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Abstract— This paper deals with the large-scale task alloca-
tion problem for Unmanned Aerial Vehicle (UAV) swarms in
surveillance missions. The task allocation problem is proven
to be NP-hard which means that finding the optimal solution
requires exponential time. This paper presents a practically ef-
ficient decentralized task allocation algorithm for UAV swarms
based on lazy sample greedy. The proposed algorithm can
provide a solution with an expected optimality ratio of at
least p for monotone submodular objective functions and of
p(1 − p) for non-monotone submodular objective functions.
The individual computational complexity for each UAV is
O(pr2), where p ∈ (0, 0.5] is the sampling probability, r
is the number of tasks. The performance of the proposed
algorithm is testified through digital simulations of a multi-
target surveillance mission. Simulation results indicate that the
proposed algorithm achieves a comparable solution quality to
state-of-the-art algorithms with dramatically less running time.
Moreover, a trade-off between the solution quality and the
running time is obtained by adjusting the sampling probability.

Index Terms— UAV swarms, task allocation, multi-target
surveillance, submodular maximization, lazy sample greedy.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) possess obvious advan-
tages over manned aircrafts, such as stronger adaptability,
smaller size, lower cost, better maneuverability and no pilot
casualties etc. In the last few decades, UAVs have been
playing important roles in scientific research [1], [2] and
industry applications [3], [4]. Tasks that are dull, dirty and
dangerous for humans have been completed effectively by
UAVs [5], [6]. However, in some missions like large area
searching or surveillance might be too challenging to be
carried out by only one single UAV. To tackle this problem,
a cooperative UAV fleet is considerably a good solution [7],
[8]. Nevertheless, new challenges arise among which task
allocation is a foundation for mission success. UAVs should
be able to figure out an effective and efficient task execution
scheme promptly.

This paper focuses on the large-scale decentralized task
allocation problem for UAV swarms to carry out the multi-
target surveillance mission which is modeled in Section II.
The task allocation problem can be considered as maximizing
an overall objective function that is the sum of all individual
objective function values meanwhile satisfying the constraint
that one task can only be allocated to one UAV but each
UAV can carry out multiple tasks. In this paper, the ob-
jective function of each UAV is formulized as monotone
and submodular [9]. The described constraint is also known
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as the matroid constraint [10], i.e. independence constraint.
In this case, task allocation can be defined as submodular
welfare problem [11], [12]. The issue with the task allocation
problem is that it has been proven to be NP-hard [13] which
means that finding the optimal solution requires exponential
time. Therefore, it is impractical to calculate the optimal
task allocation solution when there are large numbers of
tasks and UAVs. Instead, by sacrificing a certain degree of
optimality, developing task allocation algorithms that can
provide acceptable solution quality with low computational
complexity is the main research direction.

Different approaches have been made in order to handle
the NP-hardness of the task allocation problem, such as the
heuristic approach [14], [15] and the approximation approach
[16], [17]. Heuristic algorithms can provide feasible solu-
tions with certain convergence speed. However, this kind of
algorithms cannot provide any approximation guarantee of
the solution quality. Approximation algorithms are able to
achieve mathematical guarantees in terms of both solution
quality and computational complexity when the objective
functions meet the condition of submodularity [9]. This paper
mainly considers approximation algorithms.

The Consensus-Based Bundle Algorithm (CBBA) devel-
oped in [18] is one of the most widely accepted state-
of-the-art efficient decentralized task allocation algorithms.
CBBA uses the concept of Max-Consensus [19], [20] to
complete the auction of tasks through the network. In [18],
a condition of Diminishing Marginal Gains (DMG) for
UAVs’ objection functions is formulated. DMG is actually
related to the diminishing return which is a basic property
of submodularity [9]. With the condition of DMG, CBBA
achieves a value approximation guarantee of at least 50%
of the optimal solution for maximizing monotone objective
functions. However, CBBA fails to provide any approxima-
tion guarantee for non-monotone cases.

