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ABSTRACT 

The Effects of Agricultural Waste-Based Compost Amendments in Organic Pest Management 

Gregg Stephenson 

 

Soil-borne pests and pathogens, such as Verticillium dahliae, can devastate a wide range of 

annual and perennial crops. Current management options for organic production are limited and 

sustainable management of pathogens, weeds, and arthropods is important for staying profitable 

and reducing the use of harmful chemicals. Organic soil amendments play an important role in 

supplying some of the nutritional needs of vegetable crops and improving soil structure, while 

also contributing to pest control. The objective of this research was to determine the effects of 

grape and olive-based composts on soil pathogen load, arthropod communities, and weed 

biomass and diversity. Field experiments were conducted in both organic and conventionally 

grown bell pepper (Capsicum annuum L.) systems during the summer growing season of 2018 

on the Cal Poly campus in San Luis Obispo, California. Four different organic amendment 

treatments were tested including: olive based compost, grape based compost, dairy manure 

compost, and plant waste compost. Abundance of the fungal pathogen Verticillium dahliae was 

assessed from composite soil samples collected at several time points throughout the growing 

season. Olive, grape, and plant waste composts all displayed significant reduction of V. dahliae 

abundance between two to eight weeks post application of treatment when compared to the 

control. Insufficient evidence was found correlating farm management type with V. dahliae 

abundance after adjusting for treatment and time. Total dry weed biomass was assessed after one 

month of unhindered growth. The organic amendments tested appeared to alter weed species 

composition but not overall biomass though no significant differences were found. The soil 
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arthropods symphylans and collembolans were sampled throughout the growing season, 

significant trends in population were found over time but not across treatments. This research 

demonstrates how agricultural waste-based compost amendments have potential as tools in pest 

management.   
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CHAPTER 1 

Introduction 

Pest and pathogen control are at the forefront of many vegetable grower’s production 

challenges. The 2016 National Organic Research Agenda listed “Soil health, biology, quality, 

and nutrient management” as the highest priority research area for organic farmers while “weed 

management” and “insect management” also were in the top five (Jerkins and Ory, 2016). 

Control of soil pathogens, insect pests, and weeds are top priorities due to their damaging effects 

on yield and limited management options in organic production. Careful management of soil 

microbial communities can reduce pathogen disease incidence and increase plant and soil health 

(Beneduzi et al., 2012; Santoyo et al., 2012). The use of organic soil amendments promotes soil 

microbial diversity, including specific taxa known to suppress soil-borne pathogens (Lupatini et 

al., 2017). Composted olive and grape pomace are two organic amendments shown to suppress 

soil-borne fungal pathogens (Ntougias et al., 2008). These pomaces are readily available in 

Mediterranean climates as byproducts of olive oil and wine production. Experimenting with the 

use of these locally available organic soil amendments may result in novel uses for sustainably 

protecting agricultural crops from disease and pests. Additionally, these amendments contain 

phytotoxic molecules that may have potential in the management of weeds and soil arthropod 

communities.  

 Decreasing disease incidence with an effectively managed soil microbial community is a 

sustainable alternative to harsher chemical controls. Methyl bromide was one such chemical 

control that was widely employed but was phased out of agriculture use starting in 2005 due to 

environmental concerns (EPA, 2018). Restrictions on methyl bromide prompted the exploration 

for alternative, sustainable methods. Disease suppression by soil microbial communities 
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functions through direct and indirect mechanisms. Direct suppression by antagonistic organisms 

occurs though the production of antibiotics and competition for resources. Indirect suppression 

functions through the introduction of systemic resistance and increased nutrient availability; 

leading to improved plant health and vigor (Hoitink and Bohem, 1999; Noble and Coventry, 

2005).  

 Weeds can reduce yields as they compete with crops for water, nutrients, light, and space. 

Organic management options for weed management are often limited, costly, and labor intensive 

(Hartz et al., 2008; Smith et al., 2000). Organic amendments have shown potential for the 

suppression of weeds via the introduction of phytotoxic molecules to the soil (Cayuela et al., 

2008; Ferrara et al., 2008; Ibrahim and Balah, 2018). Additionally, stimulation of the soil 

microbial community is likely to include taxa that feed on or otherwise limit the germination and 

growth of weeds (Kennedy, 1999).  

Soil arthropod communities also are influenced by the applications of organic 

amendments (Chamberlain et al., 2006; Stirling et al., 2012; Tworkoski, 2004). Arthropods have 

a wide variety of ecological roles in an agricultural setting from herbivorous pests to detrivores 

and fungivores that help with nutrient cycling and pest control (Anslan et al., 2018; Gao et al., 

2017). The implications of compost application for soil arthropods are not well studied but may 

pose novel methods for managing pests such as root feeding symphylans. The addition of 

organic matter to the soil may prove to be an effective way to promote diversity of other soil 

arthropod communities such as omnivorous soil dwelling collembola, which contribute to soil 

nutrient cycling directly as detritivores and indirectly through microbial grazing (Ferlian et al., 

2015; Ponge et al., 2003). 
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 Grape and olive pomace are high in nutrients and contain phytotoxic polyphenols 

(Ntougias et al., 2008). Due to high salt content and the presence of phytotoxic compounds the 

direct application of grape and olive pomace can reduce soil quality and harm crops; however, 

composting produces a stabilized organic matter that is safe for application (Alburquerque et al., 

2009; Aranda et al., 2015; Hachicha et al., 2008; Martinez et al., 2019). Thus, grape and olive-

based composts maybe ideal candidates for soil amendment uses due to their disease suppressive 

qualities and abundance as waste products of agricultural processing. More research is needed 

regarding the potential uses of organic amendments as an alternative pest management strategy. 

Research is needed into the mechanisms and efficacy of organic amendment disease suppressive 

properties in different cropping systems to promote interest in their use. The effects of 

composted grape and olive pomace on disease suppression are yet to be fully understood, 

especially in vegetable systems where soil-borne pathogens are of major importance. Compost 

sources are also variable and often region specific, so a larger consensus of research is needed to 

better understand how agricultural waste-based amendments effect soil ecology. The objectives 

of this research are to determine the effects of dairy-based compost, plant waste-based compost, 

olive pomace-based compost, and grape pomace-based compost on soil-borne pathogen load, 

soil microbial communities, soil arthropod communities, weed abundance, health and yield of a 

bell pepper crop (Capsicum annuum L.). 

 We hypothesized that each organic amendment tested would have an effect on the soil 

microbial community and soil arthropod communities. In addition, we hypothesized that grape 

and olive-based amendments would have a suppressive effect on the soil-borne pathogen load 

and weed abundance. Finally, we hypothesized that organic amendment application would 

increase bell pepper health and yield.   
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CHAPTER 2 

Literature Review 

California agricultural production receipts totaled over $47 billion in 2015 making it the 

largest producer in the nation (USDA, 2017). That production is hindered by a plethora of soil-

borne diseases that can cause serious economic loss and have relatively few solutions in terms of 

suppression (Hartz et al., 2008). In recent years, soil management and disease suppression efforts 

have focused on sustainable practices that reduce the dependence on chemical fertilizers and 

pesticides (Curlango-Rivera et al., 2013). One promising sustainable method for suppressing 

these pathogens is by managing the soil microbial communities with the use of organic soil 

amendments (Lupatini et al., 2017). Existing olive oil and wine production in California creates 

an abundance of readily available organic waste products such as olive and grape pomaces. 

These waste products have been shown to have suppressive effects on certain soil-borne diseases 

(Noble and Coventry, 2004; Ntougias et al., 2007; Yangui et al., 2010). The objective of this 

literature review is to explore the current state of the research on organic soil amendments and 

how they affect soil microbial communities, soil-borne diseases, and specifically the effects of 

olive and grape pomace-based soil amendments.   

Using organic soil amendments to manage the microbial community and suppress 

pathogens has been a topic of interest to researchers due to its potential applications as a 

sustainable alternative to pesticides and fumigation techniques. Organic amendments have been 

shown to increase the activity and diversity of the soil microbial community, which has 

beneficial effects on crop health and can help suppress soil-borne pathogens (Beneduzi et al., 

2012; Hoitink and Boehm, 1999). Olive and grape-based composts have shown particular 

promise for disease suppression and may be ideal candidates for future application due to their 
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availability (Barbera et al., 2013; Vivas et al., 2009). A variety of studies and analysis have been 

performed but due to the complicated processes and ecology of each different cropping system 

and its soil the results are often inconsistent and hard to predict. More research is needed due to 

the potentially beneficial implications of having a sustainable method for soil-borne pathogen 

management. 

Additionally, organic farmers are limited in their weed control methods; many of which 

are labor intensive and inviable on a large scale (Smith et al., 2000). Control techniques focus on 

whole systems management where the seed bank, water availability, and weed ecology are all 

considered (Smith et al., 2000). With further research, organic amendments could become a 

viable alternative to costlier and labor intensive weed control methods. The use of natural soil 

amendments also is attractive due to the lower environmental risks and impacts as opposed to 

traditional agrochemicals (Chaparro et al., 2012; Trillas et al., 2002). 

 

2.1 Soil Amendments and Soil Microbial Communities  

 A well-researched benefit of organic soil amendments is their impact on the soil 

microbial community. Individual plant-microbe relationships have been the focus in many 

studies (Berg, 2009; Mendes et al., 2011). The symbiotic relationship between plants and 

rhizobia bacteria has been of particular interest with over 500 peer-reviewed journal articles, 

containing the word ‘rhizobia’ in the title, published in the last five years alone. These nitrogen 

fixing bacteria are likely the best described individual plant-microbe interactions; they are able to 

fix atmospheric nitrogen making it bioavailable for plants, in return, typically receiving 

carbonaceous nutrients. However, looking at individual relationships oversimplifies the complex 

nature of plant-microbiome interactions. Recent research has highlighted the benefit of a diverse 
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and balanced microbiome, which can offer a range of benefits in an agricultural system leading 

to increased crop health and productivity (Chaparro et al., 2012). In addition to this, many 

studies have also shown that soil microbial communities can play a role in suppression of soil-

borne diseases (Santoyo et al., 2012). Different management methods have been tested to 

stimulate the soil microbial community to aid plant growth as well as suppress soil-borne 

diseases. These methods, if shown to be effective, could be a more environmentally friendly and 

sustainable alternative to other harsher methods such as methyl bromide fumigation (Hoitink and 

Bohem, 1999).  

 Different cropping methods can affect the soil microbial community (Degrune et al., 

2017; Lupatini et al., 2017). However, it is challenging to trace the relationships between 

changes in the microbial community and the ecosystem function.  Evidence has been found that 

organic farming systems harbor a more biodiverse soil microbial community than their 

conventional counterparts and that there are “Soil Health Treatments” that can stimulate minor 

increases in diversity (Lupatini et al., 2017).  A field study on sweet corn, Zea mays L. (Poales: 

Poaceae), in Spain examined the connection between soil microbial community structure and 

function when treated with organic and conventional fertilizers. They found that integrating 

organic fertilizers stimulated microbial growth, increased enzyme activity, and changed the 

structure of the soil microbial community while maintaining crop yield and nutrient supply at 

similar levels to the inorganic fertilizer (Lazcano et al., 2013). This study was short term and 

took place over a single growing season in soils that already had high soil organic content. Their 

results show how small changes in cropping methods, like changing 25% of the fertilizer applied 

to organic, can have a large impact on the soil microbial community structure. They were unable 
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to see any large change in the ecosystem function, which they attributed to the short length of the 

study run time (Lazcano et al., 2013). 

There are several known mechanisms by which certain soil-dwelling bacteria can achieve 

their plant growth promoting and disease suppressing properties. These effects typically occur 

through induction of a systemic resistance in the plant or a local antagonism to the soil-borne 

pathogen itself. Some soil bacteria have been seen to produce substances that directly suppress 

pathogens including antibiotics and siderophores (Beneduzi et al., 2012; Inderbitzen et al., 2018).  

Beyond these direct mechanisms there are also several ecological benefits of increased microbial 

diversity including the increase in plant nutrients making crops more resilient and successful 

competition for resources by beneficial microorganisms (Barbera et al., 2013; Chaparro et al., 

2012). Changes in soil microbial communities directly impact crop health and yield, thus 

effectively managing the soil microbiome can have economic impacts by reducing reliance on 

chemical fertilizers and pesticides (Chaparro et al., 2012).  

