follows that ad(e⊗ xp−1) ◦ ad y
acts nilpotently on any composition factor of the (ad h′)-module g. But then κ(e ⊗ xp−1, y) =
tr(ad(e ⊗ xp−1) ◦ ad y) = 0 contrary to our choice of y. Therefore, m = 1 and our proof is
complete. �

Lemma 3.1(i) shows that z is a scalar multiple of a nonzero toral element of S. Since S is either sl2
or W (1; 1) by Lemma 3.1(ii) we may assume without loss that there is an sl2-triple {e, h, f} ⊂ S
such that h = z. Indeed, this is clear when S = sl2 and when S = W (1; 1) it follows from the
fact that any toral element of S is conjugate under the action of Aut(S) to either (1 + x)∂ or to a
multiple of x∂; see [Pre92], for example.

3.3. Determining the conjugacy class of S⊗1. Recall from § 3.2 that S is either sl2 or W (1; 1)

and S⊗1 is a restricted subalgebra of g. It follows that (e⊗1)[p] = (f⊗1)[p] = 0 and (h⊗1)[p] = h⊗1.

Proposition 3.2. Let h and S be as in § 3.2 and suppose further that h is indecomposable. Then
the following hold:

(i) G is of type E7 or E8 and p ∈ {5, 7}.
(ii) If p = 5 then G is of type E7 and e⊗ 1 ∈ O(A3A2A1).

(iii) If p = 7 then G is of type E7 or E8 and e⊗ 1 ∈ O(A2A1
3).

(iv) The sl2-triple {e⊗ 1, h⊗ 1, f ⊗ 1} is standard and S ∼= sl2.

Proof. Since p is a good prime for G, it follows from Lemma 3.1(i) and our choice of h ∈ S that
dim gh⊗1 = 28 if G is of type E6; dim gh⊗1 = 33 if G is of type E7 and p = 5; dim gh⊗1 = 49 if G
is of type E7 and p = 7, and dim gh⊗1 = 52 if G is of type E8. On the other hand, dimGe⊗1 =
dim ge⊗1 ≥ dim gh⊗1 by Lemma 2.3. Looking through the tables in [Car93, pp. 402–407] it is now
straightforward to see that if e ⊗ 1 ∈ O(Ap−1Ar) for some r ≥ 0, then G is of type E7, p = 5 and
r = 0. If e ⊗ 1 is not of that type then the sl2-triple {e ⊗ 1, h ⊗ 1, f ⊗ 1} must be standard by
Remark 2.6.

Let Π = {α1, . . . , α`} be a basis of simple roots in the root system Φ = Φ(G,T ) and let α̃ =∑`
i=1 niαi be the highest root of the positive system Φ+(Π). In what follows we are going to use

Bourbaki’s numbering of simple roots in Π; see [Bou68, Planches I–IX]. Given a nilpotent G-orbit
O ⊂ g we write ∆ = (a1, . . . , a`) for the weighted Dynkin diagram of O. We know that ai ∈ {0, 1, 2}
and there is a nice representative e′ ∈ O which admits an optimal cocharacter τ ∈ X∗(T ) such
that e′ ∈ g(τ, 2) and (αi ◦ τ)(λ) = λai for all λ ∈ k× and 1 ≤ i ≤ `; see [Pre03, 2.6]. We put
∆′ = (a′1 . . . , a

′
`) := 1

2∆ if all ai are even, and ∆′ = ∆ if aj is odd for some j ≤ `.

We first suppose that the sl2-triple {e ⊗ 1, h ⊗ 1, f ⊗ 1} is standard. If e ⊗ 1 ∈ O(∆) and ∆′ =
(a′1, . . . , a

′
`), then looking through the tables in [Car93, pp. 402–407] once again one observes that

in the majority of cases specified at the beginning of the proof the inequality

(6)
∑`

i=1nia
′
i < p

holds. If this happens then
∑`

i=1mia
′
i < p for all positive roots β =

∑`
i=1miαi ∈ Φ+(Π) and (2)

yields that g(hτ , 0̄) ∼= g(τ, 0) as Lie algebras. In type E6 the inequality (6) holds in all cases of
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interest and there is no τ as above for which g(τ, 0) has type Ap−1A`−p. In view of Remark 2.6 this
rules out the case where G is of type E6 thereby proving (i).

Suppose G is of type E7 and p = 5. We first consider the case where {e⊗1, h⊗1, f⊗1} is a standard
sl2-triple. If (6) holds for ∆′ then gh⊗1

∼= g(τ, 0) must have type A4A2. Since dimGe⊗1 ≥ 33,
examining the Dynkin diagrams in [Car93, p. 403] one observes that e ⊗ 1 ∈ O(A3A2A1). If (6)
does not hold for ∆′ then [Car93, p. 403] reveals that O must have one of the following labels:

A3, A2
2A1, (A3A1)′, A3A1

2, D4, D4(a1)A1, A3A2.

Since a root system of type A4A2 does not contain subsystems of type D4, A3A1
2, A2A1

3 and A5,
looking at the simple roots in Π corresponding to those i for which ai = 0 one can see that only the
case where e ⊗ 1 ∈ O

(
D4(a1)A1

)
is possible. Since p = 5, one can check directly that in this case

the root system of g(hτ , 0̄) with respect to T has basis consisting of α1, α4, α5, α6 and β = 123
2
211 .

As a consequence, it has type A4A1, a contradiction.

Now suppose that {e ⊗ 1, h ⊗ 1, f ⊗ 1} is a non-standard sl2-triple. Then e ⊗ 1 ∈ O(A4) by our
remarks at the beginning of the proof. By [LT11, p. 104], the reductive subgroup Ce⊗1 of Ge has
form T1 ·DCe⊗1, where DCe⊗1 is of type A2 and T1 is a 1-dimensional central torus in Ce⊗1. It is
straightforward to see that c′ := Lie(DCe⊗1) is generated by the simple root vectors e±α6 and e±α7 .
Also, T0 = $∨5 (k×) where, as usual, $∨i ∈ X∗(T ) stands for the fundamental coweight of αi ∈ Π.
It follows that the restriction of the Killing form of g to c′ is non-degenerate. Since [e⊗ 1, g(τ,−2)]
is orthogonal to ge(0) = Lie(Ce⊗1) with respect to κ and (h⊗ 1)− hτ ∈ ge⊗1(0) ∩ [e⊗ 1, g(τ,−2)]
by our discussion in § 2.4, it must be that (h⊗ 1)− hτ ∈ Lie($∨5 (k×)).

For 1 ≤ i ≤ ` set ti := (de$
∨
i )(1) and write si for the simple reflection in the Weyl group W =

NG(T )/T corresponding to the simple root αi ∈ Π. The toral elements t1, t2, . . . , t7 span Lie(T ).
Since h⊗ 1 is a toral element of Lie(T ) and Lie($∨5 (k×)) = kt5 we have that 1

2(h⊗ 1) = 1
2hτ + rt5

for some r ∈ F5. It is immediate from [LT11, p. 104] that 1
2hτ = t1 + t2 + t3 + t4− 3t5. Since p = 5,

direct computations shows that s2s4s3s1(1
2hτ ) = 1

2hτ + 3t5. As s2s4s3s1 fixes t5, this yields that

all elements in the set 1
2hτ + F5 · t5 are conjugate under the action of W . But then h ⊗ 1 and hτ

have isomorphic centralisers. Since it is immediate from [Car93, p. 403] that the centraliser of hτ
has type D4A1, this contradicts Lemma 3.1(i). We thus conclude that when p = 5 the sl2-triple
{e⊗ 1, h⊗ 1, f ⊗ 1} is standard and statement (ii) holds.

Next suppose that G is of type E7 and p = 7. Since in this case dim ge⊗1 ≥ 49 by Lemma 2.3,
analysing the weighted Dynkin diagrams in [Car93, p. 403] shows that e ⊗ 1 6∈ O(A6) and the
inequality (6) holds for ∆′(e ⊗ 1). Moreover, there is a unique weighted Dynkin diagram ∆′ for
which the centraliser of hτ has type A6 and the corresponding nilpotent orbit has Dynkin label
A2A1

3. This proves (iii) and shows that the sl2-triple {e⊗ 1, h⊗ 1, f ⊗ 1} is standard in type E7.

Now suppose G is of type E8. In this case, p = 7 and gh⊗1 has type A6A1. Since dim ge⊗1 ≥ 52 by
Lemma 2.3, it follows from [Car93, p. 406] that the orbit O(e ⊗ 1) is not of type A6Ar for r ≥ 0.
So the sl2-triple {e⊗ 1, h⊗ 1, f ⊗ 1} must be standard. Analysing the weighted Dynkin diagrams
in [Car93, pp. 405, 406] shows that either (6) holds for ∆′(e⊗ 1) or the orbit O(e⊗ 1) has one of
the following labels:

A4A1, D5(a1), A5, A3
2, D5(a1)A1, A4A2A1, D4A1, A4A1

2.

The first three labels cannot occur since in each of them the root system of g(τ, 0) contains a
subsystem of type D4. The fourth label cannot occur either since a root system of type A6A1

does not contain subsystems of type A3
2. The label D5(a1)A1 cannot occur because e 135

2
4321
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commutes with hτ and hence the root system of g(hτ , 0̄) contains a subsystem of type A4A3,
forcing g(hτ , 0̄) 6∼= gh⊗1. The label A4A2A1 cannot occur since e 245

2
4321 commutes with hτ . This

implies that the root system of g(hτ , 0̄) contains a subsystem of type A4A2A1 which is not the case
for the root system of gh⊗1. The label A4A1

2 cannot occur for the same reason: e 246
3
4321 commutes

with hτ and hence the root system of g(hτ , 0̄) contains a subsystem of type A4A2A1.

Finally, suppose e⊗1 ∈ O(D4A1). By [Car93, p. 405], hτ is conjugate to h′τ := t2+t7+2t8 under the
action of the Weyl group W = NG(T )/T . Using [Bou68, Planche VII] (and the fact that p = 7) it
is straightforward to see that the roots α1, α3, α4, α5, α6 and 135

3
4321 form a basis of simple roots of

the root system of g(h′τ , 0̄) with respect to T . So the present case cannot occur and hence (6) holds
for ∆′(e ⊗ 1). Looking once again at the weighted Dynkin diagrams in [Car93, p. 405] for which
(6) holds one finds out that O(A2A1

3) is the only nilpotent orbit in g for which g(τ, 0) = g(hτ , 0̄)
has type A6A1. This proves (iii).

It remains to show that S ∼= sl2. So suppose the contrary. Then S may be identified with
Der(O(1; 1)) by Lemma 3.1(ii). The k-algebra O(1; 1) is generated by an element x with xp = 0
and S is spanned by the derivations xi∂ with 0 ≤ i ≤ p− 1. We may choose {e, h, f} ⊂ S so that
f = ∂, h = 2x∂ and e = x2∂. Let u = xp−1∂. Then [e, u] = 0 and [h, u] = 2(p− 2)u = −4̄u. Since
we have already proved that the sl2-triple {e ⊗ 1, h ⊗ 1, f ⊗ 1} ⊂ g is standard we may assume
further that h⊗1 = hτ . Since e⊗1 ∈ O(A3A2A1) if p = 5 and e⊗1 ∈ O(A2A1

3) if p = 7, it follows
from [LT11, pp. 97, 105] that

ge⊗1 ∩ g(hτ ,−4̄) = ge⊗1(p− 4) = {0}
if G is of type E7. Since u ⊗ 1 ∈ ge⊗1(−4̄), we conclude that G is a group of type E8. In this
case we may assume that e⊗ 1 =

∑
i 6=4,6,8 eαi . By [LT11, p. 127], u⊗ 1 ∈ ge⊗1(3) and the Ce⊗1-

module ge⊗1(3) is generated by e 245
3
4321 as in the characteristic zero case. From this it follows that

(ad (f ⊗ 1))4(x) = 0 for all x ∈ ge⊗1(3). Since this contradicts the fact that (ad ∂)4(x6∂) 6= 0, we
now deduce that the case where S ∼= W (1; 1) is impossible. Then S ∼= sl2 by Lemma 3.1(ii) and
our proof is complete. �

Corollary 3.3. If G is of type E8 and h is as in Proposition 3.2, then there exists an involution
σ ∈ G such that Gσ is of type E7A1 and h ⊂ gσ. In particular, h is not maximal in g.

Proof. Since G is of type E8, we have p = 7. By Proposition 3.2, the sl2-triple {e⊗ 1, h⊗ 1, f ⊗ 1}
is standard and e ⊗ 1 ∈ O(A1A1

3). So we may assume that e ⊗ 1 =
∑

i 6=4,6,8 eαi and h ⊗ 1 = hτ
where the optimal cocharacter τ ∈ X∗(T ) is as in [LT11, p. 127]. Let σ = τ(−1). Using loc. cit.

it is straightforward to see that a root element eβ ∈ gσ if and only if β =
∑8

i=1 miαi and m8 is
even. From this it is immediate that Gσ is a group of type E7A1. Clearly e ⊗ O(1; 1) ⊆ g(hτ , 2̄)
and f ⊗O(1; 1) ⊆ g(hτ ,−2̄). As

[
e⊗O(1; 1), f ⊗O(1; 1)

]
= h⊗O(1; 1) and g(hτ ,±2̄) = g(τ,±2)

by [Car93, p. 405], we have that S ⊗O(1; 1) ⊂ gσ. As

h = (S ⊗O(1; 1)) o (Id⊗D) ⊆ (S ⊗O(1; 1)) + ce⊗1

and ce⊗1 = Lie(Ce⊗1) ⊂ g(τ, 0) ⊂ gσ we obtain h ⊂ gσ, as claimed. �

3.4. The existence of h. The goal of this subsection is to give explicit examples of exotic semidi-
rect products h ∼= (sl2 ⊗ O(1; 1)) o (Id ⊗ D). In view of our discussion in 3.3 we shall assume
that G is of type E7 and p ∈ {5, 7}. The notation introduced in the previous subsections will
be used without further notice. We write U+ and U− for the maximal unipotent subgroups of G
generated by the root subgroups Uγ with γ ∈ Φ+(Π) and γ ∈ −Φ+(Π), respectively. Combining
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Proposition 3.2 with [Car93, p. 403] one observes that (ad(e⊗1))p−1 = (ad(f ⊗1))p−1 = 0. In view
of Remark 2.4 this implies that g is a completely reducible ad(S ⊗ 1)-module. As a consequence,
(ad(f ⊗ 1))3 annihilates g e⊗1(2).