The Decentralized Sample-based Task Allocation (DSTA)
algorithm presented in [21] achieves significant improve-
ments to CBBA [18]. At the beginning of DSTA, each UAV
selects tasks from the ground task set with a probability of
p ∈ (0, 0.5] to form its own task samples. In each iteration,
each UAV greedily selects the currently best task for itself
from its own task samples. Then, all UAVs agree on a glob-
ally best task-UAV pair via a maximum consensus protocol
and remove this selected task from their task samples in order
to prevent conflicts. As a result, DSTA achieves three aspects
of improvements compared with CBBA. First, DSTA has ob-
tained expected approximation guarantees for both monotone
and non-monotone submodular objective functions. Second,
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DSTA reduces the computational complexity because each
UAV only considers its own task samples instead of all
remaining tasks during each iteration. Third, DSTA is able to
adjust the sampling probability in order to balance the trade-
off between the approximation ratio and the computational
complexity.

The proposed decentralized Lazy Sample based Task
Allocation (LSTA) algorithm in this work is a further im-
provement to DSTA [21] in terms of the practical efficiency
meanwhile maintains the aforementioned three advantages
compared with CBBA [18]. In theory, LSTA achieves an
expected approximation factor of p for monotone submodular
objective functions and of p(1 − p) for non-monotone sub-
modular objective functions with an individual computational
complexity of O(pr2) for each UAV, where p ∈ (0, 0.5] is the
sampling probability, r is the number of tasks. In practice,
the combination of the lazy strategy [22] and the Sample
Greedy [9] makes LSTA orders of more efficient than DSTA
although they have exactly the same analytical performances.

The performances of the proposed decentralized task al-
location algorithm LSTA are verified through digital sim-
ulations of a multi-target surveillance mission carried out
by a swarm of UAVs. Simulation results indicate that both
LSTA and DSTA can provide task allocation solutions that
achieve comparably good overall objective function values
with orders of less running time compared with those of
CBBA. Moreover, LSTA uses significantly less running time
than DSTA while achieving nearly the same function values.
In addition, a trade-off between the solution quality and
running time of the proposed task allocation algorithm is
obtained by adjusting the sampling probability.

The rest part of this paper is organized as follows: Section
II provides the surveillance mission modeling and neces-
sary preliminaries. Section III presents the proposed task
allocation algorithm in details. Section IV demonstrates the
performances of LSTA through simulations with a multi-
target surveillance mission scenario. Section V summarizes
the performances of the proposed task allocation algorithm
and the contribution of this work.

II. PROBLEM STATEMENT

This section provides the modeling of the multi-target
surveillance mission and presents necessary definitions and
basic concepts related to the proposed task allocation algo-
rithm.

A. Mission Modeling

Suppose that there are a set of heterogeneous tasks j ∈ T
that are randomly located on a L × L 2-D space. A set of
heterogeneous UAVs a ∈ A equipped with different sensors
are sent to carry out these tasks automatically. The features
of the surveillance mission are described in the following.

1) Importance factor: Different tasks have different val-
ues that are marked with an importance factor vj . UAVs
tend to give priority to carrying out the tasks that are more
valuable than others.

2) Fitness factor: Tasks with different properties require
different sensors to be detected effectively. Therefore, the
fitness factor maj reflects the match fitness between the task
j and UAV a.

3) Distance discount factor: The mission should be com-
pleted as soon as possible. Therefore, with the help of the
distance discount factor λd, UAVs intend to execute firstly
the nearest tasks to them and the lengths of the paths of all
UAVs should be balanced.

4) Task amount discount factor: It is usually risky to
allocate a large amount of tasks to one UAV but only a few to
others. The task amount discount factor λn helps to balance
the task amounts among all UAVs.

The objective function of each UAV for the surveillance
mission can be obtained by combining all the factors that
have already been described:

fa(Ta) =

|Ta|∑
j=1

majvjλ
τ(pj

a)
d λ

σ(pj
a)

n (1)

where Ta ⊆ T is the task list containing all the tasks that
are selected by UAV a in sequence, pa is the path of UAV
a generated according to the order that the tasks appear in
Ta, pja represents the part of pa from the initial position of
UAV a to the position of task j, τ(pja) is the length of the
path fragment pja and σ(pja) is the amount of tasks within
the path fragment pja.