 

2.2 Organic Soil Amendments and Disease Suppression 

 The threat of soil-borne fungal pathogens to agricultural output is becoming increasingly 

severe for several reasons. Powerful conventional tools for the management of such pathogens 

are being phased out due to environmental concerns, such as methyl bromide (EPA, 2018; Trillas 

et al., 2002). Additionally, models predict an increase in the frequency and severity of soil-borne 

fungal pathogens due to climate change (Manici et al., 2014). Organic soil amendments have 

been reported to be an effective tool for suppressing soil-borne diseases from root rots to wilts. A 

number of studies focusing on various agricultural waste-based products have shown a consistent 

trend of disease suppression through the application of organic amendments with 15 articles 
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published on the topic in 2018 alone. In a review article on the use of composts to suppress soil-

borne diseases, Noble and Coventry (2005), found that disease suppressive effects increased with 

the rate of application of organic amendments in the majority of the 92 studies reviewed. Disease 

suppression of soil-borne pathogens with organic amendments functions through a variety of 

mechanisms; many of which are context dependent and poorly understood. Known mechanisms 

can be divided into two major categories, direct suppression by the addition of phytotoxic 

molecules and indirect suppression via stimulation of a more robust microbial community 

including microbes that are antagonistic to pathogens or through increasing plant health and 

inducing systemic disease resistance (Hoitink and Boehm, 1999; Mendoza et al., 2012; Noble 

and Coventry, 2005; Weller et al., 2002).  

 Suppression of root disease through the application of compost water extract (CWE) has 

been demonstrated in several studies. The impact of CWE on the infection rate of pea roots by 

Fusarium solani Sacc. (Hypocreales: Nectraceae) and Phoma pinodella L. K. Jones 

(Pleosporales: Didymellaceae) was measured in a laboratory study by Curlango-Rivera, et al. 

(2013). They inoculated the diseases and compared the root infection rates by checking for 

symptoms in the peas grown in cellophane growth pouches. One variety, “Little Marvel” peas 

inoculated with F. solani achieved 100% suppression with the CWE treatment compared to a 

93% infection rate without the CWE treatment (Curlango-Rivera, et al. 2013). The results were 

similar for the “Alaska” Pea trials run inoculated with both F. solani and P. pinodella where 

suppression was 90% or higher for both compared to over 98% infection rates following 

inoculation without treatment (Curlango-Rivera et al., 2013).  

 Verticillium dahliae Kleb. (Hypocreales: Plectosphaerellaceae) is a soil-borne fungal 

pathogen with a wide host range of over 150 economically important crops (McCain et al., 
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1981). Inderbitzen et al. (2018) observed significant suppression of V. dahliae after the 

application of both broccoli residue and crab meal-based amendments. They attributed the 

observed suppression to a significant increase in the abundance of known antagonists of 

filamentous fungal plant pathogens within the soil microbial community after the application of 

organic amendments. This is consistent with the results observed in other studies tying the 

application of organic amendments to an increase in soil bacterial activity and diversity in turn 

suppressing fungal plant pathogens (Beneduzi et al., 2012; Hoitink and Boehm, 1999; Noble and 

Coventry, 2004). De Corato et al. (2016) reviewed the use of several waste-based organic 

amendments on suppression of seven pathogens, including V. dahliae, and found significant 

suppression of each of the pathogens with different amendments. Organic amendments have 

shown promise in the management of fungal diseases, but more research is required to 

thoroughly understand the context-specific mechanisms of suppression in order to make 

informed management decisions.  

 

2.3 Grape and Olive Pomace-Based Organic Soil Amendments 

 Grape and olive pomaces are the products of post-harvest processing in wine and olive oil 

production. Grape pomace, also referred to as grape marc, is the skin, pulp, stalks, and seeds of 

grapes after wine production (Carmona et al., 2012; Mendoza et al., 2012). Olive pomace is the 

pulp, seeds, and skin of olives left after the production of olive oil (Alburquerque et al., 2004). 

Grape and olive pomace based organic amendments have shown potential for disease 

suppression (Noble and Coventry, 2004; Ntougias et al., 2008; Yangui et al., 2010). These 

products are an ideal candidate for research and future use because of their abundance and 

availability as waste products of the wine and olive oil industries in California. California is the 
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top grape and olive producing state in the USA with over 30,000 acres of olives and over 

560,000 acres of wine grapes (Lazicki and Geisseler, 2016; USDA, 2018). Composted organic 

pomaces can also be rich in nutrients and antimicrobial compounds like polyphenols (Barbera et 

al., 2013). Solid grape waste before composting is particularly high in K and Fe among other 

nutrients and micronutrients crucial to plant growth and vigor (Alburquerque et al., 2004).  

 Ntougias, et al. (2007) examined infection rates of tomato plants, (Solanum lycopersicum 

L.), by Phytophthora nicotianae Breda de Haan (Peronosporales: Peronosporaceae) and 

Fusarium oxysporum Schlecht (Hypocreales: Nectriaceae) two major soil-borne pathogens, 

under olive and grape compost treatments.  Tomatoes were inoculated with each of the 

pathogens and subsequently grown in different composts derived from olive leaves, olive mill 

wastewater, olive press cake, and grape marc (Ntougias et al., 2008).  The effects of composting 

time were explored by treating inoculated tomatoes with amendments immediately after 

composting and after 9 months of storage.  The authors observed that all of the organic composts 

tested suppressed the pathogens examined. Phytophthora nicotianae was particularly sensitive to 

the organic amendment applications and suppression was seen consistently in each of the 

compost mixes and with the two compost storage times compared to the control. Fusarium 

oxysporum disease incidence was suppressed by all compost mixes, but the effect was not 

significant with the 9 month storage time for olive leaves and olive press cake (Ntougias et al., 

2007).  

 Compared to control of no compost, application of composted olive and grape waste 

products was observed to stimulate the soil microbial community and increase diversity as 

measured by a Shannon Index that analyzes 16S rRNA genes and using denaturing gradient gel 

electrophoresis (Ntougias et al., 2008; Vivas et al., 2009). The activity of enzymes was 
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monitored and in addition to distinctly different community makeup, increased overall microbial 

activity was observed through the process of composting olive waste compared to a manure 

waste (Vivas et al., 2009). Application of olive mill waste and wastewater has also been seen to 

benefit soil structure by increasing porosity and aggregate stability; similar to many other 

organic soil amendments (Barbera et al., 2013).  

 

2.4 Organic Soil Amendments and Weed Suppression 

 Weeds exact a large toll on crop yield, and weed management strategies available to 

organic growers can be limited (Smith et al., 2000). Organic systems commonly employ a 

combination of techniques, including cover cropping, hand weeding, cultivation, flamers, 

sterilization and mulches, to maximize both weed control and crop yield while remaining 

economically sustainable without the use of synthetic chemicals (Smith et al., 2000). There is 

also a push for alternative weed management strategies with concerns over ever increasing 

incidence of herbicide resistance (Heap, 2014; Holt, 1990). Many organic amendments contain 

phytotoxic molecules that may inhibit weed seed germination or suppress young growth 

(Cayuela et al., 2008; Ferrara et al., 2008; Ibrahim and Balah, 2018). 

 An experiment on Cal Poly campus during the summer of 2018 tested the effects of 

several organic amendments for their suppressive effects on weed germination and biomass. In a 

pot study, soil from the Cal Poly Organic Farm was amended with composts derived from plant 

residue, dairy manure, and olive waste. Significant suppression of purslane, Portulaca oleracea 

L. (Caryophyllales: Portulacaceae) biomass was observed after the application of the dairy 

manure, plant residue, and the olive-dairy manure mix treatments compared to the control with 
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no compost application. Significant suppression of weed abundance and total weed biomass was 

observed after plant residue treatment compared to the control (Mondragon et al., 2018).  

 Olive mill waste water extracts have been shown to suppress weed biomass as well as 

fungal pathogens and nematodes in lab bioassays due to their high content of phytotoxic 

polyphenols (Boz et al., 2009; Cayuela et al., 2008). In the field, the use of olive waste as a 

mulch in vineyards was observed to suppress weed emergence, alter weed composition, as well 

as increase soil potassium (K) and magnesium (Mg) (Ferrara et al., 2015). Organic amendments 

were consistently observed to alter weed flora composition and suppress certain weed species 

germination (Cayuela et al., 2008; Ferrara et al., 2015; Mondragon et al., 2018). However, the 

use of olive waste in vegetable cropping systems requires more exploration as the same 

phytotoxic effects observed on some weed species may also cause damage and yield loss to the 

crop.  

 Animal waste-based compost sources have also shown potential for organic weed 

management. In an apple orchard, poultry manure-based compost significantly reduced total 

weed ground cover for up to a year after application (Brown et al., 2004). The most abundant 

weeds reported were Sorghum halepense L. (Poales: Poaceae), Phytolacca americana L. 

(Caryophyllales: Phytolaccaceae), Ailanthus altissima Swingle (Sapindales: Simaroubaceae), and 

Toxicodendron radicans L. (Sapindales: Anacardiaceae). The authors did not determine the 

mechanism of weed suppression but hypothesized the physical ground cover of the compost 

played a role. There also was a significantly reduced incidence of the brown rot fungus, 

Monilinia fructicola Honey (Helotiales: Sclerotiniaceae) and two insect pests, the spotted 

tentiform leafminer, Phyllonorycter blancardella Fabricius (Lepidoptera: Gracillariidae) and 

woolly apple aphid, Eriosoma lanigerum Hausmann (Hemiptera: Sternorrhyncha) in compost 
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treated plots (Brown et al., 2004). However, in another study using a dairy manure-based 

compost that was incorporated in the soil resulted in an increase in weed biomass (Wedryk et al., 

2012). The compost application also significantly increased soil fertility, including available K, 

Ca, Mg, and organic matter, and increased the tomato harvest (Wedryk et al., 2012).  

Compost tea, extract made from compost and water mixtures, was tested for its efficacy 

as a bio-pesticide. In a petri dish experiment, germination was suppressed in both purslane and 

maize seeds after the application of compost tea (Ibrahim et al., 2018). Compost tea has been 

observed in field application to reduce weed biomass compared to no treatment, hand hoeing, 

and mechanical cultivation in vegetable fields though the mechanism of suppression remains to 

be explored (Zinati, 2017).     

 

2.5 Organic Soil Amendments and Soil Arthropod Communities 

 Soil arthropods have a wide variety of ecological roles in an agricultural system including 

fungivores and detritivores that help with nutrient cycling and herbivorous pest species that feed 

on roots and seeds (Bedano et al., 2006; Goncalves and Pereira, 2012; Singh et al., 2012). Soil 

arthropods may also function to help physically distribute soil microbes by carrying spores and 

hyphal fragments through the soil often into direct contact with roots; this may be especially 

important in the plant-microbe relations of mycorrhizal fungi and plant pathogens (Anslan et al., 

2018).  

Springtails (Entognatha: Collembola) are one of the most abundant soil dwelling 

arthropods (Anslan et al., 2018; Bedano et al., 2006). They are a diverse group mostly made up 

of opportunistic omnivores (Rusek, 1998). They play a fundamental role in soil nutrient cycling 

as microbial grazers and detritivores (Ferlian et al., 2015; Ponge et al., 2003). Springtails have 
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demonstrated a significant effect on fungal community structure through grazing and physical 

distribution of fungal hyphae through the soil (Anslan et al., 2018). Additionally, springtails have 

been associated with fluctuations in other meso and macrofauna communities including 

earthworms and centipedes (Gao et al., 2017).  

Springtails are sensitive to a wide range of environmental changes; springtail diversity 

and abundance fluctuate with changes in soil temperature, nutrient levels, organic matter, site, 

and time (Abhilasha and Kumar, 2015). As with many taxa of soil fauna, temperature and 

moisture appear to be the most significant external influencers of springtail community structure 

(Machado et al., 2019); this leads to a significant amount of seasonal variation (Ford, 1937; 

Muturi et al., 2010).  

Soil arthropod communities are highly sensitive to soil physical and chemical 

characteristics that may be altered by the application of organic soil amendments. The direct 

effects of organic soil amendments are not well understood, but certain amendments show 

potential for use to stimulate beneficial soil arthropods as well as potentially suppress pest 

species.   

Chamberlain et al. (2006) observed a significant increase in springtail abundance 

following the application of organic alder waste. Springtail activity in turn resulted in an increase 

in litter derived carbon available to soil microbes. Manure application has demonstrated similar 

positive effects on springtail abundance while the application of inorganic fertilizers can have a 

negative effect by increasing crop health, in turn increasing water uptake. The resultant drying of 

the soil can negatively impact springtail abundance (Maturi et al., 2010). Due to the significant 

relationship between springtail morphotypes and soil physical and chemical characteristics, 

including soil carbon, bulk density, pH, porosity, and moisture, it was proposed to use springtail 
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diversity as an indicator of soil quality (Machado et al., 2019). However, not all results are 

consistent, soil arthropods can be difficult to quantify and there is limited consistency in 

community evaluation metrics (Umble and Fisher, 2003). Some studies have seen insufficient 

evidence to attribute differences in soil microbial biomass due to the activity of springtails 

(Wang et al., 2017).   