We first suppose that p = 5. In view of Proposition 3.2 we may assume that e⊗ 1 =
∑

i 6=4 eαi and

h ⊗ 1 = hτ where τ : k× → T is as in [LT11, p. 104]. The group Ce is connected of type A1 and
contains T0 := $∨4 (k×) as a maximal torus. The group C+

e⊗1 := Ce⊗1 ∩U+ is normalised by T0 and

B+
e⊗1 := T0 · C+

e⊗1 is a Borel subgroup of Ce⊗1. In the notation of [LT11] the maximal unipotent

subgroup Ce⊗1 ∩ U− of Ce⊗1 consists of all x−β1(t) with t ∈ k. (Here −β1 is not a root of G with

respect to T .) By the theory of rational SL(2)-modules, there exist nilpotent endomorphisms X(i)

of g such that (
Ad x−β1(t)

)
(v) =

∑
i≥0 t

iX(i)(v)
(
∀ v ∈ g

)
(these endomorphisms may be different from those in Proposition 2.7). Each X(i)(v) is a weight
vector of weight 2i for the action of T0 on End(g). Furthermore, there exists a generator X of

Lie(Ce⊗1 ∩ U−) such that X(i) = 1
i!(adX)i for 0 ≤ i ≤ p− 1.

As mentioned in [LT11, p. 105], in characteristic 5 the Ce⊗1-submodule generated by eα̃ ∈ g e⊗1(2)
is contained in the 10-dimensional indecomposable summand of ge⊗1(2) isomorphic to to the tilting
module TA1(8). The other indecomposable summand of the 15-dimensional Ce⊗1-module g e⊗1(2)
is isomorphic to the Steinberg module V (4). Since TA1(8) is a projective module over the restricted
enveloping algebra of sl2 by [Do93, § 2], the vector space gX ∩ g e⊗1(2) is 3-dimensional with
basis consisting of T0-weight vectors of weight −8, −4 and 0. It follows that the fixed point
space (gX ∩ g e⊗1(2))T0 is spanned by e ⊗ 1. On the other hand, since the tilting module TA1(8)
admits a Weyl filtration, the Ce⊗1-submodule of g e⊗1(2) generated by the highest weight vector

eα̃ of weight 8 for B+
e⊗1 is isomorphic to the Weyl module V (8). Since X [5] = 0 we have that

(ad X)4(eα̃) ∈ (gX ∩ g e⊗1(2))T0 , implying k(e⊗ 1) = k(ad X)4(eα̃).

Let A denote the k-span of all (ad X)i(eα̃) with 0 ≤ i ≤ 4. By construction, this is a B+
e⊗1-

submodule of g e⊗1(2) stable under the action of adX. As ce⊗1 = kX ⊕ Lie(B+
e⊗1), it follows that

A is a ce⊗1-submodule of g. Since it is immediate from [LT11] that A ⊂ Lie(U+) we have that
[eα̃, A] = 0. By the Jacobi identity,[

(ad X)i(eα̃), (ad X)j(eα̃)
]
⊆
∑

k≤i (ad X)k
(
[eα̃, A]

)
= 0.

Therefore, A is an abelian subalgebra of g. Since (ad(f ⊗ 1))4 = 0 and (ad(f ⊗ 1))3(A) = 0, the
Jacobi identity also yields that (ad(f ⊗ 1))2(A) is a 5-dimensional commutative subalgebra of g
contained in g f⊗1(−2). Since f ⊗1 ∈

∑
i 6=4 ke−αi it must be that [f ⊗1, eα̃] ∈ k×e 134

2
321 . Arguing

as before it is now straightforward to see that [f ⊗ 1, A] is a 5-dimensional abelian subalgebra of
g(τ, 0) contained in k(h⊗ 1)⊕ Lie(U+). Therefore, [[f ⊗ 1, A], eα̃] = [k(h⊗ 1), eα̃] = keα̃. Applying
(adX)i with i ≥ 0 to both sides of this equality one obtains that [[f⊗1, A], A] = A. Since [f⊗1, A]
is abelian, this yields[

(ad(f ⊗ 1))2(A), A
]

= [f ⊗ 1, A] and
[
(ad(f ⊗ 1))2(A), [f ⊗ 1, A]

]
= (ad(f ⊗ 1))2(A).

As a consequence, Ã := A ⊕ [f ⊗ 1, A] ⊕ (ad(f ⊗ 1))2(A) is a 15-dimensional Lie subalgebra of g

containing S ⊗ 1 and normalised by ce⊗1. Set h = ce⊗1 ⊕ Ã and

(7) Ã+ := Lie(U+) ∩
(

(ad(f ⊗ 1))2(A)⊕ [f ⊗ 1, A]
)
⊕
(
[Lie(U+),Lie(U+)] ∩A

)
.
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Then Ã+ ⊂ N (g) and Ã = (S ⊗ 1) ⊕ Ã+. Since [Ã, Ã+] ⊆ Ã+, it follows that Ã+ = nil(Ã) and

Ã/nil(Ã) ∼= sl2. On the other hand, if I is a nonzero ideal of Ã stable under the action of adX then
I ∩ (S ⊗ 1) 6= 0. But then f ⊗ 1 ∈ I implying that [f ⊗ 1, A] ⊆ I and (ad(f ⊗ 1))2(A) ⊆ I. Hence

A = [[f ⊗ 1, A], eα̃] ⊆ I forcing I = Ã. This shows that the Lie algebra Ã is derivation simple.

As ce⊗1
∼= sl2 is simple, it must act faithfully on Ã. In conjunction with Block’s theorem [Str04,

Corollary 3.3.5] this entails that h ∼= (sl2 ⊗O(1; 1)) o (Id⊗D) where D ∼= sl2.

Now suppose p = 7. By Propositon 3.2, we may assume that e⊗ 1 =
∑

i 6=4,6 eαi . This case is very
similar to the previous one, the only complication being that Ce⊗1 is now a connected group of
type G2. In the notation of [LT11, p. 97] it is generated by the unipotent one-parameter subgroups
x±βi(k) where i = 1, 2. Here β1 and β2 are simple roots of Ce⊗1 with respect to the maximal torus
T0 of Ce⊗1 generated by $∨i (k×) with i ∈ {4, 6}. Note that β1 is a short root of Φ(Ce⊗1, T0).

For i = 1, 2 we pick a nonzero element Fi in the Lie algebra of x−βi(k). Then F1 + F2 is a regular

nilpotent element of ce⊗1 Let β̃ be the highest root of Φ(Ce⊗1, T0) with respect to its basis of

simple roots {β1, β2} and let Ẽ be a root vector of ce⊗1 corresponding to β̃ = 3β1 + 2β2. As

p = 7, the Lie subalgebra w of ce⊗1 generated by F1 + F2 and Ẽ is isomorphic to the Witt algebra
W (1; 1); see [Pre85, Lemma 13] or [HS15, Lemma 3.6]. Moreover, one can choose an isomorphism

ψ : ,w
∼−→ W (1; 1) such that ψ(F1 + F2) = ∂ and ψ(Ẽ) ∈ k(x6∂). For i ≥ −1, we denote by w(i)

the preimage under ψ of the ith member of the canonical filtration of W (1; 1). By construction,
w(1) ⊂ Lie(U+).

It follows from [LT11, p. 97] that F1 + F2 is a weight vector of weight −2 with respect to the
1-dimensional subtorus T1 :=

{
$∨4 (c2)$∨6 (c2) | c ∈ k×

}
of T0. The torus T1 normalises w and

Lie(T1) = kψ−1(x∂). In the present case the Levi subgroup CG(τ) acts rationally on a 7-dimensional
vector space V over k and Lie(CG(τ)) = g(τ, 0) ∼= gl(V ) as restricted Lie algebras. Then ce⊗1 ↪→
gl(V ) and V may be regarded as a faithful restricted 7-dimensional ce⊗1-module. Since Ce⊗1 is a
group of type G2, it must be that V ∼= L($1) as Ce⊗1-modules (this is immediate from [Pre88],
for example). Hence F1 + F2 acts on V as a nilpotent Jordan block of size 7; see [Pre85, p. 95] for
more detail. We thus deduce that F1 + F2 is a regular nilpotent element of g(τ, 0).

Since g is a completely reducible ad(S ⊗ 1)-module and g e⊗1(r) = 0 for r 6∈ {0,±2,±4} by [LT11,
p. 97], we have that

(8) g(τ, 0) = ce⊗1 ⊕ [f ⊗ 1, ge⊗1(2)]⊕ [f ⊗ 1, [f ⊗ 1, ge⊗1(4)]].

Hence [f ⊗ 1, g e⊗1(2)] ∼= g e⊗1(2) is a direct summand of the (Ad Ce⊗1)-module g(τ, 0) ∼= V ⊗ V ∗.
By [LT11, p. 97], dim g e⊗1(2) = 28 and eα̃ ∈ g e⊗1(2) is a highest weight vector of weight 2$1 for the
Borel subgroup B+

e⊗1 = T0 · (Ce⊗1∩U+) of Ce⊗1. The Weyl module V (2$1) for Ce⊗1 has dimension
27 by Weyl’s dimension formula. Since in characteristic 7 the irreducible Ce⊗1-module L(2$1) has
dimension 26 by [Lü01, 6.49], we have that Ext1

Ce⊗1
(L(2$1), k) 6= 0, using [Jan03, II.2.14]. Since

g(τ, 0) ∼= V ⊗V ∗ is a tilting module for Ce⊗1, it follows from (8) that the (Ad Ce⊗1)-module g e⊗1(2)
is isomorphic to the tilting module TG2(2$1) (one should keep in mind here that TG2(2$1) admits
both a good filtration and a Weyl filtration). We mention in passing that TG2(2$1) ∼= S2(L($1))
(this will not be required in what follows).

Since V is a free module over the restricted enveloping algebra of k(F1 + F2), so are V ⊗ V ∗ and
[f ⊗ 1, g e⊗1(2)]. This implies that

g e⊗1(2) ∩ gF1+F2 = (ad(F1 + F2))6(g e⊗1(2)).
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Note that eα̃ has weight 12 with respect to the action of T1. Conversely, any T1-weight vector
of weight 12 in g e⊗1(2) is proportional to eα̃ (here we use the fact that g e⊗1(2) ∼= TG2(2$1) as
Ce⊗1-modules). This gives e⊗ 1 ∈ k(ad(F1 + F2))6(eα̃).

We now let A be the k-span of all ad(F1 + F2)i(eα̃) with 0 ≤ i ≤ 6. Repeating verbatim the

argument used in the previous case we observe that Ã := A⊕ [f ⊗ 1, A]⊕ (ad(f ⊗ 1))2(A) is a Lie

subalgebra of g normalised by w. We then define Ã+ as in (7) and check directly that Ã+ = nil(Ã)

and Ã/nilÃ ∼= sl2.

We set h = w ⊕ Ã. If I is a nonzero ideal of Ã stable under the action of ad(F1 + F2) then
our earlier remarks imply that I ∩ (S ⊗ 1) 6= 0. But then f ⊗ 1 ∈ I forcing [f ⊗ 1, A] ⊆ I and

(ad(f ⊗ 1))2(A) ⊆ I. Hence I = Ã as in the previous case. This shows that the Lie algebra Ã

is derivation simple. As the Lie algebra w ∼= W (1; 1) is simple, it acts faithfully on Ã. Applying
Block’s theorem [Str04, Corollary 3.3.5] we get h ∼= (sl2 ⊗O(1; 1)) o (Id⊗D) where D ∼= W (1; 1).

3.5. The uniqueness of Soc(h). In this subsection we assume that h′ = (S′⊗O(1; 1))o (Id⊗D′)
is an esdp of g where g is of type E7 and p ∈ {5, 7}. Our goal is to show that Soc(h′) = S′⊗O(1; 1)
is conjugate to the socle of the subalgebra h described in § 3.4. This will imply that ng(Soc(h′)) =
(Ad g)(h) for some g ∈ G. By Proposition 3.2, we may assume that S′ ⊗ 1 = S ⊗ 1 is spanned by
the sl2-triple {e⊗1, h⊗1, f⊗1} described in [LT11, p. 104] for p = 5 and in [LT11, p. 97] for p = 7.

To ease notation we identify Id⊗D′ with D′, a Lie subalgebra of W (1; 1). Since h′ is semisimple, D′
is not contained in the standard maximal subalgebra W (1; 1)(0) of W (1; 1) (otherwise S ⊗O(1; 1)
would contain a nonzero nilpotent ideal of h′). In view of Lemma 2.2, we may assume further that
either D = ∂ or D = (1 + x)∂. Unfortunately, this is the best one can say as it may well be that
dimD′ = 1.

Let ce⊗1 = Lie(Ce⊗1). Since D commutes with both e ⊗ 1 and h ⊗ 1 and g(hτ , 0̄) = g(τ, 0) in all
cases of interest, we have that D ∈ ce⊗1. Our first task will be to determine the conjugacy class of
the subspace kD under the adjoint action of Ce⊗1. For that we are going to use some properties of
irreducible representations of the completely solvable Lie algebra kD n (h⊗O(1; 1)).

