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Abstract 
Supervised machine learning can be used to predict which drugs human cardiomyocytes 

have been exposed to. Using electrophysiological data collected from human cardiomyo-

cytes with known exposure to different drugs, a supervised machine learning algorithm can 

be trained to recognize and classify cells that have been exposed to an unknown drug. 

Furthermore, the learning algorithm provides information on the relative contribution of 

each data parameter to the overall classification. Probabilities and confidence in the accu-

racy of each classification may also be determined by the algorithm. In this study, the 

electrophysiological effects of β–adrenergic drugs, propranolol and isoproterenol, on cardi-

omyocytes derived from human induced pluripotent stem cells (hiPS-CM) were assessed. 

The electrophysiological data were collected using high temporal resolution 2-photon 

microscopy of voltage sensitive dyes as a reporter of membrane voltage. The results dem-

onstrate the ability of our algorithm to accurately assess, classify, and predict hiPS-CM 

membrane depolarization following exposure to chronotropic drugs. 

Introduction 

Machine learning is generally defined as the process of training an algorithm (i.e. learning) to 
make predictions or decisions based on data. Supervised learning is a subtype of machine 
learning in which a set of training data with known classifications or outcomes is used to train 
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the algorithm by building a statistical model that fits the training data. The model can then be 
applied to unknown data to predict the classification or outcome of each datum. In the case of 
predicting cardiac side effects of drug treatments, electrophysiological data from actively beat-
ing cardiomyocytes acquired after exposure to drugs with known chronotropic effects may 
be used to train a classification algorithm based on defined parameters of the depolarization 
waveform. The trained algorithm can then be applied to data acquired from cardiomyocytes 
exposed to drugs whose effects are unknown to screen for electrophysiological effects and simi-
larities to existing drugs. Furthermore, this highly quantitative approach can be used to assess 
the relative contribution of each waveform parameter to the algorithm’s classification decision. 
Confidence in predictions and similarities to existing drugs can also be measured. Supervised 
learning techniques have come to the fore in recent years for a number of biological and poten-
tially clinical applications including ECG signal quality, systemic vascular resistance, and 
decoding functional magnetic resonance imaging (fMRI) of brain states [1–3]. The pressing 
need for automated high-throughput analysis of electrophysiology at the cell membrane level is 
apparent, but remains unsolved. Thus, a supervised learning algorithm is a potential method to 
fill this need, especially when combined with recent advances in electrophysiological data 
acquisition. Juhola et al. have previously used a machine learning approach to classify calcium 
cycling anomalies in human cardiomyocytes [4], however, to our knowledge, the study pre-
sented here demonstrates the first application of machine learning to interpret the membrane 
voltage of human cardiomyocytes following drug treatment. 

Many drugs showing promise in preclinical trials fail during clinical development due to the 
emergence of cardiac side effects [5–10]. Hence, there exists a great need to develop novel in 
vitro platforms that more accurately mimic the biology of human cardiac cells, and thus pro-
vide a reliable and accurate model for high-throughput drug screening. The emergence of 
human induced pluripotent stem (hiPS) cell technology has created a new source of human 
cardiomyocytes (hiPS-CM) [11,12]. Novel microscopy and analysis methods serve to accelerate 
development and validation of such in vitro hiPS-CM models for drug screening. 

Voltage sensitive dyes (VSDs) allow non-invasive, non-destructive, and longitudinal assess-
ment of hiPS-CM electrophysiology at the sub-cellular scale [13] with reduced toxicity. The 
use of VSD has a long history and their utility has been demonstrated in neuronal [14] and car-
diac [15–18] cells and tissues. Numerous families and formats of VSDs exist that allow wide 
use across microscopy platforms and cell types [13]. This study uses di-4-ANE(F)PPTEA, a 
hemicyanine class dye, that embeds itself in the cellular membranes of hiPS-CM and exhibits a 
proportional increase in fluorescence intensity as the voltage across the membrane increases. 
Using laser scanning 2-photon microscopy at a single location on the cell membrane, the 
fluorescence intensity of the VSD can be captured as a function of time, and be used to measure 
hiPS-CM membrane depolarization. Subcellular resolution of transmembrane voltages 
during action potentials may provide additional insights into cell electrophysiology and drug 
responses which patch clamp and other techniques cannot achieve. Analysis of the resultant 
signal requires compensation for artifacts due to the physical contractile motion of spontane-
ously beating hiPS-CM. Methods for compensation of such artifacts will be briefly discussed in 
this study. 