Other soil arthropods have similarly complex relationship with soil chemical and physical 

attributes. Garden symphylans, Scurigerella immaculata Newp. (Symphyla: Scutigerellidae) can 

be a significant agricultural pest as they feed on seeds, seedlings, and roots of many important 

crops (Michelbacher, 1938). Symphlans affect production of root harvested crops such as tubers 

and carrots the most (Michelbacher, 1938; Stirling et al., 2012).  The damage they cause to the 

roots may also provide points of entry for soil-borne pathogens (Bryant, 2004). Stirling et al. 

(2012) observed an increase in symphylans after the application of poultry manure. Though this 

increase was not significant, it is consistent with other studies where an impact of organic matter, 

fertilization, and crop choice influenced symphylan abundance (Bedano et al., 2006; Peachey et 

al., 2002). The application of composted poultry waste was shown to significantly suppress other 

arthropod pests including spotted tentiform leaf miner and woolly apple aphid (Brown and 

Tworkoski, 2004).  
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CHAPTER 3 

Materials and Methods 

3.1 General Field Characteristics 

Studies were conducted during the summer growing season of 2018 from May to 

November, on the California Polytechnic State University campus in San Luis Obispo, CA 

(35°18'15"N, 120°40'21"W). Two fields, 0.5 km apart, were divided into 25 plots each (7.5m x 

3m), for a total of 50 plots (maps in Appendix A and B). Field 1 was located within the CCOF 

certified Cal Poly Organic Farm (county field identification number 090034) and field 2, located 

within the conventionally managed Cal Poly farm (county field identification number 090025). 

Previous crops in the organic field, field 1, include vegetable row crops such as kale (Brassica 

oleracea sabellica L.), broccoli (Brassica oleracea italica L.), and cauliflower (Brassica 

oleracea botrytis L.). Previous crops in the conventional field, field 2, include pumpkins 

(Cucurbia pepo pepo L.) and broccoli. Throughout the duration of the experiment both fields 

were managed organically. The soil is classified as clay loam with 45% sand, 23% silt and 32% 

clay. A summary of soil chemical properties from both fields is included in Table 1. A summary 

of weather data for the summer season of 2018 and 30-year averages are provided in Appendix 

G.    
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Table 1: Soil Chemical Properties of Each Field (n = 3). 

 Organic Field Conventional Field 
Organic Matter (g kg-1) 37.0 ± 3.4 29.7 ± 2 

Olsen P (mg kg-1) 75.3 ± 7.4 65.3 ± 3.8 

K (mg kg-1) 509 ± 88.2 565 ± 56.6 

Mg (mg kg-1) 960 ± 82.1 881 ± 33.8 

Ca (mg kg-1) 2057 ± 199 2979 ± 103 

Na (mg kg-1) 51.0 ± 8.5 49.6 ± 2.5 

pH 7.23 ± 0.1 7.67 ± 0.1 

C.E.C. (meq/100 g) 19.7 ± 1.9 23.7 ± 0.5 

N (NO3-N) (mg kg-1) 18.7 ± 2.5 4.7 ± 1.5 

S (SO4-S) (mg kg-1) 9.3 ± 4.4 12.0 ± 1.7 

Zn (mg kg-1) 3.23 ± 0.21 1.60 ± 0.10 

Mn (mg kg-1) 3.00 ± 1.00 6.33 ± 2.08 

Fe (mg kg-1) 18.0 ± 1.0  8.67 ± 0.6 

Cu (mg kg-1) 3.60 ± 0.10 1.50 ± 0.10 

B (mg kg-1) 0.63 ± 0.06 0.70 ± 0.10 

Soluble Salts (dS m-1) 0.53 ± 0.40 0.60 ± 0.10 
Values represent means ± standard deviation. 

 

3.2 Organic Amendment Sources 

The organic amendment treatments applied were: dairy manure compost, olive pomace-

based compost, grape pomace-based compost, plant waste compost, and a control with no 

compost treatment.  The dairy manure compost consisted of mainly dairy manure mixed with 

horse manure and wood chips to achieve target C:N ratio, around 25, and pathogen reduction 

goals. Olive pomace was provided by La Panza Ranch in the San Juan Creek Valley, CA. The 

olive pomace was mixed (1:1 vol.) with dairy manure and windrow composted from December 

2017 to application in June 2018 on the Cal Poly campus. Composts were processed at the 

California Polytechnic State University Composing Unit according to California Department of 
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Food and Agriculture and organic certification guidelines. The grape pomace-based compost was 

provided by the Cagliero Ranch in Paso Robles, California; they compost on site with windrow 

composting. The plant waste compost was produced from a mixture of plant waste materials 

including strawberry crowns, grape pomace, general green and vegetable waste, and it was 

provided by Engel and Gray, Inc. in Santa Maria, CA. Compost samples were analyzed by 

Control Laboratories (Watsonville, CA); a summary of characterization is given in Table 1, and 

complete results are included in Appendix F.  

 

Table 2: Characterization of Organic Amendment Treatments 

 
Total N 

(%) 
Total P 
(mg/kg) 

Total K 
(mg/kg) 

Electrical 
Conductivity 

(dS/m) 
pH 

value 
C/N 
ratio 

Organic 
matter (%) 

Dairy manure compost 1.4 5700 14000 3.6 8.40 10.7 30.7 

Grape pomace compost 1.7 2500 14000 1.4 8.20 14.7 44.6 

Olive pomace compost 1.7 4000 12000 2.6 8.71 16.5 47.6 

Plant waste compost 1.4 3900 11000 4.4 8.10 12.1 35.9 
 

3.3 Experimental Design and Field Setup 

A completely randomized design with five replicates was laid out in each field (map in 

Appendix B). Each compost was applied at the rate of 25 tonnes dry matter per hectare, based 

upon recommendations in a review article of composts and fungal disease suppression 

(Bonanomi et al., 2007); and spread within its assigned plots on 12 June 2018. Then, each plot 

was fertilized with a pre-planting feather meal fertilizer (13-0-0) at the rate of 225 kg N per 

hectare. After compost and fertilizer application to the plots the fields were disked to a depth of 

10 cm to incorporate the compost and prepare the fields for planting. Then beds were shaped 1 

meter apart across the field, creating three beds within each plot. On 26 June 2018 the field was 

planted with bell peppers, Capsicum annuum L. ‘Huntington’ (Solanales: Solanaceae), at a 
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spacing of 20 cm provided as transplants from Plantel Nursery in Santa Maria, CA. Bell peppers 

were selected because they are known to be susceptible to Verticillium dahliae, as are many 

members of Solanaceae, and California is the top bell pepper producer in the USA with acreage 

in excess of 28,000 (Hartz et al., 2008).  All plots were watered at the same rate as per UC 

Cooperative Extension guidelines for peppers so that plants were not subject to water stress 

(Hartz et al., 2008). Transplants were irrigated with sprinklers for the first two weeks after 

planting for establishment. Then 5/8’’ high flow drip tape was laid, one line per bed, and ran 4 

hours at a time twice per week through July, three times per week through August and 

September, and twice per week through final harvest in November.  

Treatment effects on soil chemical characteristics were evaluated from composite 

samples collected 30 June 2018; approximately two weeks after application of compost 

treatment. Composite soil samples were collected from three randomly chosen plots of each 

treatment from each field. Composite samples were made up of three subsamples collected from 

random locations within the plot at a depth of 1-15 cm with a soil auger then mixed thoroughly. 

Random plots were chosen with a random number generator and random locations within plots 

were chosen by breaking plots into a grid with spacing of 10 cm and using a random number 

generator to choose grid blocks for sampling. Samples were sent to A & L Western Agricultural 

Laboratories (Modesto, Ca, USA) for chemical analysis.  

 

3.4 Verticillium dahliae Field Soil Load 

The abundance of the pathogenic fungus Verticillium dahliae was assessed, following the 

methods reported in Kabir et al. (2004). A composite soil sample was collected from each plot at 

the time points given below. Each composite sample was made up of three subsamples collected 
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from random locations within the plot at a depth of 1-15 cm with a soil auger then mixed 

thoroughly. Random locations were chosen by breaking plots into a grid with spacing of 10 cm 

and using a random number generator to choose which grid blocks to sample. The first sample 

collection occurred on 18 May 2018 before treatments were applied and prior to tillage and plant 

establishment. Verticillium dahliae pathogen loads in the fields were high and uniform enough 

that inoculation was not required. The second sample collection occurred two weeks after the 

application of the treatments on 30 June 2018. Subsequent sample collections occurred every six 

weeks after the treatment application; 11 August, 21 September, and 1 November 2018. On each 

date composite soil samples were collected and then air dried for 14 days. After drying, samples 

were mixed again and ground with a mortar and pestle. Five separate 0.1 gram subsamples were 

removed, mixed with 0.9 ml deionized water, and plated individually onto Sorenson’s NP-10 

selective media in 100 mm x 15 mm polystyrene petri dishes (Fisherbrand, USA). Sorenson’s 

NP-10 is a selective media including agar and antibiotics developed specifically to grow cultures 

of V. dahliae (see Appendix C for listing of ingredients).  

Once plated, the samples were cultured for two weeks in the dark at room temperature; 

between 19°C and 22°C. Each plate was examined under a Luxeo 4D dissecting microscope 

(Labomed, Los Angeles, Ca, USA) and microsclerotia or colony forming units (CFU’s) of the 

fungi were counted as per Goud et al. (2003). As each microsclerotia in the field could begin a 

new colony, the count from each dish is a sample number of V. dahliae CFU’s per 0.1 gram of 

soil from the sample site. 
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3.5 Verticillium dahliae In Vitro Growth 

 Extracts of each compost were prepared from a compost to deionized water ratio of 1:5 

by volume. In a sterile 1 liter beaker, 200 cm3 of compost was mixed with 800 ml of deionized 

water and left at 20°C for five days. Extractions were stirred once per day for 60 seconds 

throughout the 5-day extraction period. Extracts were then poured through Whatman 1 filter 

paper (Sigma-Aldrich, Darmstadt, Germany) and run through a 0.45 µm syringe filter (Corning 

Inc., New York, USA) to obtain the final compost extracts used in this experiment as per 

Curlango-Rivera et al. (2013). 

 To assess the effects of the compost extracts, also referred to as compost teas, on V. 

dahliae growth, two trials were conducted. The first trial was to assess compost tea effects in a 

general acidified potato dextrose agar (APDA) media (see Appendix D for list of ingredients). 

The second trial was to assess effects in a more selective media for V. dahliae growth. In trial 

one, 20 ml of each compost extract was added to 200 ml of APDA. Each mix was then stirred for 

2 minutes and poured into five petri dishes. An additional five petri dishes were filled with 200 

ml APDA and 20 ml deionized water to function as the control; making a total of 25 dishes. 

Media solidified after 48 hours and inoculations were made with a 3-week-old colony of V. 

dahliae. Each dish was inoculated from the same colony and left in the dark at room temperature, 

between 19°C and 22°C, to culture. At each 48-hour interval, for 13 days, the maximum linear 

growth within each plate was measured. Maximum linear growth was considered as the 

measurement from the center site of inoculation to the furthest growth within each plate, in other 

words, the maximum radius of the colony as per De Corato et al. (2016). This trial faced minor 

issues with contamination. Despite the sterilization filtration of all the compost extracts, roughly 

10% of the plates displayed growth of microbes other than V. dahliae. In plates with obvious 
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contamination, measurements were taken of V. dahliae when contaminant growth was greater 

than 5 mm separated. Plates with contaminant growth within 5 mm of V. dahliae colonies were 

discarded.  

 Trial two had the same experimental design but replaced the APDA with Sorenson’s NP-

10 selective media. Twenty ml of each compost extract was added to 200 ml of NP-10. Each mix 

was then stirred for 2 minutes and poured into five petri dishes. An additional five dishes were 

filled with a 20 ml deionized water and 200 ml NP-10 mix to act as a control. After waiting 48 

hours for the solidification of these media, inoculation was made with a 6-week-old colony of V. 

dahliae. Each dish was inoculated from the same colony and left in a dark contained space at 

20°C to culture. At each 48-hour interval, for 15 days, the maximum linear growth within each 

plate was measured. Due to the use of the selective media, no contamination issues were 

observed in this trial.  

 

3.6 Soil Microbial Community Assessment  

Soil samples were collected from three randomly chosen plots of each treatment from 

both farm sites. Randomization procedure was consistent with soil sampling for V. dahliae 

assessment. Samples were first collected on 19 May 2018 before the application of treatments. A 

second round of sampling occurred in the same plots on 11 October 2018. Sampling protocol 

was the same as for V. dahliae culturing. A composite sample made of three subsamples 

gathered using a soil auger to take a core from 1-15 cm depth. Between each sample the auger 

was sterilized using a 70% ethanol wipe.  

Samples were all stored in a minus 18°C freezer until 28 November 2018. Each sample 

was then mixed thoroughly and a subsample of 250 mg soil was weighed out. Extractions were 



 23 

made from each sample using the DNeasy Powersoil Kit (QIGEN, Venlo, Netherlands) per 

manufacturer’s instructions.  