Lemma 3.4. Under the above assumptions on h′, a scalar multiple of D is contained in a standard
regular sl2-triple of ce⊗1. In particular, the subspace kD is unique up to (Ad Ce⊗1)-conjugacy.

Proof. If p = 5 then ce⊗1
∼= sl2 by [LT11, p. 104]. In this case, the statement of the lemma is

elementary. So we assume from now that p = 7.

Let r := kD n (h ⊗ O(1 1)). Since h ⊗ 1 = hτ and [h ⊗ 1, r] = 0 we have that r ⊂ g(hτ , 0̄). We
have already mentioned in § 3.4 that the restricted Lie algebra g(hτ , 0̄) = g(τ, 0) is isomorphic
to gl(V ) where V is a 7-dimensional vector space over k. Since h′ is a restricted Lie subalgebra
of g, so is h′ ∩ g(τ, 0) = (h ⊗ O(1; 1)) o D′. It follows that r is a restricted Lie subalgebra of
g(τ, 0) and r′ := h ⊗ O(1 1) is a restricted abelian ideal of r. Since D ∈ {∂, (1 + x)∂}, there is
an x ∈ r′ such that [D,x]p = h ⊗ 1. As k(h ⊗ 1) acts on V by scalar multiplications, we see
that the derived subalgebra of r does not act nilpotently on V . Therefore, the r-module V has
a composition factor of dimension > 1. Since r is completely solvable and dimV = p it follows
from [Str04, Corollary 3.3.9], for example, that V is an irreducible restricted r-module. As r′ is
abelian, V contains a 1-dimensional r′-submodule, V0 The irreducibility of the r-module V then

implies that V is a homomorphic image of the induced r-module Ṽ0 := u(r) ⊗u(r′) V0. Since r′ has

codimension 1 in r we have that dim Ṽ0 = p dimV0 = dimV . It follows that V ∼= Ṽ0. As D 6∈ r′,
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this implies that V is a free u(kD)-module of rank 1. In other words, if Dp = 0 then D acts on
V as a nilpotent Jordan block of size p and if Dp = D then the set of the eigenvalues of D on V
equals Fp and all eigenvalues appear with multiplicity 1.

Recall from § 3.4 that Ce⊗1 has type G2 and V ∼= L($1) as Ce⊗1-modules. If Dp = 0 then the
above says that D6 does not vanish on V . Applying [Ste17, Table 4] we then deduce that D lies
in the regular nilpotent Ce⊗1-orbit of ce⊗1. In view of our discussion in § 2.4 it clear now that the
statement of the lemma holds when Dp = 0.

If Dp = D then D is a toral element of ce⊗1 and the commutative algebra u(kD) is semisimple.
Furthermore, no generality will be lost by assuming that D lies in the maximal toral subalgebra
Lie(T0) of ce⊗1. The set of all toral elements if Lie(T0) is spanned over F7 by two elements, t1 and
t2, such that βi(tj) = δij for i, j ∈ {1, 2} (the simple roots β1, β2 ∈ Φ(Ce⊗1, T0) were introduced in
3.4). Write D = at1 + bt2 for some a, b ∈ F7. As β1 is a short root, we have that $1 = 2β1 + β2. It
is well known that the set of T0-weights of L($1) equals

{$1, $1 − β1, $1 − β1 − β2, $1 − 2β1 − β2, $1 − 3β1 − β2, $1 − 3β1 − 2β2, $1 − 4β1 − 2β2}.
Since each eigenvalue of D on V ∼= L($1) has multiplicity 1 we may assume after rescaling that
a = 1. Then the set of the eigenvalues of D on V equals {2 + b, 1 + b, 1, 0,−1,−1− b,−2− b}. One
can see by inspection that there are two values of b ∈ F7 for which this set consists of 7 elements,
namely b = 1 and b = 3. As β̃ = 3β1 + 2β2 and (deβ̃

∨)(1) = t2 we have that

sβ̃(t1 + t2) = (t1 + t2)− 5t2 = t1 + 3t2.

This shows that D is (Ad Ce⊗1)-congugate to t1 + t2 completing the proof. �

We are now ready to prove that the socle S ⊗O(1; 1) of h′ is conjugate under the adjoint action of
the group G to the socle of the esdp h constructed in § 3.4. This will imply that m := ng(Soc(h′))
is also unique up to (Ad G)-conjugacy. Recall that Soc(h) and Soc(h′) share the same sl2-triple
(e⊗ 1, h⊗ 1, f ⊗ 1) described explicitly in § 3.4. In light of Lemma 3.4, we also know that D ∈ h′ is
either a nilpotent or toral element in ce⊗1 = Lie(Ce⊗1) and its nonzero scalar multiple is contained
in a regular sl2-triple of ce⊗1.

The group Ce⊗1 = Gh⊗1 ∩Ge⊗1 has type A1 (resp., G2) if p = 5 (resp., p = 7). We shall treat each
of four cases by turn, using GAP and imposing well-chosen relations between the elements of kD
and Soc(h′) to show that there is only one choice for Soc(h′) up to conjugacy by G.

Let p = 5. Then e ∈ O(A3A2A1) and the following elements give an sl2-triple {e⊗ 1, h⊗ 1, f ⊗ 1}
generating the subalgebra S ⊗ 1 of Soc(h′):

e⊗ 1 = e100000
0

+ e000000
1

+ e010000
0

+ e000100
0

+ e000010
0

+ e000001
0

,

h⊗ 1 = 2 · hα1 + hα2 + 2 · hα3 + 3 · hα5 + 4 · hα6 + 3 · hα7 ,

f ⊗ 1 = 2 · e−100000
0

+ e−000000
1

+ 2 · e−010000
0

+ 3 · e−000100
0

+ 4 · e−000010
0

+ 3 · e−000001
0

.

(i) Suppose Dp = 0. Then D is a regular nilpotent element of ce⊗1 (Lemma 3.4) and in view
of [LT11, p. 104] we may assume that

D = 3 · e111000
1

+ e111100
0

+ 2 · e011100
1

+ e001110
1

+ e011110
0

+ e001111
0

.

Recall the maximal unipotent subgroup C+
e⊗1 of Ce⊗1 introduced in § 3.4. We will search for the

element e⊗ x ∈ Soc(h′) and show up to the adjoint action of C+
e⊗1 there is precisely one candidate
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with the choices we have already made. Since [h⊗1, e⊗x] = 2 ·e⊗x, and ge⊗1∩g(hτ , 2̄) = ge⊗1(2)
it must be that e⊗ x ∈ ge⊗1(2). A general element of ge⊗1(2) is

v = x3 · e100000
0

+ x2 · e000000
1

+ x3 · e010000
0

+ x7 · e000100
0

+ x7 · e000010
0

+ x7 · e000001
0

+ (x30 + 2 · x31) · e111100
1

+ x31 · e111110
0

+ (x30 + x31) · e011110
1

+ x30 · e001111
1

+ x31 · e011111
0

+ (4 · x47 + x49) · e122210
1

+ x47 · e122111
1

+ x49 · e112211
1

+ x49 · e012221
1

+ 4 · x59 · e123221
2

+ x59 · e123321
1

+ x63 · e234321
2

+ (2 · x80 + 4 · x81) · e−111000
0

+ (4 · x80 + x81) · e−011000
1

+ (4 · x80 + x81) · e−001100
1

+ x80 · e−011100
0

+ x81 · e−001110
0

+ x103 + x104 · e−122100
1

+ x103 + x104 · e−112110
1

+ x103 · e−012210
1

+ x104 · e−012111
1

+ 4 · x117 · e−123210
2

+ x117 · e−123211
1

+ x124 · e−124321
2

,

with each xi ∈ k. The relation [D, e⊗ x] = e⊗ 1 puts many linear constraints on the xi. Imposing
them on v gives

v = x7 · e100000
0

+ x7 · e000000
1

+ x7 · e010000
0

+ x7 · e000100
0

+ x7 · e000010
0

+ x7 · e000001
0

+ 3 · x49 · e122210
1

+ 3 · x49 · e122111
1

+ x49 · e112211
1

+ x49 · e012221
1

+ x63 · e234321
2

+ 3 · e−111000
0

+ 4 · e−011000
1

+ 4 · e−001100
1

+ 2 · e−011100
0

+ e−001110
0

,

Note that h⊗x = [e⊗x, f⊗1] is an element of Soc(h′) whose [p]th power in g is zero. In particular,
we must have (ad[v, f ⊗ 1])5(e ⊗ 1) = 0. Imposing this condition on v results in the equation
x63 = 3 · x5

7. Since [[[h⊗ x], e⊗ x], e⊗ x] = 0, we should insist similarly that [[[v, f ⊗ 1], v], v] = 0.
This yields 2 · x2

49 = 0 forcing x49 = 0 and implying that

v = x7 · e100000
0

+ x7 · e000000
1

+ x7 · e010000
0

+ x7 · e000100
0

+ x7 · e000010
0

+ x7 · e000001
0

+ 3 · x5
7 · e234321

2
+ 3 · e−111000

0
+ 4 · e−011000

1
+ 4 · e−001100

1
+ 2 · e−011100

0
+ e−001110

0
.

Since the subspace Lie(U+) ∩ Lie(C+
e⊗1) is 1-dimensional, kD is the Lie algebra of C+

e⊗1. Set

v0 := 3 · e−111000
0

+ 4 · e−011000
1

+ 4 · e−001100
1

+ 2 · e−011100
0

+ e−001110
0

.

Since [D, v0] is a nonzero scalar multiple of e⊗ 1 and v = v0 + x7(e⊗ 1) + x5
7 · e234321

2
, there exists

u ∈ C+
e⊗1 such that (Ad u)(v) = v0. Since C+

e⊗1 fixes both D and S ⊗ 1 we may assume without
loss of generality that v = v0. On the other hand, it is straightforward to see that the Lie algebra
kD⊕Soc(h′) is generated by D, e⊗x and S⊗1. As these are uniquely determined up to conjugacy,
so is Soc(h′) =

[
kD ⊕ Soc(h′), kD ⊕ Soc(h′)

]
. This settles the present case.

(ii) Now suppose D ∈ Ce⊗1 is toral, acting as (1 + x)∂ on O(1; 1). In view of Lemma 3.4 we may
assume that

D = 4 · hα1 + hα2 + 3 · hα3 + 2 · hα4 + 4 · hα5 + hα6 + 3 · hα7 .

As before, we represent e ⊗ (1 + x) by a general element v of ge⊗1(2). Imposing the condition
[D, e⊗ (1 + x)] = e⊗ (1 + x) on v shows that v equals

(x30 +2 ·x31) ·e111100
1

+x31 ·e111110
0

+(x30 +x31) ·e011110
1

+x30 ·e001111
1

+x31 ·e011111
0

+x124 ·e−124321
2

.
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for some xi ∈ k. Again, we must have [[[v, f ⊗ 1], v], v] = 0 which yields a cubic equation,

x3
30 + 4 · x2

30 · x31 + 2 · x30 · x2
31 + 2 · x3

31 = 0.

In characteristic 5 it conveniently factorises as (x30 + 3 · x31)3 = 0 giving x30 = 2 · x31. Now,
recognising that (ad(h⊗ (1 + x)))4(e⊗ (1 + x)) = e⊗ 1 and imposing this on v, we get a condition

x4
31 · x124 = 2.

In particular, x31 6= 0. The maximal torus T0 = $∨4 (k×) of Ce⊗1 fixes D and we may replace v
by (Ad t)(v) for any t ∈ T0 without affecting the conditions imposed earlier. The explicit form of
v given above shows that it can be replaced by an (Ad T0)-conjugate in such a way that x31 = 1.
Then x124 = 2 which implies that the v’s representing e ⊗ (1 + x) form a single conjugacy class
under the action of Ad T0. At this point we can argue as in the previous case to conclude that
Soc(h′) is unique up to conjugacy.

For the next two cases, let p = 7. In this case e ∈ O(A2A1
3) and the following sl2-triple spans the

subalgebra S ⊗ 1 of Soc(h′):

e⊗ 1 = e100000
0

+ e000000
1

+ e010000
0

+ e000100
0

+ e000001
0

,

h⊗ 1 = 2 · hα1 + hα2 + 2 · hα3 + hα5 + hα7 ,

f ⊗ 1 = 2 · e−100000
0

+ e−000000
1

+ 2 · e−010000
0

+ e−000100
0

+ e−000001
0

.

This choice is compatible with [LT11, p. 97].

(iii) Suppose Dp = 0. Then we proceed as before. By Lemma 3.4, we may take

D = e000110
0

+ e000011
0

+ e111000
0
− e011000

1
− 2 · e001100

1
+ e011100

0
,

a regular nilpotent element of ce⊗1. Now we let v be a general element representing e⊗x ∈ Soc(h′).
As before, we have that v ∈ ge⊗1(2). Since [d, v] = e⊗ 1 a GAP computation tells that

v = x7 · e100000
0

+ x7 · e000000
1

+ x7 · e010000
0

+ x7 · e000100
0

+ x7 · e000001
0

+ x37 · e111110
1

+ x37 · e011111
1

+ x37 · e122100
1

+ 4 · x56 · e122221
1

+ x56 · e123211
2

+ x63 · e234321
2

+ e−000010
0

+ 2 · e−001000
1

+ 6 · e−011000
0

+ e−001100
0

for some x7, x37, x56, x63 ∈ k. Now we proceed as in case (i). As h⊗x = [e⊗x, f ⊗1] and the latter
element has zero [p]th power in g we must insist that (ad [v, f ⊗ 1])7(e⊗ 1) = 0. This leads to the
condition x63 = 3 · x7

7. Furthermore, [[h⊗ x, e⊗ x], e⊗ x] = 0 leads to the condition 3 · x2
37 = 0. As

a result, x37 = 0 and

v = x7 · e100000
0

+ x7 · e000000
1

+ x7 · e010000
0

+ x7 · e000100
0

+ x7 · e000001
0

+ 4 · x56 · e122221
1

+ x56 · e123211
2

+ 3 · x7
7 · e234321

2
+ e−000010

0
+ 2 · e−001000

1
+ 6 · e−011000

0
+ e−001100

0
.