The chronotropic drugs propranolol and isoproterenol were selected to validate our 
machine learning algorithm. These drugs were selected due to their extensive mechanistic and 
functional characterization of their electrophysiological effects [19]. Briefly, propranolol and 
isoproterenol are known to act primarily on the β-adrenoreceptors in cardiac cells as a β-
blocker and β-adrenergic agonist, respectively. β-adrenoreceptors are coupled to Gαs-proteins, 
which when stimulated, lead to a cascade mediated by adenylyl cyclase formation of cyclic 
adenosine monophosphate (cAMP) and subsequent activation of cAMP-dependent protein 
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kinase (PKA). Activated PKA phosphorylates L-type calcium channels increasing calcium 
influx during an action potential. Calcium transport from the L-type calcium channels is asso-
ciated with the plateau phase of a cardiac action potential. With this a priori knowledge of the 
action of these drugs, modulation of calcium transport (as with β-blockers and β-adrenergic 
agonists) would be expected to affect the plateau height and width of the depolarization wave-
form. The upslope and downslope of a cardiac action potential would not be expected to be 
affected by β–adrenergic modulation since these metrics are primarily driven by fast sodium 
channels and delayed rectifier potassium channels (IKS, IKR, IK1), respectively. 

In this study, we use 2-photon microscopy to assess voltage sensitive dye (VSD) embedded 
in the cell membrane of actively beating human cardiomyocytes derived from induced pluripo-
tent stem cells (hiPS-CM). We use supervised machine learning to develop an algorithm that 
can accurately report the effects of the chronotropic drugs, propranolol and isoproterenol. This 
study demonstrates the use of supervised learning to automatically and accurately assess, clas-
sify, and predict the membrane depolarization of hiPS-CMs. Although used in conjunction 
with electrophysiological data acquired from 2-photon microscopy of VSD in this study, this 
type of learning algorithm may be applied to data from any type of cardiomyocyte electrophys-
iological or contractility signal (e.g. patch clamp [20], microelectrode array [21], calcium 
reporters [22], atomic force microscopy measurements, or scanning probe microscopy mea-
surements [23]). The application of machine learning to the study of cardiac function has the 
potential to be very useful in the development of high-throughput methods for drug discovery 
to identify drugs that are potentially cardiotoxic. 

Methods 

Human induced pluripotent stem cell-derived cardiomyocyte (hiPS-CM) 
culture and differentiation 

Human induced pluripotent stem cells (hiPS), (wtc11 line derived as previously reported [24] 
and generously provided by Dr. Bruce Conklin) were subjected to a previously reported proto-
col that utilizes a serum-free defined medium [25] for differentiation into cardiomyocytes-like 
cells. Briefly, this protocol consists of culture in Roswell Park Memorial Institute (RPMI) 
medium (Life Technologies, 22400–071) supplemented with B-27 without insulin (Life Tech-
nologies, A1895601). On Day 0, media is supplemented with 12 μM CHIR99021 (Selleckchem, 
S2924) for 24 hours, then removed. On day 3, the media is supplemented with 5 μM IWP2 
(Tocris, 3533). On day 5 the IWP2 is removed and on Day 7, the media is supplemented with 
insulin. After Day 7, cells are fed RPMI/B-27 (+) insulin (Life Technologies, 17504–044) every 
2–3 days for the duration of the experiment. Cells began spontaneously beating on approxi-
mately Day 12–15, and were stained with voltage sensitive dye (VSD) and imaged on Day 33. 

Voltage Sensitive Dye (VSD) Staining 

Culture medium was replaced with fresh medium containing 1uM Di-4-ANE(F)PPTEA (pur-
chased from Leslie Loew, University of Connecticut) and incubated for 15 min at 37°C. Cells 
were rinsed with RPMI/B-27 (+) insulin one time and then allowed to recover for at least 2 
hours prior to imaging. 