Prokaryote (Bacterial and archaeal) communities from the soil samples were amplified 

and sequenced by Molecular Research, LP (MR DNA, Shallowater, TX, USA). PCR was 

preformed using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) with the 16S rRNA gene 

V4 variable region primers 515F and 806R. The thermal cycling consisted of 94°C for 3 minutes, 

30 cycles of 94°C for 30 seconds, 53°C for 40 seconds, and 72°C for 1 minute, then an 

elongation step at 72°C for 5 minutes. An Ion Torrent PGM was used for sequencing as per 

manufacturer’s guidelines. Data was processed by Molecular Research, LP using a proprietary 

analysis pipeline (MR DNA, Shallowater, TX, USA). Sequences were depleted of barcodes, 

primers, sequences <150bp, and sequences with ambiguous base calls and with homopolymer 

runs exceeding 6bp. Then they were denoised, chimeras were removed, and Operational 

Taxonomic Units (OTUs) were generated by clustering at 97% similarity. Those final OTUs 

were then classified with BLASTn using the RDPII and NCBI databases.  

 

3.7 Weed Biomass Assessment 

 Weed biomass was assessed for field 1, the organic field, on 28 August 2018. After 

planting, the field was hand weeded for the first month until 26 July and cultivated on 17 July 

2018. On 26 July 2018 a final manual weed removal of the entire field took place to ensure a 

cleared field baseline. From 26 July to 28 August 2018, weeds were allowed to grow uninhibited. 

Collection of above ground weed biomass took place through the center bed of each plot with a 

width of 30 cm. This made up an area of 2.25 m2 or 10% of the total plot area. Within this area 
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all weeds were cut at soil level, identified and bagged. Weeds were divided by species and 

placed in paper bags and dried in an oven (ThermoFisher Scientific, USA) at 82°C for five days.  

 

3.8 Soil Arthropod Abundance  

 The abundances of soil dwelling garden symphylans and collembolans were monitored 

within each research plot May through August 2018. Symphylans were monitored using a soil 

surface potato bait station as per Umble and Fisher (2003b). ‘Russet’ potatoes (Solanum 

tuberosum L.) were sliced in half and left under an upside down 18.5 cm diameter white bucket 

in the center of each plot. After 48 hours the bucket was gently removed and baits were flipped 

and photographed. Later those photos were assessed for the number of Symphyla present per bait 

(see Appendix E for bait station set up and Appendix H for Symphyla photo). 

 Collembola were monitored using a similar baiting strategy. A square foot space in the 

center of the plot was cleared and dampened with 100 ml of water. A 21.5 x 27.9 cm piece of 

acetate (Canon, Lake Success, New York, USA) was then laid on the ground with a 3 x 3 cm 

hole cut in the center. A fresh broccoli (Brassica oleracea L. sabellica (Brassicales: 

Brassicaceae)), spinach (Spinacia oleracea L. (Caryophyllales: Amaranthaceae)), or lettuce 

(Lactuca sativa L. (Asterales: Asteraceae)) leaf was then placed over the open hole in the sheet 

and an 18.5 cm diameter white bucket was placed upside down over the sheet and leaf. After 48 

hours the bucket was removed, the leaf flipped over and the ground and underside of the leaf 

were photographed. Again, these photographs were assessed for the number of Collembola 

present within the 3 x 3 cm baiting area (see Appendix I for Collembola photo).  

 From 15 May to 15 August 2018 five baits were set every other day in each field, one 

plot from each treatment per field. After 48 hours these baits were photographed and reset in a 
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new plot of the same treatment. Baits were assessed and reset between the hours of 9 and 11am 

each sampling day. One sample was taken within each plot for each of the following sampling 

periods: 17 May through 28 May, 29 June through 10 July, and 20 August through 31 August 

2018.  

  

3.9 Bell Pepper Health and Yield Measurement 

 Bell pepper ‘huntington’ (Capsicum annuum L.) health was measured through the height 

and the measure of relative chlorophyll content of the plants. Height was measured from five 

randomly chosen plants within each plot on 2 August and 2 September 2018. Height was 

recorded from ground level to the apical meristem.  The relative chlorophyll content of the plant 

was measured using a SPAD 502 Chlorophyll Meter (Konica Minolta Inc., Tokyo, Japan). Five 

random plants were chosen from each plot on 2 August and 2 September 2018. Randomization 

was achieved by assigning each plant within a plot a number, then using a random number 

generator to select plants. Chlorophyll content was measured in a randomly chosen young and 

fully-expanded leaf on selected plants. Random leaves were chosen by assigning the 12 youngest 

fully-expanded open leaves a number and using a random number generator to select one of 

those leaves.  

 Peppers were harvested on three separate dates; 3 September, 4 October, and 5 November 

2018. On each harvest date a crew worked through both fields clean harvesting all ripe bell 

peppers. Peppers were considered ripe based on maturity, this was determined in the field based 

on size and development of the shoulder ridge above the calyx (Lindgren and Hodges, 1990). At 

the final harvest in November 2018, all fruit were collected including immature fruits to be 



 26 

included in the yield biomass assessment. For analysis all harvest fresh weights from each plot 

were pooled into a season total harvest weight per plot.    

 

3.10 Statistical Analyses 

 Statistical analyses were carried out with JMP 14 software (SAS Institute, USA). All 

data, except microbial sequencing data, were analyzed treating sample, plot, and field as 

replicated random effects and treatment and time as main effects. When no significant interaction 

between treatment and field was observed, data between fields was pooled for analysis. Soil V. 

dahliae CFU data was square root transformed to maximize consistency in residuals of the 

model. Differences in least square means were tested by ANOVA then p-values from pairwise 

comparisons were generated by way of students t test. Benjamini-Hochberg procedure was 

utilized for assessment of significance from p-values to ensure maximum statistical power and 

maintain type one error rate at 0.05.  

Statistical analysis of microbial sequencing data was conducted with PRIMER-e software 

(Massey University, Auckland, New Zealand) based on the OTU counts after a square root 

transformation. Similarity percentage (SIMPER) analysis was conducted as a one-way S17 Bray-

Curtis similarity analysis and used to create non-metric Multidimensional Scaling Plots (MDS). 

Analysis of similarities (ANOSIM) was run with maximum 999 permutations. Significance 

levels below 5% were considered significant. Analysis of differences is based on Bray-Curtis 

dissimilarity / standard deviation (Diss/SD). 

Additional analysis was performed exclusively on genera that are known filamentous 

fungal plant pathogen antagonists. OTU counts were filtered at the genus level to include only 

known antagonists of filamentous fungal plant pathogens as per Inderbitzin et al. (2018).  
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CHAPTER 4 

Results and Discussion 

4.1 Organic Amendment Effects on Soil Chemical Properties 

In the organic farm the four compost treatments had no significant effect on soil organic 

matter percentage, magnesium (Mg), calcium (Ca), pH, cation exchange capacity, N (NO3-N), 

manganese (Mn), iron (Fe), Copper (Cu), boron (B), or soluble salts compared to control. Dairy 

and plant waste-based composts increased the levels of soil phosphorus (P) (p = 0.006), 

potassium (K) (p = 0.040), sodium (Na) (p = 0.008), sulfur (S) (SO4-S) (p = 0.029), and zinc 

(Zn) (p = 0.015) compared to control. Grape and olive pomace-based compost treatments had no 

significant effect on soil P, K, Na, S, or Zn compared to control. Dairy had the largest impact on 

soil Na with an average of 221 mg/kg, 400% higher than in control, while plant waste-based 

compost had 250% higher Na levels. Plant waste-based compost had the largest effect on soil S 

with an average of 83 mg/kg, over 300% higher than control plots; dairy based compost had 

250% more S than control. 
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In the conventional field the four compost treatments had no significant effect on soil 

organic matter percentage, P, Mg, Ca, pH, cation exchange capacity, N (NO3-N), S, Zn, Mn, Fe, 

Cu, B, or soluble salts compared to control. Olive pomace-based and plant waste-based compost 

treatments increased soil K (p = 0.044) and Na (p = 0.043) compared to control. Additionally, 

Table 3: Effect of Each Compost Treatment on Soil Chemical Properties in the Organic Field (n = 3). 

 Control Dairy Grape Olive Plant p-value 
Organic Matter  
(g kg-1) 

39.0 ± 1.73 49.0 ± 9.54 49.3 ± 10.1 51.7 ± 7.02 53.3 ± 11.9 0.368 

Olsen P  
(mg kg-1) 

82.3 ± 6.66  
A 

161 ± 36.4  
C 

94.0 ± 8.72  
AB 

99.7 ± 9.29  
AB 

129 ± 25.9 
BC 0.006* 

K (mg kg-1) 
613 ± 65.2  

A 
1094 ± 224  

B 
816 ± 13.8 

AB 
916 ± 149 

AB 
1124 ± 313  

B 0.040* 

Mg (mg kg-1) 1059 ± 30.2 1004 ± 50.1 1037 ± 32.6 1047 ± 29.0 1038 ± 26.4 0.444 

Ca (mg kg-1) 2272 ± 106 2275 ± 43.4  2280 ± 113 2223 ± 62.1 2373 ± 161 0.552 

Na (mg kg-1) 54.0 ± 6.08  
A 

221 ± 78.2  
C 

75.7 ± 1.53  
AB 

124 ± 29.0 
AB 

150 ± 55.4 
BC 

0.008* 

pH 6.93 ± 0.21  7.17 ± 0.15 7.07 ± 0.12 7.07 ± 0.06 7.10 ± 0.10 0.384 
C.E.C. 
(meq/100g) 

22.2 ± 1.23 23.4 ± 0.53 22.3 ± 0.84 22.6 ± 0.90 23.9 ± 1.91 0.384 

N (NO3-N) 
(mg kg-1) 

89.3 ± 22.1 123 ± 39.9 89.0 ± 17.1 81.7 ± 29.5 112 ± 41.8 0.472 

S (SO4-S)  
(mg kg-1) 

26.7 ± 4.62  
A 

70.0 ± 22.9 
BC 

30.3 ± 6.03  
A 

35.7 ± 7.64  
AB 

83.0 ± 40.8  
C 0.029* 

Zn (mg kg-1) 
3.50 ± 0.26 

 A 
5.70 ± 0.82  

BC 
4.10 ± 0.26  

AB 
4.30 ± 0.61  

AB 
6.43 ± 1.72  

C 0.015* 

Mn (mg kg-1) 7.33 ± 4.51 10.0 ± 0.00 7.00 ± 3.46 8.33 ± 3.51 9.67 ± 1.15 0.677 

Fe (mg kg-1) 18.3 ± 1.53 18.7 ± 0.58 18.3 ± 0.58 18.3 ± 2.08 20.7 ± 1.53 0.248 

Cu (mg kg-1) 4.40 ± 0.46 4.43 ± 0.46 4.77 ± 0.32 4.37 ± 0.21 4.63 ± 0.51 0.713 

B (mg kg-1) 0.73 ± 0.06 1.37 ± 0.38 0.87 ± 0.06 1.03 ± 0.23 1.33 ± 0.42 0.066 

Soluble Salts  
(dS m-1) 

1.70 ± 0.36 2.63 ± 0.45 1.77 ± 0.29 2.07 ± 0.81 3.23 ± 1.54 0.200 

Values represent means ± standard deviation. *Means connected by the same letter within a row are not 
significantly different at p ≤ 0.05. 
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dairy waste-based compost increased soil Na compared to control. Grape pomace-based compost 

had no significant effect on soil K or Na. In the conventional field, dairy manure only had a 

significant effect on Na, which was 150% higher than control. Plant waste and olive pomace-

based compost had similar effects on soil K and Na; K being 125% of control and Na over 150% 

of control. 

 

 

Table 4: Effect of Each Compost Treatment on Soil Chemical Properties in the Conventional  
Field (n = 3). 