We denote the set of all such v’s by V and put

v0 := e−000010
0

+ 2 · e−001000
1

+ 6 · e−011000
0

+ e−001100
0

Note that v0 ∈ V and [D, v0] = e⊗ 1.
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Recall the 1-dimensional torus T1 of Ce⊗1 defined in § 3.4. Since Dp = 0, it follows from [McN05]
that there exists a one-parameter unipotent subgroup U1 = {x(t) | t ∈ k} of Ce⊗1 such that
Lie(U1) = kD and T1 ⊂ NG(U1). By the general theory of algebraic groups,(

Ad x(t)
)
(v0) =

∑
i≥0 t

iX(i)(v0)

for some endomorphisms X(i) of g independent of t (these endomorphisms may be different from

those in Proposition 2.7). Each endomorphism X(i) has weight 2i with respect to the action of T1

on End(g) and there exists a nonzero scalar r ∈ k× such that X(i) = ri

i! (adD)i for 1 ≤ i ≤ p − 1.
Since the set V is (Ad U1)-stable, looking at the T1 weights of the root vectors involved one observes
that the orbit (Ad U1) v0 ⊂ V contains a vector of the form

vλ = v0 + λ
(

4 · e122221
1

+ e123211
2

)
for some λ ∈ k. In order to simplify vλ further we are going to employ the group of type A1

generated by the unipotent root subgroups U±β̃ of Ce⊗1; see § 3.4 for detail. We call it Sβ̃ and let

Xβ̃ denote a spanning vector of Lie(Uβ̃). Since β̃ = 3β1 + 2β2 is the highest root of Φ(Ce⊗1, T0)

with respect to the basis of simple roots {β1, β2} and T0 is generated by $∨i (k×) with i = 4, 6,
it is immediate from [LT11, p. 97] that Sβ̃ contains $∨6 (k×) as a maximal torus acting on the

line kXβ̃ with weight 2. Since all weights of g with respect to $∨6 (k×) lie in the set {±2,±1, 0},
representation theory of SL(2) yields that the Sβ̃-module g is completely reducible. This implies

that if u = u0+u−1 ∈ g is the sum of (nonzero) weight vectors u0 and u−1 for $∨6 (k×) corresponding
to weights 0 and −1, respectively, then [Xβ̃, u] 6= 0.

Since the group Uβ̃ fixes D and S ⊗ 1 point-wise, it acts on V. Applying the preceding remark

with u = v0 it is straightforward to see that each vλ lies in the orbit (Ad Uβ̃) v0. This determines

v uniquely up to conjugacy under the adjoint action of centraliser of D in Ce⊗1. So we may repeat
the argument used at the end of part (i) and move to the last case.

(iv) Suppose p = 7 and Dp = D. Then S ⊗ 1 is as in part (iii) and in view of Lemma 3.4 we may
assume that

D = 5 · hα1 + 4 · hα2 + 3 · hα3 + hα4 + 6 · hα6 + 3 · hα7 .

As in part (ii), we represent e⊗ (1 + x) by a general element v of ge⊗1(2). Imposing the condition
[D, e⊗ (1 + x)] = e⊗ (1 + x) on v gives

v = x55 · e122221
1

+ x56 · e123211
2

+ (x103 + x104) · e−112110
1

+ x103 · e−012210
1

+ x104 · e−012111
1

.

As [[e⊗(1+x), f⊗1], e⊗(1+x)] commutes with e⊗(1+x) and (ad(h⊗(1+x)))6(e⊗(1+x)) = e⊗1,
we must have [[[v, f ⊗ 1], v, v] = 0 and (ad [v, f ⊗ 1])6(v) = e ⊗ 1. Imposing these conditions on v
leads to two algebraic equations

x56 · x2
103 + 4 · x56 · x103 · x104 + 4 · x56 · x2

104 = 0(9)

x55 · x2
56 · x4

103 + 5 · x55 · x2
56 · x2

103 · x2
104 + x55 · x2

56 · x4
104 = 1.(10)

Since x56 6= 0 by (10), we may divide (9) through by x56. This yields

0 = x2
103 + 4x103 · x104 + 4x2

104 = (x103 + 2x104)2,

so that x103 = −2 · x103. Then (10) can be rewritten as

1 = x55 · x2
56 ·
(
16 · x4

104 + 20 · x104 + x4
104

)
= 2 · x55 · x2

56 · x4
104.
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As a result, both x56 and x104 are nonzero. Since the maximal torus T0 of Ce⊗1 generated by
$∨i (k×) with i ∈ {4, 6} fixes D and S ⊗ 1 point-wise, we may replace v by any element of the form
(Ad t)(v) with t ∈ T0. In doing so we may arrange for both x56 and x104 to be equal to 1. Then
x55 = 4 implying that v is uniquely determined up to conjugacy under the action of centraliser of
D in Ce⊗1. Then so is v − (e⊗ 1) and we can argue as before to finish the proof.

3.6. The normaliser of Soc(h) in G. Let h̃ = ng(Soc(h)). In this subsection we are going to

prove the remaining statements of Theorem 1.1 except for the maximality of h̃. We may assume
that G = Aut(g)◦ is an adjoint group of type E7. Let h be an esdp of g, and put N := NG(Soc(h)).
By § 3.5, we know that Soc(h) = S⊗O(1; 1) is unique up to (Ad G)-conjugacy. Therefore, we may

take for Soc(h) the subalgebra of g described in § 3.4. Put h̃ := ng(Soc(h)).

Recall that the role of e ⊗ xp−1 is played by a multiple of the highest root vector eα̃ ∈ ge⊗1(2)
whilst ∂ ∈ D is represented by a regular nilpotent element of ce contained in Lie(Ce⊗1 ∩ U−); we
call it F . Since h is a restricted subalgebra of g, the elements ys := (adF )s(eα̃) ∈ ge⊗1(2) with
0 ≤ s ≤ p − 2 which represent nonzero multiples of e ⊗ xp−s−1 lie in Np(g). By Proposition 2.7,
there exist one-parameter unipotent subgroups Ys =

{
ys(t) | t ∈ k

}
of Ge⊗1 such that ys ∈ Lie(Ys)

and (
Ad ys(t)

)
(v) ≡

p−1∑
i=0

1

i!
(ad ys)

i(v) mod
⊕

j≥i+2p

g(τ, j)
(
∀v ∈ g(τ, i)

)
.

Since g(τ, j) = 0 for j ≥ 2p− 2 by [LT11, pp. 97, 104], the groups Ad Ys fix A := e⊗O(1; 1) point-
wise and send f⊗1 into the space (f⊗1)+[A, f⊗1]+[A, [A, f⊗1]]. (Recall that (adA)3(f⊗1) = 0.)
Since e⊗O(1; 1) and f ⊗ 1 generate the Lie algebra S ⊗O(1; 1) we thus deduce that Ys ⊂ N◦ for
all 0 ≤ s ≤ p− 2.

Since e ⊗ 1 is a regular nilpotent element in a standard Levi subalgebra l = Lie(L) of g of type
A3A2A1 or A2A1

3, using [LT11, pp. 97, 104] it is easy to observe that there is a regular subgroup
S of type A1 in L which commutes with Ce⊗1 and has the property that Lie(S) = S ⊗ 1. The
subgroup S contains τ(k×) as a maximal torus and eα̃ is a highest weight vector of weight 2 for S.
Hence the (Ad S)-submodule of g generated by eα̃ is spanned by (ad(f ⊗1))i(eα̃) with i ∈ {0, 1, 2}.
As S fixes F ∈ Lie(Ce⊗1), it follow that (Ad S)(A) ⊂ Soc(h). Since the Lie algebra Soc(h) is
generated by A and Lie(S) = S ⊗ 1, we now deduce that S ⊂ N◦.

It is immediate from the above remarks that Soc(h) ⊆ Lie(N). If p = 5 then the Borel subgroup
B+
e⊗1 also normalises Soc(h). If p = 7 the subalgebra w(0) defined in § 3.4 lies in ng(Soc(h)) and is

acted upon by the 1-dimensional torus T1 ⊂ Ce⊗1. It is easy to check that T1 ⊂ N◦. We claim that
there exists a connected unipotent subgroup W(1) ⊂ Ce⊗1∩N◦ such that Lie(W(1)) = w(1). Indeed,
it follows from [Sei00] or [McN05] that there exists a subgroup Sreg of type A1 in Ce⊗1 such that
T1 ⊂ Sreg and F1+F2 ∈ Lie(Sreg) (the regular nilpotent element F1+F2 ∈ ce⊗1 was defined in § 3.4).
Since T1 acts on the maximal unipotent subgroup Sreg∩U+ of Sreg with weight 2 and (ad(F1 +F2))2

maps Lie(Sreg ∩ U+) onto k(F1 + F2), it is straightforward to see that Lie(Sreg) ⊂ w. We take for
W(1) the connected unipotent group generated by Sreg ∩ U+ and the unipotent root subgroups
Ce⊗1,γ of Ce⊗1 corresponding to the roots γ of height ≥ 2 with respect to the basis of simple
roots {β1, β2}. Since in characteristic 7 the groups Sreg ∩ U+ and Ce⊗1,γ with ht(γ) ≥ 2 normalise
w = Lie(Sreg)⊕

∑
ht(γ)≥ 2 Lie(Ce⊗1,γ) and fix eα̃, we get W(1) ⊂ N◦ proving the claim. The above

discussion shows that W(0) := T1 ·W(1) is a 6-dimensional connected solvable subgroup of N ∩Ce⊗1

normalising w ∼= W (1; 1). Moreover, it not hard to check that W(0) acts on w faithfully. Since
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it follows from [Jac43] that Aut(W (1; 1)) ∼= Aut(O(1; 1)) is a 6-dimensional connected algebraic
group, it must be that W(0)

∼= Aut(W (1; 1)) as algebraic k-groups.

We claim that h̃ acts faithfully on Soc(h). Indeed, let c ∈ cg(Soc(h)). Then c ∈ ce⊗1 commutes

with A and normalises the Lie algebra ce⊗1 ∩ h̃. If p = 5 the letter coincides with ce⊗1 which acts
on A faithfully; see § 3.4. So c = 0 in this case. If p = 7 then our discussion in 3.4 shows that

the ce⊗1-module generated by eα̃ contains A properly. This means that ce⊗1 ∩ h̃ is a proper Lie
subalgebra of ce⊗1 containing w. Since w is maximal in ce⊗1 by [HS15, Theorem 1.1(iv)], we now

obtain that ce⊗1 ∩ h̃ = w and c ∈ w. Since the simple Lie w must act faithfully on A, we see that
c = 0 in all cases. The claim follows.

Next we show that N acts faithfully on Soc(h). If σ ∈ CG(Soc(h)) that σ ∈ N ∩ Ce⊗1 fixes eα̃
which implies that σ ∈ B+

e⊗1. If p = 5 then [LT11, p. 105] implies that both ge⊗1 and gf⊗1 are
spanned by T0-weight vectors of even weights. Since this holds in any good characteristic (including
characteristic zero) it follows that all weights of the T0-module g are even. As a consequence,
Ce⊗1

∼= PGL(2, k). Since σ fixes [x, e] ∈ A for any x ∈ Lie(Ce⊗1 ∩ U−), this entails that σ = 1 in
the present case.

If p = 7 then σ ∈ N ∩ Ce⊗1 fixes A point-wise and acts as an automorphism on the Lie algebra

ce⊗1 ∩ h̃ ∼= W (1; 1). Since Aut(ce⊗1 ∩ h̃) ∼= W(0) by our earlier remarks, there exists w ∈ W(0)

such that wσ acts on ce⊗1 ∩ h̃ trivially. If z is the semisimple part of wσ in Ce⊗1 then ce⊗1 ∩ h̃

is contained in the regular subalgebra (ce⊗1)z of ce⊗1. Since ce⊗1 ∩ h̃ is maximal in ce⊗1 and no
regular subalgebra of ce⊗1 is isomorphic to W (1; 1), we obtain z = 1. But then wσ is unipotent and

dim (ce⊗1)wσ coincides with the number of Jordan blocks of wσ on ce⊗1. Since ce⊗1 ∩ h̃ ⊆ (ce⊗1)wσ,
this number is at least 7 = 1

2 dim ce⊗1. This implies that (wσ − Id)2 annihilates ce⊗1. Since Ce⊗1

is a connected simple algebraic group of type G2 by [LT11, p. 97], applying [PSu83, Theorem 1]
yields σ = w−1 ∈W(0). Since W(0)

∼= Aut(O(1; 1)) acts faithfully on A = e⊗O(1; 1) ∼= O(1; 1) this
gives σ = 1.

As a result of the above deliberations, we obtain a natural injective homomorphism of algebraic

k-groups ψ : N → Aut(S ⊗ O(1; 1)). Since h̃ acts faithfully Soc(h) = S ⊗ O(1; 1), the differential
deψ : Lie(N) → Der(S ⊗ O(1; 1)) is injective as well. As before, we identify the centreless Lie
algebra S ⊗O(1; 1) with ad(S ⊗O(1; 1)). It follows from Block’s theorem that

Der(S ⊗O(1; 1)) ∼= (S ⊗O(1; 1)) o (Id⊗W (1; 1));

see [Str04, Corollary 3.3.5]. Since the Lie algebra of the algebraic group Aut(S ⊗ O(1; 1)) is a
subalgebra of Der(S⊗O(1; 1)) preserving the nilradical S⊗O(1; 1)(1) of S⊗O(1; 1), it is contained

in (S ⊗O(1; 1)) o (Id⊗W (1; 1)(0)). On the other hand, the group PGL2

(
O(1; 1)

)
o Aut(O(1; 1))

embeds in a natural way into the automorphism group of the Lie algebra S⊗O(1; 1) ∼= sl2
(
O(1; 1)

)
.