Drug Exposure 

After staining with VSD, cells were qualitatively confirmed to still be spontaneously beating 
before addition of drugs. Images were captured immediately prior to drug exposure. Medium 
was then replaced with fresh medium containing either 10−5 M propranolol (SIGMA, P0884) 
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or 10−7 M isoproterenol (SIGMA, I6504). We determined the IC50 of propranolol and EC50 of 
isoproterenol relative to beat rate for these cells was on the order of 10−6 M and 10−9 M (S1 
Fig). We selected concentrations larger than these to ensure an effective response. Medium 
without drugs was also replaced as a control. Data was collected 15 min after addition of drugs 
to ensure complete exposure. 

2-photon Microscopy of VSD 

All measurements were obtained on a Zeiss Laser Scanning Microscope (LSM 710) (Carl Zeiss, 
Jena, Germany) using a 40X water immersion objective (C-Apochromat 40X/1.20 W Korr 
M27). A titanium:sapphire Mai Tai laser (Spectra-Physics, Mountain View, CA) was employed 
to excite the VSD at 850nm. A dichroic at 760 nm was used to separate excitation from emission 
signal. VSD fluorescence signal was collected between 489–645 nm. Temporal VSD depolariza-
tion data was acquired in line scan mode with 128 pixels per line and a 1.58 μs pixel dwell time. 
100,000 line scan repeats were acquired for each measurement. All microscope components and 
acquisition processes were controlled using the Zen software package (Zeiss, Jena Germany). 
Clusters of spontaneously beating cardiomyocytes were identified in brightfield mode. The sys-
tem was then switched to the parameters specified for 2-photon microscopy, a line drawn that 
crossed 1–5 cell membranes, and the signal acquired. After completion of data acquisition, cells 
were again observed in brightfield mode to confirm that they were still spontaneously beating. 
All microscopy was performed on a temperature-controlled stage held at 37°C that was con-
tained within a temperature-and gas-controlled incubator held at 37°C and 5% CO2. 

Data Analysis and Parameter Quantification 

Raw fluorescence data was analyzed using the SimFCS software developed in the Laboratory of 
Fluorescence Dynamics (LFD, University of California, Irvine). Motion artifact resulting from 
the spontaneous beating of cell clusters was compensated for in data post-processing using a 
Gaussian tracking and correction algorithm (S2 Fig). Fluorescence intensity along each cor-
rected cell membrane trace was extracted (Fig 1). The resultant quantification data was passed 
into a custom MATLAB (Mathworks, Natick, MA) script that corrected for photobleaching 
artifacts by fitting a second order exponential function to the data (S3 Fig and S1 Code). This 
fit was subtracted from the data. The resultant data was then normalized to the exponential fit 
(Fig 1E). The script then filtered the signal using a moving average filter with a 50 line window 
and detected the parameters of maximum height, upslope, downslope, peak width, and plateau 
height for each peak (S1 Code). The parameters were extracted by identifying the peak and 
trough of each depolarization waveform and then identifying the upslope, downslope, and 
maximum height relative to the peak/trough pair. The maximum height (hmax) is defined as 
the maximum amplitude of the waveform. The upslope (mup) and downslope (mdown) are 
defined as the slopes at 50% of the maximum height. The peak width (w) is defined as the dis-
tance from upslope to downslope at 50% of the maximum height. The plateau height (hplateau) 
is defined as the height of the waveform at the midway point of the peak width. 

Training and Validation of Classification Algorithm 

The TreeBagger supervised machine learning function in MATLAB (MathWorks, 2014b, 
8.4.0.118713) was used to train an algorithm to classify a single depolarization waveform based 
on each specific experimental condition (S1 Code). The TreeBagger algorithm utilizes random 
forests with bootstrap aggregation (i.e. bagging) to train the algorithm how to classify wave-
forms [26]. Random forests are built using the basic unit of a decision tree, a sequence of binary 
decisions based on model parameter values that best separate the data into their respective 
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Fig 1. Membrane depolarization of spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM). Cells were 
stained with voltage sensitive dye, di-4-ANE(F)PPTEA (A). Corresponding brightfield image (B). Consecutive line scans were performed using 2-photon 
microscopy on sets of individual cell membranes as shown in (A) and the corresponding zoom image (C). The resultant temporal sequence of line scans with 
heat-mapped fluorescence intensity prior to motion correction (M 1–4 specifies the individual membrane numbers) (D). Subsequent sample quantification of 
fluorescence intensity of a given membrane over time (M3 is the subset of the temporal line scan sequence for membrane 3) (E). 