 Control Dairy Grape Olive Plant p-value 
Organic Matter  

(g kg-1) 
31.0 ± 5.29 33.3 ± 2.08 37.0 ± 5.20 46.7 ± 11.6 38.0 ± 7.81 0.153 

Olsen P  
(mg kg-1) 

63.0 ± 5.20 82.7 ± 12.4 71.3 ± 4.16 80.3 ± 11.9 80.3 ± 7.77 0.106 

K (mg kg-1) 
520 ± 35.0  

A 
556 ± 22.8  

A 
619 ± 76.4 

AB 
668 ± 88.8  

B 
672 ± 57.6  

B 0.044* 

Mg (mg kg-1) 852 ± 143 874 ± 49.7 962 ± 63.5 882 ± 128 910 ± 62.9 0.692 

Ca (mg kg-1) 3049 ± 136 2652 ± 333 2949 ± 96.8 2790 ± 41.2 2982 ± 116 0.107 

Na (mg kg-1) 
57.0 ± 6.56  

A 
96.3 ± 27.0  

B 
73.3 ± 7.57  

AB 
99.7 ± 13.3  

B 
87.3 ± 16.0  

B 
0.043* 

pH 7.50 ± 0.15 7.53 ± 0.12 7.43 ± 0.12 7.47 ± 0.15 7.63 ± 0.15 0.493 
C.E.C. 
(meq/100g) 23.8 ± 0.56 22.3 ± 1.86 24.5 ± 0.36 23.3 ± 0.61 24.5 ± 0.47 0.082 

N (NO3-N) 
(mg kg-1) 

42.3 ± 24.5 28.7 ± 27.7 52.0 ± 21.0 44.3 ± 11.5 45.0 ± 23.6 0.779 

S (SO4-S)  
(mg kg-1) 

31.0 ± 7.81 21.7 ± 11.6 27.3 ± 6.43 30.7 ± 2.52 32.0 ± 8.54 0.528 

Zn (mg kg-1) 1.60 ± 0.10 1.97 ± 0.45 2.10 ± 0.20 2.33 ± 0.67 2.60 ± 0.61 0.170 

Mn (mg kg-1) 3.00 ± 1.53 6.33 ± 1.15 6.33 ± 3.21 5.67 ± 1.53 4.00 ± 1.00 0.247 

Fe (mg kg-1) 8.00 ± 1.00 9.67 ± 0.58 9.33 ± 1.15 8.00 ± 0.00 10.0 ± 1.73 0.124 

Cu (mg kg-1) 1.60 ± 0.06 1.63 ± 0.25 1.73 ± 0.12 1.73 ± 0.12 1.70 ± 0.17 0.864 

B (mg kg-1) 0.70 ± 0.12 0.77 ± 0.15 0.80 ± 0.00 0.97 ± 0.31 0.93 ± 0.15 0.428 

Soluble Salts  
(dS m-1) 

1.10 ± 0.30 0.90 ± 0.44 1.20 ± 0.26 1.20 ± 0.20 1.17 ± 0.35 0.761 

Values represent means ± standard deviation. *Means connected by the same letter within a row are not 
significantly different at p ≤ 0.05. 
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4.2 Organic Amendment Effects on Soil Verticillium dahliae Abundance 

 Soil V. dahliae abundances expressed in CFU’s/g soil, demonstrated clear trends both 

across treatments and through time. The initial samplings for V. dahliae CFU’s/g soil were taken 

in May before any field preparation or treatments. At this time, all of the treatment-assigned 

plots had significantly similar pathogen loads (treatment: p = 0.063) with a mean of 52.4 ± 29.6 

CFU/g soil (n = 250; 0 – 220). Thus, there was a similar pathogen load before treatment 

application throughout the treatment blocks, and CFUs well above the threshold for many plants 

to become infected (Bolda and Koike, 2013). This pathogen load is considered sufficient to cause 

disease in certain crops such as strawberries, which are particularly susceptible and will begin to 

show symptoms with as little as 3 CFU per gram of soil (Bolda and Koike, 2013). Bell peppers 

are less susceptible, thus requiring a higher field pathogen load than strawberries to become 

infected (Bhat et al., 2003; McCain et al., 1981). There was also no significant difference 

between the pathogen load of the two fields tested (field: p = 0.141). Additionally, there was no 

significant interaction between any of the amendment treatments and the field site (i.e., 

conventional vs. organic) (treatment * field: p = 0.477). These factors allowed analysis to 

continue with fields as a random effect and replicate in the design, all further analysis of V. 

dahliae was performed by pooling the data from both fields. 

 By treating date as a fixed effect there was a consistent pattern in V. dahliae pathogen 

load through the season with no two sequential sampling dates being equivalent (time: p < 

0.0001). The first sampling, on 18 May 2018, had the highest mean pathogen load at 52.43 ± 

29.61 CFU/g soil (n = 250; 0 – 22) (Table 3). By the second sampling on 30 June 2018, pathogen 

loads had dropped to 21.08 ± 18.12 CFU/g soil (n = 250; 0 – 90). This drop was expected due to 

several soil disturbance events in early June: the four organic amendment treatments were 
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applied and the fields were both disked, the beds were shaped and planted. All of these practices 

cause major disruption to soil microbes, particularly fungi, as hyphae are susceptible to such 

mechanical disturbances (Degrune et al., 2017). Thus, it is expected to see a significant drop in 

V. dahliae soil load between these times. Though there was a universal pathogen load decrease 

between May and June, it was also clear that all organic amendment treated plots had a greater 

reduction in pathogen load when compared to untreated control plots (Table 2). All four 

amendment treatments displayed a significant reductive effect in June, two weeks after the 

application of treatment (treatment: p = 0.001). Grape, olive, and plant-based amendments had 

the largest reduction in soil V. dahliae with insufficient evidence to differentiate between them. 

Mean observed V. dahliae CFU/g soil within grape, olive, and plant-based amendment treated 

plots were 14.6 ± 14.5 (n = 50; 0 – 70), 16.8 ± 15.9 (n = 50; 0 – 50), and 14 ± 12.7 (n = 50; 0 – 

50), respectively; compared to the control at 34.4 ± 17.5 (n = 50; 0 – 70) CFU/g soil. The dairy 

manure-based amendment had less pathogen load reduction than the other three amendment 

treatments at 25.6 ± 20.4 CFU/g soil (n = 50; 0 – 90) but V. dahliae CFU’s were still 

significantly reduced compared to the control (p = 0.028).  

 Field pathogen load increased in the third sampling on 11 August 2018 compared to June, 

with mean V. dahliae at 34.88 ± 25.1 CFU/g soil (n = 250; 0 – 130). This sampling date was two 

months after the application of treatment and well into the growing season only three weeks 

before first harvest. The significant effect of the grape, olive, and plant-based amendments on 

reducing soil pathogen load, compared to control plots at 53.6 ± 28.9 CFU/g soil (n = 50; 10 – 

130), remained through this sampling (p < 0.01). Mean observed V. dahliae CFU/g soil for 

grape, olive, and plant-based amendment treatments were 29.8 ± 18.5 (n = 50; 0 – 80), 23.8 ± 

24.2 (n = 50; 0 – 120), and 24.6 ± 17.2 (n = 50; 0 – 70), respectively. The effect of the dairy 
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manure-based amendment was no longer significant compared to control at 42.6 ± 21.8 CFU/g 

soil (n = 50; 10 – 130) (treatment: p = 0.141).     

 By the fourth sampling date, 21 September 2018, overall field pathogen loads were 

nearly returned to pretreatment levels from May with an overall mean of 45.44 ± 27.0 CFU/g soil 

(n = 250; 0 – 160). There were no significant differences in the V. dahliae soil pathogen load 

between any treatments (p = 0.443). This was the first sampling date with no reduction of soil 

pathogen load observed by any treatment. Thus, reduction in V. dahliae CFU’s from applied 

compost treatments was measurable only up to eight weeks post-application. At the final 

sampling date, 1 November 2018, overall V. dahliae pathogen loads dropped down to 29.64 ± 

18.6 CFU/g soil (n = 250; 0 – 120) with no significant differences between any treatments on 

this date (p = 0.194). 

   

Table 5: Least Square Mean Verticillium dahliae Colony Forming Units/g Soil for Each 
Treatment over Time. 

  Control Dairy Grape Olive Plant 

18 May (NS) 70.36 63.66 68.50 71.89 73.74 

30 June 56.26 45.22 31.05 33.58 29.97 
A B C C C 

11 August 70.60 63.26 50.47 41.26 45.47 
A A B B B 

21 September 
(NS) 61.75 63.40 68.91 66.66 58.60 

1 November 
(NS) 57.40 45.79 50.89 51.91 47.25 

Connecting letters represent significant differences at each sampling date with α = 0.05 
(NS) at sampling date there were no significant differences with α = 0.05 

 

 The reduction in V. dahliae soil pathogen load observed after the application of these 

amendments could be due to a variety of mechanisms (Noble and Coventry, 2004). Reduction of 
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V. dahliae microsclerotia has been observed after the application of many organic amendments 

including plant residue, crab meal, cork, potato, spent mushroom, and olive waste-based 

composts (Barbera et al., 2013; Inderbitzen et al., 2017; Noble and Coventry, 2004). 

Additionally, suppression of other soil-borne fungal pathogens has been observed consistently 

after organic amendment application (Beneduzi et al., 2012; Curlango-Rivera et al., 2013; 

Ntougias et al., 2007). Thus, the observed reduction is consistent within the larger body of 

literature exploring organic amendments and disease suppression.  

  Olive and grape waste-based composts have been the focus of research due to their 

availability and known polyphenolic content. Significant suppression of a variety of soil-borne 

pathogens has been observed including P. nicotianae, F. oxysporum, P. pinodella, F. solani, and 

V. dahliae (Curlango-Rivera et al., 2013; Ntougias et al., 2007; Yangui et al., 2010). Dairy 

manure-based composts have also been shown to have suppressive qualities on soil-borne fungal 

pathogens (Hoitink and Boehm, 1999; St. Martin, 2014). The reduction in V. dahliae soil 

pathogen load observed in this study is consistent with the suppressive effects observed in other 

studies. The duration and extent of suppression depends on the specific amendment source, 

pathogen, and field management context.  

Suppressive mechanisms in previous studies have often been difficult to identify. Most 

studies point to either chemical suppression via introduction of toxic compounds, induced 

systemic resistance, or biological suppression from stimulation of the microbial community 

including fungal antagonistic genera (Inderbitzen et al., 2017; Noble and Coventry, 2004).  
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4.3 Organic Amendment Extracts and Verticillium dahliae In Vitro Growth  

 An in vitro laboratory experiment was designed to replicate the field study design in a 

controlled setting away from field soil microbial communities. In trial 1, clear trends of organic 

amendments inhibiting V. dahliae growth mirroring field results were observed (Fig. 1). There 

was no significant difference between control V. dahliae in vitro growth and dairy extract-treated 

V. dahliae in vitro growth (p = 0.902) with mean maximum linear growth of 32.32 ± 4.09 mm (n 

= 5; 27.89 – 38.58) and 27.58 ± 3.07 mm (n = 5; 23.75 – 31.39) respectively after 11 days. The 

three other organic amendment extracts showed significant reduction (p < 0.001) of the V. 

dahliae in vitro growth from day 3 through day 11 with mean maximum linear growth of grape 

compost extract at 19.69 ± 2.47 mm (n = 5; 16.2 – 21.59), olive compost extract at 16.78 ± 4.24 

mm (n = 5; 12.4 – 23.67), and plant compost extract at 16.16 ± 5.47 mm (n = 5; 9.04 – 23.23) at 

day 11. However, contamination with other microbes was observed in 12 of the 25 total plates in 

this trial. The effects of these contaminants were unclear so the experiment was replicated on a 

selective media.  
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 Trial 2 used the selective media Sorenson’s NP-10 and demonstrated similar results that 

supported the field data. After 15 days of incubation all V. dahliae colonies in control plates had 

grown to the edge of the petri dish with a 40 ± 0 mm radius (n = 5; 40 – 40). The dairy extract-

treated colonies had an average maximum linear growth of 36.18 ± 4.28 mm (n = 5; 29.75 – 40), 

not significantly different from the control (p = 0.288). Grape, olive and plant-based extracts all 

demonstrated a significant reduction of V. dahliae in vitro growth compared to the control from 

day 3 through day 15 with average maximum linear growth of 29.71 ± 7.96 mm (n = 5; 21.37 – 

40), 30.29 ± 6.38 mm (n = 5; 23.25 – 40), and 29.50 ± 5.55 mm (n = 5; 24.61 – 38.23), 

respectively, at day 15 (p = 0.022). These results are consistent with the findings of our field trial 

and reduction of soil pathogen load.   
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Fig. 1. Mean V. dahliae Linear Growth In Vitro on APDA Media as Affected by Compost 
Treatments over Time. Error Bars Represent One Standard Error of the Mean. 
 