Regarding the surveillance mission in this paper, the task
allocation problem can be defined as:

Definition 1: (Task Allocation). The task allocation prob-
lem is to allocate a set of tasks T to a set of UAVs A so as
to maximize the total value measured as

f(T ,A) =

|A|∑
a=1

fa(Ta) (2)

meanwhile satisfying the constraint that one task can only be
allocated to one UAV but each UAV can carry out multiple
tasks.

The overall objective function of the task allocation
problem for the surveillance mission can be obtained by
combining Eqns. (1) and (2):

f(T ,A) =

|A|∑
a=1

|Ta|∑
j=1

majvjλ
τ(pj

a)
d λ

σ(pj
a)

n . (3)

B. Preliminaries

Definition 2: (Submodularity [9]) Let N be a finite set. A
real-valued set function f : 2N → R is submodular if, for
all X,Y ⊆ N ,

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ).

Equivalently, for all A ⊆ B ⊆ N and u ∈ N\B,

f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B). (4)
Eqn. (4) is also known as the diminishing returns which is

an important property of submodular functions. Specifically,
the marginal gain of a given element u will never increase
as more elements have already been selected.



Definition 3: (Marginal gain [9]) For a set function f :
2N → R, S ⊆ N and u ∈ N , define the marginal gain of
f at S with respect to u as

∆f(u|S) := f(S ∪ {u})− f(S).
Definition 4: (Monotonicity [9]) A set function f : 2N →

R is monotone if, for every A ⊆ B ⊆ N , f(A) ≤ f(B).
And f is non-monotone if it is not monotone.

In this paper, the objective function of the task allocation
problem is normalized (i.e. f(∅) = 0) and non-negative (i.e.
f(S) ≥ 0 for all S ⊆ N ). The objective function Eqn. (3)
can be proven to be monotone and submodular.

Definition 5: (Matroid [16]) A matroid is a pair M =
(N , I) where N is a finite set and I ⊆ 2N is a collection
of independent sets, satisfying:
• ∅ ∈ I
• A ⊆ B,B ∈ I ⇒ A ∈ I
• A,B ∈ I, |A| < |B| ⇒ ∃ b ∈ B\A such that A ∪
{b} ∈ I.

Specifically, the matroid constraint includes uniform ma-
troid constraint and partition matroid constraint. The uniform
matroid constraint is also called cardinality constraint which
is a special case of matroid constraint where any subset
S ⊆ N satisfying |S| ≤ k is independent. Partition matroid
constraint means that a subset S can contain at most a certain
number of elements from each partition.

According to the constraint described in Definition 1, only
one task-UAV pair from the task-UAV pairs that are related
to this specific task is allowed to be selected. If all task-
UAV pairs are considered as a ground set (i.e. N := T ×A)
and each task-UAV pair as an element of the ground set
(i.e. uj,a := j × a ∀j ∈ T , a ∈ A), then the task allocation
problem modeled in this paper can be handled as submodular
maximization subject to a partition matroid constraint.

III. ALGORITHM AND ANALYSIS

This section describes the proposed task allocation al-
gorithm LSTA in details. In order to better analyze this
algorithm, a centralized version of LSTA is presented in
Algorithm 3. Since LSTA is an improved version of DSTA,
DSTA is introduced from [21] as Algorithm 1 to make LSTA
easier to be understood.

A. Algorithms

Let us introduce some notations that are used in the
following algorithms. Na is the task sample set for UAV
a. During the allocation process, each UAV only considers
tasks from its own task sample set. Ta contains the tasks
that have already been allocated to UAV a. At the end of
these algorithms, Ta is returned as the task allocation result.
In each iteration, j∗a is the task that can provide the largest
marginal value for UAV a, ω∗a is the largest marginal value
for UAV a. In Algorithm 2 and Algorithm 3,Wa contains the
marginal values of all remaining tasks in Na, ω1

a is the first
element of the sortedWa, j1a is the first element of the sorted
Na, ωa(j∗a∗) represents the element in Wa corresponding
with the task j∗a∗ .