doi:10.1371/journal.pone.0144572.g001 

classification (i.e. which drug treatment they received). A random forest is assembled by con-
structing a large number of decision trees with a random subset of model parameters used to 
define each split in the tree. The mode of the classifications acquired from using all of these dif-
ferent decision trees in the random forest determines the ultimate classification of a given data 
set. This helps prevent overfitting that can occur when only one decision tree is utilized. Ran-
dom selection of model parameters to define candidate splits also allows for quantification of 
which model features are the strongest predictors of classification. In addition, bootstrap aggre-
gation, or bagging, is used to reduce variance and overfitting of the training data. Bagging is 
sampling with replacement from the training data set. If all of the trees generated in the ran-
dom forest were trained using the same training data set, they would all be sensitive to the 
noise within that data and be correlated. By bagging and averaging the results for each tree gen-
erated, the variance is reduced and the correlation between trees is also reduced. An optimal 
number of trees can be determined by assessing out-of-bag error (the mean prediction error 

PLOS ONE | DOI:10.1371/journal.pone.0144572 December 22, 2015 5 / 15  



Supervised Machine Learning for Classification of Chronotropic Drugs 

using bootstrap samples that don’t contain a given datum). We empirically determined the 
necessary number of decision trees to be N = 50 trees for our data set to prevent over fitting 
(i.e. to reach stable and minimized out-of-bag error). 

This algorithm was chosen due to the type of input data (numerical parameters) and the 
desired learning outcome (classification of drug treatment). For these inputs and desired outputs, 
the TreeBagger algorithm is a robust bagging method that produces high classification accuracy. 
Three conditions or classifications were defined: control, propranolol, and isoproterenol. The 
parameters previously defined (maximum height, upslope, downslope, peak width, and plateau 
height) were used as input for the algorithm. To train the algorithm, the relative distribution of 
each treatment type was quantified (control: 145 waveforms (32% of total data set), propranolol: 
100 waveforms (22% of total data set), isoproterenol: 212 waveforms (46% of total data set)). 
Next, 33% of the total data set, in the same proportions of treatments as the total data set (con-
trol: 45 waveforms (32% of training data set), propranolol: 34 waveforms (22% of training data 
set), isoproterenol: 70 waveforms (46% of training data set)) were randomly selected and used to 
train the algorithm using 50 different decision trees generated at random by the algorithm to 
classify the data. The remaining data were randomized and used as ‘unknown’ data to validate 
the algorithm after training. Model accuracy was quantified using the out-of-bag classification 
errors versus number of grown trees as a more general measure of model accuracy. The receiver 
operation characteristic (ROC) was used as a more specific measure of accuracy as a function of 
treatment. To build the ROC curves, the true positive rate (TPR) and false positive rates (FPR) 
were calculated based on the out-of-bag classification score, a measure of the confidence of classi-
fication as a given treatment. The TreeBagger algorithm can also quantify the relative importance 
of each model feature (e.g. maximum height, upslope, etc.). Using this feature, we removed the 2 
most irrelevant features (using the arbitrary metric of out-of-bag feature importance <1 that  
qualitatively best separated the features) from the model. We then retrained and revalidated 
using the reduced model in order to demonstrate the effects of model simplification on classifica-
tion accuracy. To determine the simplest model that still provides satisfactory classification, we 
continued to remove features one at a time until a significant difference in accuracy resulted. 

Statistical Analysis 

Waveform parameters were quantified using waveforms from untreated samples (N = 145), 
waveforms treated with propranolol (N = 100), and waveforms treated with isoproterenol 
(N = 216). Effects of treatment were determined using Student’s t-test with α = 0.05. True posi-
tive rate/false positive rate ratios are compared graphically using the area under the curve 
(AUC), with AUC = 1 indicating a perfect classification algorithm with zero errors. The proba-
bility of classification of a given waveform as each treatment group was quantified for each wave-
form in the ‘unknown’ fraction of the data (N = 100 waveforms from untreated samples, N = 66 
waveforms treated with propranolol, N = 142 waveforms treated with isoproterenol). Effects of 
treatment, classification, and model complexity were determined using one-way ANOVA with 
α = 0.05 and post-hoc Tukey’s tests were performed on relevant effects with α = 0.05.  