 36 

 

 

 

The results of the laboratory study helped illuminate one mechanism of action by which 

the organic amendments were reducing the V. dahliae pathogen load. In a petri dish experiment 

where there were no other microorganisms present, the reduction demonstrated was likely due to 

direct chemical suppression from dissolved compost materials. As previously discussed, grape 

and olive wastes are known to be high in polyphenolic molecules that have already demonstrated 

toxic effects (Barbera et al., 2013). These results also indicated that some amount of the field 

reduction was due to chemicals within the amendments. In the field, other factors may have been 

at play such as stimulation of beneficial microbial communities helping to compete with or 

directly antagonize V. dahliae and keep their populations lower (Noble and Coventry, 2004).  
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4.4 Soil Microbial Community Assessment 

Analysis of prokaryote communities was conducted to further explore the effects of 

treatments on the soil microbiome. The diversity and species composition of the soil microbial 

community has been linked to suppression of soil-borne pathogens (Benduzi et al., 2012; 

Chaparro et al., 2012; Hoitink and Boehm, 1999; Inderbitzen et al., 2018). The analysis included 

in this paper is preliminary; differences were assessed at the phyla level but exact nature of those 

differences is not evaluated. Further investigation of the data is necessary to help illuminate the 

makeup of compositional differences in the microbial communities between farms and treatment 

groups. Bray-Curtis analysis of dissimilarity was conducted to evaluate the structural diversity of 

the microbial community by comparing the number of species in common and those not shared 

between samples (Buttigieg and Ramette, 2014). Samples collected on 19 May 2018, before the 

application of treatments, displayed significant differences in the soil bacterial communities at 

the Phylum level between the organic and conventional field sites (p = 0.019). This is consistent 

with other research where the microbial community structure has been observed to be different 

between organic and conventionally managed soils (Lupatini et al., 2017). There were no 

significant differences in the bacterial communities at the Phyla level between any treatment 

assigned plots before treatment application (p = 0.111).  

 The next samples were collected on 11 October 2018, four months after the application of 

treatments. The bacterial community structure at the Phyla level between fields remained 

significantly different (p = 0.006). Based on ANOSIM, there was no significant effect of 

treatment in the conventional field on the species composition of microbial communities at the 

Phylum level (p = 0.983). However, in the organic field, the treatments did have a significant 

effect on the bacterial community structure at the Phylum level (p = 0.026). The microbial 
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community of dairy manure compost treated plots differed from the control strongly, with a 

Bray-Curtis dissimilarity of 10.63. The microbial community of plant waste compost treated 

plots varied strongly from control, with a Bray-Curtis dissimilarity of 12.36. The microbial 

communities of grape pomace compost treated plots varied from control with a Bray-Curtis 

dissimilarity of 10.68. Olive pomace compost treated plots microbial communities were 

dissimilar from control plots with a Bray-Curtis dissimilarity of 8.40. These differences 

demonstrate that within the organic farm each of the four treatments were having a significant 

effect on the microbial community structure when compared with the control plots. Further 

analysis of the data is required to explore in what ways the microbial communities are being 

affected. This preliminary analysis demonstrates that all four organic amendment treatments 

tested had a significant effect on the microbial community structure as is consistent with 

previous studies (Chaparro et al., 2012; De Corato et al., 2016; Vivas et al., 2008).  

 No significant impact was observed on the Shannon Diversity Index at the Phylum level 

in either field (p = 0.831) (Figure 3). The Shannon Diversity Index is based upon entropy models 

and can be used as a tool for quantifying ecological diversity by assessing both the species 

richness and relative abundances (Shannon, 1948). Despite treatments having a significant effect 

on the composition of bacterial communities, the overall diversity was not significantly affected.  
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After determining significant differences in microbial community structure with 

ANOSIM, SIMPER analysis was utilized to evaluate how closely related microbial communities 

were between treatment groups (Wakefield et al., 2013). Clustering of communities, or the 

relative similarity of the microbial communities between treated plots compared to overall field 

similarity, was seen with some treatments having a stronger effect than others (Figure 4). Within 

the organic farm, post-treatment similarities within plant, dairy, olive, and grape plots were 

95.1%, 92.9%, 94.8%, and 90.3%, respectively. Compared to the control plots in the organic 

field with similarity of 92.96%. In the conventional field, similarities were less tightly clustered 

by treatment. Similarity between control plots was 88.4%. Similarities within plant, dairy, olive, 

and grape plots were 85.1%, 86.5%, 91.4%, and 83.6%, respectively. This is consistent with 
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observations by Lupatini et al. (2017) that organic systems and conventional systems have 

different soil microbial community structures. Again, further analysis is required to explore the 

differences observed between the farms in this study.     

            

 

4.5 Community Assembly of Known Fungal Antagonist Genera 

 Evaluating the species composition of known fungal antagonists helps to illuminate 

potential biological mechanisms of suppression (Hoitink and Boehm, 1999; Inderbitzen et al., 

2018; Noble and Coventry, 2005). Known fungal antagonists were identified based upon the 

meta-analysis published by Inderbitzin et al. (2018). Known biological mechanisms of 

suppression of fungus are summarized for each genus discussed in table 3. Before the application 

of treatment on 19 May 2018, there was a significant difference in the composition of fungal 

antagonist communities between the organic and conventional fields (p = 0.016). Between fields, 

the largest differences in microbial species composition of known fungal antagonists were within 

Fig. 4. Post-Treatment Bray-Curtis Similarity Clustering of Bacterial Communities by 
Treatment and Field. 
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the genera Paenibacillus, Chitinophaga, Burkholderia, Lysinibacillus, Cupriavidus, and 

Solibacillus. However, at that time there were no significant differences between treatment 

assigned plots (p = 0.071). Further review of the data is required to evaluate the differences in 

these communities and their distributions.  

Table 6: Known Fungal Antagonistic Bacterial Genera Discussed and Recorded Mechanisms 
of Suppression. Table Adapted from Inderbitzin et al. (2018). 
Genus Mechanism of suppression 

Achromobacter Siderophores 

Acidovorax Unknown 

Acinetobacter Antibiotics 

Actinomadura Antibiotics 

Arthrobacter Cell-wall-degrading enzymes 

Azospirillum Induced resistance, siderophores 

Cupriavidus Pathogenicity factor degradation 

Cytophaga Cell-wall-degrading enzymes 

Flavobacterium Unknown 

Mycobacterium Cell-wall-degrading enzymes 

Paenibacillus Cell-wall-degrading enzymes 

Sphingobacterium Cell-wall-degrading enzymes 

Streptosporangium Unknown 

 

 On 11 October 2018, four months after the application of compost treatments the 

composition of fungal antagonist communities remained significantly different between the 

organic and conventional fields (p = 0.006). The treatments also had a significant effect on the 
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composition of fungal antagonist communities (p = 0.001). Differences observed in the 

composition of fungal antagonistic bacteria communities between different treatments provided 

evidence that one mechanism of the observed field suppression of V. dahliae, after compost 

treatment, was biological suppression due to stimulation of these bacteria. Despite significant 

changes in structural diversity of these communities, relative abundance of fungal antagonists 

was not significantly affected by compost treatments (p = 0.638) (Figure 5).  

 

 

 Again, the conventional farm was more variable with lower similarity observed between 

control plots or any treatment plots than in the organic farm. There were no significant 

differences observed between compost treated plots in the community of fungal antagonists (p = 

0.849). On the organic farm, treatments did have a significant effect on the composition of fungal 

antagonistic communities (p = 0.001). The fungal antagonistic bacteria communities of plant 
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compost treated plots were most dissimilar from control within the genera Sphingobacterium, 

Flavobacterium, Cupriavidus, Azospirillum, and Paenibacillus; with Bray-Curtis Diss/SD values 

of 5.88, 4.44, 4.38, 3.69, and 2.2 respectively. Communities in dairy manure treated plots were 

most dissimilar from control within Azospirillum, Achromobacter, Arthrobacter, 

Streptosporangium, Cytophaga, and Actinomadura; with Bray-Curtis Diss/SD values of 4.93, 

3.28, 2.32, 2.26, 2.23, and 2.07 respectively. Olive pomace compost treated plots were most 

dissimilar from control with Bray-Curtis Diss/SD values of 4.5 for Achromobacter, 2.18 for 

Arthrobacter, and 2.05 for Acinetobacter. Finally, grape pomace compost treated plots were 

most dissimilar from control within Azospirillum, Actinomadura, Acidovorax, Mycobacterium, 

and Cytophaga; with Bray-Curtis Diss/SD values of 4.56, 3.87, 2.48, 2.45, and 2.18 respectively.  

 

 

 Community structure of known fungal antagonists between treatment plots was again 

more similar within the organic farm. Control plots on the organic farm were an average of 

Fig. 6. Post-Treatment Bray-Curtis Similarity Clustering of Known Fungal Antagonistic 
Bacterial Communities by Treatment and Field. 
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86.0% similar at the genus level for known fungal antagonists. On the organic farm, plant 

compost treated plots were 88.7% similar, dairy manure treated plots were 80.0% similar, olive 

pomace treated plots were 86.4% similar, and grape pomace compost treated plots were 84.2% 

similar. The conventional farm showed more variation of the fungal antagonist communities 

within treatment types where none were significantly similar (p = 0.849) (Figure 6).   

 The preliminary analysis of prokaryote microbial communities included in this paper 

helps establish that the organic amendment treatments tested had a significant effect on microbial 

community structure. These structural differences require further analysis to determine more 

precisely the effects of each treatment and how that may be related to observed reduction in V. 

dahliae soil pathogen load. Biological suppression of fungal pathogens has been consistently 

reported (Hoitink and Boehm, 1999; Inderbitzen et al., 2018; Noble and Coventry, 2005; Trivedi 

et al., 2017; Weller et al., 2002). Based upon the significant treatment effects on bacterial 

community structures observed, including known fungal antagonists, it is likely that some of the 

V. dahliae reduction observed is due to changes in the microbial community. To establish which 

members of the microbial community were most influenced by treatment and potentially 

involved in pathogen suppression, further data review is required.  

 

4.6 Weed Biomass and Diversity 

 The different compost treatments applied did not significantly affect total weed biomass 

on the organic farm (p = 0.662). Mean biomass assessment demonstrated no clear trends in part 

due to high variability (Fig. 7). The highest mean biomass was observed in the control plots 

averaging 214.5 ± 84.0 g/m2 (n = 5; 82.1 – 307.6) while the lowest was observed in plant waste 

compost treated plots with an average of 134.5 ± 67.7 g/m2 (n = 5; 26.4 – 198.9). Plots were 



 45 

completely randomly assigned, but there did appear to be an edge effect on the weed biomass 

with an average of 211.5 ± 74.1 g/m2 (n = 16; 109.2 – 353.3) in edge plots and an average of 

130.7 ± 108.5 g/m2 (n = 9; 26.4 – 380.6) in interior plots despite including 2 border rows on 

either side of the field. This may be due to inconsistency within the natural seed bank throughout 

the field though no measures of seed bank were taken so no conclusion can be made.   

 

 

 

The relationship between organic amendments and weed health and biomass is 

complicated and not well understood. There are likely phytotoxic effects of the amendments 

suppressing the germination of some weed seeds (Cayuela et al., 2008; Ferrara et al., 2014). 

Additionally, organic amendments stimulate the microbial community, which in turn can have 

detrimental effects on weed seeds including seed rot, shrunken seeds, and reduction or 

elimination of germination capacity (Kennedy, 1999). Some organic amendments may display a 
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positive effect on weeds by supplying them with nutrients and improving soil quality in the same 

way they do for crops.  

The two weed species that were the most abundant both by number and biomass were 

little mallow, Malva parviflora L. (Malvales: Malvaceae) and annual sowthistle, Sonchus 

oleraceus L. (Asterales: Asteraceae). Both weeds were isolated and compared separately at 

collection. There was no significant effect of any compost treatment on the little mallow biomass 

(p = 0.746). There was again high variation between plots (Fig. 8). Although not statistically 

different from other treatments, the olive compost treated plots had the lowest average little 

mallow biomass with an average of only 42.5 ± 59.4 g/m2 (n = 5; 5.3 – 143.7). Little mallow is a 

very hardy weed with seeds that are resistant to environmental stresses because they are 

protected by a thick seed coat and have proven difficult to control with mulches and organic 

amendment treatments (Daugovish et al., 2007). Significant suppression, after olive waste 

compost application, of a variety of seeds has been observed including Portulaca oleracea, 

Chrysanthemum segetum, Sonchus oleracea, Sinipis arvensis, Digitaria sanguinalis, Festuca 

arundinacea, Solanum nigrum, Trifolium incarnatum, and Amaranthus retroflexus (Cayuela et 

al., 2008; Ferrara et al., 2015; Mondragon et al., 2018). Observed suppression varies depending 

on age of compost, application process, and application rate but suppression is consistently 

attributed to phytotoxic effects of polyphenols (Cayuela et al., 2008; Ferrara et al., 2015).  
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 There was no significant effect (p = 0.265) of any treatment on sowthistle biomass 

although the control treatment tended to have a higher biomass (Fig. 9). Plant waste compost 

treated plots had the lowest average biomass at only 34.9 ± 28.1 g/m2 (n = 5; 6.3 – 79.6) while 

control plots had the highest at 113.4 ± 77.9 g/m2 (n = 5; 14.8 – 192.5). This was the largest 

mean difference between any treatment and control weed biomass observed (p = 0.066).  
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4.7 Soil Arthropod Abundance 

 There was no significant treatment effect on either of the soil arthropod samples tested in 

this study in either field and any time. Collembola levels were higher pre-application, with a 

mean of 12.2 ± 12.1(n = 50; 0 – 72) per bait, than at any point post-application of compost 

treatments (Fig. 10). Insufficient evidence was collected to observe a treatment effect on 

Collembola abundance (p = 0.551). However, a significant effect of time was observed with a 

decrease from pre-treatment to all post-treatment samplings (p  < 0.0001). This may be due to 

seasonal fluctuation in populations as the temperature increased, soils dried, and populations 

naturally declined; though due to the one-year duration of this study seasonality cannot be 

differentiated from natural temporal fluctuations (Ford, 1937; Singh et al., 2012). Another 
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explanation could be that the bait stations became less attractive to Collembola after the 

application of organic amendments and planting the field with peppers. The herbivorous soil 

arthropods had a readily available organic matter food source and were no longer as attracted to 

the bait stations.    