The function MaxCons(a, j∗a, ω
∗
a) in Algorithm 1 and

Algorithm 2 is the maximum consensus function [23],
which operates the negotiation among all UAVs. UAV a
sends its currently best marginal value ω∗a together with
the corresponding UAV id a and task id j∗a to all other
UAVs. At the same time, this UAV also receives the same
kind of information from all other UAVs. After gathering
all necessary information, it finds the task-UAV pair that
provides the globally largest marginal value in the current
iteration and returns the corresponding UAV id a∗ and task
id j∗a∗ . This process is fully stated in the centralized version
of LSTA i.e. Algorithm 3.

Algorithm 1 DSTA for UAV a

Input: fa : 2T → R≥0, T , p
Output: A set Ta ⊆ T

1: Na ← ∅, Ta ← ∅
2: for j ∈ T do
3: with probability p,
4: Na ← Na ∪ {j}
5: end for
6: while ∃ j ∈ Na such that ∆fa(j|Ta) > 0 do
7: j∗a ← arg max

j∈Na

fa(j|Ta)

8: ω∗a ← ∆fa(j∗a|Ta)
9: a∗, j∗a∗ ←MaxCons(a, j∗a, ω

∗
a)

10: if a∗ == a then
11: Ta ← Ta ∪ {j∗a}
12: Na ← Na\{j∗a}
13: else
14: if j∗a∗ ∈ Na then
15: Na ← Na\{j∗a∗}
16: end if
17: end if
18: end while
19: return Ta

In terms of the structure of these three algorithms, each
algorithm consists of two phases, i.e. initialization phase and
allocation phase. In the initialization phase of Algorithm 1
(lines 1 ∼ 5), UAV a randomly selects tasks from the task
ground set T with probability p to form its own task sample
set Na. Then, in the second phase (lines 6 ∼ 19), UAV a
only considers tasks that are contained in Na. UAV a finds
the task j∗a that gives it the largest positive marginal gain ω∗a
given the current Ta and negotiates with other UAVs through
the MaxCons(a, j∗a, ω

∗
a) function. If UAV a outbids this

negotiation, which means a has the globally largest marginal
gain, then a will add the task j∗a into to its task selection set
Ta and remove it from its task sample set Na. Otherwise,
UAV a checks whether the task j∗a∗ that provides another
UAV with the globally largest marginal gain exists in its
own Na. If j∗a∗ does exist in Na, then a should remove this
task from Na in order to prevent violation of the constraint.
The allocation loop will terminate when no more task can
provide a positive marginal gain. Note that only one task
can be allocated in each iteration because all UAVs need to



reach a consensus on the globally best selection by the prin-
ciple of greedy algorithms. The sampling operation enables
DSTA to achieve an expected approximation guarantee for
maximizing non-monotone submodular objective functions
and accelerates the task allocation to some degree according
to the probability p.

This work further accelerates DSTA by adapting the lazy
strategy [22]. In the first phase (lines 1 ∼ 13) of Algorithm
2, similar to DSTA, UAV a also forms its own task sample
set Na by random sampling. Then, it calculates the marginal
values of all tasks in Na given the empty Ta and sorts these
tasks in descending order according to their marginal values.
In the second phase (lines 14 ∼ 40), UAV a finds the best
task with LSTA in a more efficient way than it does with
DSTA. Instead of recalculating the marginal values of all
remaining tasks, UAV a only recalculates the marginal value
of the first task from the sorted task list Na. If it satisfies the
condition that this new marginal value is still larger than the
original second one (line 17), then submodularity guarantees
that this is the largest marginal value for UAV a in this
iteration. Otherwise, resort the task list and recalculate the
marginal value of the first task from the resorted task list
until it satisfies this condition. Then UAV a negotiates with
other UAVs after it finds the best task for itself. The rest
of the second phase deals with the conflict resolution by
removing the allocated task and its corresponding marginal
value from the sorted task list and sorted marginal value list
respectively.