Results 

Drug-induced alteration of hiPS-CM membrane depolarization 
waveforms 

Data from control waveforms, propranolol exposed waveforms, and isoproterenol exposed 
waveforms revealed significant (p<0.05) differences across all three conditions in upslope, max 
height, plateau height, downslope, and peak width (Figs 2 and 3). 

PLOS ONE | DOI:10.1371/journal.pone.0144572 December 22, 2015 6 / 15  



Supervised Machine Learning for Classification of Chronotropic Drugs 

Fig 2. Drug induced alteration of membrane depolarization waveforms of spontaneously beating hiPS-CM. Representative traces (corrected for 
photobleaching) are presented for the control, N = 145 (A), propranolol-treated, N = 100 (B), and isoproterenol-treated, N = 216 (C) were administered to  
separate cultures. Quantification of beat rate (D). All error bars are SE. (*) indicates p<0.05 for a given comparison. 

doi:10.1371/journal.pone.0144572.g002 

Training an accurate drug treatment classification algorithm 

Fig 4 reports the drug treatment classification accuracy using N = 45 control waveforms, 
N = 34 propranolol exposed waveforms, and N = 70 isoproterenol exposed waveforms to train 
the algorithm using TreeBagger. 50 decision trees were sufficient to achieve a stable out-of-bag 
classification error. Up to 500 trees were tested, but all data presented were obtained using 50 
trees for training. 83% of individual waveforms were correctly classified during training (Fig 
4C). The most common misclassification was a false positive prediction of isoproterenol treat-
ment for a waveform that was actually a control (7% of waveforms). The area under the curve 
(AUC) of true positive/false positive rate plots is indicative of the overall accuracy of the 
model, with an AUC = 1 indicating zero errors in classification. AUC for control was 0.92, for 
propranolol was 0.95, and for isoproterenol was 0.95, indicating excellent prediction accuracy 
for each condition (Fig 4D). 
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Fig 3. Average waveform metrics. Metric definitions: The maximum height (hmax) is defined as the maximum amplitude of the waveform. The upslope (mup) 
and downslope (mdown) are defined as the slopes at 50% of the maximum height. The peak width (w) is defined as the distance from upslope to downslope at 
50% of the maximum height. The plateau height (hplateau) is defined as the height of the waveform at the midway point of the peak width (A). Average of 
waveform metrics (B). All error bars are SE. (*) indicates p<0.05 for a given comparison. 

doi:10.1371/journal.pone.0144572.g003 

Trained algorithms reliably classify individual waveforms according to 
drug treatment 
Using the algorithm trained with a randomly selected 33% of the data collected (N = 149 wave-
forms), the remaining 66% (N = 308) of the data were used to characterize the accuracy of (or 
validate) the algorithm. The validation data was comprised of the same percentage of each 
treatment as the training data (control: 100 waveforms (31% of total data set), propranolol: 66 
waveforms (22% of total data set), isoproterenol: 142 waveforms (46% of total data set)). 70% 
of individual waveforms were correctly classified (Table 1). The classification of a single 
waveform is a discrete selection based simply on the algorithm’s calculation of the highest 
probability of correct classification. With three possible classifications (control, propranolol, 
isoproterenol), it is therefore possible for the algorithm to select a classification with only 
slightly higher than a 33.3% probability of correct classification. In our algorithm, the average 
probability of a given waveform being classified correctly was greater than 60% for any given 
treatment. The average probability of incorrect classification of a given waveform was less than 
30% for any given treatment (Fig 5). Practically, as a tool for predicting drug exposure, classifi-
cation will be performed on an entire recording of a membrane rather than individual wave-
forms. When predictions of individual waveforms were aggregated over the length of an entire 
recording of a membrane (1 min long containing 50–100 beat waveforms), the treatment was 
correctly identified 100% of the time. 
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Fig 4. Model simplification. Metrics with the least relative importance to classification were removed sequentially. Blue = 5 parameter model, Red = 3 
parameter model (upslope (mup) and downslope (mdown) removed), Green = 2 parameter model (upslope (mup), downslope (mdown), and width (w) removed). 
Relative classification errors as a function of number of grown decision trees (A). Relative importance of waveform metrics to classification determination (B). 
Accuracy of classification using training data set in matrix format (C) and FPR/TPR plots (D). AUC(N) = area under curve for ‘N’ parameter model. 