 

 

 Symphyla populations showed a similar trend as seen with Collembola, but with much 

lower overall abundances (Fig. 11). There was no significant treatment effect on Symphyla 

abundance (p = 0.870). Time was again the most significant factor in bait station observations 

with a significant decrease observed during all sampling after the application of treatment when 

compared with pre-treatment bait averages (p < 0.0001). Again, this is likely due to the effect of 

adding an abundance of organic matter to the field not present during pre-treatment baiting. 
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Baiting Symphyla proved difficult and highly variable despite more consistent results observed 

in other studies (Umble and Fisher, 2003a). In a future study there are several design changes 

that may allow better observations of soil arthropods. Increasing sample size and utilizing a 

combination of several different sampling methods may allow for a broader assessment of  

arthropod abundances through time. The use of several baiting stations in combination with 

trapping tools such as Berlese funnels could help reduce the variability observed with a single 

sampling protocol.  
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4.8 Bell Pepper Health and Yield 

 None of the compost treatments tested had a significant effect on the growth of bell 

peppers, as measured by height, with an overall average growth of 27.7 ± 5.2 cm (n = 250; 15.5 – 

41.4) on 2 September 2018 (p = 0.833) (Fig. 12). Similarly, relative leaf chlorophyll readings 

were not significantly affected by any treatment (p = 0.554) (Fig. 13). The effect of sampling 

date was significant in both instances with average height increasing from 26.06 ± 4.3 cm (n = 

250; 15.2 – 37.8) to 27.67 ±5.2 cm (n = 250; 15.5 – 41.4)(p = 0.0002). Average SPAD 

absorbance reading decreased significantly from 66.70 ± 9.3 (n = 250; 45.8 – 129.4) on 2 August 

down to 62.35 ± 9.2 (n = 250; 38 – 124.5) on 2 September (p < 0.0001). This decrease in SPAD 

absorbance is consistent with normal leaf aging (Yang et al., 2014).  

 

  

0

5

10

15

20

25

30

2-Aug 2-Sep 2-Aug 2-Sep 2-Aug 2-Sep 2-Aug 2-Sep 2-Aug 2-Sep

Control Dairy Grape Olive Plant

A
ve

ra
ge

 b
el

l p
ep

pe
r h

ei
gh

t (
cm

)

Compost treatment / Date

Fig. 12. Average C. annumm Height (cm) by Treatment over Time. Error Bars Represent One 
Standard Error of the Mean. 



 52 

 

 

 

 

 

 There was no significant effect on pepper yield between the fields (p = 0.761) (Fig. 14) or 

by treatment on yield (p = 0.869). Dairy treated plots had the highest yield with an average of 

27.78 ± 10.67 kg per plot (n = 10; 6.03 – 52.21) and plant waste treated plots had the lowest 

yield with an average of 21.79 ± 10.26 kg per plot (n = 10; 11.14 – 40.83). Despite a significant 

effect of treatment on pathogen load there was no significant effect on the yield of peppers. 

Although the pathogen load of V. dahliae was above the threshold for disease development, the 

pepper plants had no observable disease symptoms throughout the trial. The chosen bell pepper 

variety is known to be susceptible to verticillium wilt, but it is not well researched how sensitive 

it is to the disease. Thus, it is plausible that the observed pathogen load was not enough for 

visible disease outbreak. A possible explanation for the absence of disease is the fact that this 
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piece of land has not had any pepper crops at least within the last five years. Bhat et al. (2003) 

have shown that in order for V. dahliae to develop on bell peppers, it requires pathogen isolates 

from another bell pepper crop (or eggplant), confirming earlier reports on the high specificity of 

V. dahliae in peppers (Tsror et al., 1998). This is not the case with other nightshade family plants 

such as tomato, potato and eggplant, which can accept isolates from other nightshade crops (Bhat 

and Subbarao, 1999). Yield was highly variable from plot to plot and there appeared to be 

confounding variables in the field conditions. Transplanting was inconsistent in several areas of 

the field and some plants had to be replaced due to improper establishment. As previously 

discussed, an edge effect appeared to alter the biomass and composition of weeds observed 

throughout the study. It is likely that if there was an edge effect it also influenced yield and 

health of peppers. In the conventional field, yield in plots on the west side of the field averaged 

95.67 kg while the rest of the field averaged 45.81 kg. These outside variables, among others, 

made yield readings highly variable and results difficult to interpret. All four compost treatments 

contained less than 2% total N, less than 0.6% P, less than 1.5% K, and over 30% organic matter. 

Nutrients found in composts are often slow to become available to plants; N specifically exists 

within composts mostly in the organic form, which is not immediately available to plants. Thus, 

composts do not often function as effective fertilizers rather as soil amendments; improving soil 

structure, increasing organic matter content and, through mineralization and other biological 

processes providing nutrients over time (Anonymous, 2016). Given this and the fact that the soils 

in both fields tested are routinely subject to fertilization, crop rotations, and soil amendments it is 

plausible that the nutrients from the composts applied did not influence plant growth and yield.  
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CHAPTER 5 

Conclusion 

 This study sought to explore some of the ecological effects of the application of several 

organic soil amendments. Four organic amendments were chosen due to their ease of access as 

abundantly available agricultural waste products in California as well as other Mediterranean 

regions. The effects of dairy manure compost, grape pomace-based compost, olive pomace-based 

compost, and a plant waste compost were all tested on the soil-borne pathogen Verticillium 

dahliae, soil arthropods Symphyla and Collembola populations, weed abundance, and bell 

pepper crop health and yield.  

 Significant reduction of the soil-borne fungal pathogen V. dahliae was observed up to 

two months after the application of olive, grape, and plant based organic amendments with an 

average decrease between 29% - 42% of the CFU/g soil for those three composts compared to 

control. Additionally, significant inhibition of V. dahliae in vitro growth was observed after 

treatment with grape, olive, and plant compost extracts; presenting average growth 25% - 50% 

less than the control. This supports the growing body of literature that organic amendments have 

potential as tools for sustainable soil disease management, though no disease outbreak was 

observed in this study. With particularly sensitive crop varieties, organic amendments may 

function as part of a broader control plan utilizing a variety of soil management tools to protect 

crops. This is supported by the findings of our laboratory experiment, which establishes that part 

of the mechanism of suppression is chemical. A significant effect of compost treatments on the 

microbial community structure and the structure of known fungal antagonistic bacterial 

communities was also observed within the organic farm. This is evidence that a biological 

mechanism of suppression of fungal pathogens after the application of organic amendments also 
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was occurring. In the field there are a variety of potential mechanisms by which organic 

amendments can suppress pathogens. These mechanisms include changes to the microbial 

community that hinder pathogen growth and the introduction of systemic resistance to the crop. 

In the laboratory study, these factors were not present, therefore the V. dahliae growth 

suppression seen must be in part due to chemicals introduced with the organic amendments 

having a deleterious effect on the pathogen. Between our observed laboratory suppression and 

changes to the microbial communities it is likely the significant suppression of V. dahliae by 

grape pomace, olive pomace, plant waste and dairy manure-based composts was multifaceted 

and worked through more than one mechanism.   

 We were unable to observe any significant effects of the compost on either of the 

arthropod communities sampled. Arthropods are highly mobile and difficult to accurately track 

or trap. This makes estimating their abundance and diversity distributions extremely challenging. 

Observations of all soil arthropods dropped significantly after the application of treatment which 

may be due to the attractiveness of the bait station decreasing after additional organic material 

was introduced as an alternative food source. These trends also may be due to natural seasonal 

variation but further research is required to illuminate the ecology of Collembola and their 

response to organic soil amendments. 

 Contrary to what we expected, total weed biomass was not significantly impacted by any 

of the treatments. Field weed populations are inherently highly variable in part due to an 

inconsistent seed bank. Our results were variable and appeared to be affected by several 

confounding variables masking any potential trends from the treatment application. Results were 

likely confounded by the inconsistent seed bank and the edge effect observed in both our fields. 

In a future study exploring the effect these amendments have on weeds, a controlled setting 
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could be utilized to avoid the pitfalls experienced here. A laboratory study could be designed to 

have equal seed numbers unbiased by field and seed bank conditions.   

 No negative effects of the treatments were observed on our crop. This has been a concern 

with the application of organic amendments with potentially phytotoxic content. Our compost 

analysis did show relatively high levels of soluble salts and olive and grape based amendments 

are known to be high in polyphenols, which can be phytotoxic. Despite these contents, and 

observed suppression trends of certain weed species, our compost treatments had no significant 

effect on the health or yield of bell peppers. We were not able to observe any significant impact 

on peppers from the treatments tested despite their measurable suppression on soil-borne 

pathogen loads. The cultivar of pepper used is known to be susceptible to verticillium wilt but is 

not highly sensitive and can be resistant to some V. dahliae strains. In a future study, a more 

sensitive crop, such as strawberries, could be utilized to observe effects from minor differences 

in the soil pathogen load. The lack of observable impact of compost treatment on bell pepper 

health or yield is likely due to high variability and confounding factors existing in field 

conditions. The relationships between soil physical and chemical characteristics, soil microbial 

communities, and plant health is complex, making it difficult to assess the impacts of the 

compost treatments on the bell peppers.  

 Overall, we were able to observe similar effects of suppression on soil-borne pathogen 

load as is consistent in the literature. This suppression was observed in both fields and both lab in 

vitro growth trials run.  We were unable to determine the effects of our organic amendments on 

weed biomass or species composition, Symphyla or Collembola populations, or the health of our 

bell pepper crop. Organic amendments have potential as a pest suppression tool in organic 

management where other management options are limited and costly.   
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Appendix A 

Field Maps (©2019 Google) 
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Appendix B 

Plot Arrangement within Fields.  
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Appendix C 

Sorenson's NP-10 Medium 

Selective Medium for Verticillium dahliae 

(This protocol was originally obtained from Mary Powelson's group) 

I. Add these ingredients to 2 different flasks 

FLASK 1: 

 500 ml Medium 1 liter Medium 

Distilled water 250  ml 500 ml 

NaOH (1 N solution) 12.5 ml 25 ml 

Polygalacturonic acid* 2.5 g 5.0   g        

(*Na salt, Sigma P-3889) 

  

FLASK 2: 

 500 ml Medium 1 liter Medium 

Distilled water 250  ml 500 ml 

Agar 7.5 g 15.0 g  

KNO3 (potassium nitrate)** 0.5 g 1.0 g 

KH2PO4 (potassium phosphate monoba) 0.5 g 1.0 g 

KCl (potassium chloride) 0.25 g 0.5 g        

MgSO4-7H2O (Magnesium sulfate 

heptahydrate 

 

0.25 g 0.5 g        

ADD A STIR BAR TO FLASK 2.   
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II. Autoclave FLASKS 1 and 2 for 20 minutes. 

III. Cool in waterbath to 55oC.   

IV. To FLASK 2, add stock solutions (see below). You don’t have to use stock solutions of 

each item, they can be added directly. 

 

 500 ml Medium 1 liter Medium 

Streptomycin SO4 0.025 g (i.e. 25 mg) 0.05 g (i.e. 50 mg) 

Chlortetracycline HCl 0.025 g (i.e. 25 mg) 0.05 g (i.e. 50 mg) 

Chloramphenicol 0.025 g (i.e. 25 mg) 0.05 g (i.e. 50 mg) 

Tergitol NP-10 (filter sterilized) 0.25 ml (i.e. 250 ul) 0.5 ml (i.e. 500 ul) 

 

In hood, pour FLASK 2 into FLASK 1; then stir, and pour immediately. 
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Appendix D 

APDA (Acidified Potato Dextrose Agar) 
For 1 liter: 

I. Add 1000 ml of diH2O to a 2 L Erlenmeyer flask. 
II. Add stir bar and turn on hear, staying below ~ 60°C. 
III. Weigh out 39 grams of powdered potato dextrose agar and add to flask. 
IV. After solution has mixed thoroughly, autoclave for 20 minutes. 
V. Place flask in water bath set at 55°C for at least 30 minutes. 
VI. Move the flask onto a hot plate inside the laminar flow hood.  
VII. Add 1 ml of 85% lactic acid. 
VIII. Mix well without creating any bubbles, and then pour into Petri plates. 
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Appendix E 

Bait Setup for Soil Arthropod Sampling.  