The centralized version of LSTA (Algorithm 3) demon-
strates the task allocation flow in a clearer way. After all
UAVs have found their best tasks in the current iteration, the
maximum consensus function MaxCons returns the UAV
id a∗ and the corresponding task id j∗a∗ of the task-UAV
pair who can provide the globally largest marginal value as
shown in line 24 of Algorithm 3. Then each UAV checks
the UAV id and task id to solve the conflict. Lines 32 ∼ 34
in Algorithm 2 and lines 39 ∼ 41 in Algorithm 3 mean that
if the globally best task is outbid by another UAV and this
task is the first element of the sorted task list Na then UAV
a needs to recalculate and find the best task for itself again
in the next iteration. Otherwise, UAV a can still use the task
j∗a for the negotiation in the next iteration.

B. Analysis

LSTA has exactly the same theoretical performance with
DSTA in terms of both approximation ratio and computa-
tional complexity. The performances of LSTA are summa-
rized in Theorem 1.

Theorem 1: The proposed algorithm LSTA achieves an
expected approximation guarantee of p for monotone sub-
modular objective functions and of p(1 − p) for non-
monotone submodular objective functions with an expected
total computational complexity of O(pnr) and individual
complexity of O(pr2) for each UAV, where p ∈ (0, 0.5] is
the sampling probability, r is the number of tasks i.e. r = |T |
and n is the number of task-UAV pairs i.e. n = |T | × |A|.

It is necessary to explain how lazy greedy works before
analyzing the reason why LSTA has exactly the same theo-
retical performances with DSTA. Suppose that f : 2N → R
is a submodular function, Si−1 and Si are the selections
after the (i − 1)th iteration and ith iteration respectively
satisfying Si−1 ⊂ Si ⊂ N . Ri+1 = N\Si is the set of
remaining elements in the (i+ 1)th iteration. All remaining
elements in Ri+1 are sorted in descending order according
to their marginal values given Si−1. u1 and u2 are the first
and second elements of Ri+1 respectively. It implies that

∆f(u1|Si−1) ≥ ∆f(u2|Si−1).

In the (i+ 1)th iteration, the new marginal values of all re-
maining elements should be recalculated given Si according
to the original greed. But in lazy greedy algorithms, only the
first element’s marginal value given Si is recalculated. This
is the reason why it is called lazy greedy. According to the
property of submodularity (Eqn. (4)),

∆f(u2|Si) ≤ ∆f(u2|Si−1).

If it meets the condition that

∆f(u1|Si) ≥ ∆f(u2|Si−1), (5)

then we get

∆f(u1|Si) ≥ ∆f(u2|Si).

The inequalities are in the same manner for the rest elements
from Ri+1. Therefore, we can know that the marginal value
of u1 is the largest one in the (i + 1)th iteration without
recalculating other elements’ marginal values. As a result,
lazy greedy finds exactly the same element as the original
greedy does yet in a more efficient approach. Therefore,
LSTA and DSTA achieve the same approximation guarantee.

In the worst case, LSTA and DSTA have the same
theoretical computational complexity. If the aforementioned
condition (inequality (5)) is not satisfied, the lazy greedy
algorithm needs to resort the elements and recalculate the
marginal value of the first element of the resorted list. In
the worst case, all remaining elements need reevaluating.
However, in most cases of real-world applications, only the
first or first few elements need to be reevaluated. This is why
LSTA is more efficient than DSTA in practice.

Since LSTA has exactly the same theoretical performances
with DSTA, please refer to [21] for the proof of Theorem 1.
Note that, if p ∈ (0.5, 1], LSTA achieves an expected approx-
imation guarantee of 1/2 for monotone submodular objective
functions and of (1 − p)/2 for non-monotone submodular
objective functions. According to the theoretical result, as the
sampling probability increases, the computational complexity
also increases but the approximation guarantee for the non-
monotone case decreases. Therefore, there is no advantage
on average to set p ∈ (0.5, 1]. When p is set as 0.5, LSTA
obtains the best approximation guarantees for both monotone
case (50%) and non-monotone case (25%).