Moreover, since p > 2 it is straightforward to see that

Lie
(
PGL2

(
O(1; 1)

)
o Aut(O(1; 1))

) ∼= (S ⊗O(1; 1)) o (Id⊗W (1; 1)(0)).

Since Aut(O(1; 1)) is a connected group it follows that

(11) Aut(S ⊗O(1; 1))◦ ∼= PGL2

(
O(1; 1)

)
o Aut(O(1; 1))

as algebraic k-groups. The k-algebra O(1; 1) acts freely on the Lie algebra S⊗O(1; 1) and identifies
with the centroid C := EndS⊗O(1;1)

(
S⊗O(1; 1)

)
of the latter. The group Aut(S⊗O(1; 1)) acts on C

and we let AutC(S⊗O(1; 1)) denote the kernel of this action. As (O(1; 1)(1))
p = 0, it is easy to check

that any x ∈ S⊗O(1; 1)(1) has the property that (ad x)p = 0 and [(ad x)i(a), (ad x)j(b)] = 0 for all
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a, b ∈ S⊗O(1; 1) whenever i+j ≥ p. From this it is immediate that exp(ad x) ∈ Aut C(S⊗O(1; 1))
for all x ∈ S⊗O(1; 1)(1). LetR denote the subgroup of AutC(S⊗O(1; 1)) generated by all exp(ad x)
with x ∈ S ⊗ O(1; 1)(1). Clearly, R is a connected unipotent group and Lie(R) = S ⊗ O(1; 1)(1).
In view of (11) the connected subgroup H of Aut C(S ⊗ O(1; 1)) generated by R and the simple
algebraic subgroup Aut(S ⊗ 1) of AutC(S ⊗ O(1; 1)) identifies with PGL2

(
O(1; 1)

)
in such a way

that R = Ru(H) identifies with the unipotent radical of PGL2

(
O(1; 1)

)
.

Let {u, v, w} be a nonzero sl2-triple of S ⊗O(1; 1). Replacing {u, v, w} with {s(u), s(v), s(w)} for
some s ∈ Aut(S ⊗ 1) we may assume that

(u, v, w) ≡ (e⊗ 1, h⊗ 1, f ⊗ 1) mod
(
S ⊗O(1; 1)(1)

)3
.

If v = h ⊗ a + e ⊗ b + f ⊗ c and d ∈ Z>0 are such that a ∈ 1 + O(1; 1)(1), b, c ∈ O(1; 1)(d)

and {b, c} 6⊂ O(1; 1)(d+1), then we can find an element x ∈ (ke + kf) ⊗ O(1; 1)(d) such that
exp(ad x)(v) = h⊗ a′+ e⊗ b′+ f ⊗ c′ for some a ∈ 1 +O(1; 1)(1) and b, c ∈ O(1; 1)(d+1). Therefore,
replacing our current sl2-triple {u, v, w} with {r(u), r(v), r(w)} for a suitable r ∈ R we may assume
without loss that v = h ⊗ a1 for some a1 ∈ 1 + O(1; 1)(1). If u = e ⊗ b1 + h ⊗ b2 + f ⊗ b3, where
bi ∈ O(1; 1), then the condition [v, u] = 2u yields 2a1b1 = 2b1, 2b2 = 0, and 2ab3 = −2b3. Since
p > 2 and a + 1 ∈ O(1; 1)×, this entails that b2 = b3 = 0. So u = e ⊗ b1 for some b1 ∈ O(1; 1).
Since [v, w] = −2w, one can argue similarly to deduce that w = f ⊗ c1 for some c1 ∈ O(1; 1). Since
[u,w] = v we must have b1c1 = a1. As a consequence, b1, c1 ∈ O(1; 1)×. But then the relation
a1b1 = b1 gives a1 = 1 forcing v = h ⊗ 1 and c1 = b−1

1 . Finally, since b1 is invertible there is
y ∈ h⊗O(1; 1)(1) such that exp(ad y)(e⊗ b1) = e⊗ 1. Since exp(ad y) fixes v = h⊗ 1, we conclude
that exp(ad y)(w) = f ⊗ 1. This shows that all nonzero sl2-triples of S ⊗ O(1; 1) are conjugate
under the action of H.

We now claim that the group Aut(S ⊗O(1; 1)) is connected. Indeed, let g be an arbitrary element
of Aut(S ⊗ O(1; 1)). It follows from (11) that there is a g′ ∈ Aut(S ⊗ O(1; 1))◦ such that gg′ ∈
AutC(S ⊗ O(1; 1)). Hence we may assume that g fixes C point-wise. Then the action of g on
S ⊗ O(1; 1) is uniquely determined by its effect on S ⊗ 1. Let u = g(e ⊗ 1), v = g(h ⊗ 1) and
w = g(f ⊗ 1). Clearly, {u, v, w} is a nonzero sl2-triple in S ⊗O(1; 1). By the previous paragraph,
there is a g′′ ∈ H ⊆ AutC(S ⊗ O(1; 1))◦ which has the same effect on S ⊗ 1 as g. Therefore,
g = g′′ and the claim follows. As a byproduct we obtain that H ∼= PGL2

(
O(1; 1)

)
coincides with

AutC(S ⊗O(1; 1)).

If p = 7 then the above discussion shows that the connected group N has the same dimension as
the connected group Aut(S ⊗O(1; 1)). Since deψ is injective the map ψ : N → Aut(S ⊗O(1; 1) is
an isomorphism of algebraic k-groups. Therefore,

N ∼= PGL2

(
O(1; 1)

)
o Aut(O(1; 1)) when p = 7.

It follows that Lie(N) has codimension 1 in h̃ ∼= (S ⊗O(1; 1)) o (Id⊗W (1; 1)). As D is transitive

for any esdp h, we obtain that h̃ = h + Lie(N).

If p = 5 then ce⊗1 identifies with a transitive subalgebra of W (1; 1) isomorphic to sl2(k). Then

h̃ ∼= (S ⊗O(1; 1)) o Id⊗
(
k∂ ⊕ k(x∂)⊕ (x2∂)

)
by Lemma 2.2. Also, ψ(N) is a closed subgroup of

Aut(S⊗O(1; 1)) containing H. More precisely, ψ(N) = H·A where A = ψ(B+
e⊗1), a 2-dimensional

connected solvable subgroup of Aut(S ⊗ O(1; 1)) fixing S ⊗ 1 point-wise. Therefore, A acts by
automorphisms on the associative algebra C ∼= O(1; 1). Since A preserves the maximal ideal of C
and Lie(B+

e⊗1) ⊂ ce⊗1, our identification of h̃ implies that Lie(A) = k(x∂)⊕ (x2∂).
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This shows that there exists a connected solvable subgroup Aut≤1(O(1; 1)) ∼= B+
e⊗1 of Aut(O(1; 1))

with Lie algebra k(x∂)⊕ k(x2∂) ∼= Lie(B+
e⊗1) such that

N ∼= PGL2

(
O(1; 1)

)
o Aut≤1(O(1; 1)) when p = 5.

Since ce⊗1 identifies with k∂⊕k(x∂)⊕(x2∂) we see that in the present case Lie(N) has codimension

1 in h̃. Since the component D of any esdp h is transitive, we again obtain that h̃ = h + Lie(N).

As H ⊂ ψ(N) acts transitively on the set of all nonzero sl2-triples of S ⊗ O(1; 1) we have proved

all statements of Theorem 1.1 except for the maximality of h̃. This issue will be addressed after we
classify all maximal subalgebras of g with semisimple socles.

4. The maximal Lie subalgebras with semisimple socles

In this section we assume that m is a maximal Lie subalgebra of g whose socle Soc(m) is semisimple.
This assumption implies that there exist simple Lie subalgebras S1, . . . , Sr of g such that [Si, Sj ] = 0
for i 6= j and Soc(m) = S1⊕· · ·⊕Sr. In the next subsection we deal with the case where r ≥ 2. Using
a theorem of Bate–Martin–Röhrle–Tange [BMRT10] we are going to show that in this situation
there exists a maximal connected subgroup M of G such that m = Lie(M) (see also [Her13]).

It m is regular, that is contains a maximal toral subalgebra of g, then it follows from [Hum67,
Theorem 13.3] and [Sel67, Ch. II, §§ 3 and 4], for example, that there exists a maximal torus T
of G and a maximal root subsystem Ψ of Φ(G,T ) such that m is spanned by Lie(T ) and the root
spaces keγ with γ ∈ Ψ; see [Pre17, 2.5] for a related discussion. From this it is immediate that
m = Lie(M) for some maximal regular subgroup M of G. So from now on we shall always assume
m is a non-regular Lie subalgebra of g.

4.1. Maximal Lie subalgebras with semisimple decomposable socles. Recall from § 3.2
the definition of decomposable Lie algebras. The main result of this subsection applies to all simple
algebraic groups over algebraically closed fields k of very good characteristic p > 3. Recall that p is
said to be very good for G if p is good for G and p - (`+ 1) if G is a group of type A`.

Proposition 4.1. Let G be a simple algebraic k-group of adjoint type and suppose that char(k) =
p > 3 is a very good prime for G. Let m be a maximal semisimple Lie subalgebra of g = Lie(G)
such that Soc(m) = S1 ⊕ · · · ⊕ Sr for some simple Lie subalgebras S1, . . . , Sr of g, where r ≥ 2. If
m is non-regular then the following hold:

(i) There exists a maximal connected subgroup M of G such that m = Lie(M).

(ii) M is a semisimple group of adjoint type and the simple components M1, . . . ,Mr of M have
the property that Lie(Mi) ∼= Der(Si) and [Lie(Mi),Lie(Mi)] = Si for all i.

(iii) The Lie algebra m is isomorphic to Der(S1)⊕ · · · ⊕Der(Sr).

Proof. For 1 ≤ i ≤ r, let mi and M̃i denote the centralisers of
⊕

j 6=i Sj in g and G, respectively, and

set Mi := (M̃i)
◦. By [BMRT10, Theorem 1.2], we have that Lie(Mi) = mi for all i. Since

⊕
j 6=i Sj

is an ideal of m we have that [m,mi] ⊆ mi. Since g is a simple Lie algebra and m is a maximal
subalgebra of g, each mi is an ideal of m containing Si. Set ri := rad(mi). Since m is semisimple,
it acts faithfully on its socle Soc(m). Therefore, each mi acts faithfully on Si. If rj 6= 0 for some j
then [rj , Sj ] is a nonzero solvable ideal of Sj . Since this contradicts the simplicity of Sj we deduce
that each Lie algebra mi is semisimple. It follows that each Mi is a semisimple algebraic group.
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Let Ti be a maximal torus of Mi and ti = Lie(Ti). Since mi = Lie(Mi) and Si is an ideal of
mi, we have that [ti, Si] ⊆ Si. Since p > 3 it follows from [Sel67, §§ 3 and 4] that Si is spanned
by ti ∩ Si and some root spaces keγ with γ ∈ Φ(Mi, Ti) and any unipotent root subgroup Uβ of
Mi with β ∈ Φ(Mi, Ti) normalises Si (see [BGP09, 2.2] for a related discussion). This implies
that Si is Mi-stable. Furthermore, each simple Lie algebra Si satisfies the Mills–Seligman axioms;
see [BGP09, 2.2] for detail. Since mi acts faithfully on Si this yields that each Mi is a simple
algebraic group.

Since mi acts faithfully on its ideal Si it embeds into Der(Si). It follows from [BGP09, Lemma 2.7]
that mi

∼= Der(Si) and the equality Der(Si) = adSi holds if and only if Mi is not of type Asp−1

for some s ∈ Z>0. As mi ⊆ m for all i and m embeds into Der(S1 ⊕ · · · ⊕ Sr) we now obtain that
m ∼= Der(S1)⊕· · ·⊕Der(Sr). Note that [BGP09, Lemma 2.7] also shows that if Si is of type Asp−1

then Si ∼= pslsp(k) and mi
∼= Der(Si) ∼= pglps(k). In this case Si = [mi,mi] has codimension 1 in mi.

It follows that [mi,mi] = Si for all i.

Let M denote the identity component of the normaliser NG(Soc(m)). The above discussion shows
that Mi ⊂ M for all i and hence m =

⊕r
i=1 mi ⊆ Lie(M). The maximality of m in conjunction

with the simplicity of g shows that M is a maximal connected subgroup of G and Lie(M) = m.
Since M is connected it fixes each simple ideal Si of Soc(m) set-wise. Hence each Mi is a normal
subgroup of M . Since m is a semisimple Lie algebra, M is a semisimple algebraic k-group.

If there is 1 6= z ∈M which fixes Soc(m) point-wise, then Ad z acts identically on m ∼= Der(Soc(m)).
Hence z lies in the kernel of the adjoint representation of M . Since the group M is semisimple, it
follows that z is a semisimple element of G contained in the centre of M . Since G is a group of
adjoint type, we have that gz 6= g and hence m = gz by the maximality of m. Since z is contained in
a maximal torus of G by [Bor91, 11.11], this would imply that m is regular subalgebra of g contrary
to our assumption. We thus conclude that M acts faithfully on Soc(m) and Z(M) = {1}.