doi:10.1371/journal.pone.0144572.g004 

The sensitivity and relative importance of input parameters to waveform 
classification can be used to simplify and improve the model 
After analysis of the relative importance of each parameter, the 2 least important parameters 
(upslope (mup) and plateau height (hplateau), Fig 4B), were removed from the model. The 3 
parameter model accuracy was assessed and compared to the accuracy obtained using 5 param-
eters (Fig 4). The model performed similarly well with only 3 parameters and increased the cor-
rectly classified individual waveforms to 75% (Table 1) with significant improvements in 
isoproterenol and propranolol-treated classification accuracy (Table 2). The TPR/FPR plots 
changed shape, but the AUC for each changed no more than 0.58% for any treatment (Fig 4D). 
There were no significant effects between the 3- and 5-parameter models in the probability of 

Table 1. Model Accuracy as a Function of the Number of Model Parameters. 

Total Accuracy (312 Peaks) Parameters 

5 3 2 

# Correctly Identified Waveforms 218 234 154 

% Correctly Identified Waveforms 70% 75% 49% 

doi:10.1371/journal.pone.0144572.t001 
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Fig 5. Randomized blinded “unknown” waveform data classification. Performed using reduced models (blue shades = 5 parameter model, red 
shades = 3 parameter model, green shades = 2 parameter model). Data are mean probability of correct classification of a single waveform as each treatment 
+/- SE (Con = control, Iso = isoproterenol, Pro = propranolol). The x-axis defines the actual treatment of a given waveform. (*) indicates p<0.05 for a given 
comparison between models (number of parameters) within a predicted treatment group. 

doi:10.1371/journal.pone.0144572.g005 

accurate classification (Fig 5). We then removed the next least important parameter (width 
(w)) and again assessed model accuracy. In this case, the OOB classification error significantly 
increased from less than 0.2 to approximately 0.25 (Fig 4A), and the TPR/FPR plots had signifi-
cantly lower AUC values (6.9% decrease for control, 2.3% decrease for isoproterenol, and 0.7% 
decrease for propranolol) (Fig 4D). The number of correctly classified individual waveforms 

Table 2. Model Accuracy by Treatment as a Function of the Number of Model Parameters. 

% Correctly Identified Waveforms by Treatment Parameters 

5 3 

Control 75% 75% 57% 

Isoproterenol 63% 73% 54% 

Propranolol 77% 80% 27% 

doi:10.1371/journal.pone.0144572.t002 
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dropped drastically to 49% (Table 1). The ability to correctly identify propranolol waveforms 
was particularly affected and reduced to 27% (Table 2). We deemed this decrease in accuracy 
unacceptable and performed the remaining analyses using the optimal 3 parameter simplified 
model. 

Discussion 

We selected the TreeBagger algorithm for classification because it provides a relatively high 
accuracy of classification and ease of interpretation when compared to other supervised 
machine learning approaches [3]. The input parameters and classification levels for these data 
are relatively simple from a machine learning standpoint. Thus, the larger memory require-
ment employed by TreeBagger is not significant given the improved accuracy of classification 
and interpretability of the results. Future iterations involving longitudinal parameters and 
expanded sets of training data may make the memory costs more significant. However, the 
accuracy of classification gleaned from TreeBagger may still be the most important factor 
when compared to the poor accuracy of existing pre-clinical cardiac drug screening techniques 
[27]. This algorithm is especially robust when we consider that we are able to predict the drug 
treatment using only data from a single beat of one hiPS-CM membrane with over 70% accu-
racy. When this predictive power is applied over the length of an entire recording of a mem-
brane (1 min long containing 50–100 beat waveforms), the treatment was correctly identified 
100% of the time. For the practical purposes of using hiPS-CM as a drug screening model, data 
for multiple beats and many cell membranes will be collected, even in a high throughput 
model. With these repeated temporal and population wide measures, our confidence in the 
predictive power of the learned algorithm increases significantly. In general, the use of super-
vised learning allows for data-driven prediction and classification of unknown drug treatments 
[28]. Unknown drugs can be classified by simple comparison of their effect on specific parame-
ters, but only one-dimensionally on a parameter by parameter basis. Supervised learning aug-
ments these individual parameter comparisons by synthesizing all parameter data from 
multiple drug treatments and determining the relative contribution of each parameter to the 
classification of each drug. This is important as many drugs have effects on multiple parame-
ters and to varying degrees. Further, supervised learning incorporates statistical modelling that 
provides probabilities and confidence of classification based on the aggregation of all data from 
all parameters measured and all treatments performed. 