Algorithm 2 Decentralized LSTA for UAV a

Input: fa : 2T → R≥0, T , p
Output: A set Ta ⊆ T

1: Na ← ∅, Ta ← ∅,Wa ← ∅
2: for j ∈ T do
3: with probability p,
4: Na ← Na ∪ {j}
5: end for
6: for j ∈ Na do
7: ωaj ← ∆fa(j|Ta)
8: Wa ←Wa ∪ {ωaj}
9: end for

10: Sort Wa in descending order
11: Sort Na according to sorted Wa

12: ω∗a ← ω1
a

13: j∗a ← j1a
14: while ∃ j ∈ Na such that ∆fa(j|Ta) > 0 do
15: while ω∗a == 0 do
16: ω1

a ← ∆fa(j1a|Ta)
17: if ω1

a ≥ ω2
a then

18: ω∗a ← ω1
a

19: j∗a ← j1a
20: else

21: Resort Wa and Na
22: end if
23: end while
24: a∗, j∗a∗ ←MaxCons(a, j∗a, ω

∗
a)

25: if a∗ == a then
26: Ta ← Ta ∪ {j∗a}
27: Na ← Na\{j∗a}
28: Wa ←Wa\{ω∗a}
29: ω∗a ← 0
30: else
31: if j∗a∗ ∈ Na then
32: if j∗a∗ == j1a then
33: ω∗a ← 0
34: end if
35: Na ← Na\{j∗a∗}
36: Wa ←Wa\{ωa(j∗a∗)}
37: end if
38: end if
39: end while
40: return Ta

Algorithm 3 Centralized LSTA
Input: fa : 2T → R≥0 ∀a ∈ A, T , p
Output: Sets Ta ⊆ T ∀a ∈ A

1: for a ∈ A do
2: Na ← ∅, Ta ← ∅,Wa ← ∅
3: for j ∈ T do
4: with probability p,
5: Na ← Na ∪ {j}
6: end for
7: for j ∈ Na do
8: ωaj ← ∆fa(j|Ta)
9: Wa ←Wa ∪ {ωaj}

10: end for
11: Sort Wa in decreasing order
12: Sort Na according to sorted Wa

13: ω∗a ← ω1
a

14: j∗a ← j1a
15: end for
16: while ∃ a ∈ A and j ∈ Na such that ∆fa(j|Ta) > 0 do
17: for a ∈ A do
18: if ∃ j ∈ Na such that ∆fa(j|Ta) > 0 then
19: while ω∗a == 0 do
20: ω1

a ← ∆fa(j1a|Ta)
21: if ω1

a ≥ ω2
a then

22: ω∗a ← ω1
a

23: j∗a ← j1a
24: else

25: Resort Wa and Na
26: end if
27: end while
28: end if
29: end for
30: a∗, j∗a∗ ← arg max

a∈A,j∗a∈Na

ω∗a(a, j∗a)

31: for a ∈ A do
32: if a∗ == a then
33: Ta ← Ta ∪ {j∗a}
34: Na ← Na\{j∗a}
35: Wa ←Wa\{ω∗a}
36: ω∗a ← 0
37: else
38: if j∗a∗ ∈ Na then
39: if j∗a∗ == j1a then
40: ω∗a ← 0
41: end if
42: Na ← Na\{j∗a∗}
43: Wa ←Wa\{ωa(j∗a∗)}
44: end if
45: end if
46: end for
47: end while
48: return Ta ∀a ∈ A