As a consequence, the groups Mi pairwise commute. Since

Lie(M) ∼=
r⊕
i=1

Lie(Mi) ∼=
r⊕
i=1

Der(Si),

it is clear from our earlier remarks that the natural homomorphism of algebraic groups

µ : M −→
r∏
i=1

Aut(Si)
◦ ∼=

r∏
i=1

Aut(mi)
◦

is injective and separable. Hence µ is an isomorphism of algebraic k-groups, implying that M is a
group of adjoint type and thereby completing the proof. �

4.2. Restricted classical subalgebras of g. In this subsection we assume that G is a reductive
algebraic k-group with a simply connected derived subgroup and the Lie algebra g = Lie(G) admits
a non-degenerate G-invariant symmetric bilinear form. Assume further that char(k) = p > 3 and
p is a good prime for G. Let h be a simple restricted Lie subalgebra of g and suppose that h is
classical in the sense of Seligman, i.e. there is a simple algebraic k-group H of adjoint type such
that h ∼= [Lie(H),Lie(H)] as Lie algebras. Since p > 3 the Lie algebra Lie(H) is simple unless H
has type Arp−1 for some r ≥ 1. In the latter case H = PGLrp(k) and h = pslrp(k) has codimension
1 in Lie(H) = pglrp(k). The group H acts in h by Lie algebra automorphisms. Since z(h) = 0 the
[p]-structure of h is induced by that of g.
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Let Omin(h) denote the minimal nonzero nilpotent H-orbit on h. It consists of all nonzero elements
e ∈ h such that [e, [e, h]] = ke. It is well known that each e ∈ Omin(h) is conjugate to a long root
element of h with respect to a maximal torus of H. It follows that there is a short Z-grading

(12) h = h(−2)⊕ h(−1)⊕ h(0)⊕ h(1)⊕ h(2)

of the Lie algebra h such that h(2) = ke and he is an ideal of codimension 1 in the subalgebra⊕
i≥0 h(i) of h. Furthermore, if rk(H) > 1 then [h(1), h(1)] = h(2). Since p > 3 the H-orbit

Omin(h) spans h (for h is an irreducible H-module). Since e[p] ∈ z(h) our assumptions on h imply
that Omin(h) ⊆ Np(g). Since any e ∈ Omin(h) is a G-unstable vector of g, it admits an optimal
cocharacter τe ∈ X∗(G) with the property that e ∈ g(τe, 2); see [Pre03] for detail. Since e ∈ Np(g)
it follows from [Sei00] and [McN05] that g(τe, i) = 0 for all i ≥ 2p− 1.

Proposition 4.2. Under the above assumptions on h suppose further that g(τe, 2p− 2) = 0 for all
e ∈ Omin(h). Then NG(h) acts irreducibly on h and h ⊆ Lie(NG(h)).

Proof. Let e ∈ Omin(h). Then (ad e)2(h) = ke ⊆ g(τe, 2). We claim that h ⊆
⊕

i≥−2 g(τe, i).

Indeed, suppose the contrary. Then there is v = v1 + v2 ∈ h such that 0 6= v1 ∈
⊕
≤−3 g(τe, i) and

v2 ∈
⊕
≥−2 g(τe, i). Since e ∈ g(τe, 2), the endomorphism ad e sends each graded component g(τe, i)

to g(τe, i + 2). Since ge ⊆
⊕

i≥0 g(τe, i) by [Pre03, Theorem A(i)], the map (ad e)2 is injective on⊕
i≤−3 g(τe, i). On the other hand,

(ad e)2(v) ∈ g(τe, 2) ∩
(
(ad e)2(v1) +

⊕
i≥0 g(τe, i)

)
.

As (ad e)2(v1) 6= 0 this is impossible, whence the claim. By [McN05, Proposition 33], the group G
contains a one-parameter unipotent subgroup Ue = {xe(t) | t ∈ k} normalised by τe(k

×) and such
that e ∈ Lie(Ue). It is immediate from the construction in loc. cit. that there are endomorphisms

X
(i)
e ∈

(
End(g)

)
(τe, 2i) with 0 ≤ i ≤ 2(p− 1) such that X

(i)
e = 1

i!(ad e)i for 0 ≤ i ≤ p− 1 and(
Adxe(t)

)
(v) =

∑2p−2
i=0 tiX

(i)
e (v) (∀ v ∈ g).

As g(τe, 2p− 2) = 0 and h ⊆
⊕

i≥−2 g(τe, i) by our earlier remarks, we have that

(Ad xe(t)
)
(v) =

p−1∑
i=0

1

i!
(ad e)i(v) ∈ h (∀ v ∈ h).

This shows that Ue ⊂ NG(h) for all e ∈ Omin(h). Since e ∈ Lie(Ue) and Omin(h) generates the
Lie algebra h we now deduce that h ⊆ Lie(NG(h)). Since h is a simple Lie algebra, it follows that
NG(h) acts irreducibly on h. This completes the proof. �

4.3. Maximal subalgebras with simple socles of toral rank at least two. In this subsection
we assume that G is an exceptional simple algebraic k-group and p = char(k) is a good prime for
G. Our goal here is classify maximal Lie subalgebras m of g = Lie(G) whose socles are a simple Lie
algebras of toral rank at least two. By [HS15, Theorem 1.3], this assumption on m implies that

Soc(m) ⊆ m ⊆ Der(Soc(m))

and there is a simple algebraic k-group H of adjoint type such that rk(H) ≥ 2 and Soc(m) ∼=
[Lie(H),Lie(H)] as Lie algebras. In view of [BGP09, Lemma 2.7] this implies that Der(m) ∼=
Lie(H) as restricted Lie algebras and either m = Soc(m) or H ∼= PGLkp(k) for some r ≥ 1 and
m ∼= Lie(H) ∼= pglkp(k). In any event, Soc(m) = [m,m] is a restricted Lie subalgebra of g.
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Set h := Soc(h) = [m,m]. The main difference with the toral rank 1 case (to be treated in the
next subsection) is that for any e ∈ Omin(h) the grading (12) has the property that e ∈ [h(1), h(1)].

Since h(1) ⊂ he, it follows that e ∈ [ge, ge]. As e[p] = 0, any e ∈ Omin(h) is a reachable element of
Np(g) in the sense of [PSt16, Theorem 1.1]. We shall rely in a crucial way on the classification of
reachable elements of N (g) obtained in loc. cit. and combine it with the results of § 4.2 to infer
that all elements of Omin(h) can be exponentiated into one-parameter unipotent subgroups of G
contained in the normaliser NG(h). The maximality of m will then imply that m = Lie(NG(m)).
As a result, NG(m) must be simple and maximal amongst connected closed subgroups of G.

Proposition 4.3. Suppose m is a maximal subalgebra of g whose socle is a simple Lie algebra of
toral rank at least two. Then m = Lie(M) for some maximal connected subgroup M of G. Moreover,
if G is a group of adjoint type and m is not a regular subalgebra of g, then M is a simple algebraic
k-group of adjoint type.

Proof. As m is maximal in g and g is simple, it is immediate from the preceding discussion that
h = Soc(m) is a restricted Lie subalgebra of g. As m ⊆ Der(h) has toral rank at least 2, applying
[HS15, Theorem 1.3] yields that h ∼= [Lie(H),Lie(H)] for some simple algebraic k-group H of adjoint
type with rk(H) ≥ 2. It follows that for any e ∈ Omin(h) the Z-grading (12) has the property that
h(1) ⊂ ge and e ∈ [h(1), h(1)]. As a consequence, the set Omin(h) consists of reachable elements
of g contained in Np(g). Let e ∈ Omin(h). A quick look at the list of such elements in [PSt16,
Theorem 1.1] together with the list of integers j for which ge(τe, j) 6= 0 in the tables in [LT11]
reveals that either g(τe, 2p − 2) = 0 or we must have G of type E7, p = 5, and e ∈ O(A4A1) (one
should keep in mind here that if g(τe,m) 6= 0 and g(τe, i) = 0 for i > m then g(τe,m) = ge(τe,m)).

If g(τe, 2p − 2) = 0 for all e ∈ Omin(h) then Proposition 4.2 applies to h forcing h ⊆ Lie(NG(h)).
The maximality of m then yields Lie(NG(h)) ⊆ ng(h) ⊆ m. If h is not isomorphic to pslrp(k)
then h ∼= Der(h) and hence m = Lie(NG(h)). If h ∼= pslrp(k) then h ∼= ad h has codimension 1 in
Der(h) ∼= pglrp(k) and

h ⊆ Lie(NG(h)) ⊆ m ⊆ Der(h).

Being the Lie algebra of an algebraic k-group, Lie(NG(h)) cannot be isomorphic to pslrp(k). There-
fore, the equality m = Lie(NG(h)) holds in all cases, and we can set M := NG(h)◦. The maximality
of m then shows that M is a maximal connected subgroup of G.

If g(τe, 2p−2) 6= 0 for some e ∈ Omin(h) then G is of type E7, p = 5, and e ∈ O(A4A1). The relevant
table in [LT11] says that the identity component of the reductive part of Ge is a 2-dimensional torus.
Note that ge = Lie(Ge) and h(0) normalises h(2) = ke. As ng(ke) = Lie(τe(k)) ⊕ ge we see that
h(0)⊕ h(1)⊕ h(2) is a solvable Lie algebra. Since h ∼= [Lie(H),Lie(H)] is a simple Lie algebra and
e is a long root element of m ∼= Lie(H), the classification of irreducible root systems now yields
that H is a group of type A2. Since p > 3, it follows that h = m ∼= Lie(H). This precise case
was tackled in [ST16, Lemma 4.9] where it was proved that a subalgebra h of type A2 in g with
Omin(h) ∩ O(A4A1) 6= ∅ is maximal in g and has form h = Lie(M) for some maximal connected
subgroup M of type A2 in G.

We thus deduce that in all cases m = Lie(M) for some maximal connected subgroup M of G.
Suppose G is a group of adjoint type and m is not a regular subalgebra of g. Since m is semisimple
and its derived subalgebra is simple, it is straightforward to see that M is a simple algebraic group.
Therefore, the centre of M is a finite group consisting of semisimple elements of G. As m is not
a regular subalgebra of g and Z(M) fixes m point-wise, it must be that Z(M) = Z(G) = {1}.
Since m = Lie(M) acts faithfully on h = [m,m], the natural homomorphism ψ : M → Aut(h)◦ is
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bijective and its differential deψ : m→ Der(h) is an isomorphism of Lie algebras. This implies that
M ∼= Aut(h)◦ is a group of adjoint type finishing the proof. �

4.4. Maximal subalgebras with simple socles of toral rank one. The goal of this subsection
is to finish the proof of Theorem 1.2. In view of Propositions 4.1 and 4.3 we may assume that
Soc(m) is a simple Lie algebra of toral tank one and Soc(m) ⊆ m ⊆ Der(Soc(m)). Thanks to [HS15,
Theorem 1.3] this implies that either Soc(m) ∼= sl2(k) or Soc(m) ∼= W (1; 1). Since it is well known
(and easy to check) that all derivations of the Lie algebras sl2(k) and W (1; 1) are inner, we have
that m = Soc(m). If m is a maximal Witt subalgebra of g then [HS15, Theorem 1.1] says that G is
not of type E6, p− 1 is the Coxeter number of G, and m is (Ad G)-conjugate to the Lie subalgebra
of g generated by a root vector eα̃ and a regular nilpotent element

∑
α∈Π e−α. Here Π is a basis

of simple roots in the roots system Φ(G,T ) with respect to a maximal torus T of G and α̃ is the
highest root of Φ(G,T ) with respect to Π.

The above discussion shows that in order to finish the proof of Theorem 1.2 it suffices to establish
the following:

Proposition 4.4. Let G be a simple algebraic k-group and suppose that p = char(k) is a very good
prime for G. If m is a maximal Lie subalgebra of g = Lie(G) isomorphic to sl2(k), then there exists
a maximal connected subgroup M of type A1 in G such that m = Lie(M).

Proof. As m is a restricted Lie subalgebra of g we have that Omin(m) ⊂ Np(g). If g(τe, 2p− 2) = 0
for all e ∈ Omin(m), we may invoke Proposition 4.2 to conclude that m ⊆ Lie(NG(m)). It should be
mentioned here that that the assumption that p > 3 imposed in § 4.3 can be dropped in the present
case because all derivations of m are inner. The maximality of m then yields that m = Lie(NG(m))
and M := NG(m)◦ is a maximal connected subgroup of G.

So we may assume from now that m is spanned by an sl2-triple {e, h, f} and e ∈ Omin(m) has the

property that g(τ, 2p − 2) 6= 0, where τ = τe. Since e[p] = 0, it follows from [Sei00] and [McN05]
that g(τ, i) = 0 for all i > 2p− 2. Since ge ⊆

⊕
i≥0 g(τ, i) by [Pre03, Theorem A(i)], it follows that

the subspace g(τ, 2p− 2) is (ad ge)-stable.

Recall the element hτ introduced in § 2.4. Since h − hτ ∈ ge and [hτ , g(τ, i)] ⊆ g(τ, i) for all i, it
must be that [h, g(τ, 2p−2)] ⊆ g(τ, 2p−2). Let v be an eigenvector for adh contained in g(τ, 2p−2)
and denote by V the linear span of all (ad f)i(v) with 0 ≤ i ≤ p−1. By construction, v is a highest
weight vector of the (adm)-module g with respect to the Borel subalgebra kh ⊕ ke of m. Note
that (ad f)p = 0 as m is a restricted Lie subalgebra of g. From this it is immediate that V is an
m-submodule of g. Since

[e, f ] = h = hτ + (h− hτ ) ∈
⊕

i≥0 g(τ, i)

and ad e ∈ ad g(τ, 2) is injective on
⊕

i<0 g(τ, i), it must be that f ∈
⊕

i≥−2 g(τ, i). Therefore,

(ad f)i(v) ∈
⊕

j≥2(p−1−i) g(τ, j) for all i ≤ p− 1. This yields V ⊆ k(ad f)p−1(v) +
⊕

i>0 g(τ, i).