For Collembola a leaf was be placed over the plastic sheet over the hole and the bucket 

would be placed on top. For garden symphylans the plastic sheet was removed and a potato 

cutting was placed flat on the soil. The bucket was then left on the potato cutting.  
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Appendix F 

Soil Control Lab Results. 

 

TEL: 831-724-5422
FAX: 831-724-3188
www.compostlab.com

Account #: 9020076-2/5-7772
Group: Feb19B #61

Reporting Date:

Cal Poly State University
1 Grand Avenue (Building 9)

  Attn: Ashraf Tubeileh

Date Received: 05 Feb. 19
Sample Identification: Grape Waste Compost
Sample ID #: 9020076 - 2/5

Wet wt. Dry wt. TMECC
Nutrients-Primary + Secondary Units Basis Basis Method
Total Nitrogen: % 1.5 1.7 4.02-D
Ammonia (NH4-N): mg/kg 10 11 4.02-C
Nitrate (NO3-N): mg/kg 62 70 4.02-B
Organic Nitrogen (Org.-N): % 1.5 1.7 Calc.
Phosphorus (as P2O5): % 0.50 0.57 Calc.
Phosphorus (P): mg/kg 2200 2500 4.03-A
Potassium (as K2O): % 1.4 1.7 Calc.
Potassium (K): mg/kg 12000 14000 4.04-A
Calcium (Ca): % 1.6 1.8 4.05
Magnesium (Mg): % 0.99 1.1 4.05
Sulfate (SO4): mg/kg 53 60 4.12-D/IC

Nutrients - Trace elements
Copper (Cu): mg/kg 26 29 4.05-Cu
Zinc (Zn): mg/kg 76 85 4.05-Zn
Iron (Fe): mg/kg 11000 13000 4.05-Fe
Manganese (Mn): mg/kg 260 290 4.05-Mn
Boron (B): mg/kg 19 22 4.05-B

Salts, pH, Bulk Density, Carbonates
Sodium (Na): % 0.064 0.071 4.05-Na
Chloride (Cl): % 0.055 0.061 04.05/IC
pH Value: units 8.20 NA 04.11-A
Electrical Conductivity (EC5 dw): mmhos/cm NA 1.4 04.10-A
Bulk Density : lb/cu ft 38 34 SCL
Carbonates (as CaCO3) : lb/ton 11 12 04.08-A
Organic Matter: % 39.8 44.6 05.07-A
Organic Carbon: % 23 25 4.01
Ash: % 49.5 55.4 3.02
C/N Ratio ratio 14.7 14.7 calc.
Moisture: % 10.6 0 3.09
AgIndex ratio > 10 > 10 SCL

To Calculate lbs/ton: (%Nutrient) x (20)
To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)
To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27
To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27 Analyst: Assaf Sadeh

San Luis Obispo,  CA  93407

February 20, 2019



 72 

 

 

TEL: 831-724-5422
FAX: 831-724-3188
www.compostlab.com

Account #: 9020076-1/5-7772
Group: Feb19B #60

Reporting Date:

Cal Poly State University
1 Grand Avenue (Building 9)

  Attn: Ashraf Tubeileh

Date Received: 05 Feb. 19
Sample Identification: Dairy Waste Compost
Sample ID #: 9020076 - 1/5

Wet wt. Dry wt. TMECC
Nutrients-Primary + Secondary Units Basis Basis Method
Total Nitrogen: % 1.2 1.4 4.02-D
Ammonia (NH4-N): mg/kg 11 13 4.02-C
Nitrate (NO3-N): mg/kg 370 430 4.02-B
Organic Nitrogen (Org.-N): % 1.2 1.4 Calc.
Phosphorus (as P2O5): % 1.1 1.3 Calc.
Phosphorus (P): mg/kg 4800 5700 4.03-A
Potassium (as K2O): % 1.4 1.7 Calc.
Potassium (K): mg/kg 12000 14000 4.04-A
Calcium (Ca): % 2.1 2.5 4.05
Magnesium (Mg): % 1.4 1.6 4.05
Sulfate (SO4): mg/kg 1100 1200 4.12-D/IC

Nutrients - Trace elements
Copper (Cu): mg/kg 45 53 4.05-Cu
Zinc (Zn): mg/kg 180 210 4.05-Zn
Iron (Fe): mg/kg 16000 18000 4.05-Fe
Manganese (Mn): mg/kg 420 500 4.05-Mn
Boron (B): mg/kg 18 21 4.05-B

Salts, pH, Bulk Density, Carbonates
Sodium (Na): % 0.28 0.33 4.05-Na
Chloride (Cl): % 0.24 0.28 04.05/IC
pH Value: units 8.40 NA 04.11-A
Electrical Conductivity (EC5 dw): mmhos/cm NA 3.6 04.10-A
Bulk Density : lb/cu ft 52 44 SCL
Carbonates (as CaCO3) : lb/ton 27 32 04.08-A
Organic Matter: % 25.9 30.7 05.07-A
Organic Carbon: % 13 15 4.01
Ash: % 58.6 69.3 3.02
C/N Ratio ratio 10.7 10.7 calc.
Moisture: % 15.6 0 3.09
AgIndex ratio 7.1 7.1 SCL

To Calculate lbs/ton: (%Nutrient) x (20)
To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)
To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27
To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27 Analyst: Assaf Sadeh

San Luis Obispo,  CA  93407

February 20, 2019
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TEL: 831-724-5422
FAX: 831-724-3188
www.compostlab.com

Account #: 9020076-3/5-7772
Group: Feb19B #62

Reporting Date:

Cal Poly State University
1 Grand Avenue (Building 9)

  Attn: Ashraf Tubeileh

Date Received: 05 Feb. 19
Sample Identification: Olive Waste Compost
Sample ID #: 9020076 - 3/5

Wet wt. Dry wt. TMECC
Nutrients-Primary + Secondary Units Basis Basis Method
Total Nitrogen: % 1.3 1.7 4.02-D
Ammonia (NH4-N): mg/kg 16 21 4.02-C
Nitrate (NO3-N): mg/kg 11 15 4.02-B
Organic Nitrogen (Org.-N): % 1.3 1.7 Calc.
Phosphorus (as P2O5): % 0.68 0.91 Calc.
Phosphorus (P): mg/kg 3000 4000 4.03-A
Potassium (as K2O): % 1.1 1.4 Calc.
Potassium (K): mg/kg 8900 12000 4.04-A
Calcium (Ca): % 1.4 1.8 4.05
Magnesium (Mg): % 0.82 1.1 4.05
Sulfate (SO4): mg/kg 390 530 4.12-D/IC

Nutrients - Trace elements
Copper (Cu): mg/kg 31 42 4.05-Cu
Zinc (Zn): mg/kg 98 130 4.05-Zn
Iron (Fe): mg/kg 8200 11000 4.05-Fe
Manganese (Mn): mg/kg 220 300 4.05-Mn
Boron (B): mg/kg 20 27 4.05-B

Salts, pH, Bulk Density, Carbonates
Sodium (Na): % 0.14 0.19 4.05-Na
Chloride (Cl): % 0.17 0.22 04.05/IC
pH Value: units 8.71 NA 04.11-A
Electrical Conductivity (EC5 dw): mmhos/cm NA 2.6 04.10-A
Bulk Density : lb/cu ft 47 35 SCL
Carbonates (as CaCO3) : lb/ton 11 15 04.08-A
Organic Matter: % 35.0 47.6 05.07-A
Organic Carbon: % 20 28 4.01
Ash: % 38.6 52.4 3.02
C/N Ratio ratio 16.5 16.5 calc.
Moisture: % 26.5 0 3.09
AgIndex ratio 9.9 9.9 SCL

To Calculate lbs/ton: (%Nutrient) x (20)
To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)
To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27
To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27 Analyst: Assaf Sadeh

San Luis Obispo,  CA  93407

February 20, 2019
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TEL: 831-724-5422
FAX: 831-724-3188
www.compostlab.com

Account #: 9020076-4/5-7772
Group: Feb19B #63

Reporting Date:

Cal Poly State University
1 Grand Avenue (Building 9)

  Attn: Ashraf Tubeileh

Date Received: 05 Feb. 19
Sample Identification: Plant Waste Compost
Sample ID #: 9020076 - 4/5

Wet wt. Dry wt. TMECC
Nutrients-Primary + Secondary Units Basis Basis Method
Total Nitrogen: % 1.1 1.4 4.02-D
Ammonia (NH4-N): mg/kg 13 17 4.02-C
Nitrate (NO3-N): mg/kg 190 240 4.02-B
Organic Nitrogen (Org.-N): % 1.1 1.4 Calc.
Phosphorus (as P2O5): % 0.68 0.89 Calc.
Phosphorus (P): mg/kg 3000 3900 4.03-A
Potassium (as K2O): % 1.0 1.3 Calc.
Potassium (K): mg/kg 8400 11000 4.04-A
Calcium (Ca): % 1.9 2.4 4.05
Magnesium (Mg): % 0.46 0.60 4.05
Sulfate (SO4): mg/kg 2000 2500 4.12-D/IC

Nutrients - Trace elements
Copper (Cu): mg/kg 55 71 4.05-Cu
Zinc (Zn): mg/kg 150 190 4.05-Zn
Iron (Fe): mg/kg 8200 11000 4.05-Fe
Manganese (Mn): mg/kg 230 300 4.05-Mn
Boron (B): mg/kg 17 22 4.05-B

Salts, pH, Bulk Density, Carbonates
Sodium (Na): % 0.12 0.16 4.05-Na
Chloride (Cl): % 0.29 0.37 04.05/IC
pH Value: units 8.10 NA 04.11-A
Electrical Conductivity (EC5 dw): mmhos/cm NA 4.4 04.10-A
Bulk Density : lb/cu ft 50 39 SCL
Carbonates (as CaCO3) : lb/ton 19 25 04.08-A
Organic Matter: % 27.7 35.9 05.07-A
Organic Carbon: % 13 17 4.01
Ash: % 49.4 64.1 3.02
C/N Ratio ratio 12.1 12.1 calc.
Moisture: % 22.9 0 3.09
AgIndex ratio 6.8 6.8 SCL

To Calculate lbs/ton: (%Nutrient) x (20)
To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)
To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27
To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27 Analyst: Assaf Sadeh

San Luis Obispo,  CA  93407

February 20, 2019
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Appendix G 

Summary of Weather Data. 

Summary of weather data for 2018 and 30 year averages for San Luis Obispo, CA 

(station 52) as provided by California Irrigation Management Information System (CIMIS).  

Monthly average climate data from 1986 - 2018 for San Luis Obispo, CA 

Month 
Total ETo 
(mm) 

Total Precip 
(mm) 

Avg Sol Rad 
(W/m2) 

Avg Air 
Temp (C) 

Avg Rel 
Hum (%) 

January 57.99 107.63 112.81 11.99 62.53 
February 64.62 103.48 140.31 12.44 64.81 
March 97.82 83.01 197.78 13.15 66.31 
April 125.22 26.39 255.00 13.71 66.50 
May 144.07 13.50 283.97 14.83 67.91 
June 155.71 5.69 307.19 16.47 68.03 
July 158.62 3.03 295.91 17.59 70.66 
August 147.13 103.09 271.59 17.81 70.38 
September 122.13 158.47 228.97 17.98 66.88 
October 99.81 29.52 172.53 17.10 63.03 
November 69.50 37.95 128.53 14.53 59.91 
December 55.53 86.78 103.19 11.72 62.34 

      
Monthly average climate data from 2018 for San Luis Obispo, CA 

Month 
Total ETo 
(mm) 

Total Precip 
(mm) 

Avg Sol Rad 
(W/m2) 

Avg Air 
Temp (C) 

Avg Rel 
Hum (%) 

January 61.80 81.0 104 15.2 68 
February 86.59 3.4 165 14.3 55 
March 82.20 199.2 165 13.9 76 
April 130.00 12.8 251 16.7 75 
May 125.68 0.2 250 16.2 79 
June 151.99 0.1 287 19.1 76 
July 161.38 0.0 272 20.8 79 
August 148.71 0.0 259 21.2 75 
September 119.25 0.0 224 19.7 78 
October 101.50 16.3 178 17.3 63 
November 75.12 115.5 135 15.6 56 
December 59.58 27.3 110 12.5 65 
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Appendix H 

Photo of Symphyla on Potato Bait. (9 May 2018) 

 

Expanded portion of same photo to clearly show Symphyla. 
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Appendix I 

Photo of Collembola from Soil Baiting Station. (23 May 2018) 

 