Our model reduction determined by the TreeBagger algorithm (upslope and downslope 
were the least relevant parameters and were removed in the simplified 3 parameter model) is 
consistent with our a priori knowledge of the mechanism of propranolol and isoproterenol. As 
mentioned previously, modulation of calcium transport with propranolol and isoproterenol 
would be expected to affect the plateau height and width of the depolarization waveform as was 
determined by our algorithm. The upslope of a cardiac action potential is primarily driven by 
the fast sodium channels and the down slope is driven by a combination of delayed rectifier 
potassium channels (IKS, IKR, IK1). Propranolol and isoproterenol would not be expected to 
affect the upslope or downslope of the cardiac action potential waveform since they do not 
affect the fast sodium or delayed rectifier channels. Although we did observe significant 
changes in both upslope and downslope due to these β–adrenergic agents, our algorithm accu-
rately placed the lowest significance on upslope and downslope as metrics for determining 
drug treatment classification. 

The most common misclassification was a false positive classification of control cells as iso-
proterenol. Despite using a concentration of isoproterenol two orders of magnitude larger than 
the EC50 for hiPS-CMs derived from the wtc11 hiPS line, the effect on the beat rate and the 
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peak width was still significantly smaller than cells treated with propranolol at only one order 
of magnitude larger than the IC50. Although all other metrics were affected to a greater degree 
by isoproterenol than propranolol, the misclassification of individual peaks as isoproterenol is 
likely due to the diminished effects on peak width. 

All of these data were obtained optically with near-infrared light and thus in a non-invasive 
and non-destructive manner, using 2-photon microscopy. 2-photon microscopy was utilized 
over standard epi-fluorescence because the z-plane resolution obtained using 2-photon pro-
vides sharper spatial resolution of membrane fluorescence providing improved SNR and mem-
brane motion tracking. Although not exploited here, there is potential for assessing the chronic 
effects of drugs on hiPS-CM in a longitudinal fashion in vitro. The signal to noise ratio (SNR) 
of data captured using 2-photon microscopy from hemicyanine VSDs, such as di-4-ANE(F) 
PPTEA, and its sensitivity to changes in voltage (typically on the order of 10–20% ΔF/F per 
100mV [13]) is more than sufficient for capturing the depolarization waveform features neces-
sary for training the learning algorithm. The emission kinetics of the hemicyanine VSDs are 
very sensitive to rapid voltage changes and are limited only by the underlying physiological 
processes since the electrochromic effect of these dyes is produced by a direct interaction of the 
electric field with the chromophore [13]. 

Potential limitations of using VSDs to assess the effects of cardiotoxic drugs exist. The speed 
of acquisition required to capture the spatiotemporal resolution of the VSD signal necessary to 
detect subtle changes in the action potential waveform is high. Line scans provide the speed 
required to acquire high resolution data from multiple adjacent cellular membranes. This 
allows quality data from small groups of cells. Larger scale tissue and organ level effects could 
be pieced together using a series of line scans; however, this requires larger acquisition times 
which will compromise the quality of rapid events such as membrane depolarization. Addition-
ally, the VSD data from isoproterenol-treated cells exhibited a substantial increase in upslope 
speed and max height (Fig 3B), as well as occasional arrhythmias. While arrhythmias have 
been reported in previous studies using isoproterenol [29], the change in upslope speed and 
max height contradicts data collected using manual patch clamp in which no change in either 
parameter is observed. hiPS-derived cardiomyocytes exhibit a neonatal phenotype until 
approximately 50 days after differentiation with respect to their ion channel expression 
(reduced rectifying K1 channels and fast Na channels) [30]. Despite varying channel expres-
sion, isoproterenol is still not expected to have any effect on the fast sodium channels that drive 
the upslope and max height of depolarization, even in naïve Day 33 hiPS-derived cardiomyo-
cytes, such as those used in this study. This discrepancy highlights the need to further test 
VSDs in future studies as a surrogate for electrophysiological measurements in a direct com-
parison with gold standard methods, such as patch clamp. However, the data presented dem-
onstrate that these cells, despite their immaturity and presence of arrhythmias in certain 
conditions, are capable of responding to the β–adrenergic drugs administered in this study 
in a detectable and repeatable fashion using VSDs, even if that response contradicts other 
electrophysiological methods. 