IV. SIMULATION RESULTS

This section testifies the proposed task allocation algo-
rithm LSTA for a swarm of UAVs carrying out a multi-target
surveillance mission and compares its performance with
those benchmark algorithms (CBBA and DSTA) through
numerical simulations. The aim of the task allocation in this
work is to get as large overall values as possible measured by
the objective function (3). Simulations are divided into two
phases. The first phase is a demonstration of a task allocation
scenario using LSTA with small numbers of UAVs and tasks.
The second phase is the performance comparison of LSTA
and benchmark algorithms using Monte Carlo simulations
with large numbers of UAVs and tasks. In order to simplify
the task allocation problem, suppose that physical obstacles
are out of consideration, UAVs can automatically avoid
collision between each other and the UAV swarm network is
strongly connected. Simulation codes are written in Python
3 and simulations are run in a desktop with an Intel i7-6700
3.4GHz CPU and 16GB RAM operated with Win 7.

A. Task Allocation Demonstration

Suppose that there are 15 heterogeneous tasks that are
randomly located on a L × L 2-D space (L = 10km).
The features of these tasks are listed in TABLE I. A fleet
of 5 heterogeneous UAVs equipped with different kinds of
sensors is sent to carry out the surveillance mission towards
these tasks. Different sensors are suitable for different tasks.
Hence, each task has different fitness factors with different
UAVs. The fitness factors of all task-UAV pairs are listed in
TABLE II. The locations of all tasks and UAVs are depicted
in Fig. 1. Set the distance discount factor λd = 0.95 and the
task amount discount factor λn = 0.98 respectively.

The task allocation results are demonstrated in TABLE
III and Fig. 2. The results indicate that the length of paths
and the number of tasks for each UAV are distributed in
a balanced way. In Fig. 2, UAV5 carries out Task 10 first
instead of Task 11 although Task 11 is closer. This is because
Task 10 is significantly more important than Task 11 but the
difference of the distances is not significant. Meanwhile, the
task-UAV fitness factors of task 10 and task 11 with UAV5
are the same. The marginal value of Task 10 is larger than
that of Task 11 for UAV5. Similarly, Task 6 is allocated to
UAV2 instead of UAV1 because the fitness factor between
UAV2 and Task 6 is larger than that between UAV1 and Task
6 which means that UAV2 is more suitable for Task 6. Note
that, the task allocation results are varying every time we
run the algorithm LSTA due to the random sampling. When
there are only a small number of UAVs, it is possible that a
task is not selected by any UAV. One solution to this issue
is to increase the sampling probability since the efficiency
is not the main concern in the low-scale task allocation
problems. In the large-scale task allocation problems, if the
objective function is monotone, it is unlikely that a task is
never selected by any UAV.

TABLE I: Task Features

Task id Location Importance
FactorX/km Y/km

1 6.430 2.427 0.8
2 12.990 9.456 0.6
3 5.040 5.118 0.9
4 9.793 9.168 0.6
5 10.350 6.427 1.0
6 4.313 0.797 0.7
7 12.638 1.643 0.7
8 8.369 4.191 1.0
9 7.869 6.883 1.0

10 6.647 8.277 1.0
11 5.110 9.934 0.7
12 11.034 8.161 0.8
13 10.619 3.687 1.0
14 11.385 0.661 0.7
15 13.672 4.785 0.6

TABLE II: Task-UAV Fitness Factors

Task id UAV1 UAV2 UAV3 UAV4 UAV5
1 1.0 0.9 0.6 0.8 0.9
2 0.9 1.0 0.7 0.9 0.8
3 1.0 0.6 1.0 0.9 0.5
4 0.9 0.8 0.9 1.0 1.0
5 0.6 0.8 0.9 1.0 0.8
6 0.8 1.0 0.7 0.6 0.9
7 0.9 0.6 0.8 1.0 0.7
8 1.0 0.9 0.6 0.8 0.9
9 0.8 0.6 0.9 1.0 0.8
10 0.9 1.0 0.7 0.6 1.0
11 1.0 0.9 0.6 0.1 1.0
12 0.8 0.9 0.7 1.0 0.9
13 0.9 0.8 0.5 0.8 0.9
14 0.5 1.0 0.8 0.9 1.0
15 0.6 0.7 0.9 0.8 0.5