Set w := (ad f)p−1(v) and n+ :=
⊕

i>0 g(τ, i). Then w ∈ g(τ, 0) and [w, n+] ⊆ n+, so that kw+ n+

is a solvable Lie subalgebra of g. Hence the Lie subalgebra 〈V 〉 of g generated by V is solvable
as well. Since adm acts on g by derivations and preserves V , it must normalise 〈V 〉. But then
m̃ := m + 〈V 〉 is a Lie subalgebra of g and rad(m̃) contains 〈V 〉 6= 0. Since this contradicts our
assumptions on m, the case we are considering cannot occur. The proposition follows. �
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4.5. Completion of the proof of Theorem 1.1. Having established Theorem 1.2 we are now
in a position to finish the proof of Theorem 1.1. In view of the results of Section 3 we just need to

show that if g = Lie(G) is a Lie algebra of type E7 then for any esdp h of g the normaliser h̃ of the
socle of h is a maximal Lie subalgebra of g. Since under our assumption on p isogenic groups of
type E7 have isomorphic Lie algebras we may assume without loss of generality that G = Aut(g)◦

is a group of adjoint type.

Let m be a maximal subalgebra of g containing h̃ and suppose for a contradiction that m 6= h̃. If
rad(m) 6= 0 then [Pre17, Theorem 1.1] says that m = Lie(P ) for some maximal parabolic subgroup
P of G. Then m = l ⊕ n where l is a proper Levi subalgebra of g and n = Lie(Ru(P )). Let

π : h̃ → l denote the restriction to h̃ of the canonical projection m � l. Since h̃ is semisimple and
n is nilpotent, the map π is an injective homomorphism of restricted Lie algebras. It follows that

π(h̃) is an esdp of g contained in l. By the uniqueness of Soc(h) = Soc(h̃) (proved in § 3.5), there

exists g ∈ G such that g(Soc(h̃)) = Soc(π(h̃). But then g maps h̃ = ng(Soc(h̃)) onto ng(Soc(π(h̃)).

So no generality will be lost by assuming that h̃ ⊂ l. Then there exists a non-trivial semisimple

element σ ∈ G such that h̃ ⊂ gσ. In particular, 1 6= σ ∈ CG(Soc(h)). However, it is established in
§ 3.6 that the group N = NG(Soc(h)) acts faithfully on Soc(h). This contradiction shows that m is
not a parabolic subalgebra of g.

Essentially the same reasoning enables one to rule out the case where m is a maximal regular Lie
subalgebra of g. Indeed, since p is a good prime for G it follows from the classification of closed,
symmetric subsystems of the root system of type E7 that m = gσ for some semsimple element of
prime order in G; see [Bou68, Ex. Ch. VI, § 4.4], for example. Again this is impossible since the
group CG(Soc(h)) is trivial by our discussion in § 3.6.

Finally, suppose m is semisimple and non-regular. If Soc(m) is not semisimple then Lemma 3.1 in

conjunction with the uniqueness of Soc(h̃) yields that Soc(m) = Soc(h̃). But then m = ng(Soc(m)) =

ng(Soc(h̃)) = h̃ contradicting our assumption on m. Therefore, Soc(m) is semisimple. Since dimm >

dim h̃ > dimW (1; 1), it follows from Theorem 1.2 that m = Lie(M) for some maximal connected
subgroup M of G. Moreover, the above discussion shows that the group M is semisimple and does
not contain maximal tori of G.

A complete list of such subgroups M is obtained by Liebeck–Seitz and can be found in [LS04,

Table 1]. Since dimm > dim h̃ ≥ 3p+3, where p ∈ {5, 7}, only one of the following cases may occur:
if p = 5 then M is a group of type A1G2 or G2C3 or A1F4 and if p = 7 then M is a group of type
G2C3 or A1F4. Since p > 3 it follows that m is a simple Lie algebra and all its derivations are inner.
Moreover, in all cases the exist restricted simple ideals m1 and m2 of m such that dimm1 > dimm2

and m = m1 ⊕ m2. For i = 1, 2, let πi : h̃ → mi denote the restriction of the canonical projection

m � mi to h̃. Since dimm1 < dim h̃ in all cases, kerπ1 contains a nonzero minimal ideal of h̃.

Since Soc(h̃) is the only such ideal of h̃, it must be that Soc(h̃) ⊂ m2. As dim Soc(h̃) > 14, this

rules out the case where M is of type A1G2. Since h̃ ∼= (S ⊗O(1; 1)) o (Id⊗D) acts faithfully on

Soc(h̃) ∼= S⊗O(1; 1) and D is a simple Lie algebra, we also deduce that h̃ ∼= π2(h̃) as restricted Lie
algebras.

As a result, h̃ is isomorphic to a restricted Lie subalgebra of a restricted Lie algebra of type F4 or
C3, both of which are isomorphic to restricted Lie subalgebras of a Lie algebra of type E6. However,
we have proved in Section 3 that any semismple restricted Lie subalgebra of a Lie algebra of type

E6 has a semisimple socle. This contradiction shows that h̃ is a maximal Lie subalgebra of g.
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5. A version of the Borel–Tits theorem for Lie algebras

In proving Corollary 1.3 we are going to use induction on rk DG, the semisimple rank of G. It
is straightforward to see that the corollary holds when rk DG = 1. Suppose that it holds for all
reductive k-groups satisfying the standard hypotheses and having semismiple rank < rk DG. We
may assume without loss of generality that h is a restricted Lie subalgebra of g.

5.1. Reduction to the case where G is almost simple. Suppose G satisfies the standard
hypotheses and let h be a Lie subalgebra of g = Lie(G) with nil(h) 6= 0. We denote by κ a non-
degenerate G-invariant symmetric bilinear form on g. According to [PSt16, 2.1], the Lie algebra g
decomposes into a direct sum of G-stable ideals

(13) g = z⊕ g̃1 ⊕ · · · ⊕ g̃s

where z is a central toral subalgebra of g and either g̃i = Lie(Gi) for some simple component Gi
of G not of type Arp−1 or g̃i ∼= glrp(k) for some r ∈ Z>0. All summands in (13) are pairwise
orthogonal with respect to κ. Furthermore, if g̃i ∼= glrp(k) then there is an irreducible component
Gi of type Arp−1 in G such that Lie(Gi) = [g̃i, g̃i]. For each 1 ≤ i ≤ s, the canonical projection
πi : g � g̃i is a G-equivariant homomorphism of restricted Lie algebras.

Suppose s > 1. Renumbering the g̃i’s if necessary we may assume that there is t ≤ s such that
πi(nil(h)) 6= 0 for 1 ≤ i ≤ t and πi(nil(h)) = 0 for t < i ≤ s. By our induction assumption,
Corollary 1.3 holds for all Lie subalgebras πi(h) of g̃i with 1 ≤ i ≤ t. Hence there exist cocharacters
λi ∈ X∗(Gi) such that πi(h) ⊆ Lie(Pi(λ)) and πi(nil(h)) ⊆ Lie(Ru(Pi(λi))), where Pi(λi) is the
parabolic subgroup of Gi associated with λi. Since X∗(Gi) ⊆ X∗(G) for all i, we may consider the

cocharacter λ =
∑t

i=1 λi ∈ X∗(G) and the parabolic subgroup P (λ) associated with λ in G. Then

nil(h) ⊆
∑t

i=1 πi(nil(h)) ⊆ Lie(Ru(P (λ)). Since Lie(P (λ)) contains z and all g̃i with i > t, it must
be that h ⊆ Lie(P (λ)). This implies that Corollary 1.3 holds for G.

5.2. Reduction to the case where G is exceptional. By § 5.1, we may assume that g = z⊕ g̃1.
If g̃1

∼= gl(V ), where p | dimV , or if g̃1
∼= sl(V ), where p - dimV , then nil(h) = π1(nil(h)). Let

(14) 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V

be a composition series of the π(h)-module V . By Engel’s theorem, x(Vi) ⊆ Vi+1 for all 1 ≤ i ≤ m.
Due to our assumption on g̃1, the stabiliser

p̃1 := {x ∈ g̃1 | x(Vi) ⊆ Vi, 1 ≤ i ≤ m}
of the (partial) flag of subspaces (14) is a parabolic subalgebra of g̃1. Moreover, nil(h) is contained
in nil(p̃1) = {x ∈ g̃1 | x(Vi) ⊆ Vi+1, 1 ≤ i ≤ m}. The inverse image of p̃1 in g under the natural
epimorphism g � g̃1 is a parabolic subalgebra of g and its nilradical contains nil(h). It follows
that in the present case there exists a parabolic subgroup P of G such that h ⊆ Lie(P ) and
nil(h) ⊆ Lie(Ru(P )).

Now suppose that s = 1 and g̃1 = Lie(G1) where G1 is a group of type B, C or D. Since
p 6= 2, the Lie algebra g̃1 is simple and we may assume without loss of generality that z = 0 and
g̃1 = g = Lie(G). We may also assume that there exists a finite dimensional vector space V over k
and a non-degenerate bilinear form Ψ on V such that g coincides with the stabiliser g(V,Ψ) of Ψ in
sl(V ). If W is an irreducible h-submodule of V then nil(h) annihilates W (by Engel’s theorem) and
either Ψ vanishes on W ×W or the restriction of Ψ to W is non-degenerate. In the first case, W is
totally isotropic with respect to Ψ and hence ng(W ) is a maximal parabolic subalgebra of g. In the
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second case, W is a non-degenerate subspace of V and h preserves the direct sum decomposition
V = W ⊕W⊥.

If W is totally isotropic, the above discussion shows that there exists a maximal parabolic subgroup
P = L ·Ru(P ) of G with Levi subgroup L such that h ⊆ Lie(P ). If nil(h) ⊆ Lie(Ru(P )) then we are
done. If not, we apply the induction assumption to the image of h under the natural homomorphism
Lie(P ) � Lie(L) (one should keep in mind here that rk DL < rk DG). The inverse image in P of
that parabolic subgroup will have all properties we require.

Suppose W is a non-degenerate subspace of V and set ΨW := Ψ|W and ΨW⊥ := Ψ|W⊥ . Since

nil(h) annihilates W it must act faithfully on W⊥ 6= 0. There exists a semisimple connected regular
subgroup G0 = G′0 · G′′0 of G such that Lie(G′0) = g(W,ΨW ) and Lie(G′′0) = g(W⊥,ΨW⊥). The
normal subgroups G′0 and G′′0 of G0 commute and

Lie(G0) = g(W,ΨW )⊕ Lie(GW⊥ ,Ψ
⊥).

Let π2 denote the second projection Lie(G0) � Lie(GW⊥ ,Ψ
⊥) = Lie(G′′0). Although the group

G0 is not simply connected, its normal subgroup G′′0 is. Indeed, looking at the extended Dynkin
diagram of the root system of G it is easy to check that G′′0 coincides with the derived subgroup
of a Levi subgroup of G. In particular, G′′0 satisfies the standard hypotheses. Let π2 denote the
second projection Lie(G0) � Lie(GW⊥ ,Ψ

⊥) = Lie(G′′0).

Since nil(h) annihilates W and g(W,ΨW ) it must be that nil(h) = π2(nil(h)). Since nil(h) 6= 0
and rk DG′′0 < rk DG, our induction assumption implies that there exists λ ∈ X∗(G′′0) such that
π2(h) ⊆ Lie(P ′′0 (λ)) and π2(nil(h)) ⊆ Lie(Ru(P ′′0 (λ))), where P ′′0 (λ) is the parabolic subgroup of
G′′0 associated with λ. Since X∗(G

′′
0) ⊂ X∗(G) the group P ′′0 (λ) is contained in the parabolic

subgroup P (λ) associated with λ in G. Furthermore, Ru(P ′′0 (λ)) ⊆ Ru(P (λ)). Since G′0 and
G′′0 commute, we also have that G′0 ⊂ P (λ). Therefore, h ⊆ Lie(G′0) ⊕ π2(h) ⊆ LieP (λ) and
nil(h) = π2(nil(h)) ⊆ Lie(Ru(P (λ))), as wanted.

5.3. Reduction to the case where h is contained in an esdp of g. From now we may assume
that G is an exceptional group. Let m be a maximal subalgebra of g containing h. We first suppose
that m = Lie(M) for some maximal connected subgroup M of G. If M = L ·Ru(M) is a parabolic
subgroup of G, then either nil(h) ⊆ Lie(Ru(M)) or the image h̄ of h in Lie(L) under the canonical
homomorphism m = Lie(L) ⊕ Lie(Ru(M)) � Lie(L) has a nonzero nilradical. In the first case we
are done and in the second case our induction assumption entails that there is a parabolic subgroup
PL of L such that h̄ ⊆ Lie(PL) and nil(h̄) ⊆ Lie(Ru(PL)). The inverse image, P , of PL in M is then
a parabolic subgroup of G with the property that h ⊆ Lie(P ) and nil(h) ⊆ Lie(Ru(P )).

Suppose M is a semisimple regular subgroup of G and let M1, . . . ,Ms be the simple components of
M . Analysing the extended Dynkin diagrams of the exceptional root systems and using [Bou68, Ex.
Ch. VI, § 4.4] one observes that s ∈ {1, 2, 3} and M has no components of type Arp−1 for r ∈ Z>0

(it is crucial here that p is a good prime for G). In view of [BGP09, Lemma 2.7], this implies that
for any i ≤ s the Lie algebra Lie(Mi) is simple and all its derivations are inner. As a consequence,
m =

⊕s
i=1 Lie(Mi), a direct sum of Lie algebras.

Let M̃i be a simply connected cover of Mi. Then the preceding remark shows M̃ :=
∏s
i=1 M̃i

is a simply connected cover of M and Lie(M̃) ∼= Lie(M) as restricted Lie algebras. Since each
Lie(Mi) is a simple algebra and the restriction of the Killing form of g to Lie(Mi) is nonzero,

the group M̃ satisfies the standard hypotheses. If s ≥ 2 we consider the natural projections
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πi : Lie(M̃) ∼= Lie(M) � Lie(Mi), where 1 ≤ i ≤ s, and use our induction assumption to find
parabolic subalgebras pi in Lie(Mi) with πi(h) ⊆ pi and πi(nil(h)) ⊆ nil(pi) for all i ≤ s. There exists
a a cocharacter λ ∈ X∗(M) such that parabolic subgroup PM (λ) of M associated with λ has the
property that Lie(PM (λ)) =

⊕s
i=1 pi and Lie(Ru(PM (λ))) =

⊕s
i=1 nil(pi). Then h ⊆ Lie(PM (λ))

and nil(h) ⊆ Lie(Ru(PM (λ))).