Future work will focus on improving the predictive and discovery power of the trained algo-
rithm to identify mechanisms of electrophysiological modulation. Two potential pathways 
exist for extending the predictive power of a machine learning approach. First, a library of 
depolarization waveforms from cells exposed to drugs with known mechanisms of cardiac 
effects can be collected and incorporated into the training set. As the knowledge base of train-
ing data grows, the more refined and sophisticated the classification of unknown data becomes. 
When assessing novel drugs, this approach would allow comparison to the existing library of 
drugs. For example, a novel drug may exhibit propranolol-like effects, providing direction as to 
how to pursue the study of potential mechanisms of the cardiac effects caused by the novel 
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drug (given that we know the mechanism that leads to the functional alteration of the electro-
physiology of each drug in the database). 

A second pathway for extending the predictive power of machine learning for electrophysi-
ology is to pursue more unsupervised learning approaches. In this regime, rather than defining 
the parameters that we think are important in the waveform due to our a priori understanding 
of channel mechanics in electrophysiology, we let the algorithm define the waveform features 
that are most significant in delineating between treatment groups. We can also improve upon 
the relatively arbitrary metrics utilized here (i.e. upslope, plateau height, etc.) and instead move 
towards a more mechanistic classification of waveform modulation (i.e. INa channel modula-
tion, Ikr channel modulation, etc.) in both supervised and unsupervised learning approaches. 

The overall goal of this approach and application of machine learning is to accelerate drug 
development through more rapid and efficient pre-clinical testing modalities. Using VSD and 
other novel methods of electrophysiological assessment of hiPS-CM, we can rapidly generate 
meaningful data regarding the human specific electrophysiological effects of drugs on a sub-
cellular scale. The predictive power of machine learning can then be used to maximize these 
data’s utility as a drug discovery platform and be used to identify potential side effects that pre-
viously have gone undetected in other pre-clinical testing platforms. 

Supporting Information 

S1 Fig. Isoproterenol and Propranolol Beat Rate Dose Response Curves. The EC50 and IC50 

of isoproterenol and propranolol, were determined to be 10−9.1 M and 10−5.9 M, respectively, in 
wtc11 hiPS-CMs. Data are mean +/- SD of N = 6 (isoproterenol) and N = 3 (propranolol) 
spontaneously beating clusters of hiPS-CMs. Fitted curves are logistic regression with R2 = 
0.947 and R2 = 0.954 for isoproterenol and propranolol, respectively. 
(TIF) 

S2 Fig. Motion Artifact Correction. Motion artifact resulting from the spontaneous beating 
of cell clusters was compensated for in data post-processing using a Gaussian tracking and cor-
rection algorithm. Quantification of membrane 3 depolarization peaks using pre-corrected 
raw data correlates well with membrane 1 depolarization peaks quantified using data corrected 
with the Gaussian tracking algorithm. 
(TIF) 

S3 Fig. Photobleaching Correction. Photobleaching was accounted for by fitting a second 
order exponential (y = ae bx + cedx) and subtracting from the signal. Top panel: raw signal col-
lected by the instrument. Middle panel: overlay of second order exponential fit and raw signal. 
Bottom panel: Resultant signal after subtracting the exponential fit and normalizing to baseline 
fluorescence of the membrane (Fo). 
(TIF) 

S1 Code. MATLAB Scripts. 3 custom scripts were used for data analysis. The first script was 
for photobleaching correction. The second script performed waveform detection and parame-
ter quantification. The final script trained the TreeBagger algorithm and validated algorithm 
performance. 
(DOCX) 
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