Fig. 1: Locations of Tasks and UAVs

TABLE III: Task Allocation Results

UAV id Task List Path Length (km) Value
1 8 → 13 → 7 11.658 1.580
2 6 → 1 → 14 11.883 1.411
3 3 → 5 → 15 12.217 1.585
4 9 → 12 → 2 11.694 1.477
5 10 → 11 → 4 11.825 1.541



Fig. 2: Task execution scheme

B. Monte Carlo Simulations

In order to compare the average performance of LSTA
and benchmark task allocation algorithms in large-scale task
allocation problems, we run 10 rounds of Monte Carlo
simulations where tasks and UAVs are randomly placed on
a L × L 2-D space (L = 10km). In the simulations, there
are 200 tasks and the number of UAVs increases from 10
to 50 which is denoted by Na. Set the importance factor
of each task as a uniformly random number vj ∈ [0.6, 1.0]
and the match fitness factor of each task-UAV pair as a
uniformly random number maj ∈ [0.5, 1.0]. Set the distance
discount factor λd = 0.95 and the task amount discount
factor λn = 0.98 respectively. The sampling probability p is
set as 0.5 for both DSTA and LSTA.

The simulation results are depicted in Fig. 3. The running
time of task allocation for each UAV can be roughly calcu-
lated by dividing the total running time with the number of
UAVs. As shown in Fig. 3 (b), the running time of all three
algorithms increases linearly as the scale of the task alloca-
tion problem goes up. In comparison, on the one hand, DSTA
and LSTA achieve comparable function values to those of
CBBA from approximately 86.5% with 10 UAVs reaching
94.5% with 50 UAVs. On the other hand, DSTA and LSTA
use significantly less running time than CBBA as shown in
Fig. 3 (b). It is clear from Fig. 3 (a) and (c) that, LSTA
obtains almost the same objective function values as DSTA
does but is much more efficient. This is a great advantage in
the time-limited task allocation applications. Obviously, the
proposed algorithm LSTA possesses better scalability than
the existing state-of-the-art algorithms for the large-scale task
allocation problem in multi-target surveillance missions.

Moreover, we change the sampling probability p of LSTA
in order to test the trade-off between the approximation ratio
and computational complexity. The selected sampling prob-
abilities are 0.5, 0.3 and 0.1 respectively. Other parameter
settings are the same as before.

(a) Total objective function values

(b) Total running time for CBBA, DSTA and LSTA

(c) Total running time for DSTA and LSTA

Fig. 3: Performance comparison of different task allocation
algorithms

The Monte Carlo simulation results of the trade-off be-
tween approximation ratio and computational complexity are
demonstrated in Fig. 4. It is clear that as the sampling
probability p increases from 0.1 to 0.5, both total objective
function values and running time increase. A proper sam-
pling probability can be selected according to the real-world
application needs.



(a) Total objective function values

(b) Total running time

Fig. 4: Trade-off for LSTA with varying p

V. CONCLUSION

This paper presents an efficient decentralized task allo-
cation algorithm for UAV swarms to carry out multi-target
surveillance missions. Theoretically, the proposed algorithm
LSTA achieves an expected approximation guarantee of p
for the surveillance mission modeled in this paper with a
computational complexity of O(pr2) for each UAV. The
feasibility of LSTA is testified through numerical Monte
Carlo simulations. The simulation results demonstrate that
both LSTA and DSTA provide comparably good task alloca-
tion solutions but use orders of less running time compared
with CBBA. LSTA provides solutions with almost the same
quality as DSTA but uses much less running time. Therefore,
the proposed algorithm LSTA is more capable than the
state-of-the-art algorithms for the large-scale task allocation
problems in the multi-target surveillance missions.

Future research would involve the following directions.
First, testify the feasibility of LSTA on a reasonable number
of decentralized UAVs equipped with normal-performance
computational units. Second, Expand the task allocation
problem for UAV swarms to the 3D space and consider the
uncertainties of surveillance missions.
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