If s = 1 then using [Bou68, Ex. Ch. VI, § 4.4] it is straightforward to see that m is one of sl3(k)
in type G2, so9(k) in type F4, sl8(k) in type E7, and sl9(k) or so16(k) in type E8. In each of these
cases, we can repeat verbatim the arguments used in § 5.2 to find a parabolic subgroup PM (λ) of
M with similar properties. Since X∗(M) ⊂ X∗(G) we can take the parabolic subgroup P (λ) of G
associated with λ ∈ X∗(G) for a desired parabolic subgroup P of G. Here we use the fact that
m ∩ Lie(P (λ)) = Lie(PM (λ)) and m ∩ Lie(Ru(P (λ))) = Lie(Ru(PM (λ))).

If M is non-regular then M is semisimple and rk DM < rk DG. Let M̃ be a simply connected cover
of M . A quick look at the list in [LS04, Table 1] reveals that in all cases m = Lie(M) is a direct
sum of simple Lie algebras each of which admits a non-degenerate Killing form. It follows that

m ∼= Lie(M̃) and M̃ satisfies the standard hypotheses. By our induction assumption, there exists a

cocharacter λ̃ ∈ X∗(M̃) such that h ⊆ Lie(P
M̃

(λ̃)) and nil(h) ⊆ Lie(Ru(P
M̃

(λ̃))). A central isogeny

M̃ → M gives rise to a map X∗(M̃) → X∗(M). Let λ denote the image of λ̃ in X∗(M) ⊂ X∗(G).
Arguing as before, we now take for P the parabolic subgroup P (λ) of G associated with λ ∈ X∗(G).

If m is a maximal Witt subalgebra of g, then m is a restricted Lie subalgebra of g and p − 1 is
the Coxeter number of G. By Theorem 1.2(ii), we may assume that m = 〈f, e〉 where e = eα̃
and f =

∑
α∈Π e−α. Here f corresponds of a nonzero multiple of ∂ ∈ W (1; 1) and e plays a

role of xp−1∂ ∈ W (1; 1)(p−2). There exists a cocharacter τ ∈ X∗(G) such that f ∈ g(τ,−2) and
e ∈ g(τ, 2(p − 2)). Let P denote the parabolic subgroup of G associated with τ . If 0 ≤ r ≤ p − 1
then (ad f)r(e) ∈ g(τ, 2(p− 1− r)) ⊂ Lie(P ).

To ease notation we identify m with W (1; 1). If h is contained in the standard maximal subalgebra
W (1; 1)(0) then the above show that h ⊂ Lie(P ). Since all nilpotent elements of W (1; 1)(0) lie in
W (1; 1)(1), i.e. in the span of all (ad f)r(e) with 0 ≤ r ≤ p−2, we also have that nil(h) ⊂ Lie(Ru(P )).
If h is not contained in W (1; 1)(0) then h is a transitive restricted subalgebra of g. Since nil(h) 6= 0,
it follows from Lemma 2.2 that dim h ≤ 2. If dim h = 1 then h = nil(h) is contained in the Lie
algebra of the optimal parabolic subgroup P (x) of any nonzero x ∈ h; see [Pre03, Theorem A]. if
dim h = 2 then Lemma 2.2 implies that h is spanned by a nilpotent element x and a semisimple
element y such that [x, y] = y. Then h ⊆ ng(kx). Since ng(kx) is contained in Lie(P (x)) and
nil(h) = kx is contained in Lie(Ru(P (x))) by [Pre03, Theorem A], we conclude that the corollary
holds if m is either isomorphic to a maximal Witt subalgebra of g or has form Lie(M) for some
maximal connected subgroup M or G.

5.4. Lie subalgebras of exotic semidirect products. It remains to consider the case where
m = ng(Soc(m)) is a maximal esdp of g and h ⊂ m. By Theorem 1.1, this implies that G is a
group of type E7 and p ∈ {5, 7}. In view of of our results in §§ 5.1–5.3 we just need to find a
proper parabolic subgroup P of G such that h ⊆ Lie(P ). In doing so we may assume without loss
of generality that G is a group of adjoint type and h = ng(nil(h)) is a restricted Lie subalgebra of
g. We shall use freely the notation and conventions of §§ 3.4–3.6

As m ∼= (S ⊗ O(1; 1)) o (Id ⊗ D) and D ⊆ W (1; 1), we have a natural homomorphism of Lie
algebras π : m→W (1; 1). If π(h) is not a transitive subalgebra of W (1; 1), then h ⊆ Lie(N), where
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N = NG(Soc(m)), and there exists a non-trivial cocharacter λ ∈ X∗(Ce⊗1) such that N ⊂ P (λ).
More precisely, our discussion in § 3.6 shows that λ comes from a regular subgroup of type A1 in
Ce⊗1 and has the property that Soc(m) ⊂

⊕
i≥0 g(λ, i). Since h ⊆ Lie(P (λ)) this sorts out the case

where π(h) ⊆ W (1; 1)(0). From now we may assume that π(h) is a transitive restricted subalgebra
of W (1; 1).

Let nil0(h) = nil(h) ∩ Soc(m) and suppose that nil0(h) 6= 0. This will be our main case and to ease
notation we shall identify m with (S ⊗ O(1; 1)) o (Id ⊗ D). Let ϕ : S ⊗ O(1; 1) � S denote the

evaluation map which sends any
∑p−1

i=0 ai ⊗ xi ∈ S ⊗ O(1; 1) with ai ∈ S to a0. Obviously, ϕ is a
homomorphism of Lie algebras and kerϕ = S ⊗O(1; 1)(1).

(a) If the transitive subalgebra π(h) of W (1; 1) consists of semisimple elements, then Lemma 2.2
yields that σ(π(h)) = k(1 + x)∂ for some σ ∈ Aut(W (1; 1)) (in particular, dimπ(nil(h)) = 1). If
π(h) contains nonzero nilpotent elements, then Lemma 2.2 says that there is a σ ∈ Aut(W (1; 1))
such that ∂ ∈ σ(π(h)). If p = 7 then the description of the group N given in § 3.6 yields that in
any event σ comes from the subgroup Ce⊗1 ∩N of N . If p = 5 then the discussion in § 3.6 shows
that ce ∼= sl2(k) identifies with the Lie algebra k∂ ⊕ (x∂)⊕ k(x2∂) and Lie(N) ∩ ce⊗1 = Lie(B+

e⊗1)

identifies with k(x∂)⊕k(x2∂). Since π(nil(h)) is not contained in the Borel subalgebra Lie(B+
e⊗1) of

ce⊗1
∼= sl2(k), there exists an element g ∈ B+

e⊗1 such that in the respective cases either π(g(nil(h)) =
k(1 + x)∂ or ∂ ∈ π(g(nil(h)). In other words, we may assume without loss of generality that either
π(h) = k(1 + x)∂ or ∂ ∈ π(h).

(b) Suppose ∂ ∈ π(h) and let D ∈ h be such that π(D) = ∂. Then D = (Id⊗ ∂) +
∑p−1

i=0 vi ⊗ xi for
some vi ∈ S. Recall from § 3.6 that N ⊆ Aut(S ⊗O(1; 1)) contains a unipotent normal subgroup
R generated by all exp(ad v) ∈ N with v ∈ S⊗O(1; 1)(1). Since [Id⊗∂, v⊗xi+1] = (i+ 1)v⊗xi for

all v ∈ S and 0 ≤ i ≤ p− 2, we can find an element g ∈ R such that g(D) = (Id⊗ ∂) +u⊗xp−1 for
some u ∈ S. So let us assume from now that D itself has this form. Since 0 6= nil0(h) ⊆ S⊗O(1; 1)
and π(D) = ∂, it is easy to see that ϕ(nil0(h)) is a nonzero ideal of ϕ(h) consisting of nilpotent
elements of S ⊗ 1. Since S ∼= sl2(k), it follows that ϕ(nil0(h)) = kn for some nilpotent element
n ∈ S ⊗ 1. Applying to n a suitable element g′ from the subgroup H = Aut(S ⊗ 1) of N , we may
assume further that n = e⊗ 1. This replacement will transform D to g′(D) = (Id⊗ ∂) + u′ ⊗ xp−1

where u′ = g(u) ∈ S.

We claim that nil0(h) ⊆ e⊗O(1; 1). Indeed, if this is not the case, then nil0(h) contains an element

v =
∑p−1

i=0 bi⊗xi such that br 6∈ ke for some r ∈ {1, . . . , p− 1}. Since D = (Id⊗ ∂) +u′⊗xp−1, it is
straightforward to check that ϕ

(
(adD)r(v)

)
= r!(br⊗ 1) 6∈ k(e⊗ 1). This, however, contradicts the

fact that adD preserves nil0(h). The claim follows. Since ϕ(nil0(h)) 6= 0, there exists a ∈ O(1; 1)×

such that e⊗ a ∈ nil0(h). Let

w = (Id⊗ d) +
∑p−1

i=0 wi ⊗ xi

be an arbitrary element of h, where d ∈ D and wi ∈ S. Since ad d preserves e ⊗ O(1; 1) and
[w, e⊗a] ∈ nil0(h) ⊆ e⊗O(1; 1), it must be that wi ∈ nS(ke) for all i (one should keep in mind here
that the elements axi with 0 ≤ i ≤ p − 1 are linearly independent in O(1; 1)). As a consequence,
h ⊆ (b⊗O(1; 1)) o (Id⊗ D) where b = kh⊕ ke = nS(ke). But then h ⊆ Lie(P (τ)) where P (τ) is
the optimal parabolic subgroup of e⊗ 1 ∈ g.

(c) Suppose now that π(h) = k(1 + x)∂ and let D ∈ h be such that π(D) = (1 + x)∂. Since h is a
restricted subalgebra of g and h∩ (S ⊗O(1; 1)) is a restricted ideal of h, it follows from Jacobson’s

formula for [p]th powers that ϕ(D[p]n) = (1 + x)∂ for all n ∈ Z>0. Therefore, D can be assumed
to be a semisimple element of h. As mentioned in § 2.2, the toral subalgebra of h spanned by all
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D[p]i with i ≥ 0, has a k-basis consisting of toral elements of h. So we may assume without loss of
generality that D is a toral element of h.

Write D = (Id ⊗ (1 + x)∂) + D0, where D0 ∈ S ⊗ O(1; 1), and recall from § 3.6 the centroid
C ∼= O(1; 1) of S ⊗O(1; 1). Since adD0 commutes with C we have that

(15) [D, cu] =
(
(1 + x)∂(c)

)
u+ c[D,u]

(
∀ c ∈ C, ∀u ∈ S ⊗O(1; 1)

)
.

It follows that if u is an eigenvector for adD and c is an eigenvector for (1 + x)∂, then ciu is an
eigenvector for adD for any i ∈ {0, . . . , p − 1}. Since

(
(1 + x)∂

)
((x + 1)i) = i(x + 1)i for all i,

it follows from (15), that the restricted enveloping algebra u(kD) ∼= k[t]/(tp − t) acts freely on
S ⊗O(1; 1) and the evaluation map ϕ induces a Lie algebra isomorphism between the fixed-point
algebra (S ⊗ O(1; 1))D and S ⊗ 1. As (S ⊗ O(1; 1))D ∼= S ⊗ 1 is spanned by a nonzero sl2-triple
of S ⊗O(1; 1) and all such sl2-triples are conjugate under the action of N by Theorem 1.1(iii), we
may assume without loss of generality that (S ⊗O(1; 1))D = S ⊗ 1. From this it is immediate that
D0 = 0, i.e. D = (1 + x)∂ (we refer to [PS99, § 2] for more general results on normalising toral
subalgebras in the presence of centroids).

Since the subspace nil0(h) of h is (adD)-stable and ϕ(nil0(h)) = ke, it must be that e⊗ (1 + x)i ∈
nil0(h) for some i. Since (1 + x)i ∈ O(1; 1)× for all i, we can repeat the argument used at the end
of part (b) to conclude that a G-conjugate of h is contained in (b⊗O(1; 1))o k(Id⊗ (1 + x)∂). As
before, this implies that h is contained in a proper parabolic subalgebra of g.

(d) Finally, suppose that π(h) is transitive in W (1; 1) and nil0(h) = 0. In this case π maps nil(h)
isomorphically onto a nonzero nilpotent ideal of π(h). Hence the Lie algebra π(h) is not simple and
contains nonzero nilpotent elements. In view of Lemma 2.2 this means that nil(h) ∼= π(nil(h)) is
spanned by a single nilpotent element of g, say y. But then h = ng(nil(h)) = ng(ky) is contained in
Lie(P (y)) where P (y) is the optimal parabolic subgroup of y ∈ g; see [Pre03, Theorem A].

As a result, if m is a maximal esdp of g and h ⊂ m, then h is contained in a proper parabolic
subalgebra of g. In view of Theorems 1.1 and 1.2 and our discussion in §§ 5.1 and 5.2 the proof of
Corollary 1.3 is now complete.
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[BMRT10] M. Bate, B. Martin, G. Röhrle and R. Tange. Complete reducibility and separability, Trans. Amer. Math.
Soc., 362:4283–4311, 2010.

[Bl62] R.E. Block. Trace forms on Lie algebras, Canad. J. Math., 14:553–564, 1962.
[Bor91] A. Borel. Linear Algebraic Groups. Graduate Texts in Mathematics, Vol. 126. Springer-Verlag, New York,

second edition, 1991.
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